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Theoretical study of the alignment-to-orientation conversion in magneto-optical rotation based on
atomic multipole moments
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We theoretically investigate the magneto-optical rotation (MOR) effect in cesium atoms in the Voigt geometry,
in which an off-resonance linearly polarized laser beam serves as both pump and probe. By calculating the
detailed evolution of atomic multipole moments truncated to second-rank, alignment-to-orientation conversion
(AOC) effects are observed in two hyperfine ground states. The mechanisms responsible for this effect are
demonstrated. The tensor AC-Stark shift produced by the optical pumping generates a nonlinear effect, resulting
in atomic alignment directly coupled to orientation, which enables spin orientation to be obtained. Simulta-
neously, spin-exchange collisions lead to atomic alignment and orientation transfer between two ground-state
manifolds. Additionally, we present the analytical expression of atomic spin polarization described by atomic
multipole moments, and the contributions of the AOC effect to the optical-rotation signals are discussed
in different light power regimes. Our results can be helpful for guiding MOR experiments by refining and
optimizing the parameters.
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I. INTRODUCTION

The magneto-optical rotation (MOR) effect is the rota-
tion of an optical field’s polarization as the light propagates
through a medium in the presence of an applied magnetic
field [1–3]. The most prominent magneto-optical effects are
the Faraday [4] effect and Voigt effect [5], which depend on
the longitudinal and transverse orientations of the external
magnetic field, respectively, with respect to the propagation
direction of the light field. Numerous theoretical and ex-
perimental studies have been reported on the MOR of the
polarization plane in various wavelength regions in atomic
gasses [6–8], GaAs quantum well waveguide [9], metama-
terials [10], graphene [11,12], and nitrogen-vacancy centers
[13]. The signals of optical rotation and ellipticity in MOR
experiments have a wide variety of applications in electron-
dipole-moment measurements [14], atomic clocks [15], and
sensitive magnetometry [16–18].

In atomic systems, the focus of the MOR is to investigate
the generation and coherent control of atomic spin polar-
ization with the combined action of the magnetic field and
optical field [19–21]. In general, the coherence properties of
atomic states can be described by the notions of “orientation”
and “alignment” [20]. An atomic state is said to be oriented
along some axis if the magnetic sublevels associated with
the quantum number M and −M have different populations.
Similarly, we say that the state is aligned if the sublevels
with different values of |M| have different populations. Tra-
ditionally, atomic spin orientation or alignment is achieved
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by the transfer of angular momentum from polarized light
to an atomic system. However, the atomic alignment created
by linear-polarized light can be converted to orientation by
external interactions such as a magnetic field gradient [22],
anisotropic collisions [23], or the AC-Stark shift induced by
optical pumping [24–26]. This process is known as alignment-
to-orientation conversion (AOC) [27].

The AOC is an important mechanism for atomic magne-
tometry and has been extensively studied for many years,
both theoretically and experimentally. Budker et al. [28] have
considered the AOC in nonlinear magneto-optical rotation
(NMOR), which causes optical rotation via circular birefrin-
gence. They also demonstrated that the AOC occurring in
nuclear quadrupole resonance (NQR) is the mechanism re-
sponsible for the appearance of macroscopic orientation in
a sample originally lacking any global polarization [29]. A
close relationship between AOC and spin squeezing has been
demonstrated [30]. Recently, to illustrate the AOC effect,
the detailed mechanism of the generation of spin orienta-
tion in room-temperature cesium vapor has been explored
in Ref. [31]. This combines three elements: (i) off-resonant
optical pumping, (ii) nonlinear spin dynamics generated by
a linearly polarized probe beam [32], and (iii) spin-exchange
collision (SEC).

Although the AOC effect has been theoretically inves-
tigated using density-matrix theory for various alkali-metal
atoms in previous studies [28,30], it is not easy to explicitly
explain the physical mechanisms of the AOC effect, especially
in specific alkali-metal atoms with multipole levels. In or-
der to better understand the mechanisms responsible for the
AOC effect and further simplify the analytical expression of
optical rotation signals, we present a theoretical study of the
MOR effect using atomic multiple-moment theory [33]. The
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FIG. 1. (a) Energy structure of the cesium 6 2S1/2 → 6 2P3/2 transition (D2 line, 852 nm). The atomic ensemble is optically pumped
by a linearly polarized laser beam, frequency locked close to Fb = 3 → F ′ = 2 of cesium D2 line (red-dashed arrow in level scheme).
(b) Laboratory-frame xyz, referred to as the laboratory frame: the quantization axis is along the light propagation direction z and the light
polarization axis is along x. An offset static magnetic field B0 is applied along x axis and a weak radio-frequency (rf) field Brf is along z
axis. The same linearly polarized laser beam, acting as the probe, monitors the spin precession via the Voigt effect. (c) Rotation frame x′y′z′:
described in a coordinate frame obtained from the laboratory-frame xyz by a static rotation of π/2 around the y axis and then by a rotation of
π around the new z′ axis. We choose the light polarization direction z′(x) axis as the quantization axis.

Voigt geometry of cesium atoms considered in this paper is
similar to that of in Refs. [31,32]. An off-resonance linearly
polarized laser beam serves as both pump and probe, and
atomic spin polarization is produced by parallel magnetic and
laser fields. By calculating the detailed evolution of atomic
multipole moments truncated to second-rank, we observe that
the AOC effects appear in two ground-state manifolds [shown
in Fig. 1(a)]. For the Fb = 3 state, which is directly coupled
to the pump light, the tensor Stark shift �AC produced by
the optical pumping generates a nonlinear effect, resulting
in atomic alignment directly coupled to orientation. Conse-
quently, the conversion of alignment into orientation can be
achieved. However, the Fa = 4 state is not coupled to light,
the orientation of this state is achieved indirectly, as a conse-
quence of a direct orientation of the Fb = 3 states and SEC. In
addition, the degree of atomic orientation and its contribution
to the optical-rotation signals are investigated under different
light power regimes. For low light intensity, atomic alignment
is observed in both ground states. As the tensor Stark shift
is increased to satisfy δa = δb + 3�AC (δa and δb are the
detuning between the Larmor frequency of the Fa and Fb states
and the Rabi frequency of the rf field), the coupling between
two ground states induced by the SEC reaches maximum,
equalizing population distribution in two ground states. In
this case, the degree of spin orientation is comparable to that
of alignment. In the regime of high light intensity, atomic
orientation of Fb = 3 manifold is significantly larger than its
alignment and dominates the MOR signals.

II. THEORETICAL MODEL OF MAGNETO-OPTICAL
ROTATION

A. Theoretical model of magneto-optical rotation

The energy structure of the cesium 6 2S1/2 → 6 2P3/2 tran-
sition (D2 line, 852 nm) is shown in Fig. 1(a). A linearly
polarized laser beam propagates along the z axis, frequency
ωL locked close to Fb = 3 → F ′ = 2 transition, and the

detuning �2 = ωFbF ′=2 − ωL. Choosing the light propagation
direction as the quantization axis, the light-atom interaction
Hamiltonian is given by HL = −E · d = −E0 cos(ωLt )dx =
− 1√

2
E0 cos(ωLt )(d−1 − d+1), where E0 is the amplitude of

the light field, d is the dipole operator, and dq(q = 0,±1)
are these components in the spherical basis. According to
the Wigner-Eckart theorem , [3], the matrix elements of
dq can be written as 〈JFMF |dq|J ′F ′M ′

F 〉 = V F ′M ′
F

FMF
〈J‖d‖J ′〉.

Coefficient V F ′M ′
F

FMF
is the transition coefficient between the

ground state |JFMF 〉 and the excited state |J ′F ′M ′
F 〉, and

the double bar indicates that the matrix element is reduced.
Therefore, the reduced Rabi frequency of the pumping light
is defined as �L = −E0〈J||d||J ′〉. In our calculations we
assume that the Fb = 3 state is directly coupled to the
pump light, while the Fa = 4 state is not coupled to light
(the 9193 MHz detuning of the light reduces the optical
excitation).

In Fig. 1(b), a static magnetic field B0, parallel to the
light polarization vector, causes the linear Zeeman splitting
of the magnetic sublevels. The Larmor frequencies of the two
hyperfine ground states Fa = 4 and Fb = 3 are written as ωa =
μBgFa B0 and ωb = μBgFbB0, respectively, where μB is the
Bohr magneton, and gFa and gFb are the corresponding Landé g
factors. Note that the two ground states show opposite preces-
sion directions and different g-factor values. The rf field Brf

is directed orthogonally to the static magnetic field. One can
derive the �MF = ±1 transitions between the ground-state
Zeeman sublevels in the same manifold. The same linearly
polarized laser beam, acting as the probe, monitors the spin
precession via the Voigt effect, where the evolution of the
collective atomic spin is mapped onto the polarization state
of the linearly polarized probe beam. The rf transitions are
monitored via rotation of the polarization plane of linearly
polarized probe light. The difference in g factors of the Fb = 3
and Fa = 4 levels causes the rotation resonances to be detected
at different rf frequencies.
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B. Effect of atoms on transmitted light

It is well known that the changes in the electric field of
a plane light wave as it traverses an atomic medium can be
described in terms of the α-ε parametrization [3]. Thus the
electric field E of a plane wave of frequency ω with arbitrary
polarization and z propagation can be described by

E = Re {E0ei(kz−ωt+ϕ)[(cos α cos ε − i sin α sin ε)êx

+(sin α cos ε + i cos α sin ε)êy]}, (1)

where E0 is amplitude of the electric field, ϕ is an overall
phase, α is the polarization angle with respect to the êx axis,
and ε is the ellipticity. As with this light field, the polarization
of the medium P can be written as

P = Re
{
ei(kz−ωt+ϕ)[(P1 − iP2)êx + (P3 − iP4)êy]

}
, (2)

where Pi(i = 1, 2, 3, 4) are the in-phase and quadrature com-
ponents of the polarization. The electric field E and the
polarization of the medium P are connected by the wave
equation (

d2

dz2
− d2

c2dt2

)
E = 4π

c2

d2

dt2
P, (3)

where z is the distance along the light propagation direc-
tion. Neglecting terms involving second-order derivatives and
products of first-order derivatives, we can solve the wave
equation to find expressions for the change of the light-field
parameters per unit distance for initial values of α = ε = 0,

1

E0

dE0

dz
= 2πω

E0c
P2, (4a)

dϕ

dz
= 2πω

E0c
P1, (4b)

dα

dz
= 2πω

E0c
P4, (4c)

dε

dz
= 2πω

E0c
P3. (4d)

C. Evolution equations of density-matrix elements

We are going to investigate the evolution equations of
atoms in the Voigt geometry using density-matrix theory. For
simplicity, it is convenient to choose the light polarization
axis, which is also the direction of the static magnetic field, as
the quantization axis. Therefore, our calculations are carried
out in the rotation frame x′y′z′ shown in Fig. 1(c), which is
obtained from the laboratory-frame xyz [Fig. 1(b)] by a static
rotation of π/2 around the y axis and then by a rotation of π

around the new z′ axis.
In the Voigt geometry shown in Fig. 1, we assume

the total spontaneous emission rate of the excited states |F ′〉
to the two ground states Fa = 4 and Fb = 3 is much greater
than the Rabi frequency of the light field. In this case, the
time of the excited-state atoms evolving to a steady state is
much less than that of the ground-state atoms, and the excited
states can therefore be adiabatically eliminated. Consequently,
the evolution of our system is governed by the effective
master equations in the ground-state subspace. The effec-
tive Hamiltonian is the sum of the unperturbed Hamiltonian,

the light-atom-interaction Hamiltonian, and the magnetic-
field-atom-interaction Hamiltonian. The detailed derivation is
shown in Appendix A, and the effective Hamiltonian is given
by

Heff =H̃0 + �AC(F (b)
z )2 + δaF (a)

z − δbF (b)
z

+ �rf[(F
(a)
+ + F (a)

− ) − (F (b)
+ + F (b)

− )].
(5)

Here H̃0 = −�
∑

MFb
|FbMFb〉〈FbMFb | represents the unper-

turbed Hamiltonian, where � = 9193 MHz is the hyperfine
detuning of two ground states. F (a) and F (b) are the angu-
lar momentum operators applied to the higher ground state
Fa = 4 and the lower ground state Fb = 3, respectively.

The second term of Eq. (5) represents the tensor AC-Stark
shift produced by the off-resonance linearly polarized light.
The angular momentum operator (F (b)

z )2 causes a nonlinear
effect in the Fb = 3 ground-state Zeeman sublevels, therefore
collective atomic spin dynamics will exhibit a nonlinear char-
acter. In general, the AC-Stark shift depends on the pumping
field and the atomic tensor polarizability, and consists of
scalar, vector, and rank-2 tensor components. However, in
our system, the vector component is identically zero since
the pump polarization is linear. We also neglect the scalar
polarizability term and the part of the tensor polarizability that
is independent of F (b)

z since they result only in a common shift
of the Zeeman sublevels of the ground state Fb = 3. While the
tensor Stark shifts cause different magnetic quantum number
states to have different Stark shifts, and this can significantly
affect the evolution of coherences among the atomic sublevels,
thereby affecting the polarization of the light emitted (or ab-
sorbed) by those states. In our system, the expression of �AC

is given by

�AC

= �2
L

(
5

168

2�4


2 + 4�4
2 + 2

21

2�2


2 + 4�2
2 − 1

8

2�3


2 + 4�3
2

)
.

(6)

We see that the tensor AC-Stark shift not only depends on
the Rabi frequency of light �L and the total spontaneous
emission rate 
, but also on the detuning �F ′ = ωFbF ′ − ωL

between the atomic Fb = 3 → F ′(F ′ = 2, 3, 4) transition fre-
quency and the laser frequency. Here �3 = �2 + 151 MHz
and �4 = �2 + 352 MHz.

The remaining terms of Eq. (5) represent the magnetic-
field-atom interaction, involving the combined action of the
offset magnetic field B0 and the rf field Brf. Here δa =
ωa − ωrf and δb = ωb − ωrf are the detunings of the Larmor
frequency ωa and ωb with respect to the rf frequency ωrf,
respectively. Due to the rf field is much weaker than the
static magnetic field, the Rabi frequency of the rf field corre-
sponding to two ground states can be assumed to be the same
�rf = 1/2μB|gF |Brf.

Consequently, our ensemble of cesium atoms in the Voigt
geometry can therefore be described by the 16 × 16 rotating-
frame density matrix ρ̃ in the ground-state subspace, and the
time evolution of ρ̃ is governed by the Liouville equation as
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adapted from Ref. [2]:

d

dt
ρ̃ = −i[Heff, ρ̃] + LL(ρ̃) − 1

2
{R, ρ̃} + � + Lse(ρ̃). (7)

After adiabatically eliminating the excited states, the com-
bined action of the optical pumping and spontaneous emission
is equivalent to the combined action of the tensor AC-Stark
effect and the laser-induced equivalent relaxation process
LL(ρ̃), the detailed expression is given in Appendix A. The
matrix R accounts for the uniform relaxation and depolar-
ization of all atomic states due to effects such as wall- and
buffer-gas collisions. The matrix � describes the repopula-
tion of the ground-state Zeeman sublevels due to the uniform
relaxation. The last term of Eq. (7) Lse(ρ̃) represents the
spin-exchange collision relaxation, incorporating relaxation
and repopulation due to spin-exchange collisions, and collid-
ing ground-state atoms in different hyperfine Zeeman states
exchange their quantum numbers such that MFa + MFb is con-
served [34].

D. Evolution equations of atomic multipole moments

In Sec. II C the evolution of the ensemble of cesium atoms
in Voigt geometry has been described in Eq. (7). Similar
density-matrix calculations have been investigated in previ-
ous studies [35,36]. However, the steady-state solutions of
the 16 × 16 density-matrix equations are too cumbersome to
solve. Therefore, in order to further simplify the analytical
expression of MOR signals and better understand the mech-
anisms responsible for the AOC effect, we will present a
theoretical study of the MOR signals from a new perspective
by transferring the density matrix element ρ̃ to atomic mul-
tipole moments mk,q [33]. One can directly describe the spin
polarization of the medium.

The transform between density matrix elements and atomic
multipole moments obeys [33]

ρ =
2F∑

k=0

k∑
q=−k

mk,qTkq, (8)

where Tkq is irreducible tensor operator. The mk,q is irre-
ducible component of atomic multipole moments. (1) The

tensor with rank k = 0 is merely a normalization constant. (2)
The three components with k = 1 are often called orientation
vector, and can be expressed in terms of quadratic com-
binations of the angular momentum components as m1,q =
N1〈F †

q 〉trρ. (3) The five components with k = 2 are of-
ten called the alignment tensor and obey m2,0 = N2√

6
〈3F 2

z −
F2〉trρ, m2,±1 = ∓N2

2 〈FxFz + FzFx〉trρ, and m2,±2 = N2
2 〈F 2

x −
F 2

y 〉trρ, where N1 and N2 are the constants related to the
quantum number F . Moreover, the longitudinal multipole mo-
ments mk,0 can be expressed as linear combinations of the
sublevel populations ρM,M , and the transverse moments mk,q 	=0

are determined by the �M = q coherences ρM,M−q.
Substituting Eq. (7) into Eq. (8), the evolution

equations of atomic multipole moments corresponding to
two ground states are obtained. Note that since the hyperfine
detuning � of two ground states is much larger than the
Larmor frequency (both ωa and ωb), the off-diagonal matrix
elements ρMa,Mb are oscillating with the hyperfine frequency
and average to zero. Under this approximation, our system
are well derived by the evolution equations of full-rank
atomic multipole moments {ma

k,q(k = 0, 1, 2, . . . , 2Fa; q =
−k · · · k), mb

k,q(k = 0, 1, 2, . . . , 2Fb; q = −k · · · k)}, where
ma

k,q and mb
k,q represent atomic multipole moments

corresponding to the Fa = 4 and Fb = 3 manifolds,
respectively.

For further simplicity, the contribution of atomic mul-
tipole moments higher than second-rank can be neglected
when the laser-induced relaxation rate is much smaller
than the SEC relaxation rate. This assumption has been
demonstrated in many experimental and theoretical stud-
ies [37–39]. Therefore, the full-rank evolution equations of
atomic multipole moments {ma

k,q(k = 0, 1, 2, . . . , 2Fa; q =
−k · · · k), mb

k,q(k = 0, 1, 2, . . . , 2Fb; q = −k · · · k)} can be
truncated to second-rank, i.e., our system can be well
described in the basis vectors {ma

k,q, mb
k,q}(k = 0, 1, 2; q =

−k · · · k).
We first focus on atomic multipole moments mb

k,q(k =
0, 1, 2; q = −k · · · k) of the Fb = 3 state, which is directly
coupled to the pump light. The evolution equations of
mb

k,q(k = 0, 1, 2; q = −k · · · k) are given by

d

dt
mb

1,0 = −(
cb

1 + pb
10

)
mb

1,0 +
√

2

2
i�rf

(
mb

1,1 + mb
1,−1

) + cse
1 ma

1,0, (9a)

d

dt
mb

1,±1 = −(
cb

1 + pb
11 ∓ iδb

)
mb

1,±1 ∓ 3i�ACmb
2,±1 +

√
2

2
i�rfm

b
1,0, (9b)

d

dt
mb

2,0 = −(
cb

2 + pb
20

)
mb

2,0 + pb
00mb

0,0 +
√

3

2
i�rf

(
mb

2,1 + mb
2,−1

) + cse
2 ma

2,0, (9c)

d

dt
mb

2,±1 = −(
cb

2 + pb
21 ∓ iδb

)
mb

2,±1 ∓ 3i�ACmb
1,±1 +

√
6

2
i�rfm

b
2,0 + i�rfm

b
2,±2, (9d)

d

dt
mb

2,±2 = −(
cb

2 + pb
22 ∓ 2iδb

)
mb

2,±2 + i�rfm
b
2,±1. (9e)

Here Eqs. (9a) and (9b) are the evolutions of rank k = 1
moments related to atomic orientation, and Eqs. (9c)–(9e) are
the evolutions of rank k = 2 moments related to atomic align-

ment. The coefficients ck (k = 1, 2) represent the relaxation
rates caused by the SEC, which involving two effects: (1) the
coefficients cb

k (k = 1, 2) contribute to the longitudinal relax-
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ation rates of atomic orientation and alignment and denote the
coherence between different Zeeman sublevels of the same
manifold; (2) the coefficients cse

k (k = 1, 2) allow longitudinal
moments mb

k,0 for Fb = 3 manifold coupled to that of ma
k,0

for Fa = 4 manifold, leading to a transfer of the population,
orientation, and alignment between the two ground states.

Note that Eq. (9) is obtained when we assume the rf fre-
quency ωrf is much larger than the SEC relaxation coefficient
cse

k , i.e., ωrf 
 cse
k . In that case we show that the SEC process

cse
k (k = 1, 2) only causes the coupling between longitudinal

moments mb
k,0 and that of ma

k,0 shown in Eqs. (9a) and (9c).
In fact, it can be found in Eq. (B1) in Appendix B that the
transverse moments mb

k,q 	=0 and transverse moments ma
k,q 	=0

are also coupled by SEC. However, due to the Fa = 4 and
Fb = 3 levels present opposite Larmor precession directions,
the coupling between the transverse moments of mb

k,q 	=0 and
ma

k,q 	=0 behaves as a fast rf-oscillating term: cse
k e−2qiωrft [shown

in Eqs. (B1b), (B1d), and (B1e)]. In our system, the value
of the rf-frequency ωrf is tuned to (22.0–22.8) kHz, which
is much larger than cse

k ≈ 10 Hz, then the fast rf-oscillating
term can be ignored under the long-time approximation, then
Eq. (B1) can be simplified to Eq. (9).

In our calculations, the corresponding coefficients are
given by cb

1 = 37
64
se, cb

2 = 39
64
se, cse

1 = 3
√

105
64 
se, cse

2 =
5
√

33
64 
se, where 
se is the SEC relaxation rate. In addition,

the coefficients pb
kq represent the laser-induced equivalent re-

laxation rate induced by the combined action of the optical

pumping and spontaneous emission, with detailed expressions
given in Appendix C. We show that the laser-induced relax-
ation rates pb

kq not only depend on the Rabi frequency of light
�L and the total spontaneous emission rate 
 but also on the
detuning �F ′ (F ′ = 2, 3, 4).

In Eqs. (9b) and (9d) it is the tensor light shift �AC that
couples atomic vector moments mb

1,±1 and second-rank mo-
ments mb

2,±1. When satisfying �AC = 0, i.e., the pumping
light is near resonant to the atomic Fb = 3 → F ′ transition,
the evolution of atomic vector moments mb

1,q(q = −1, 0, 1)
and that of second-rank moments mb

2,q(q = −2, . . . , 2) are
independent. In this case, the linear polarized light pumps the
majority of atoms into an aligned state in the Fb = 3 manifold
with the values of the orientation components being zero, i.e.,
mb

1,q(q = −1, 0, 1) = 0. However, when �AC 	= 0, the tensor
light shift induces the coupling between atomic alignment
components mb

2,±1 and orientation components mb
1,±1, result-

ing in atomic spin polarization converted from aligned state to
oriented state in the Fb = 3 manifold. Consequently, values of
the orientation components are obtained, and the alignment-
to-orientation conversion effect achieved.

The Fa = 4 state is not directly coupled to the pumping
light (the 9193 GHz detuning of the light reduces the optical
excitation). Since the SEC relaxation process cse

k (k = 1, 2)
cause coupling between the longitudinal moments ma

k,0 and
that of mb

k,0, the evolution equations of atomic multipole mo-
ments ma

k,q(k = 0, 1, 2; q = −k · · · k) of Fa = 4 manifold also
need to be considered and can be given by

d

dt
ma

1,0 = −ca
1ma

1,0 −
√

2

2
i�rf

(
ma

1,1 + ma
1,−1

) + (
cse

1 + pa
10

)
mb

1,0, (10a)

d

dt
ma

1,±1 = −(
ca

1 ± iδa
)
ma

1,±1 −
√

2

2
i�rfm

a
1,0 + pa

11mb
1,±1, (10b)

d

dt
ma

2,0 = −ca
2ma

2,0 −
√

3

2
i�rf

(
ma

2,1 + ma
2,−1

) + (
cse

2 + pa
20

)
mb

2,0 + pa
00mb

0,0, (10c)

d

dt
ma

2,±1 = −(
ca

2 ± iδa
)
ma

2,±1 −
√

6

2
i�rfm

a
2,0 − i�rfm

a
2,±2 + pa

21mb
2,±1, (10d)

d

dt
ma

2,±2 = −(
ca

2 ± 2iδa
)
ma

2,±2 − i�rfm
a
2,±1 + pa

22mb
2,±2. (10e)

Similar descriptions of the SEC relaxation rates ck (k =
1, 2) and the laser-induced equivalent relaxation rates pa

kq
have been given in Eq. (9). For the Fa = 4 state, we have
ca

1 = 29
64
se, ca

2 = 31
64
se. The expressions of the laser-induced

relaxation rates pa
kq are also given in Appendixes A and C.

Compared to Eq. (9), the coupling between longitudinal mo-
ments ma

k,0 and that of mb
k,0 relies on the combined effect of

the SEC and the laser-induced equivalent relaxation rates. As
a consequence of these two factors, part of the atomic popula-
tion will be transferred from the sublevels of the Fb = 3 to that
of the Fa = 4 state, thereby generating atomic alignment and
orientation in the Fa = 4 manifold. In order to further illustrate
the mechanisms responsible for the AOC effects occurring in
two ground states, the numerical analysis of the steady-state

solutions of these multipole moments {ma
k,q, mb

k,q}(k =
0, 1, 2; q = −k · · · k) will be given in the next section.

III. ANALYTIC EXPRESSION OF ATOMIC
POLARIZATION

Now we will investigate the expression of atomic po-
larization Pi(i = 1, 2, 3, 4) described by atomic multipole
moments. In Sec. II B the expressions of the change of the
light-field parameters in terms of atomic polarization P have
been shown in Eq. (4). By calculating the expectation value of
the optical polarization of the medium P = n Tr ρd (where n
is the atomic density) and then transferring the density matrix

033112-5



QI, GENG, YANG, WU, HUANG, AND LI PHYSICAL REVIEW A 105, 033112 (2022)

elements to atomic multipole moments, the atomic polarization P can be expressed as

P = n Re
{〈J = 1/2‖d‖J ′ = 3/2〉e−iωt

×
{[

Ab
0m̄b

0,0 − Ab
2√
3

m̄b
2,0 + Ab

2√
2

(
m̄b

2,2 + m̄b
2,−2

)]
x̂

+ i

[
Ab

1m̄b
1,0 + Ab

2√
2

(
m̄b

2,2 − m̄b
2,−2

)]
ŷ
}

}. (11)

To avoid confusion, we denote the atomic multipole moments as m̄k,q when referring to the laboratory-frame xyz. In Eq. (11),
due to the light propagating along the z axis, the atomic polarization component in that direction must be zero. We observe that
the polarization along x axis is determined by the second-rank moments m̄b

2,q(q = 0,±2), while one along y axis relies on the
longitudinal vector moment m̄b

1,0 and the transversal second-rank moments m̄b
2,±2. Coefficients Ab

k (k = 0, 1, 2) are the absorption
coefficients corresponding to atomic k-rank moments of the Fb = 3 level, and given by

Ab
0 = i�L√

7
[− 20

3(
 + 2i�2)
− 7

(
 + 2i�3)
− 5

(
 + 2i�4)
], (12a)

Ab
1 = i�L√

7
[

20

3(
 + 2i�2)
+ 7

4(
 + 2i�3)
− 15

4(
 + 2i�4)
], (12b)

Ab
2 = i�L√

7
[

4

(
 + 2i�2)
− 21

4(
 + 2i�3)
+ 5

4(
 + 2i�4)
]. (12c)

We see the absorption coefficients Ab
k (k = 0, 1, 2) are dominated by the Rabi frequency �L of the light field, the total spontaneous

emission rate 
, and the detuning �F ′ (F ′ = 2, 3, 4).
Comparing Eqs. (11) and (2), the polarization components P1,2,3,4 can be given by

P1 = 〈J = 1/2‖d‖J ′ = 3/2〉n Re

[
Ab

0m̄b
0,0 − Ab

2√
3

m̄b
2,0 + Ab

2√
2

(
m̄b

2,2 + m̄b
2,−2

)]
, (13a)

P2 = −〈J = 1/2‖d‖J ′ = 3/2〉n Im

[
Ab

0m̄b
0,0 − Ab

2√
3

m̄b
2,0 + Ab

2√
2

(
m̄b

2,2 + m̄b
2,−2

)]
, (13b)

P3 = −〈J = 1/2‖d‖J ′ = 3/2〉n Im

[
Ab

1m̄b
1,0 + Ab

2√
2

(
m̄b

2,2 − m̄b
2,−2

)]
, (13c)

P4 = −〈J = 1/2‖d‖J ′ = 3/2〉n Re

[
Ab

1m̄b
1,0 + Ab

2√
2

(
m̄b

2,2 − m̄b
2,−2

)]
. (13d)

In laboratory-frame xyz, we see the polarization parameters P1,2 related to the x direction polarization are dominated by the
second-rank moments m̄b

2,q(q = 0,±2). Meanwhile, the P3,4 related to the y direction polarization are determined by vector
moments m̄b

1,0 and second-rank moments m̄b
2,q(q = ±2).

Note that our calculations shown in Sec. II D are carried out in the rotation frame x′y′z′, which allows us to rotate the
polarization parameters from the laboratory-frame xyz to the rotating frame x′y′z′ by applying the Wigner D function

m̄k,q =
∑

q′
m̃k,q′D(k)

q′q(0,
π

2
,−π )∗. (14)

Here D(k)
q′q represents the Wigner D function [33]. Atomic multipole moments m̄k,q and m̃k,q′ are, respectively, defined in the

laboratory-frame xyz and in the rotation frame x′y′z′. Inserting Eq. (14) into Eq. (13), the expressions of the parameters P1,2,3,4

in rotating frame can be written as

P1 = 〈J = 1/2‖d‖J ′ = 3/2〉n Re

[
Ab

0m̃b
0,0 + 2Ab

2√
3

m̃b
2,0

]
, (15a)

P2 = −〈J = 1/2‖d‖J ′ = 3/2〉n Im

[
Ab

0m̃b
0,0 + 2Ab

2√
3

m̃b
2,0

]
, (15b)

P3 = −〈J = 1/2‖d‖J ′ = 3/2〉n Im

[
Ab

1√
2

(
m̃b

1,1 − m̃b
1,−1

) − Ab
2√
2

(
m̃b

2,1 + m̃b
2,−1

)]
, (15c)

P4 = −〈J = 1/2‖d‖J ′ = 3/2〉n Re

[
Ab

1√
2

(
m̃b

1,1 − m̃b
1,−1

) − Ab
2√
2

(
m̃b

2,1 + m̃b
2,−1

)]
. (15d)
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(c)

FIG. 2. The steady-state values of atomic orientation and alignment components for the two ground states as a function of rf frequency for
different light powers. Blue solid lines: The imaginary part of mb

2,−1(a)–(c) or ma
2,−1(d) and (e). Green solid lines: The real part of mb

2,−1(a)–(c) or
ma

2,−1(d) and (e). Black dotted line: the imaginary part of mb
1,−1(a)–(c) or ma

1,−1(d) and (e). Red dotted line: The real part of mb
1,−1(a)–(c) or

ma
1,−1(d) and (e). (a) and (d) �L = 1 × 104 Hz, (b) and (e) �L = 1.43 × 105 Hz, (c) and (f) �L = 1 × 106 Hz. Here natural linewidth 
 =

6 MHz, SEC relaxation rate 
se = 3 × 10−6
, Rabi frequency of rf field �rf = 1 × 10−6
, light detuning �2 = −100 MHz.

Equation (15) shows that the polarization parameters P1,2

are dominated by the longitudinal moment m̃b
0,0 and the

second-rank moment m̃b
2,0, and the parameters P3,4 rely on

atomic vector moments m̃b
1,±1 and second-rank tensor mo-

ments m̃b
2,±1. The time-dependent polarization moments m̃k,q

in Eq. (15) satisfies m̃b
k,q = mb

k,qeqiωrf t , where mb
k,q denotes

atomic multipole moments after applying the rotating-wave
approximation in terms of the rf field, i.e., the steady-state
solutions of the Eqs. (9) and (10).

In Fig. 2 we plot the steady-state values of orientation and
alignment components of the two ground states as a func-
tion of rf frequency for different light power regimes. When
the Rabi frequency of the pump light is weak, as shown in
Figs. 2(a) and 2(d), the steady-state values of the components
of atomic alignment mb

2,±1 and ma
2,±1 are much greater than

the components of orientation mb
1,±1 and ma

1,±1. For the Fb = 3
state, the coupling between atomic alignment and orientation
is weak due to the small tensor light shift, and this state can be
regarded as the aligned state. The imaginary and real part of
mb

2,±1 consists of large symmetric and antisymmetric features
when the rf frequency is tuned to the Larmor frequency of the
Fb = 3 state (22.4 kHz), with a much smaller structure due to
the off-resonant excitation into the Fa = 4 state (22.3 kHz).

When we choose the Rabi frequency of the pump light
�L = 14.3 × 104 Hz that satisfies δa = δb + 3�AC, the cou-
pling between the ground states Fb = 3 and Fa = 4 reaches
the maximum. Meanwhile, the resonance responses of the

moments {ma
k,±1, mb

k,±1}(k = 1, 2) appear in the regimes
where the rf frequency is tuned to be approximately 22.3 and
22.5 kHz, as shown in Figs. 2(b) and 2(e). This particular point
can be understood in the following way. As shown in Eq. (9),
the matrix form of the evolution equations that only consider
the tensor light shift �AC can be expressed as(

ṁb
1,1

ṁb
2,1

)
=

(
δb −3�AC

−3�AC δb

)(
mb

1,1
mb

2,1

)
. (16)

The eigenvalues of Eq. (16) are V (±)
E = δb ± 3�AC, and

the corresponding eigenstates are S(±)
E = mb

1,±1 ± mb
2,±1. As

shown in Fig. 3, when the rf frequency ωrf is tuned to
δb ± �AC, δb ± 3�AC, or δb ± 5�AC, the single-photon res-
onance occurs between different adjacent Zeeman sublevels.
We observe that the equivalent transitions of atomic multipole
moments related to the eigenvalues V (±)

E can be interpreted
as the results of equal probability superposition of each
single photon transitions, which can be written as V (±)

E =
[(δb ± �AC) + (δb ± 3�AC) + (δb ± 5�AC)]/3. In this case,
the steady-state values of atomic alignment mb

2,±1 and orien-
tation mb

1,±1 can be observed simultaneously. Meanwhile, the
values of mb

k,±1 are in the same order of magnitude as that of
mb

k,±1, which reveals that the total atoms are approximately
evenly distributed in the two ground states. Due to the signif-
icant coupling between moments mb

2,±1 and mb
1,±1 induced by

the tensor AC-Stark effect, we observe that the degree of spin
orientation is comparable to that of alignment in the Fb = 3
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FIG. 3. Energy structure of the Fb = 3 manifold. (a) Linear Zee-
man effect. The black-dotted lines denote the Zeeman sublevels
splitted by linear Zeeman effect. (b) Considering tensor Stark effect.
The blue-solid lines are the Zeeman sublevels considering the tensor
light shift �AC. The red arrows represent the single-photon resonance
transitions.

manifold. Eventually, alignment-to-orientation conversion is
achieved. For the Fa = 4 state, spin orientation generates indi-
rectly due to the combined action of a direct orientation of the
Fb = 3 states and SEC. The steady-state value of orientation
ma

1,±1 is also comparable to that of alignment ma
2,±1, indicating

that AOC also occurs in the Fa = 4 manifold.
Figures 2(c) and 2(f) show the steady-state values of the

orientation and alignment components as a function of rf
frequency when the light power is relatively strong. In this
case, strong optical transfer disturbs the population balance
between the two hyperfine manifolds such that occupation of
the Fa = 4 manifold exceeds that of the Fb = 3. This results
in a reduction of the amplitude of the rf resonance observed in
the Fb = 3 state as its population is removed. In addition, the
tensor AC-Stark effect leads to a drastic transfer of atomic
polarization from the alignment to orientation, as a result,
the steady-state values of atomic orientation moments mb

1,±1
are considerably greater than those of the alignment moments
mb

2,±1. As shown in Fig. 2(c), the real part of the orientation
moments mb

1,±1 has the symmetric feature when the rf fre-
quency is tuned to the vicinity of 22.3 kHz. For the Fa = 4
state, the majority of atoms are clustered in this state and the
aligned polarization rate created by the optical pumping is
greater than the depolarization rate caused by the rf field and
SEC processes. That results in the values of ma

2,±1 are much
greater than ma

1,±1. As shown in Fig. 2(f), the imaginary and
real parts of ma

2,±1 consist of large symmetric and antisym-
metric features when the rf frequency is tuned to the Larmor
frequency of the Fa = 4 state (22.3 kHz).

IV. MAGNETO-OPTICAL ROTATION SIGNALS

Now we are going to investigate the magneto-optical ro-
tation rf signals in our system. As described in Eq. (4), the
optical-rotation α is determined by the polarization compo-
nent P4 shown in Eq. (15d). Therefore, the in-phase and

FIG. 4. Atomic absorption coefficients as a function of the op-
tical detuning �2. Red line: The real part of Ab

1, blue line: the
imaginary part of Ab

2.

quadrature (out-of-phase) of the signals per unit length dz of
the medium are

dαin

dz
= n
λ2

4π�L

{−Re
[
Ab

1

](
mb

1,1 − mb
1,−1

)
+ iIm

[
Ab

2

](
mb

2,1 + mb
2,−1

)}
, (17)

dαout

dz
= n
λ2

4π�L

{−Im
[
Ab

2

](
mb

2,1 − mb
2,−1

)
− iRe

[
Ab

1

](
mb

1,1 + mb
1,−1

)}
. (18)

Here λ is the transition wavelength, and n is the atomic
density. We show that the optical-rotation signals rely on a
product of two factors: atomic alignment mb

2,±1 and orien-
tation mb

1,±1 of the Fb = 3 manifold, and the corresponding
absorption coefficients Ab

k (k = 1, 2).
Figure 4 shows the dependence of atomic absorption co-

efficients Ab
k (k = 1, 2) on the optical detuning �2. The red

line shows the real part of the one-rank absorption coefficient
Ab

1 and presents antisymmetric features, and the blue line
represent the imaginary part of the second-rank absorption
coefficient Ab

2 and presents symmetric features. The resonance
response occurs when the laser frequency is in the vicinity of
the Fb = 3 → F ′ = 2, 3, 4 transition.

Figures 5(a)–5(c) show the in-phase and quadrature opti-
cal rotation signals as a function of rf frequency for three
distinct light powers at the detuning �2 = −100 MHz. In
Fig. 5(a), when �L = 1 × 104 Hz, the optical rotation sig-
nals are mainly determined by atomic alignment with minor
orientation contribution. This is because the value of atomic
alignment mb

2,±1 is much larger than that of the orientation
mb

1,±1. This results in the in-phase and quadrature compo-
nents presenting large antisymmetric and symmetric features
when the rf frequency is equal to the Larmor frequency of
the Fb = 3 state, with a considerably smaller structure when
the rf frequency is equal to the Larmor frequency of the
Fa = 4 state. However, as the Rabi frequency of the optical
pump increases to �L = 1.43 × 105 Hz, the degrees of atomic
alignment and orientation are comparable, while the real part
of the coefficient Ab

1 is larger than the imaginary part of Ab
2.
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FIG. 5. The in-phase (red solid lines) and quadrature (black dotted lines) components of magneto-optical rotation signals as a function of
rf frequency for different light powers. (a)–(c) �2 = −100 MHz, (d)–(f) �2 = −126 MHz. Reduced Rabi frequency of the pumping light: left
�L = 1 × 104 Hz, middle �L = 1.43 × 105 Hz, right �L = 1 × 106 Hz. Natural linewidth 
 = 6 MHz, SEC relaxation rate 
se = 3 × 10−6
,
Rabi frequency of rf field �rf = 1 × 10−6
.

This results in that the optical-rotation signals mainly rely on
the orientation mb

1,±1 contribution and the resonance response
appears when the rf frequency is tuned to 22.3 and 22.5 kHz,
which reflects the AOC effect occurring in the Fb = 3 man-
ifold. As the Rabi frequency of the optical pump increases
to �L = 1 × 107 Hz, the value of atomic orientation mb

1,±1

becomes considerably greater than that of the alignment mb
2,±1

and dominates the optical-rotation signals. Consequently, the
in-phase and quadrature components present antisymmetric
and symmetric features with the resonance response appears
in the vicinity of 22.3 kHz, as shown in Fig. 5(c).

Note that the light detuning �2 not only determines the
laser-induced equivalent relaxation rates but also affects the
values of the absorption coefficients, resulting in significantly
affecting the magneto-optical rotation signals. Figures 5(d)
and 5(e) show the in-phase and quadrature optical rotation
signals as a function of rf frequency for three distinct light
powers at �2 = −126 MHz. In that case, the real part of
the one-rank absorption coefficient Ab

1 is equal to the imag-
inary part of the second-rank Ab

2. Eventually, the optical
rotation signals are determined by the atomic orientation and
alignment with equal weights. The evolution processes of
atomic multipole moments are similar to those depicted in
Figs. 5(a)–5(c), however, the light detuning can significantly
impact the line shape of the optical rotation signals.

V. CONCLUSION

In conclusion, we present a theoretical study of the MOR
effect in cesium atoms in the Voigt geometry, in which the
simplified description of AOC is presented using atomic mul-
tiple moments instead of the standard density-matrix theory.

We have shown that due to the tensor AC-Stark effect, one
can achieve AOC effect in the ground state Fb = 3 mani-
fold. While the orientation in the Fa = 4 manifold builds up
by the indirect pumping combined with the SEC process.
In addition, the analytical expression of atomic polarization
parameter P described by atomic multipole moments is ob-
tained. Moreover, the contributions of the AOC effect to the
optical-rotation signals are discussed in different light power
regimes. Although we only applied the theoretical study to the
D2 line of Cs atoms, the results for other alkali-metal atoms
[35] or even other structures such as nitrogen-vacancy centers
[13] are expected to be similar. Our results may be helpful
for guiding MOR experiments by refining and optimizing the
parameters [31].

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Grant No. 12174139).

APPENDIX A: HAMILTONIAN IN THE SYSTEM

In our system, the calculations are carried out in the ro-
tation frame x′y′z′ shown in Fig. 1(c). The total Hamiltonian
Htotal is given by

Htotal = H0 + H ′
L + H̃B, (A1)

where H0 is the unperturbed part of the Hamiltonian, describ-
ing the energy structure of the ground (unprimed quantities)
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and the excited (primed quantities) states

H0 =
∑
FMF

ωFMF |FMF 〉〈FMF |

+
∑
F ′M ′

F

ωF ′M ′
F
|F ′M ′

F 〉〈F ′M ′
F |,

(A2)

with ωFMF and ωF ′M ′
F

being the energy of the ground state
|FMF 〉 and excited state |F ′M ′

F 〉, respectively, where F and
F ′ denotes the total atomic angular momentum quantum num-
bers of the ground and excited levels and MF and M ′

F are
the corresponding magnetic quantum numbers of the levels.
In our system, the basis of states {|FMF 〉, |F ′M ′

F 〉} is

|FMF 〉 = |4,+4〉, . . . , |4,−4〉, |3,+3〉, . . . , |3,−3〉, (A3)

|F ′M ′
F 〉 = |5′,+5′〉, . . . , |5′,−5′〉, |4′,+4′〉, . . . , |4′,−4′〉,

|3′,+3′〉, . . . , |3′,−3′〉, |2′,+2′〉, . . . , |2′,−2′〉.
(A4)

The detailed expressions of the light–atom interac-
tion Hamiltonian H ′

L and the magnetic field interaction
Hamiltonian H̃B are given in the next subsection.

1. Light–atom interaction and spontaneous emission

As shown in Fig. 1, the atomic ensemble is optically
pumped by a linearly polarized laser beam. Choosing the
light polarization direction (z′) as the quantization axis in the
rotation frame x′y′z′, the light-atom interaction Hamiltonian
is given by H ′

L = −E · d = −E0 cos(ωLt )dz′ , where E0 is the
amplitude of the light field, and ωL is the laser frequency.
By applying the rotating-wave approximation and transition
rules, in our system, the Hamiltonian H ′

L can be given by an
explicit form

H ′
L = 1

2
�′ + �∗

L�0 + �L�
†
0 . (A5)

Here �L = −E0〈J||d||J ′〉 denotes the reduced Rabi frequency
of the pumping light, where 〈J||d||J ′〉 is the reduced matrix el-
ement that depends only on the L, S, and J quantum numbers.
The operators �′ and �0 are defined as

�′ =
∑

F ′=2,3,4

∑
M ′

F

�F ′ |F ′M ′
F 〉〈F ′M ′

F |, (A6)

�0 =
∑

F ′=2,3,4

∑
F=3

�FF ′
0 . (A7)

In Eq. (A6), �F ′ = ωFbF ′ − ωL is the detuning of the atomic
transition Fb = 3 → F ′ frequency and the laser field fre-
quency. Note that we assume the Fb = 3 state is directly
coupled to the pump light, while the Fa = 4 state is not
coupled to light (the 9193 MHz detuning of the light re-
duces the optical excitation). In Eq. (A7), the operator �FF ′

q
denotes the q-transition operator that couples two hyper-
fine energy levels F and F ′, where the spherical component
q = 0 corresponds to MF → M ′

F = MF , q = 1 corresponds
to MF → M ′

F = MF + 1, and q = −1 corresponds to MF →
M ′

F = MF − 1. The detailed expression is given by

�FF ′
q =

∑
MF

V F ′MF +q
FMF

|F ′ MF + q〉〈F MF |. (A8)

According to Wigner-Eckart theorem [3], the transition coef-
ficient V F ′MF +q

FMF
is given by

V F ′MF +q
FMF

= (−1)MF +J+I
√

(2F + 1)(2F ′ + 1)(2J + 1)

×
(

F ′ 1 F
MF + q q −MF

){
J J ′ 1
F ′ F I

}
. (A9)

Here the symbols (:::) and {:::} are the Wigner 3-j symbol and
Wigner 6-j symbol, respectively. I is the nuclear spin, and J
and J ′ are the electron angular momentum of the ground and
excited state, respectively.

In addition, the spontaneous emission relaxation process
Lspρ in our system can also be calculated by the transition
operator �FF ′

q , which contains multiple relaxation channels
and takes the form

Lspρ = 

∑

F ′=2,3,4,5

∑
F=3,4

∑
q=0,±1

D
[
�FF ′

q

]
ρ, (A10)

where 
 is the total spontaneous emission rate from the ex-
cited level. The operator

D
[
�FF ′

q

]
ρ=�FF ′

q ρ�FF ′†
q −1

2
�FF ′†

q �FF ′
q ρ − 1

2
ρ�FF ′†

q �FF ′
q

(A11)

is the Lindblad superoperator.
Considering that the spontaneous emission relaxation rate

is much greater than the pumping rate of the laser, i.e.,

 
 �L, the excited states F ′ = 2, 3, 4, 5 can be adiabat-
ically eliminated. Therefore, in our system, the basis of
states {|FMF 〉, |F ′M ′

F 〉} involving both ground states and ex-
cited states reduces to the ground-state subspace {|FMF 〉} =
{|FaMFa〉, |FbMFb〉}. Consequently, the combination of the
optical-pumping process and the spontaneous emission relax-
ation process is equivalent to two effects in the ground-state
subspace: the AC-Stark effect and the laser-induced equiva-
lent relaxation process. The equivalent light-field Hamiltonian
H̃L corresponding to the AC-Stark effect is given by

H̃L = �AC(F (b)
z )2. (A12)

Here F (b) is the angular momentum operators applied to the
ground state Fb = 3, �AC denotes the tensor AC-Stark shift,
and the spelict expression is given by Eq. (6) in Sec. II C. The
laser-induced equivalent relaxation LLρ̃ takes the form

LLρ̃ =
∑

F ′=2,3,4

16



2 + 4�2
F ′

∑
q=0,±1

(D
[
�̃ab

q

]
ρ̃ + D

[
�̃bb

q

]
ρ̃ ),

(A13)

where D[ ] is the Lindblad superoperator given by Eq. (A11).
The equivalent transition operator �̃bb

q couples energy levels
|FbMFb〉 and |FbMFb + q〉, with q = 0,±1 for the spherical
components. Similarly, the equivalent transition operator �̃ab

q
couples energy levels |FbMFb〉 and |FaMFb + q〉. The explicit
expression satisfies

�̃bb
q =

∑
MFb

V
FbMFb+q

F ′
i MFb

V
F ′

i MFb
FbMFb

|FbMFb + q〉〈FbMFb |, (A14)

�̃ab
q =

∑
MFb

V
FaMFb +q

F ′
i MFb

V
F ′

i MFb
FbMFb

|FaMFb + q〉〈FbMFb |, (A15)
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where the transition coefficient V F ′M ′
F

FMF
is defined in Eq. (A9).

2. Magnetic field interaction Hamiltonian

In the rotation frame x′y′z′ and in the ground-state subspace
{|FMF 〉}, the total magnetic field interaction Hamiltonian con-
sists of two parts: Hamiltonian H̃B0 for a z′-directed magnetic
field B0, and a Hamiltonian H̃Brf for a field Brf applied along
x′ oscillating at the frequency ωrf,

H̃B = H̃B0 + H̃Brf . (A16)

Here the H̃B0 is given by

H̃B0 = −μ · B0 = ωaF (a)
z′ − ωbF (b)

z′ , (A17)

where ωa = μB|gFa |B0 and ωb = μB|gFb |B0 are the Lar-
mor frequencies of the two hyperfine ground states Fa = 4
and Fb = 3, respectively. μB is the Bohr magneton, and
gFa and gFb are the corresponding Landé g factors for the Fa =
4 and Fb = 3 levels. Note that gFa and gFb present opposite
directions and different values, and can be explained by the
g-factor expression, given by

gF = gJ
F (F + 1) − I (I + 1) + J (J + 1)

2F (F + 1)

+ gI
F (F + 1) + I (I + 1) − J (J + 1)

2F (F + 1)
. (A18)

In general, the nuclear factor gI can be neglected in most
experiments since it is much smaller than gJ . However, for
the magnetic field B0 in our system, the nuclear term can in-
duce a significant correction, which is important for precision
measurements.

The rf-magnetic field interaction Hamiltonian is given
by H̃rf = −μ · Brf = �rf (F (a)

x′ − F (b)
x′ ) cos ωrft . Using the

rotating-wave approximation, the Hamiltonian H̃rf can be
given by an explicit form

H̃rf = �rf (F (a)
+ e−iωrft + F (a)

− eiωrft )

−�rf (F (b)
+ eiωrft + F (b)

− e−iωrft ). (A19)

Due to the rf field is much weaker than the static magnetic
field, the Rabi frequency of the rf field corresponding to

two hyperfine ground states can be assumed to be the same
�rf = 1/2μB|gF |Brf. The components of the angular momen-
tum operator F (F (a), F (b) ) obey

Fz|F, MF 〉 = MF |F, MF 〉,
F±|F, MF 〉 =

√
(F ± MF + 1)(F ∓ MF )|F, MF ± 1〉.

(A20)

To calculate slow evolution of the density matrix, we apply
the frame rotating at the rf frequency ωrf to the Hamiltonian
H̃rf ,

H̃ rot
rf = U +H̃rf U − iU + dU

dt
, (A21)

where U = e−iωrf (F
(a)

z′ −F (b)
z′ )t is a diagonal unitary transforma-

tion matrix, to remove the fast oscillating component from the
density-matrix evolution. Therefore, the total magnetic field
interaction Hamiltonian at the frame rotating takes the form

H̃ rot
B = δaF (a)

z − δbF (b)
z + �rf[(F

(a)
+ + F (a)

− ) − (F (b)
+ + F (b)

− )],

(A22)

where δa = ωa − ωrf and δb = ωb − ωrf are the detunings of
the Larmor frequency ωa and ωb with respect to the rf fre-
quency ωrf.

Consequently, the total Hamiltonian Heff of our sys-
tem is the sum of the unperturbed Hamiltonian H̃0 =
−�

∑
MFb

|FbMFb〉〈FbMFb |, where � = 9193 MHz is the
hyperfine detuning of two ground states, the light-atom-
interaction Hamiltonian H̃L, and the magnetic-field-atom-
interaction Hamiltonian H̃ rot

B ,

Heff = H̃0 + �AC(F (b)
z )2 + δaF (a)

z − δbF (b)
z

+�rf[(F
(a)
+ + F (a)

− ) − (F (b)
+ + F (b)

− )]. (A23)

One is given directly in the main text in Eq. (5).

APPENDIX B: EVOLUTION EQUATIONS OF ATOMIC
MULTIPOLE MOMENTS

Under the frame rotating of the rf frequency to the system
of atomic multipole moments, the slow evolution of mb

k,q for
Fb = 3 level is given by

ṁb
1,0 = −(

cb
1 + pb

10

)
mb

1,0 +
√

2

2
i�rf

(
mb

1,1 + mb
1,−1

) + cse
1 ma

1,0, (B1a)

ṁb
1,±1 = −(

cb
1 + pb

11 ∓ iδb
)
mb

1,±1 ∓ 3i�ACmb
2,±1 +

√
2

2
i�rfm

b
1,0 + cse

1 ma
1,±1e∓2iωrf t , (B1b)

ṁb
2,0 = −(

cb
2 + pb

20

)
mb

2,0 + pb
00mb

0,0 +
√

3

2
i�rf

(
mb

2,1 + mb
2,−1

) + cse
2 ma

2,0, (B1c)

ṁb
2,±1 = −(

cb
2 + pb

21 ∓ iδb
)
mb

2,±1 ∓ 3i�ACmb
1,±1 +

√
6

2
i�rfm

b
2,0 + i�rfm

b
2,±2 + cse

2 ma
2,±1e∓2iωrf t , (B1d)

ṁb
2,±2 = −(

cb
2 + pb

22 ∓ 2iδb
)
mb

2,±2 + i�rfm
b
2,±1 + cse

2 ma
2,±2e∓4iωrf t . (B1e)

In Eq. (B1) we see that the SEC relaxation process cse
k causes

atomic multipole moment m̃b
k,q coupled to the moment m̃a

k,q,
with the same rank k and component q, which causes the
total atomic population, orientation, and alignment to be
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transferred between the two ground-state levels. However,
due to the Fa = 4 and Fb = 3 states present opposite Lar-
mor precession directions, the process of frame rotating of
the rf frequency ωrf to the system is equivalent to doing the
opposite transform: m̃b

k,q = mb
k,qeqiωrf t for Fb = 3 level while

m̃a
k,q = ma

k,qe−qiωrf t for Fa = 4 level. Therefore, the coupling
between the transverse multipole moments mb

k,q(q 	= 0) and
ma

k,q(q 	= 0) contains the fast rf-oscillating term, shown in the
last term of Eqs. (B1b), (B1d), and (B1e).

In our system, the value of the rf frequency is tuned
to (22.0–22.8) kHz, which is much larger than the SEC

relaxation coefficient cse
k ≈ 10 Hz. In the case of ωrf 
 cse

k ,
the secular approximation can be adopted, i.e., the fast rf-
oscillating term [the last term of Eqs. (B1b), (B1d), and
(B1e)] can be ignored under the long-time approximation.
Consequently, the coupling between the transverse multipole
moments mb

k,q(q 	= 0) and ma
k,q(q 	= 0) caused by SEC can be

ignored, then Eq. (B1) can be simplified to Eq. (9) in Sec. II D.
In Eq. (9), only the coupling between the longitudinal multi-
pole moment mb

k,0 and that of ma
k,0 is shown.

Similarly, the evolution equations of atomic multipole mo-
ments ma

k,q for Fa = 4 level are obtained and shown in Eq. (10)
in Sec. II D.

APPENDIX C: LASER-INDUCED EQUIVALENT RELAXATION RATES

In the calculations of the density-matrix theory, the laser-induced equivalent relaxation process LLρ̃ is described by Eq. (A13).
Substituting Eq. (A13) into Eq. (8) enables one to calculate the evolution of the atomic multipole moments due to the combined
action of the optical pumping and spontaneous emission. The laser-induced equivalent relaxation rates of atomic multipole
moments mb

kq and ma
kq are written by pb

kq and pa
kq, respectively. The detailed expressions are given by

pa
10 = �2

L

64

√
7

15

(
35



2 + 4�3
2 + 19



2 + 4�4
2

)
,

pa
11 = �2

L

32

√
7

15

(
5



2 + 4�3
2 + 19



2 + 4�4
2

)
,

pa
20 = 5�2

L

4032

√
11

3

(
117



2 + 4�3
2 + 85



2 + 4�4
2

)
,

pa
21 = 5�2

L

672

√
11

3

(
15



2 + 4�3
2 + 17



2 + 4�4
2

)
,

pa
22 = 5�2

L

448

√
11

3

(




2 + 4�3
2 + 17



2 + 4�4
2

)
,

pb
00 = �2

L

12

(
3



2 + 4�3
2 + 5



2 + 4�4
2

)
,

pb
10 = �2

L

4032

(
512



2 + 4�2
2 + 2205



2 + 4�3
2 + 1485



2 + 4�4
2

)
,

pb
11 = �2

L

288

(
64



2 + 4�2
2 + 81



2 + 4�3
2 + 135



2 + 4�4
2

)
,

pb
20 = �2

L

197568

(
36864



2 + 4�2
2 + 120393



2 + 4�3
2 + 88265



2 + 4�4
2

)
,

pb
21 = �2

L

32928

(
8000



2 + 4�2
2 + 19551



2 + 4�3
2 + 15105



2 + 4�4
2

)
,

pb
22 = �2

L

65856

(
27136



2 + 4�2
2 + 36015



2 + 4�3
2 + 32575



2 + 4�4
2

)
. (C1)

In Eq. (C1), �L is the reduced Rabi frequency of the laser field, 
 is the total spontaneous emission relaxation rate from excited
state F ′ to the two hyperfine ground states, and the detuning �F ′ is the frequency difference between the atomic Fb = 3 →
F ′(F ′ = 2, 3, 4) transition and the laser frequency. The laser-induced equivalent relaxation rates pb

1q(q = 0, 1) and pb
2q(q =

0, 1, 2) relate to atomic orientation and alignment in the Fb = 3 state. Similarly, pa
1q(q = 0, 1) and pa

2q(q = 0, 1, 2) correspond
to atomic orientation and alignment in the Fa = 4 state.
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