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Machine-learning classification of two-dimensional vortex configurations
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We consider computer-generated configurations of quantized vortices in planar superfluid Bose-Einstein
condensates. We show that unsupervised machine-learning technology can successfully be used for classifying
such vortex configurations to identify prominent vortex phases of matter. The machine-learning approach could
thus be applied for automatically classifying large data sets of vortex configurations obtainable by experiments
on two-dimensional quantum turbulence.
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I. INTRODUCTION

Statistical mechanics is one of the cornerstones of mod-
ern physics [1–3]. The key underlying principle is statistical
equivalence of the myriad of microstates that all share com-
mon thermodynamic properties such as configuration energy
or temperature, and collectively represent the macroscopically
observable phenomena. Typically, the macroscopic state vari-
ables are given as input parameters and the corresponding
microstates are obtained as solutions to the underlying model
Hamiltonian. In this work, we are interested in a reverse
process where the microstates are given as measurement out-
comes which we wish to categorize into distinct macrostates
based on their statistical similarity, without any knowledge of
the underlying Hamiltonian.

The Onsager model of two-dimensional turbulence [4] is
a statistical mechanics description of pointlike vortices where
each vortex configuration corresponds to a particular statis-
tical microstate of the fluid. The model is particularly well
suited for modeling vortices and their statistical behavior in
superfluids where the vorticity of the fluid is quantized. The
applicability of the Onsager model has been verified by recent
experiments on two-dimensional quantum turbulence (2DQT)
in superfluid Bose-Einstein condensates [5,6].

In typical cold-atom experiments the quantitative infor-
mation of the physical system is extracted from images of
the atom density distribution [7]. Each such experimental
image corresponds to a single representative microstate of the
system’s thermodynamic state and if quantized vortices are
present in the system, their positions can be read off from
such images. This raises the question whether it would be
possible to categorize such experimental data using machine-
learning protocols into ensembles of statistically equivalent
microstates, for instance, in order to detect distinct phases of
matter supported by the system.

The remarkable success of artificial neural networks when
applied to the problems of image recognition, image clas-
sification, and natural language processing has prompted
interdisciplinary efforts to investigate how a broader range of
scientific problems might benefit from deploying these new
tools. This has led to implementations of machine-learning
methods, for instance, to identify symmetry-broken phases

in the field of classical statistical physics [8–10], and in
some cases neural networks have even been shown to be
able to learn an order parameter or other thermodynami-
cal parameters [8,10]. More recently, the machine-learning
methodology has found applications in the realm of physics
problems such as identifying phase transitions of many-body
systems [11–22], topological systems [23–27], and finding
quantum enhanced learning algorithms [28–30].

An appropriately designed and trained supervised deep
learning procedure has been applied to spin and vortex config-
urations in the two-dimensional XY model [24] to identify the
Kosterlitz-Thouless (KT) transition [31]. However, labeled
training sets, which are mandatory for supervised learning, are
not always easily attainable. For this reason, the unsupervised
machine-learning methods, that do not rely on prior knowl-
edge, may offer significant benefits over supervised learning
methods [32,33]. Inspired by the application of the supervised
learning to classify the KT transition [11,24], it is natural to
ask whether unsupervised neural networks would be capable
of identifying a variety of vortex phases of matter and quan-
tum turbulent flow states in two-dimensional Bose-Einstein
condensates. Few unsupervised learning techniques have been
previously applied to the XY model. The principal component
analysis (PCA) method [34] has been performed on spin con-
figurations [35–37] but even when learning with the vorticity
field directly, the PCA was found to be unable to identify
the transition point corresponding to the vortex-antivortex un-
binding [36]. Additionally, most of these previous approaches
need the prior information before processing, for example,
the previously known number of phases and approximate
transition temperature value [17,23]. Hence such aspects can
be complicated to implement the generalized idea via the
machine-learning technique to detect these phase transitions.
In contrast, our work presents a machine-learning approach
which employs the bag-of-features function for feature extrac-
tion and unsupervised self-organizing-map (SOM) algorithm
for classification and is able to detect the ordered and disor-
dered sides of the vortex binding-unbinding transition without
prior labeling.

In this paper, we apply an unsupervised machine-learning
strategy to the task of identifying vortex phases of matter of

2469-9926/2022/105(3)/033301(12) 033301-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0730-9126
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.033301&domain=pdf&date_stamp=2022-03-01
https://doi.org/10.1103/PhysRevA.105.033301


RAMA SHARMA AND TAPIO P. SIMULA PHYSICAL REVIEW A 105, 033301 (2022)

the two-dimensional Onsager point-vortex model. Our main
goal is to test whether it is possible for an artificial neu-
ral network, trained only on the features extracted from the
vortex configurations, to learn distinct vortex phases of mat-
ter that are thermodynamically defined in terms of external
macrostate properties such as temperature. The rest of this pa-
per is organized as follows. Section II provides the theoretical
background on the Onsager point-vortex model of two-
dimensional turbulence and outlines the numerical methods
employed, such as the Monte Carlo method and machine-
learning model. Section III begins by providing benchmark
results using an unsupervised machine-learning approach
showing successful classification of states of a system of two
same-sign vortices. Specifically, we show that the unsuper-
vised learning is able to identify the analytically predicted
topological phase boundary of this system [38,39]. We then
consider experimentally relevant point-vortex configurations
of 20 polarized (single-sign circulation for all vortices) and 40
neutral (equal number of vortices and antivortices) vortex sys-
tems and show that the unsupervised machine learning is able
to successfully identify both the positive-vortex-temperature
Kosterlitz-Thouless transition as well as the negative-vortex-
temperature Onsager vortex-condensation transition. These
findings show promise for applying machine-learning models
for exploring experimental data sets involving vortex config-
urations. We close the paper in Sec. IV by summarizing our
findings with concluding remarks.

II. THEORY

Consider a Navier-Stokes equation,

∂v
∂t

+ (v · ∇ )v = −∇p

ρ
+ ν∇2v, (1)

which describes the flow of a Newtonian incompressible fluid
that satisfies the continuity equation ∂tρ + ∇ · (ρv) = 0. In
Eq. (1) v(r, t ) is the fluid velocity field, ρ is the fluid density,
p is the fluid pressure, ∇2 is the Laplacian operator, and ν is
the kinematic viscosity. In rare cases, such as one-dimensional
flow and creeping flow, the Navier-Stokes equation for v(r, t )
can be solved analytically. However, the nonlinearity in tur-
bulent fluids arising due to the convective acceleration of
the fluid makes analytical solutions impossible in general.
Moreover, an accurate numerical solution of Eq. (1) is difficult
to achieve due to the vast range of length scales and number
of degrees of freedom involved [40]. Fortuitously, a dramatic
simplification can be achieved by considering the fluid’s vor-
ticity field, ω(r, t ) = ∇ × v(r, t ), instead of the velocity field.
In particular in the case of planar superfluids, the former can
in many cases be well approximated by only a small number
of point vortices.

A. Point-vortex dynamics

One of the conceptual benefits of two-dimensional fluid
dynamics comes from the fact that the flow field is confined
to a plane. Consequently, the vortices cannot bend or expand
the way they can in three-dimensional flows. The vortices
can be modeled as point sources of rotating fluid flow in the
limit where the vortices are well separated. In such a case,

the vorticity ω(r), which is normally smoothly distributed
over the fluid, may be obtained by summing over the vortices
according to

ω(r) = ∇ × v =
Nv∑

i

�iêzδ(r − ri ), (2)

where the point vortices with circulations �i are located at
positions ri for i ∈ {1, 2, . . . , Nv} with Nv the total number
of vortices. The velocity field of a fluid flow around a single
vortex at location r is

vi(r) = �i

2π

1

|r − ri| θ̂i, (3)

where the azimuthal coordinate axes θ̂i are centered on the
vortex cores. The total fluid velocity field

v(r) =
Nv∑

i

vi(r) + B (4)

due to many vortices is a simple superposition of the individ-
ual vortex velocity fields vi, supplemented by B which stands
for terms that are nonzero in the presence of boundaries. The
point-vortex approximation significantly simplifies the model-
ing of a two-dimensional (2D) fluid, as the velocity of the fluid
at each point in space can be mapped by the net flow of all
vortices within the fluid. The vortices are positioned in such a
way that the superposition of their regular circulating flows
better mimics the fluid’s complete velocity field [41]. This
description has the advantage of allowing the continuous fluid
to be replaced by Nv zero-spatial-extent points (vortices) of
well-defined locations (xi, yi ) and circulations �i, which carry
the full fluid flow information. The dynamics of the vortices
maps onto the dynamics of the fluid particles and each vortex
moves with the fluid velocity induced by all other vortices
within the fluid at its location. Hence, each vortex’s motion
is measured by the relative location and strength of all other
vortices [42].

The point-vortex approximation is particularly well suited
for modeling the dynamics of vortices in superfluid Bose-
Einstein condensates (BECs) for which Eq. (2) is accurately
satisfied. This leads to the point-vortex model (PVM) for the
dynamics of the vortices, which utilizes a set of coupled or-
dinary differential equations to describe the vortex dynamics
by considering the interactions among vortices and related
boundary conditions in trapping potential. For most of this
work we make the use of a uniform trap potential.

Vortex equations of motion

The so-called box potentials have become commonly
utilized in cold-atom experiments [5,6,43,44]. Considering
vortices in a unit disk geometry, each vortex is accompanied
by a single image vortex of charge s̄i = −si positioned out-
side the fluid boundary at a location r̄i = riR2/|ri|2 [45]. The
equations of motion for such point vortices are [4]

hsi
∂xi

∂t
= ∂H

∂yi
and hsi

∂yi

∂t
= −∂H

∂xi
, (5)
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where the energy of the vortex configuration is

H = αkB

Nv∑

i=1

s2
i ln

(
1 − r2

i

) − αkB

Nv∑

j<i

sis j ln
(
r2

i j

)

+ αkB

Nv∑

j<i

sis j ln
(
1 − 2xix j − 2yiy j + r2

i r2
j

)
. (6)

In Eq. (6), α = ρsκ
2/4πkB, where ρs is the superfluid density

and κ = h/m is the quantum circulation with h, m, and kB de-
noting the Planck constant, the atom mass, and the Boltzmann
constant, respectively. The r2

i = x2
i + y2

i with xi = Re(zi ) and
yi = Im(zi ) are the Cartesian coordinates of the ith vortex
and are expressed in terms of complex numbers zi in a sys-
tem of dimensionless radius R = 1 with circulation winding
number si = ±1. The first term of Eq. (6) corresponds to
the interaction of the vortices with their images. The second
term describes the logarithmic long-range two-dimensional
Coulomb interaction between the vortices, and last term is the
interaction of the real vortices with the images of all other
vortices in the system.

B. Monte Carlo thermodynamics

Since we are particularly interested in the statistical prop-
erties of two-dimensional vortex configurations, we have
implemented a Monte Carlo sampling method following
Refs. [46,47]. Briefly, the algorithm takes the initial positions
and circulations of Nv vortices and a vortex temperature Tv as
input parameters and returns a set of statistically equivalent
equilibrium vortex configurations.

To initiate the algorithm we generate random initial posi-
tions for the fixed number of Nv vortices. In each step of the
algorithm an attempted move of one randomly selected vortex
is made and the move is accepted or rejected probabilistically
based on a temperature-dependent weight function η [46,47].
In this work a Boltzmann factor η = exp(−H/kBTv ), where
kB is the Boltzmann constant and Tv is the vortex temperature,
is used. The inverse temperature β = 1/(kBTv ) characterizes
the equilibrium vortex configurations. The energy H is de-
termined from the point-vortex Hamiltonian [Eq. (6)] of a
uniform fluid inside a circular domain of radius R. The core
radius of the vortices is set to be 0.008R. In order to account
for the effect of finite core size of real superfluid vortices, a
constraint was placed when generating the vortex configura-
tions to prevent vortices from falling too close to each other or
to the system boundary. A minimum intervortex separation of
twice the vortex core radius, and a minimum vortex-boundary
separation of one vortex core radius were implemented. To
ensure fair sampling of the vortex configurations, a variety of
observables were monitored, and the systems were deemed
to have reached equilibrium after 105 steps. All Monte Carlo
calculations were therefore first run for an initial burn in of
105 steps at each temperature. Subsequently, at every tempera-
ture, 1000 vortex configurations were sampled uniformly from
the total of 106 microstates generated.

Clusters, dipoles, and free vortices

To quantitatively detect different vortex configurations we
used a vortex classification algorithm [47,48]. The algorithm

0 EBCBKT
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FIG. 1. Illustration of the three point-vortex phases of matter as
functions of inverse temperature β. The top row shows configurations
of 10 vortices all having the same sign of circulation. The bottom row
shows configurations of 20 vortices with equal numbers of clock-
wise and anticlockwise circulations. The three phases shown are the
low-entropy positive-temperature phase I, high-entropy disordered
phase II, and low-entropy negative-temperature phase III. The two
extremes are separated from the disordered phase by the critical
temperatures βBKT and βEBC, which are marked by dashed vertical
lines.

classifies vortices based on their spatial configuration by mea-
suring all intervortex distances and assigning the vortices into
three categories: same-sign clustered vortices, vortex dipoles,
and free vortices.

C. Vortex fluid phase transitions

The point-vortex statistical thermodynamics sets a frame-
work for understanding the vortex fluid behavior within the
point-vortex model. The model has two prominent transition
temperatures corresponding to the positive-temperature vortex
dipole pair formation or breaking, and negative-temperature
same-sign vortex cluster formation or breaking. A schematic
summarizing the vortex phases is shown in Fig. 1. For a
two-dimensional neutral Coulomb gas with equal number of
vortices and antivortices without core structure (true point
vortices) [49,50], the vortex dipole pair collapse transition
occurs at a critical temperature βd = 4π/ρs�

2, where ρs is
the fluid density, � = h/m the circulation, with h and m the
Planck constant and atom mass, respectively. By accounting
for the nonzero vortex core size, this transition tempera-
ture shifts [51], towards the Berezinskii-Kosterlitz-Thouless
(BKT) critical temperature βBKT = 2βd [31,52,53].

The negative temperature transition, referred to
as supercondensation or Einstein-Bose condensation
(EBC) [47,54,55], corresponds to the condensation of
like-sign Onsager vortex clusters. The critical temperature
of this transition is βEBC = −4βd/Nv [51,55] for neutral
vortex configurations and βEBC = −2βd/Nv for a system of
single-sign vortices.
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These temperatures serve as significant reference points
characterizing the vortex configurations illustrated in Fig. 1.
In between the two low-entropy ordered phases the vortices
are seemingly randomly distributed with their configurational
entropy being maximized at β = 0. The top and bottom rows
in Fig. 1 show representative vortex configurations for the
cases of Nv = 10 all clockwise (single-sign) circulation and
Nv = 20 with equal number of clockwise and anticlockwise
(neutral) circulations, respectively.

Our main goal in this paper is to apply machine-learning
technology to investigate if a simple unsupervised learning
with neural networks is capable of correctly identifying the
three significant vortex phases of matter summarized in Fig. 1.

D. Machine-learning classification of vortex configurations

Machine-learning algorithms are used for categorization of
data sets based on occurrences of common sets of features.
Possible features include continuous, binary, and categorical.
Supervised machine learning requires additional knowledge
(a training set) to supplement the data whereas in an unsu-
pervised machine-learning approach the data set is provided
for categorization as is without additional supporting infor-
mation [56].

The SOM [57–59] is a case of unsupervised artificial neural
networks (ANNs) successfully applied in areas of data cluster-
ing and complex data visualization, and for image processing.
Here we apply a SOM algorithm to classify vortex config-
urations. For this purpose we employ a machine-learning
framework implemented in MATLAB. In unsupervised learn-
ing, test images containing vortex positions are provided to
the classifier and the self-organizing maps cluster the data
based on the detected similarity and topology [57–59]. First,
the test images that are used for training the classifier need to
be preprocessed. For this purpose, we use the bag-of-features
(BoF) model to construct the feature vector (a histogram of
discrete features detected in an image). The feature vectors
are then used for training the SOM classifier model. These
machine-learning models used in this work are briefly de-
scribed below.

1. Bag-of-features model

Detecting robust image features forms the basis for accu-
rate object recognition [60]. The features of a digital image
such as shapes, color, texture, and the locations of these local
features inside the image are properties that allow the im-
age to be differentiated from other images in the database.
Representing an image through its pixel values results in a
very high-dimensional matrix, which is not appropriate for
image classification or recognition [61]. Therefore, we instead
extract the local features of digital images containing vortex
positions to classify them in categories.

The extracted features are influential when forming a
signature, such as a bag-of-visual-words depiction, for an
image [62]. Bag of visual words is a simplified approach
for extracting image content for machine-learning classifica-
tion [63]. It represents the images with orderless collections of
local image features. Here we use the BoF model in MATLAB

to construct the visual words for a given image. The concept
of BoF is analogous to the bag of words (BoW) [64,65] used

for representing a text document. The BoF model applies a
similar methodology, but instead of words it uses the image
features for analyzing the image. The key goal is to create a
visual vocabulary known as codebook, where the most com-
mon and strong image features are coded as codewords or
visual phrases. The image representation as a BoF is a his-
togram generated by a simple image codeword or visual word
occurrences. This model treats each image as a visual word
frequency histogram based on a visual vocabulary that mea-
sures the spatial characteristics of all images in the database.

The complete bag-of-visual-words process is accom-
plished by using an in-built MATLAB function, which operates
in a step-by-step approach. First, it extracts the strongest
image features using a speeded-up robust features (SURF)
algorithm [66,67]. Second, the model constructs the visual
vocabulary by considering 80% of the strongest features and
clustering them into visual words using a k-means clustering
algorithm [67,68]. The k-means clustering follows a heuristic
approach to construct initial clustering by selecting random
k-centroids from the data set, which represents the SURF
features as points [69,70]. For each data point the clustering
algorithm calculates the distance from all centroids and then
assign its membership to the nearest k-centroid iteratively.
After each iteration, the recalculation of the new k-centroid
is done by averaging all data points that are assigned to the
clusters and the process is repeated until convergence [67]. In
this way the final centroids become visual words or discrete
image features comprising the visual vocabulary [67], for the
given image set. These discrete image features are used for
training the (SOM) classifier model to reveal the possible
classifications.

2. Self-organizing-map algorithm

A Kohonen SOM [57] is a popular unsupervised artificial
neural network which is used to group similar patterns such
as feature vectors or data items together [71]. It projects a
high-dimensional input data onto a low-dimensional array of
nodes (neurons) [72]. This mapping retains the topological
relationships between the data domains. Consequently, the
image of the data space tends to manifest clustering of input
information and their relationships on the map. Initially a
random weight is assigned for each neuron and is placed in
the feature space containing the input vectors of the testing
images. Then one of the input vectors is randomly selected.
For each input vector, its Euclidean distance to every weight
vector is calculated, and the neuron with the closest matching
weight vector is moved towards the input vector in the feature
space. Also the neighboring neurons within a certain radius
are dragged toward the input vector [58,59]. This “nearest”
neuron is called the best matching unit (BMU) or the winning
neuron. The neurons’ positions are updated in each iteration
and the process is repeated for each input data and over all
iterations. The magnitude of these displacements decreases
with the distance from the BMU and as the iteration proceeds.
After considering each neuron and all iterations, eventually
the entire neural network tends to approximate the input vec-
tor distribution. Finally, the similar data are clustered together
in one area and the dissimilar data are grouped in a separate
area.
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For analyzing the classification of vortices we deployed
the bag-of-features function for extracting image features.
We used a grid method for picking the key point location
in the feature extraction mechanism and used a block width
to specify the scale of the feature. We employed the grid
method to optimize memory requirements and computational
time [73], while maintaining the accuracy of classifier. How-
ever, the grid size selection is a crucial step as a scattered
grid that corresponds to a low number of image features can
lead to loss of the key information, and on the other hand
a dense grid that corresponds to excessively many features
becomes computationally demanding and may result in irrele-
vant information. For classifying two same-sign vortices (data
set of 4000 images) we use the options GridStep = [8 8],
BlockWidth = [32 64 96 128], and vocabulary size = 500
in MATLAB. For analyzing the classification of more vortices
for polarized and neutral systems (larger data sets of ≈30 000
images) we customize the bag-of-features model in order to
reduce memory consumption while maintaining the desired
accuracy.

Specifically, in the context of this work for larger data
sets (≈30 000 images of size 291 × 291 pixels per image),
the parameters in the deployed bagOfFeatures function
call were VocabularySize = 250, StrongestFeatures = 0.8,
PointSelection = Grid, GridStep = [20 20], and BlockWidth
= [32 64 96 128]. We ran the SOM clustering algorithm for
800 training iterations and clustered the output typically into
four different classes by setting the dimension of the network
(number of neurons) accordingly.

3. Silhouette analysis for clustering accuracy

The clustering performance may be evaluated using a
range of methods such as the Calisnki-Harabasz coefficient,
Ball-Hall index, Hartigan index, Dunn index, and silhouette
coefficient [74]. Here we use the most common silhouette
coefficient method, which is a measure of how similar a data
item is to its corresponding cluster, as compared to the differ-
ent clusters [75]. The silhouette coefficient for data point k is
Sk = (bk − ak )/max(ak, bk ), where ak is the average distance
from the point k to all other points within the same cluster as
k, and bk is the minimum average distance from the point k to
points in a different cluster as illustrated in the Supplemental
Material [76]. The silhouette coefficient S for the entire data
set is the average of the silhouette coefficients over the total
number of data points. That is, if there are P data points or
objects in total in the system then the silhouette coefficient of
the full data set is S = (

∑P
k=1 Sk )/P.

The value of S ranges from −1 to +1. A high positive
value indicates that the sample is similar to its own cluster
and distinct from the other clusters. By contrast, a low or
negative S value for many data points indicates poor cluster
compliance.

In order to test our SOM clustering accuracy and to validate
the choice of four clusters we performed the k-means clus-
ter evaluation using the silhouette criterion where the cluster
number with maximum silhouette coefficient is decided as the
optimum cluster number. Although the k-means method is a
popular, conceptually simple, and computationally efficient
clustering algorithm, it has a feature that it may or may not

give the same outcome for repeated runs on the same input,
since it is initiated with random assignments. Here we per-
form k-means cluster evaluation for ten different numerical
experiments using one to ten clusters. We then average the
silhouette value over the total number of experiments for each
cluster number to determine the optimum number of clusters.

III. RESULTS

To investigate the feasibility of using machine learning to
classify point-vortex configurations, we begin by considering
the minimal system of two same-sign vortices. Using the ob-
tained results as encouragement we then move on to consider
separately larger polarized and neutral vortex systems.

A. Two same-sign vortices

To study the vortex dynamics of two corotating vortices
in an oblate harmonically trapped Bose-Einstein condensate
where the motion of the vortices is restricted within the
Thomas-Fermi radius, R > |zi| of the BEC [38,77,78], we
consider the equation of motion

−iżi = R2�0
sizi

R2 − |zi|2 + R2�int

N∑

j �=i

s j
zi − z j

|zi − z j |2 , (7)

where the two phenomenological parameters �0 and �int

correspond to the orbital angular frequency of a unit-strength
single vortex which orbits around the trap center, and the
angular frequency that determines the intervortex interaction
strength [38,79,80], respectively. To demonstrate this vor-
tex dynamics we first consider a system of two vortices,
Nv = 2, of unit circulation. The length and time are mea-
sured in the units of the system radius R and inverse angular
frequency �−1

0 , respectively. All possible two-vortex configu-
rations in this system are characterized by three observables:
the vortex angular momentum L = r2

1 + r2
2 [41], not to be

confused with the angular momentum of the fluid; the an-
gle φ = tan−1(r2/r1); and the azimuthal angle θ21 = θ2 − θ1,
subtended by the position vectors of the two vortices. In our
work we choose the value of the phenomenological param-
eters �int = 0.01ω0 and �0 = 1ω0, where ω0 is an arbitrary
frequency reference.

To compute the point-vortex dynamics in such a harmonic
trap, Eq. (7) was integrated using MATLAB function ode113
with relative error tolerance and absolute error tolerance both
set to 10−13. Each simulation was initialized by setting the
initial positions and circulations of the vortices. The accuracy
of the integration was confirmed by monitoring the values of
the conserved quantities H and L.

Vortex dynamics of two same-sign vortices in
Bose-Einstein condensates has been observed experimen-
tally [38,81]. In a system with a circular boundary each
possible two-vortex configuration is either of overlapping or
nonoverlapping type [38,39].

Figures 2(a) and 2(d) show two such configurations. Vi-
sually, configurations in Figs. 2(a) and 2(d) look similar and
their key difference is revealed by the dynamics shown in
respective Figs. 2(b) and 2(e). In Fig. 2(b) the vortex paths
never cross and the configuration in Fig. 2(a) corresponds to
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FIG. 2. Unsupervised machine-learning classification of vortex states for the case of two same-sign vortices. Vortex configurations
corresponding to the initial conditions (a) φ/π = 0.349, L = 0.69R2, θ21 = π and (d) φ/π = 0.30, L = 0.22R2, θ21 = π , respectively. (b,
e) Vortex trajectories in real space corresponding to the initial configurations of (a) and (d) and integrated for the duration 60�−1

0 . (c, f)
Velocity space representations of the vortex dynamics in (b) and (e), respectively. In (b), (c), (e), and (f) the initial and final vortex positions
are shown using diamond and circular markers, respectively. The bottom row shows the machine-learning classification of the data based on
the vortex position data (first column), the vortex trajectory data (second column), and the vortex velocity data (third column). The green and
yellow markers in (g–i) label the two categories requested in the unsupervised machine-learning classification and are obtained for a set of 4000
initial conditions in (φ, L) space. The nonoverlapping vortex trajectories (b) are categorized as red markers and the overlapping trajectories
(e) as blue markers. The black curves show the theory prediction for the phase boundary between the overlapping and nonoverlapping vortex
states [39]. The pink curves are the boundaries generated using machine classification between the overlapping and nonoverlapping vortex
states with 2000 initial configurations.

a nonoverlapping type. In Fig. 2(e) the vortex paths share
a region of phase space and the configuration in Fig. 2(d)
corresponds to an overlapping type. The topological distinct-
ness of these two types of vortex configurations becomes
even clearer when considering the velocity space representa-
tion [39], shown in Figs. 2(c) and 2(f).

To study the phase boundary between the overlapping
and nonoverlapping phases [38,39], we generated 4000 initial
vortex configurations in the (φ, L) space and used the un-
supervised machine-learning approach to classify the vortex
configurations. The images used for the classification in all
cases were 221 × 221 pixels, to provide sufficient resolution
for the machine-learning algorithms (especially for feature
extraction process) to operate effectively. We trained the clus-
tering SOM algorithm on the feature vectors with the image
features extracted using the default parameters of the bag-of-
features function.

Figure 2(g) shows the resulting unsupervised machine-
learning classification with red and blue markers correspond-
ing to the two classified categories. The green and yellow
markers correspond to Figs. 2(a) and 2(d), respectively. The
black curve shows the correct location of the phase bound-
ary [38,39]. Although the configurations in Figs. 2(a) and 2(d)
are classified correctly, the location of the phase boundary lies
at a higher value of L, when compared with its correct value,
for all considered values of φ.

In the second test, we trained the SOM clustering algorithm
with images showing the full vortex trajectories, such as in
Figs. 2(b) and 2(e), instead of the initial vortex configurations.
The corresponding classification result shown in Fig. 2(h) is
very similar to the case in Fig. 2(g) with an improvement
in the accuracy of the location of the phase boundary. In
the third case [Fig. 2(i)], we have taken the preprocessing
of the data even further and have trained the SOM clustering
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 (0.91, 0.7)              (0.97, 1.3)                   (0.81, 0.3)             (0.82, 0.1)                   (0.42, -0.2)            (0.31, -0.8)                   (0.01, -1.3)           (0.01, -1.4)     

    (0.98, 1.4)              (0.96, 0.9)                   (0.70, 0.1)              (0.77, 0.2)                   (0.21, -0.8)            (0.28, -0.7)                   (0.01, -1.4)           (0.06, -1.4)

FIG. 3. Sixteen representative vortex configurations for the four color-coded categories in Fig. 4. The (L/Nv, β ) values of each vortex
configuration are shown closest to the respective images.

algorithm with images showing the velocity space representa-
tion of the vortex trajectories. The classification in this case
is in excellent agreement with the correct phase boundary.
The two main conclusions from these test cases are that
(i) the unsupervised machine-learning classification works for
this problem remarkably well overall, and (ii) preprocessing
the data before performing the classification can significantly
improve the outcome of the classification. In addition, the
number of sampled images affects the classification signifi-
cantly, as demonstrated by the pink curves which show the
identified boundary between the blue and red markers when
2000 initial configurations are used. When the number of sam-
ples is increased to 4000 the classified boundary shifts closer
towards the correct (black curve) boundary [see Figs. 2(g)–
2(i)]. However, it is not always the case that the classification
accuracy would continually improve with the increasing num-
ber of training samples since excessive training may lead to
overlearning complications.

Although using the velocity space representation is ideal
for this two-vortex problem, our numerics indicates that sim-
ilar benefit over the vortex trajectory representation in the
case of many vortex configurations is not realized. Further-
more, when the number of vortices in the system increases,
the trajectory images such as Figs. 2(b) and 2(e) become
increasingly overcrowded and ultimately cannot be used for
classification purposes as the whole image becomes covered
densely for a fixed (resolution) trajectory linewidth. On the
other hand, increasing the data resolution to resolve finer
trajectory lines would rapidly lead to a memory bottleneck
in computation. Consequently, for the remainder of this paper
we are exclusively considering the plain vortex configurations
such as Figs. 2(a) and 2(d), which also correspond to the most
realistic experimental data in systems where real-time vortex
tracking is not feasible.

B. Polarized vortex system

The success of the machine-learning approach in analyzing
the topological phase boundary of a two-vortex system is en-
couraging and it motivates us to consider systems comprised
of more vortices to assess the applicability of this machine
model for classifying different phases of vortex matter.

For this purpose, we generate point-vortex configurations
for Nv = 20 vortices of all same-sign circulation using the
Monte Carlo simulation method. Considering different values
of Nv � 8 yields qualitatively similar results. We produce a
sample of 1000 images per temperature point representing
the statistically equivalent vortex configurations. A total of
29 temperature points uniformly distributed over the ranges
β = [1.4, 0] βBKT and β = [0,−1.4] βEBC are considered.

Figure 3 shows 16 example images of vortex configurations
sampled at various temperatures. A collection of 29 000 such
images were sampled from the Monte Carlo run and were
fed into the machine-learning model. Then, we processed the
images as per the procedure explained in the bag-of-features
model in Sec. II D 3. Thereafter, the processed image features
were used to train the clustering algorithm.

The classification result with four vortex phases of po-
larized vortices is demonstrated using the average vortex
impulse per particle (L̄/Nv) as a function of inverse temper-
ature (β) and the average energy per vortex (Ē/Nv) as shown
in Figs. 4(a) and 4(b), respectively. In Fig. 4(a) the x axis is
scaled by the critical inverse temperature |βBKT| and |βEBC|
for positive and negative temperature, respectively. The error
bars in Figs. 4(a) and 4(b) are one standard deviation of the
statistical value of angular momentum per vortex, and the
average energy per vortex, respectively. Samples of typical
vortex configurations for the four color-coded categories of
Fig. 4 are presented in Fig. 3 and are encapsulated in corre-
sponding colored frames. The (L/Nv, β ) values of each of the
16 vortex configurations are shown closest to the respective
images.

Figure 4 demonstrates that the unsupervised machine-
learning approach is able to distinguish four different vortex
phases according to their vortex temperature. At high positive
inverse temperature the classified yellow category corre-
sponds to the vortex dipole phase, where the real vortices
and their image vortices are paired across the boundary of
the circular BEC as shown in the four configurations in the
yellow box (Fig. 3). On increasing the temperature the vor-
tex pairs begin to unbind from their images. For zero core
point vortices this transition occurs at critical temperature
β/|βBKT| = 0.5 and the machine-learning classification seems
to capture this transition. The green category corresponds to
the high-entropy, high-positive-temperature phase. When the
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FIG. 4. Unsupervised machine-learning classification of point-
vortex configurations into four categories, corresponding to the
different marker styles and colors. (a, b) The vortex impulse per
particle (L/Nv), as a function of inverse temperature (β) and the
energy per vortex (E/Nv). In (a) the x axis is scaled by critical inverse
temperature |βEBC| and |βBKT| for negative and positive temperatures,
respectively. In both frames the y axis is representing the average
vortex impulse per particle (L̄/Nv) and in (b) the x axis is represent-
ing the average vortex energy per particle (Ē/Nv). In both frames
the classification is conducted for a system of Nv = 20 same-sign
vortices using an ensemble of 1000 initial configurations. The error
bars are one-standard-deviation statistical estimates.

temperature changes sign at β = 0 the output is classified
in the blue category. Visually, many of the vortex configu-
rations in the green and blue categories would be hard to
distinguish whereas the machine-learning model has no dif-
ficulty in succeeding in this task. The fourth identified vortex
matter phase is classified as a red category, which corresponds
to the condensation of the well-defined Onsager vortex clus-
ters taking place at critical temperature β/|βEBC| = −1.

To obtain deeper understanding of these classification re-
sults, Fig. 5(a) shows a histogram that counts the number of
images classified into each of the four categories at each value
of β. In accordance with the histogram, we represent each data
point of Fig. 4 using the majority color whose representation
in the histogram exceeds 50%. To validate the SOM clustering
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FIG. 5. (a) The percentage of images of the Nv = 20 polarized
vortex system that were classified by SOM to belong to each of
the four color-coded nodes as a function of the inverse temperature.
(b) The average silhouette value of the data set computed using
k-means clustering as a function of number of clusters over ten differ-
ent experiments. The red dotted curve is the output of the same input
data as in (a) and the green dashed curve corresponds to silhouette
analysis of 20 same-sign vortices using an ensemble of 100 initial
positions for one to ten clusters. The silhouette analysis produces an
undefined value for cluster numbers 1–3. We set those points to the
minimum silhouette value of −1 as shown by grey circular markers.

output for the optimal number of four clusters for the tested
data, we create a silhouette criterion clustering evaluation
using k-means clustering. The silhouette analysis provides the
optimum cluster number (Silhouette Evaluation in MATLAB)
and evaluates the quality of clustering [75].

Figure 5(b) presents the average silhouette coefficient 〈S〉
of clustering for one to ten clusters averaged over ten ex-
periments. The red dotted curve is the average silhouette
coefficient of clustering for the same data set that is clus-
tered in Fig. 5(a) and the green dashed curve is the mean
silhouette for the data clustering of a system of 20 same-sign
vortices for 29 temperature points and an ensemble of 100
initial configurations at each temperature point. That is, for
the later case, the total 2900 images were created and their
features were extracted using the custom extractor function
for the bagOfFeatures model in MATLAB. This function uses
the default SURF feature extraction over a uniform grid of
point locations at many scales. The used default values for
this feature extraction for step size and multifeature scales
are 8 and [1.6 3.2 4.8 6.4], respectively. Then using k-means
clustering for those extracted features of 2900 images we
evaluate the optimum cluster number by performing silhouette
analysis. For both data sets we ran the experiment ten times
for one to ten clusters and then averaged the silhouette value
over the total number of experiments for each cluster number.
The error bars are one-standard-deviation statistical estimates
of silhouette coefficients.

In Fig. 5(b), the mean silhouette value is higher (green
curve) for the smaller data set (preprocessed using a custom
extractor function with dense grid for BoF) than the larger data
set (preprocessed with grid step size [20 20]), but for both red
and green curves the highest silhouette value occurs at four
clusters, suggesting that the optimal number of clusters to be
employed is four. This justifies our choice of four neurons in
the SOM classification, as using either more or fewer clusters
leads to poorer clustering as a result of lower silhouette value.
As such, the unsupervised machine-learning classification is
not only able to identify the boundaries of the four tempera-
ture regions but is also able to identify the correct number of
physically meaningful regions.

C. Neutral vortex system

Having successfully classified the single sign vortices (po-
larized vortex fluid) into four temperature regions, we next
repeat the analysis for the case of a neutral vortex system
(with equal number of vortices and antivortices) having in
total Nv = 40 vortices. Considering different values of Nv �
14 yields qualitatively similar results. As for the polarized
vortex systems, the test images of the neutral vortex system
using an ensemble of 1000 initial configurations were pro-
duced using Monte Carlo simulation at 31 temperature points.
These temperature points over the ranges β = [1.4, 0] βBKT

and β = [0,−1.4] βEBC were uniformly distributed with in-
crements of 0.1 except for β = [−0.8,−0.9] βEBC and β =
[−1.1,−1.2] βEBC, for which an increment of 0.05 was used.
For machine-learning classification the algorithm is trained on
the feature vectors of images containing positions of vortices
and antivortices plotted in green and blue circular markers as
shown through 16 representative images in Fig. 6. Although
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FIG. 6. Sixteen representative vortex configurations for the four color-coded categories in Fig. 7. The (L/Nv, β ) values of each vortex
configuration are shown closest to the respective images.

these images carry the information of the vortex circulation
sign in terms of the color for the machine-learning model,
removing the color coding has surprisingly little influence on
the outcome of the classification [76]. As in the case of the
polarized vortex system, here we also clustered the data into
four categories.

The quantitative classification results are again demon-
strated using the average energy per particle (Ē/Nv )(αkB) and
the average vortex cluster fraction (C̄ f (Nv )) as a function of
temperature (β) as shown in Figs. 7(a) and 7(b), respectively.
The energy is in units of αkB, where α = ρs�

2/4πkB. In
both frames the x axis is scaled by critical inverse tempera-
ture |βBKT| and |βEBC| for positive and negative temperature
ranges, respectively. The error bars in Figs. 7(a) and 7(b) are
one standard deviation in statistical value of energy per vortex
and cluster fraction as a function of temperature, respectively.
The vortex configurations for the four color-coded categories
in Fig. 7 are presented in Fig. 6 encapsulated by the corre-
sponding colored boxes. The (β, E/Nv ) values of each vortex
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FIG. 7. Unsupervised machine-learning classification of point-
vortex configurations into four categories, corresponding to the
different marker styles and colors. (a) The energy per particle (E/Nv)
and (b) the vortex cluster fraction as a function of inverse temper-
ature (β). In both frames the x axis is scaled by critical inverse
temperature |βEBC| and |βBKT| for negative and positive temperatures,
respectively. In (a) the y axis is representing the average energy per
particle (Ē/Nv) and in (b) the y axis is representing the average
cluster fraction (C̄f ) in the units of number of vortices. In both cases
the classification is conducted for a neutral vortex system of Nv = 40
vortices using an ensemble of 1000 initial configurations. The error
bars are one-standard-deviation statistical estimates.

configuration are shown closest to the respective images. The
vortices and antivortices are indicated by green (bigger) and
blue (smaller) circular markers, respectively.

The unsupervised SOM algorithm again distinguishes ex-
cellently the four temperature regions. At high positive inverse
temperature the yellow category corresponds to the lowest en-
ergy configurations within the pair collapse phase, where the
vortices and antivortices are now paired up in the bulk (instead
of forming edge states as in the polarized vortex fluid). A
sample of corresponding configurations is shown in the yellow
box of Fig. 6. On increasing the temperature the transition
from vortex pair collapse to vortex unbinding takes place at
β/|βBKT| = 0.5 and leads to the green category in Fig. 7.
The negative-temperature configurations around at β = 0 are
classified into the blue category which corresponds to the
random negative absolute temperature vortex states. The red
category is again identified as the Einstein-Bose condensate
phase of Onsager vortices that emerges at β/|βEBC| = −1.

2 4 6 8 10

Number of clusters

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1 3 5 7 9-1-0.500.51
0

20

40

60

80

100

D
at

a 
qu

an
tit

y 
(%

)

(a) (b)

-1.5

BKT EBC

Si
lh

ou
et

te
 c

oe
ffi

ci
en

t 

FIG. 8. (a) The fraction of images of a neutral vortex system
classified by a SOM into the four nodes as a function of inverse
temperature. The clustering was performed for a system of Nv = 40
vortices using an ensemble of 1000 initial configurations. (b) The av-
erage of silhouette value for simulation results of k-means clustering
as a function of number of clusters over ten experiments. The red
dotted curve is the output of the same input data as in (a) and the
green dashed curve corresponds to silhouette analysis of a system of
40 neutral vortices using an ensemble of 100 initial positions. The
silhouette analysis produces an undefined value for cluster numbers
1–3. We set those points to the minimum silhouette value of −1 as
shown by grey circular markers.
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The histogram of the classification is shown in Fig. 8(a)
and, as for the polarized vortex fluid, this was used for as-
signing the color coding in Fig. 7 based on the 50% criterion.
Although the overall classification is again very good, con-
figurations belonging to the green category are now observed
infrequently at nearly all temperatures. The choice of four data
clusters is again justified by performing the silhouette analysis
using k-means clustering for optimum cluster number evalu-
ation. The resulting analysis of the average silhouette value
for one to ten clusters over ten trials is shown in Fig. 8(b). The
red dotted curve corresponds to the average silhouette value of
clustering data (features extracted using [20 20] grid and 250
visual words in bag-of-features function from 31 000 input
images) as used in Fig. 8(a). The green dashed curve corre-
sponds to the average silhouette value of clustering data (3100
input images with 100 ensembles at each temperature point).
For this smaller data set the features were extracted similarly
using the custom feature extractor function as explained for
the data set of 2900 images in the polarized vortex system.
The result shows that the smaller data set whose features were
extracted using a dense grid has a higher silhouette value
than the larger data set (preprocessed with sparse grid), yet
the highest silhouette coefficient occurs at four clusters in
both cases. This justifies our choice of four neurons in SOM
clustering as an optimal value for this data. In addition to
this the low silhouette value (red curve) in Fig. 8(b) can be
understood by inspecting the vortex configurations for larger
data system. It is clear that a small fraction of vortex dipoles
are present at nearly all temperatures, leading to the green
category stretching over to the other temperature regions. To
mitigate this issue, a further improvement of both training data
and machine model, for example, high-quality vortex config-
uration images, additional thermalization points in the testing
data preparation, or more precise feature extraction, could
be performed before feeding them to the classifier model.
However, even with the minimal amount of preprocessing, the
classification results, as shown in Fig. 7, are remarkably good.
Figure 8(b) shows that the highest silhouette value occurs
at four clusters, illustrating that the four-neuron case is the
optimal case also for the neutral vortex system.

IV. CONCLUSIONS

The main objective of this paper was to test the feasibility
of using a simple unsupervised machine-learning approach
to search for new vortex phases of matter and to identify
the corresponding transition temperatures. We demonstrated
the success of this approach using the vortex positions and

their circulation sign as the input information for the machine
model. Surprisingly similar results were obtained also when
the vortex sign information was hidden.

In the first part, we considered two same-sign vortices
and trained a neural network using three types of prepro-
cessed input images comprising the vortex positions, vortex
trajectories, and velocity space images. In each case the
boundary separating overlapped and nonoverlapped phase-
space regions [39] was successfully detected and the sample
size dependence of the location of the phase boundary result
was demonstrated.

When considering larger numbers of vortices in both polar-
ized and neutral vortex configurations, the unsupervised artifi-
cial neural network displayed consistent classification results
when compared with previously known results. Specifically,
both the positive-temperature Kosterlitz-Thouless transition in
a two-dimensional Coulomb gas (point-vortex model) and the
negative-temperature Einstein-Bose condensation of Onsager
vortices transitions were successfully identified. The obtained
results were also found to be robust with respect to fluctua-
tions in the number of vortices considered [76].

Furthermore, with the aid of silhouette analysis, the
unsupervised machine-learning model was also able to self-
generate information on the optimal number of clusters to
be employed for the classification and thereby the number of
distinct temperature regions in the provided data set.

Considering that identification of the Kosterlitz-Thouless
transition was found to be challenging even for complex con-
volutional neural network under a supervised approach [24],
that our simplified unsupervised approach was able to detect
the vortex binding-unbinding transition in this system shows
promise for further applications of this methodology.

In light of the demonstrated performance, unsupervised
machine learning has the potential to widen our understand-
ing of topological phases of two-dimensional vortex matter,
and may find applications in discovering exotic underlying
vortex features both in theoretical models and in laboratory
experiments, especially in the context of the research on two-
dimensional quantum turbulence.
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