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We theoretically study orbital alignment in x-ray-ionized atoms and ions, based on improved electronic-
structure calculations starting from the Hartree-Fock-Slater model. We employ first-order many-body
perturbation theory to improve the Hartree-Fock-Slater calculations and show that the use of first-order-corrected
energies yields significantly better transition energies than originally obtained. The improved electronic-structure
calculations enable us also to compute individual state-to-state cross sections and transition rates and, thus, to
investigate orbital alignment induced by linearly polarized x rays. To explore the orbital alignment of transiently
formed ions after photoionization, we discuss alignment parameters and ratios of individual state-resolved
photoionization cross sections for initially neutral argon and two exotic electronic configurations that may be
formed during x-ray multiphoton ionization dynamics induced by x-ray free-electron lasers. We also present
how the orbital alignment is affected by Auger-Meitner decay and demonstrate how it evolves during a sequence
of one photoionization and one Auger-Meitner decay. Our present work establishes a step toward investigation
of orbital alignment in atomic ionization driven by high-intensity x rays.
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I. INTRODUCTION

The development of x-ray free-electron lasers (XFELs)
around the world [1–5] has enabled scientists to study a va-
riety of new fields in structural biology [6–9], ultrafast x-ray
atomic and molecular physics [10–13], as well as dense matter
physics [14], owing to ultra-intense and ultrashort x-ray radi-
ation with an unprecedentedly high brilliance [15]. Prototype
examples of the excellent opportunities of XFELs are serial
femtosecond crystallography [16] and single-particle imaging
experiments [17,18], which permit structure determination
with almost atomic resolution [19–23].

Accurate theoretical simulations in combination with ex-
perimental studies [24–29] have shown that extremely highly
ionized atomic ions can be produced during interaction with
ultra-intense and ultrashort x-ray pulses. In general, an x-ray
photon is absorbed by an inner-shell electron, which is fol-
lowed by a decay process via Auger-Meitner decay or x-ray
fluorescence [30]. Further photoionization with accompany-
ing decay cascades lead to very highly charged states of atoms
[24–28] or molecules [29], which is called x-ray multiphoton
ionization [31]. In the molecular case, the sample undergoes
structural disintegration, which limits the resolution achiev-
able in x-ray imaging experiments [32–35].

On the other hand, it has been well known for a long
time that ions produced by single photoionization commonly
exhibit an alignment [36–39] due to different ionization prob-
abilities of ions with different projection quantum numbers.
A theoretical treatment of alignment, including a description
of parameters to quantify the alignment and orientation, can

be found in Refs. [40–42]. More recently, orbital alignment
has, for instance, been explored for single photoioniza-
tion of initially closed-shell atoms and cations with respect
to spin-orbit coupling [43,44] and for strong-field ionized
atoms [45,46].

As a consequence of these aspects, orbital alignment dur-
ing x-ray multiphoton ionization has become a topic of
interest, which remains relatively unexplored. It addresses
not only the orbital alignment of the highly charged ions
produced in the end of multiple sequences of photoabsorp-
tion and accompanying relaxation events, but also how the
alignment changes during the x-ray multiphoton ionization
dynamics. A first critical step in this research direction is to
develop a suitable atomic structure framework that provides
individual LS eigenstates as well as individual state-to-state
cross sections and transition rates for each angular momentum
projection ML. In a later step, this framework can then be
embedded in an ionization dynamics calculation, so that in-
dividual states can also be captured during x-ray multiphoton
ionization dynamics.

In this work, we present such a first step by extending the
ab initio electronic-structure toolkit XATOM [35,47]. XATOM

is a useful and successful tool [24–26,28] for simulating
x-ray-induced atomic processes and ionization dynamics of
neutral atoms, atomic ions, and ions embedded in a plasma
[48,49]. Based on a Hartree-Fock-Slater (HFS) calculation
of orbitals and orbital energies, subshell photoionization
cross sections and fluorescence and Auger-Meitner group
rates [35] can be computed, among other things [50–53].
These quantities are employed to determine the ionization
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dynamics by solving a set of coupled rate equations [31],
either directly [35] or via more efficient Monte Carlo algo-
rithms for heavy atoms [24,54]. Since, especially for heavy
atoms, an extremely huge number of electronic configura-
tions are involved in the ionization dynamics, computational
efficiency is critical. For instance, for xenon atoms, this num-
ber can be estimated to be ∼2.6 × 1068 when relativistic
and resonant effects are included [25]. Therefore, the XATOM

toolkit uses HFS, one of the simplest and most efficient first-
principles electronic-structure methods. Even though there
are other more accurate atomic structure toolkits (see, e.g.,
[55]), improving the XATOM toolkit is of critical relevance
for investigations in x-ray-induced ionization dynamics. Com-
putational efficiency becomes even more crucial for solving
state-resolved rate equations. In this case, the number of
individual electronic states involved in the ionization dy-
namics goes far beyond the number of involved electronic
configurations.

We extend the XATOM toolkit [35,47,56] by incorporat-
ing an improved electronic-structure description, based on
the first-order many-body perturbation theory. This permits
the computation of first-order-corrected energies and a set of
zeroth-order LS eigenstates, for arbitrary electronic config-
urations. Moreover, individual state-to-state photoionization
cross sections and transition rates are calculated, based on our
new implementation. A detailed comparison with experimen-
tal results available in the literature shows that the extended
XATOM toolkit delivers significantly improved transition en-
ergies in contrast to the original version. The knowledge of
individual state-to-state cross sections enables us to study
orbital alignment of ions produced by single photoionization.
We focus on the orbital alignment of transiently formed ions
resulting from photoionization of a neutral argon atom and
some exotic electronic configurations of argon by linearly
polarized x rays. An important remark here is that these ions
can be viewed as examples of species appearing in x-ray
multiphoton ionization of neutral atoms. It would be possible
to observe them experimentally with ultrafast XFEL pulses
by using a transient absorption experiment with two-color x
rays, similar to that employed in Ref. [45]. Using the individ-
ual state-to-state transition rates, we investigate any change
of orbital alignment after fluorescence and Auger-Meitner
decay. Combining state-to-state cross sections and rates, we
examine the orbital alignment after one x-ray-induced ion-
ization process, i.e., a sequence comprising a photoionization
event and a subsequent relaxation event. Understanding of
the orbital alignment of this x-ray single-photon ioniza-
tion will be a building block to explore and explain the
orbital alignment occurring during x-ray multiphoton ion-
ization dynamics induced by interaction with intense XFEL
pulses.

The paper is organized as follows. In Sec. II, we briefly
present the theoretical framework of our implementation in
XATOM and discuss quantities to quantify the alignment. The
validation of our implementation is the topic of Sec. III. Or-
bital alignment in initially neutral Ar, Ar+ (2p−1), and Ar2+

(2p−2) is studied in Sec. IV. We also briefly address the or-
bital alignment caused by x-ray-induced ionization including
relaxation in this section. We conclude with a summary and
future perspectives in Sec. V.

II. THEORETICAL DETAILS

The aim of this section is to outline the theoretical frame-
work. In particular, we start with the HFS Hamiltonian, whose
solutions are already present in the XATOM toolkit [56]. Then
we develop a method to determine first-order-corrected en-
ergies and a new set of eigenstates by employing first-order
degenerate perturbation theory. These improved electronic-
structure calculations are implemented as an extension of
the XATOM toolkit [56] and are further utilized to calculate
individual state-to-state cross sections and transition rates.
Throughout this paper, atomic units, i.e., m = |e| = h̄ = 1 and
c = 1/α, are used, where α is the fine-structure constant.

A. The Hamiltonian

The Hamiltonian describing N nonrelativistic electrons in
an atom can be separated into the HFS Hamiltonian ĤHFS and
the residual electron-electron interaction V̂res, defined by the
full two-electron interactions minus the HFS mean field [see
Eq. (6)],

Ĥmatter = ĤHFS + V̂res. (1)

The one-electron solutions of the HFS Hamiltonian are the
so-called spin orbitals ϕq and spin-orbital energies εq, respec-
tively [30]. Consequently, we solve the following effective
one-electron equation:[− 1

2∇2 + V̂ HFS(�x)
]
ϕq(�x) = εqϕq(�x). (2)

Here, V̂ HFS is the Hartree-Fock-Slater mean field [57],

V̂ HFS(�x) = − Z

|�x| +
∫

d3x′ ρ(�x′)
|�x − �x′| − 3

2

[
3

π
ρ(�x)

] 1
3

, (3)

with the local electron density ρ(�x) and the nuclear charge
Z . A more extensive description of how to numerically solve
Eq. (2) within the XATOM toolkit can be found in, e.g.,
Refs. [35,47]. In the context of this paper, it is only worth
mentioning that the spin orbitals can be decomposed into a
radial part, a spherical harmonic, and a spin part [35],

ϕq(�x) = uξq,lq (r)

r
Y

mlq

lq
(�)

(
δmsq , 1

2

δmsq ,− 1
2

)
. (4)

Accordingly, the index q refers to a set of four quantum num-
bers (ξq, lq, mlq , msq ) (with ξq = nq for bound spin orbitals,
i.e., εq < 0, and ξq = εq for unbound spin orbitals, i.e., εq �
0). Note that spin orbitals belonging to the same subshell, i.e.,
the same n and l quantum numbers, share the same orbital
energy, denoted as εnl .

Introducing anticommutating creation and annihilation op-
erators, ĉ†

q and ĉq, associated with the spin orbitals [30,58], the
two parts of Eq. (1) can be expressed as

ĤHFS =
∑

q

εqĉ†
qĉq (5)

and

V̂res = −
∑
p,q

V HFS
pq ĉ†

pĉq + 1

2

∑
p,q,r,s

vpqrsĉ
†
pĉ†

qĉsĉr . (6)
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In these expressions, the summations run over all spin orbitals.
Furthermore,

V HFS
pq =

∫
d3x ϕ†

p(�x)V̂ HFS(�x)ϕq(�x) (7)

is a mean-field matrix element and

vpqrs =
∫ ∫

d3x d3x′ ϕ†
p(�x)ϕ†

q ( �x′)
1

|�x − �x′|ϕr (�x)ϕs( �x′) (8)

is a two-electron Coulomb matrix element.
Having at hand the one-electron eigenstates, the N-electron

eigenstates of ĤHFS are then formed by an antisymmetrized
product [58]. Known as electronic Fock states, these multior-
bital states read

|
α〉 =
∣∣∣∣∣

∞∏
q=1

nα
q

〉
=

∞∏
q=1

(ĉ†
q )nα

q |0〉, (9)

where |0〉 is the vacuum and the occupation number nα
q ∈

{0, 1} is restricted by
∑∞

q=1 nα
q = N . The energy of a Fock

state is

Eα =
∞∑

q=1

nα
q εq =

∑
n,l

Nnlεnl , (10)

with the latter summation running over all subshells, occupied
by Nnl electrons. Note that the Fock states are only eigenstates
of ĤHFS, but not of Ĥmatter.

B. Improved electronic-structure calculations

In order to obtain approximate solutions of Ĥmatter, we
employ first-order time-independent degenerate perturbation
theory [59,60]. Regarding Ĥmatter in Eq. (1), ĤHFS is treated
as the unperturbed Hamiltonian, the well-known Fock states
|
α〉 as the unperturbed zeroth-order states, and V̂res as the
perturbation. Since the Fock states belonging to the same
electronic configuration share the same energy with respect
to ĤHFS [see Eq. (10)], degenerate perturbation theory has to
be applied.

Here the method implemented to determine the first-order-
corrected energy eigenvalues of Ĥmatter and a new set of
zeroth-order eigenstates by employing first-order degenerate
perturbation theory is briefly sketched. In particular, we as-
sume that an arbitrary electronic configuration is given for the
atom or ion for which we want to find the solutions. Then
an application of degenerate perturbation theory requires the
following steps.

(i) Find the set of Fock states belonging to the given elec-
tronic configuration and make subsets according to (MS, ML).
It is useful to group the Fock states |
α〉 into subsets ac-
cording to the total spin projection, Mα

S = ∑
q nα

q msq , and the
projection of the total angular momentum operator, Mα

L =∑
q nα

q mlq . Therefore, from now on, a Fock state is expressed
as |
MS ;ML

γ 〉, with its projection quantum numbers as upper
labels and with a lower index γ that runs from 1 to the
number of Fock states with MS and ML. Then, for each
subset {|
MS ;ML

γ 〉}, the Fock states are separately determined
as strings of occupation numbers, i.e., zeros and ones [see
Eq. (9)].

(ii) Compute the matrix elements of Hmatter within each
subset and diagonalize each submatrix H (MS,ML )

matter . Most im-
portantly, utilizing the Condon rules [61], it can be easily
shown that Hmatter is block diagonal in the previously in-
troduced subsets {|
MS ;ML

γ 〉}. Therefore, it is sufficient to
compute only matrix elements within the subsets, i.e.,
〈
MS ;ML

δ |Ĥmatter|
MS ;ML
γ 〉, and to numerically diagonalize each

submatrix H (MS ,ML )
matter separately. The eigenvalues of H (MS ,ML )

matter
deliver first-order-corrected energies and its eigenstates offer
a new subset of zeroth-order states having projection quantum
numbers MS and ML. These new states are linear combina-
tions of the Fock states |
MS ;ML

γ 〉 belonging to the subset in
question. In contrast to the Fock states, the new states have
the advantage of also being eigenstates of total orbital angular
momentum and of total spin. Thus, from now on, we refer to
the new zeroth-order states as zeroth-order LS eigenstates.

(iii) Identify the term symbol for each pair of first-order-
corrected energy and zeroth-order LS eigenstate. To label the
zeroth-order LS eigenstates, we use the set of quantum num-
bers (L, S, ML, MS ) together with an additional integer index
κ that runs from 1 to the number of states with (L, S, ML, MS ).
Consequently, the zeroth-order LS eigenstates read

|LSMLMSκ〉 =
∑

γ

cγ

LSMLMSκ
|
MS ;ML

γ 〉, (11)

with the expansion coefficient cγ
LSMLMSκ

obtained from step
(ii). The values for the projection quantum numbers are di-
rectly known from the subset in question, whereas the other
labels, i.e., L, S, and κ , need to be determined. The zeroth-
order LS eigenstates, having the same values for L, S, and
κ , form a term [62] which is characterized by a term symbol
2S+1L(κ ). Also note that all states within a term share the same
energy. So let the first-order-corrected energies be denoted by
ELSκ . Combining this knowledge with the method of Slater
diagrams, described in, e.g., Refs. [62,63], L, S, and κ can
be identified for each pair of first-order-corrected energy and
zeroth-order LS eigenstate.

(iv) If terms share the same first-order-corrected energy,
diagonalize S2 and/or L2 with respect to the zeroth-order LS
eigenstates in question. This step is necessary to guarantee
that the zeroth-order states are all proper LS eigenstates in the
end (for more details, see [61]).

The method described delivers all terms 2S+1L(κ ) together
with their first-order-corrected energies ELSκ and all zeroth-
order LS eigenstates |LSMLMSκ〉 for a given atom or ion in a
given electronic configuration. In the following, for simplicity,
the label κ is omitted, either because κ = 1 for all involved
states or because it is irrelevant in the computation in question.
We point out that the orbitals and their energies needed to
create the submatrices H (MS,ML )

matter are provided by the original
XATOM toolkit. Moreover, note that there exists an alternative
way of constructing the LS eigenstates by employing Racah
algebra [64–67]. However, here we have used the strategy
that was developed by Condon and Shortley [61]. Numerical
diagonalization of the relatively small matrices that arise in
the approach we adopt does not determine the overall compu-
tational effort.
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C. Individual state-to-state photoionization cross sections

Having at hand first-order-corrected energies and zeroth-
order LS eigenstates [Eq. (11)] for the initial and final
electronic configurations, we can compute photoionization
cross sections for these individual initial and final states. Note
that from now on, the index i appears when referring to the
quantities of the initial state, i.e., |LiSiMLi MSi〉, while the
index f is used for a final target state, i.e., |L f S f ML f MS f 〉.
We remark that the final target state excludes the unbound
photoelectron. Thus, the total final electronic state is given by
|L f S f ML f MS f ; εclcmlc msc〉, where the latter quantum numbers
refer to those of the photoelectron. However, attributed to the

use of a fully uncoupled approach for the continuum states,
the total final state is no LS eigenstate. In order to calculate
the cross section for orthogonal spin orbitals and for photons
linearly polarized along the z axis [68,69], we use the first-
order time-dependent perturbation theory [30] and the electric
dipole approximation [31]. As long as we integrate over the
photoelectron angular distribution, the latter approximation,
also utilized in the original XATOM toolkit [35], works well.
Then the individual state-to-state cross section for ionizing
an electron in the subshell with quantum numbers n and l by
absorbing a linearly polarized photon with energy ωin may be
written as

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nl, ωin) = 4π2

3ωin
α(εnl − εc)2

l+1∑
lc=|l−1|

l>

∣∣∣∣
∫ ∞

0
dru∗

εclc (r)runl (r)

∣∣∣∣
2

×
∑
MS f

|C(l, lc, 1; MLi − ML f , ML f − MLi , 0)〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉|2. (12)

In this expression, C(·) represents a Clebsch-Gordan coef-
ficient [65,67], l> = max(lc, l ), εc = ωin + ELiSi − EL f S f is
the energy of the photoelectron, and εnl is the orbital en-
ergy of the nl subshell [70]. Owing to the selection rules
for a dipole transition [68], the first sum in Eq. (12)
does not include lc = l . Following the independent-particle
model [71], the index j of the involved bound spin or-
bital (i.e., from which an electron is ejected) refers to
the set of quantum numbers (n j, l j, mlj , msj ) = (n, l, MLi −
ML f , MSi − MS f ) with the restriction MSi = Si. The interaction
Hamiltonian causing one-photon absorption [30] does not
affect the spin and its projection. Thereby, the cross sec-
tion is independent of the initial spin projection MSi when
performing a summation over the final spin projection MS f .
Accordingly, Eq. (12) describes a transition between one ini-
tial zeroth-order LS eigenstate |LiSiMLi MSi〉 with arbitrary
spin projection MSi and both final zeroth-order LS eigen-
states |L f S f ML f MSi + 1

2 〉 and |L f S f ML f MSi − 1
2 〉, as long as

|MSi ± 1
2 | � S f . We also remark that the matrix element

〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉 can be interpreted as the overlap
between the final and initial zeroth-order LS eigenstates. Due
to the involved annihilation operator ĉ j (see Sec. II A), the ini-
tial state is, however, already reduced by the involved electron
in the spin orbital ϕ j . The larger (smaller) this overlap is, the
larger (smaller) the cross section is. If the overlap is zero, the
cross section is zero.

D. Individual state-to-state transition rates

The fluorescence rate for a transition of an electron from
the n jl j subshell to a hole in the lower-lying nhlh subshell can
be calculated in a similar way as the photoionization cross
section [30,31,68]. Accordingly, the individual state-to-state
fluorescence rate associated with a transition from the initial
zeroth-order LS eigenstate |LiSiMLi MSi〉 to an accessible final
target state |L f S f ML f MS f 〉 may be written as

�
MLi ;ML f

2Si+1Li;
2S f +1L f

(n jl j, nhlh) = 4l>
3(2lh + 1)

α3(ELiSi − EL f S f )(εnhlh − εn j l j )
2

∣∣∣∣
∫ ∞

0
dru∗

nhlh (r)runj l j (r)

∣∣∣∣
2

×
∣∣∣∣∣∣
∑
h, j

C(1, l j, lh; ML f − MLi , mlj , mlh )
〈
L f S f ML f S f

∣∣ĉ†
hĉ j

∣∣LiSiMLi Si
〉∣∣∣∣∣∣

2

. (13)

Here, l> = max(l j, lh). The indices j and h of the solely
initially or, respectively, finally occupied bound spin orbitals
(between which the electron is transferred) refer to the set of
quantum numbers (n j, l j, mlj , msj ) and (nh, lh, mlh = ML f −
MLi + mlj , msh = msj ). We note that the total projections MLi

and ML f determine the relation between mlj and mlh only,
but not their values. Consequently, it is necessary to include
in Eq. (13) a summation over all possible spin orbitals that
are only occupied in the initial or the final state, respectively.

Since the interaction Hamiltonian [30] does not affect the spin
and its projection, and MSi = MS f due to the selection rules,
the transition rate is independent of the initial and final spin
projection.

Another transition rate of interest is the Auger-Meitner
decay rate that two electrons in the njl j and n j′ l j′ subshells
undergo transitions: one into a hole in the lower-lying nhlh
subshell and the other into the continuum. Since this process
occurs via the electron-electron interaction, its transition rate
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can be obtained by employing the first-order time-dependent
perturbation theory with the interaction Hamiltonian given

by Eq. (6) [30,69]. Accordingly, the individual state-to-state
Auger-Meitner decay rate may be written as

�
MLi ;ML f

2Si+1Li;
2S f +1L f

(n jl j, n j′ l j′ , nhlh) = 2π
∑

la

∑
MS f

∣∣∣∣∣∣
∑
h, j, j′

[vah j j′ − vah j′ j]〈L f S f ML f MS f |ĉ†
hĉ j′ ĉ j |LiSiMLi Si〉

∣∣∣∣∣∣
2

, (14)

where vah j j′ and vah j′ j are both two-electron Coulomb ma-
trix elements given by Eq. (8). Here, the index a refers
to the quantum numbers of the Auger electron, i.e., (εa =
ELiSi − EL f S f , la, MLi − ML f , MSi − MS f ). The sum over la
is restricted by |L f − Li| � la � min(lh + l j + l j′ , L f + Li ).
The indices j, j′, and h denote the involved spin orbitals in
the corresponding n jl j , n j′ l j′ , and nhlh subshells, respectively.
However, it is necessary to include in Eq. (14) a summation
over all possible spin orbitals that are either only occupied in
the initial or the final state because the projection quantum
numbers of these orbitals are not completely definite. Addi-
tionally, including a summation over the final spin projection
MS f provides a transition rate that is independent of the initial
spin projection.

E. Alignment parameter and ratios

We briefly introduce a few basic quantities that we em-
ploy for the investigation of orbital alignment. The alignment
parameter [40–42] offers a measure of the alignment of a
final ion with definite angular momentum L f due to different
projections ML f . Recall that there is no coupling to the spin
for the employed interaction Hamiltonians [30] and, thus, no
alignment with respect to MS f . Therefore, in what follows,
we neglect the spin S f and its projection MS f , i.e., in this
section, |L f ML f 〉 refers to a final zeroth-order LS eigenstate,
a sum over accessible MS f included as in Eqs. (12) and (14).
Here, we briefly define the alignment parameter in our con-
text. Further discussions and applications of the alignment and
orientation parameters can be found in Refs. [40–42].

Let us start with the density matrix for the L f under inves-
tigation [40,41],

ρ̂ =
∑
ML f

p(ML f |L f )|L f ML f 〉〈L f ML f |. (15)

Here, p(ML f |L f ) is the conditional population probability of
the final state with projection ML f for a given L f . For sin-
gle photoionization, this probability is given by p(ML f |L f ) =
σ

MLi ;ML f

2Si+1Li;
2S f +1L f

/
∑

ML f
σ

MLi ;ML f

2Si+1Li;
2S f +1L f

for an S f and an initial state.

Similarly, the population probability can be obtained for the
decay processes via the transition rates in Eqs. (13) and (14).
As a next step, we decompose ρ̂ in terms of irreducible spher-
ical tensor operators [41,72],

T̂JM =
∑

ML f ,M ′
L f

(−1)
L f −M ′

L f C(L f , L f , J; ML f ,−M ′
L f

, M )

× |L f ML f 〉〈L f M ′
L f

|. (16)

Thus, we may write

ρ̂ =
∑
J,M

ρJMT̂JM, (17)

where the expansion coefficients ρJM are given by [40]

ρJM =
∑
ML f

(−1)L f −ML f p(ML f |L f )

×C(L f , L f , J; ML f ,−ML f , M ). (18)

Note that these coefficients are only nonzero for M = 0. In
the case of p(−ML f |L f ) = p(ML f |L f ), ρJ0 vanishes for odd
J owing to the properties of the Clebsch-Gordan coefficient
[65]. Since there is no preference for ±ML f in the interaction
with linearly polarized light, i.e., p(−ML f |L f ) = p(ML f |L f ),
ρ10 is always zero. Thus, the orientation parameter, defined
by O10 = ρ10/ρ00 [42], is zero and no orientation is created
by the interaction with linearly polarized light.

The coefficients ρJ0 are also known as statistical tensors,
and they define the alignment parameter as follows [42]:

A20(L f ) = ρ20/ρ00

=
√

5

(2L f + 3)(L f + 1)L f (2L f − 1)

×
∑
ML f

[
3M2

L f
− L f (L f + 1)

]
p(ML f |L f ). (19)

To obtain the second line of Eq. (19), we have utilized the for-
mula for the Clebsch-Gordan coefficients given in Ref. [65].
Note that A20 is positive (negative) when states with larger
(smaller) |ML f | are more likely populated than the others.
For a uniform distribution, A20 = 0 (no alignment), while the
larger |A20| the stronger the alignment.

In general, an ion produced by photoionization can have
different L f , but the alignment parameter can only capture
one L f . Thus, if we are interested in the distribution of all
possible final states, then another quantity of interest is the
ratio of individual (state-resolved) cross sections,

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nl, ωin)/σ
MLi

2Si+1Li
(nl, ωin). (20)

This provides direct information about the probability to find
the ion produced in the final 2S f +1L f state with projection
ML f , when the atom or ion is initially in the 2Si+1Li state
with projection MLi and when the nl subshell is ionized. Here,

σ
MLi

2Si+1Li
(nl, ωin) is the subshell cross section of the nl subshell

restricted to the initial state in question, summing over all
possible final states. We do not distinguish between states with
different spin projection as the cross sections are independent
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of it. Moreover, replacing the cross sections in Eq. (20) by
the corresponding transition rates [Eqs. (13) and (14)] delivers
ratios of individual transition rates.

III. VALIDATION

Having discussed the basic formalism underlying our
implementation in XATOM, we next proceed to explore tran-
sition energies and photoionization cross sections for explicit
electronic configurations and to compare the results with
experimental measurements. In particular, we employ two
different theoretical strategies for describing physical pro-
cesses. In the zeroth-order strategy, transition energies are
computed based on zeroth-order energies for the initial and
final states. The zeroth-order energies are the sum of orbital
energies according to the initial or final electronic configura-
tion [Eq. (10)]. On the other side, in the first-order strategy,
transition energies are computed based on the first-order-
corrected energies ELS for the initial and final states (see
Sec. II B). For both strategies, energies and radial integrals are
calculated with orbitals and orbital energies optimized for the
initial configuration only. The usage of the same set of orbitals
for both the initial and final configurations avoids issues with
orbital nonorthogonality [73–75]. Moreover, it should be men-
tioned that we still perform zeroth-order calculations using
the original version of XATOM, whereas for the first-order
calculations, we employ the present implementation.

Orbitals and orbital energies are numerically solved on a
radial grid employed by XATOM (see Refs. [35,47] for details),
based on the HFS potential [Eq. (3)] including the latter tail
correction [76]. In what follows, the bound states are com-
puted using the generalized pseudospectral method [77,78] on
a nonuniform grid with 200 grid points and a maximum radius
of 50 a.u. The continuum states are computed using the fourth-
order Runge-Kutta method on a uniform grid [79,80] with a
grid size of 0.005 a.u., employing the same potential as used in
the bound-state calculation. It has been demonstrated that the
cross sections and rates calculated using XATOM (zeroth-order
strategy) show good agreement with the available experimen-
tal data and other calculations [35,53,54].

A. Transition energies for neon

First, the Kα fluorescence energy and all KLL Auger-
electron energies are examined for an initial Ne+ ion with a
K-shell vacancy (1s−1 2S). The results are presented in Fig. 1.
It is apparent from the data that the first-order strategy is in
reasonable agreement with the experimental Kα fluorescence
energy [81,82] and the KLL Auger-Meitner electron energies
[83], to within less than 2%. In contrast, the energies obtained
via the zeroth-order strategy differ significantly from the ex-
perimental values. These findings indicate that the first-order
strategy, contained in our implementation, is the better strat-
egy for describing the transition energy. The small difference
between experiment and theory still remaining for the first-
order calculation might be attributed to the use of the same set
of initial and final orbitals, the neglect of higher-order terms,
and relativistic effects. We remark that no value is shown for
the final state of 2p−2 3P in Fig. 1 because this transition is
forbidden on account of parity [30,84].
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FIG. 1. Comparison of experimental Kα fluorescence energy
[81,82] and KLL Auger-electron energies [83] for neon with two
theoretical strategies (see legend). The different lines are labeled by
the final open subshell(s) (first line) and by the final term symbol
(second line). In all cases, the Ne+ ion is initially in the 1s−1 2S
state.

B. Photoionization cross sections for argon

As a next example, we examine photoionization of a
neutral argon atom (1s22s22p63s23p6) in the region of the
thresholds. Figure 2 shows the total photoionization cross
section as a function of the photon energy in the (a) K-shell,
(b) L-shell, and (c) M-shell threshold regions. The total cross
sections, which are an incoherent sum over all individual
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FIG. 2. Calculated total photoionization cross section, in Mb, of
neutral argon as a function of the photon energy, in eV. Results for
both the first-order strategy (solid blue line) and the zeroth-order
strategy (dashed red line) are compared to experimental data (black
crosses) reported in Ref. [85] for the K- and L-shell thresholds and
Ref. [86] for the M-shell threshold.
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state-to-state cross sections in Eq. (12), are depicted. Inter-
estingly, with regard to the cross section, both the first-order
and zeroth-order strategies behave very similarly, if one ig-
nores the shift due to different threshold energies. In general,
both are in acceptable agreement with the experimental values
around the K- and L-shell thresholds [85] and the M-shell
threshold [86], often to within less than 10%. However, es-
pecially at the L- and M-shell thresholds, the calculated cross
sections are significantly higher than the experimental values
(more than 50% between the 3p and 3s thresholds and ∼25%
at the 2p and 2s thresholds). This observed disagreement and
the lack of improvement concerning the first-order strategy
mainly stem from the use of zeroth-order states in both strate-
gies. In the present framework, first-order-corrected energies
but only zeroth-order eigenstates are calculated (see Sec. II B).
If the first-order states were used, it would be possible to
capture a part of the interchannel coupling [87], since the
first-order states are a mixture of the zeroth-order states from
different electronic configurations [60]. Moreover, it should
be mentioned that the experimental results in Fig. 2(c) contain
resonances between the 3p and the 3s thresholds [86], but the
theoretical calculations do not.

Even though our implementation only leads to an improve-
ment on the transition energy but not on the cross section, it
has the following major advantage with respect to the orig-
inal version of XATOM: With the help of the zeroth-order
LS eigenstates, the present implementation is capable to pro-
vide individual state-to-state cross sections and transition rates
(see Secs. II C and II D), thus allowing us to study orbital
alignment (see next section).

IV. RESULTS AND DISCUSSION

We employ the individual state-to-state cross sections pro-
vided by our implementation to explore orbital alignment
induced by linearly polarized x rays. In particular, we consider
the distribution of the states belonging to the ions produced by
photoionization. As a first example, we discuss photoioniza-
tion of the neutral argon atom that is initially in a closed-shell
configuration. Having at hand the results for neutral argon, we
then generalize them to some argon charge states in open-shell
configurations. These ions can appear in the x-ray multipho-
ton ionization of neutral argon driven by an intense XFEL
pulse.

Before starting, however, the following should be pointed
out. In what follows, we focus on the photoionization of an
electron in a specific subshell of 2p or 3p (l = 1) without
any interaction between the subshells (interchannel coupling).
This is because (i) ionization of the subshell with l = 0 al-
ways completely aligns the remaining ion since only the final
state with ML f = MLi is allowed and (ii) binding energies
differ enough to neglect the interaction [88]. Furthermore, we
focus on a specific initial zeroth-order LS eigenstate. How-
ever, for MLi �= 0, we will consider a uniform distribution of
initial states with ±MLi , denoted in the following by |MLi |.
This prevents an orientation of the final ion, which would be
simply caused by a prior orientation of the initial ion. There-
fore, the population probabilities of the final ion are identical
for ±ML f , i.e., p(−ML f |L f ) = p(ML f |L f ). This is because
Eqs. (12)–(14) are identical for a transition from MLi to ±ML f
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FIG. 3. Ratio of individual cross sections σ
0;ML f
1S;2P

/σ 0
1S

for neutral
argon as a function of the photon energy from the 3p threshold
(≈13.46 eV) to the 1s threshold (≈3207.51 eV). Results for different
ML f for both ionizations of the 2p and 3p subshells are shown
(see legend). The gray line at 1/3 indicates the case of a uniform
distribution of ML f . In all cases, the atom is initially in the 1S state
with MLi = 0 and the final Ar+ ion is in one of the 2P states.

and −MLi to ∓ML f . So there is no orientation (see Sec. II E)
and we can investigate the ±ML f cases together (without
summing over both signs).

A. Orbital alignment after ionization of neutral Ar

We first investigate the orbital alignment of the Ar+ ion
following the photoionization of the 2p or 3p subshell of
neutral argon (1s22s22p63s23p6) by linearly polarized x rays.

The calculated ratios of individual cross sections σ
0;ML f

1S;2P /σ 0
1S

[Eq. (20)] are presented in Fig. 3 for all possible ML f as a func-
tion of the photon energy. Additionally, calculated alignment
parameters A20(P) [Eq. (19)] are listed in Table I for various
photon energies. For initially neutral argon, A20(P) can be
directly obtained from the ratios in Fig. 3, i.e., A20(P) =√

2[σ 0;1
1S;2P/σ 0

1S − σ 0;0
1S;2P/σ 0

1S]. As can be seen, in the x-ray
regime, where the photon energy is greater than ∼300 eV,
the resulting Ar+ ion (2p−1 or 3p−1) exhibits a clear orbital
alignment (i.e., A20 < 0), but it is not an extremely strong
orbital alignment (i.e., A20 is close to zero). It increases only
marginally with the photon energy and is a little stronger for
the 3p subshell than for the 2p subshell. As a consequence of
the alignment, almost 45% of the Ar+ ions produced have an
angular momentum projection of ML f = 0, while the others

TABLE I. Alignment parameter A20(P) of the final Ar+ ion after
ionization of neutral Ar. Results for both ionizations of the 2p and 3p
subshell of neutral argon are listed for various photon energies. For
comparison, note that a complete alignment with respect to ML f = 0

would yield a value of A20(P) = −√
2.

nl ωin (eV) A20(P)

3p 40 −1.406
2p 300 −0.178
3p 300 −0.221
2p 1000 −0.196
3p 1000 −0.218
2p 3000 −0.228
3p 3000 −0.240

033111-7



BUDEWIG, SON, AND SANTRA PHYSICAL REVIEW A 105, 033111 (2022)

TABLE II. Radial integrals |Rεc0;n1| and |Rεc2;n1| as well as their
ratio for various photon energies for neutral argon.

nl ωin (eV) A = |Rεc0;n1| B = |Rεc2;n1| (A/B)2

3p 40 2.99 × 10−1 0.71 × 10−1 302.00
2p 300 0.37 × 10−1 1.51 × 10−1 0.06
3p 300 1.40 × 10−2 3.84 × 10−2 0.13
2p 1000 0.54 × 10−2 1.81 × 10−2 0.09
3p 1000 1.75 × 10−3 4.89 × 10−3 0.13
2p 3000 0.71 × 10−3 1.85 × 10−3 0.15
3p 3000 2.18 × 10−4 5.34 × 10−4 0.17

have ML f = ±1 with a probability of 28% for each ML f (see
Fig. 3).

There are two explanations for the observed alignment.
First, due to the angular momentum coupling of the photo-
electron and the involved final hole for incoming radiation
linearly polarized along the z axis [68,69], the ejection of
an electron with mlj = ±1 is less likely than with mlj = 0.
Hence, a transition with MLi − ML f = mlj = ±1 is less likely
than one with MLi = ML f . In particular, ratios of individual
cross sections differ by a value of 0.1. This value can be
obtained from an explicit calculation of Clebsch-Gordan coef-
ficients in Eq. (12) and is, evidently, independent of the photon
energy. Second, the remaining alignment can be explained
as follows. Owing to the selection rules for a dipole transi-
tion [68], the photoelectron can have two possible angular
momentum quantum numbers, lc = l ± 1. In the calculation
of cross sections, lc is summed over both [see Eq. (12)].
However, for MLi − ML f = ±1 and l = 1, the former is for-
bidden as lc = 0 < |MLi − ML f |, so only lc = 2 contributes
to the cross section. Consequently, when MLi = 0, the cross
section for ML f = ±1 (only lc = 2 contributes) is smaller
than that for ML f = 0 (both lc = 0 and lc = 2 contribute).
This effect becomes larger as the lc = 0 contribution of the
photoelectron increases. From Eq. (12), we can conclude that
the amount of this reduction depends on the ratio of radial
integrals |Rεc0;n1|2/|Rεc2;n1|2, where

Rεclc;nl =
∫ ∞

0
dru∗

εclc (r)runl (r). (21)

For the initial neutral argon, the ratios of the radial integrals
are shown in Table II. In the x-ray regime (ωin � 300 eV),
the ratio of radial integrals is quite small. Therefore, cross
sections for ML f = ±1 are reduced by the ratio of radial
integrals only a little and, thus, the alignment is not extremely
strong, as shown in Table I. Also worthy of note is that the
marginal increase of the alignment with the photon energy can
be attributed to the ratio of radial integrals as well. In contrast,
below the x-ray regime at roughly 40 eV, an opposite situation
can be discovered, as shown in Fig. 3, Table I, and Table II.
Photoionization of the 3p subshell by a linearly polarized
photon with around 40 eV predominantly produces an ion
with ML f = 0 (i.e., A20 ∼ −√

2).

B. Orbital alignment after 2p ionization of Ar+ (2p−1)

Next we proceed to investigate orbital alignment after
ionization of the initially open-shell configuration of Ar+

TABLE III. Alignment parameter A20(P) and A20(D) of the final
Ar2+ ion (2p−2) after 2p ionization of Ar+ (2p−1 2P). Results for
different |MLi | are listed at a photon energy of 1000 and 3000 eV.

ωin (eV) |MLi | A20(P) A20(D)

1000 0 0.707 −0.895
1000 1 −0.147 0.290
3000 0 0.707 −0.904
3000 1 −0.115 0.268

(1s22s22p53s23p6). Here we are considering only 2p−1 for
Ar+ because (i) the partial cross section of 3p of neutral Ar
is much smaller than that of 2p, when the photon energy is
greater than the 2p threshold, and (ii) fluorescence processes
that can also produce a hole in the 3p subshell are very slow
(∼2000 fs lifetime) compared to the pulse durations of XFELs
(a few fs). Therefore, Ar+ ions are barely found in the configu-
ration 1s22s22p63s23p5 during interaction with XFEL pulses.
Likewise, we will focus on 2p ionization of Ar+ (2p−1) in the
following discussion because of the low cross section of the
3p subshell.

To explore the orbital alignment of the final Ar2+

(2p−2) that is produced by the photoionization of the 2p
subshell of Ar+, we calculate the alignment parameters
A20(P) and A20(D) as well as the ratios of individual

cross sections σ
|MLi |;ML f

2P;2S f +1L f
/σ

|MLi |
2P , i.e., 1

2 [σ
+MLi ;ML f

2P;2S f +1L f
/σ

+MLi
2P +

σ
−MLi ;ML f

2P;2S f +1L f
/σ

−MLi
2P ] for MLi �= 0. As observed above for neutral

argon, we expect for the orbital alignment of initial Ar+ ions
a similar, very small, and smooth change with the energy of
the x-ray photons. The alignment parameters are listed at a
photon energy of 1000 and 3000 eV in Table III. A20(P) and
A20(D) are similar for both photon energies. For this reason,
we restrict ourselves here to only the analysis of a photon
energy of 1000 eV in Fig. 4, where the ratio of individual
cross sections is depicted for all possible initial states. The
sum of the bars for each panel in Fig. 4, after taking into
account a factor of 2 for ±ML f , is equal to one. Note that the
alignment parameters in Table III can be obtained from the
relation between the bars belonging to a final term.
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FIG. 4. Ratio of individual cross sections σ
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for

Ar+ (2p−1) at a photon energy of 1000 eV (a) for MLi = 0 and
(b) for |MLi | = 1 (i.e., uniform distribution of MLi = ±1). Results
for different final terms and different ML f are shown. In all cases, the
atom initially is in a 2P state and the subshell being ionized is 2p.
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Combining the findings in Fig. 4(a) and Table III, we
observe for MLi = 0 that the majority of Ar2+ ions produced
are in the 3P state (∼54% uniformly distributed between
ML f = +1 and ML f = −1), which is completely aligned [i.e.,
A20(P) = 1/

√
2]. This alignment is simply caused by the se-

lection rules for photoionization, where a transition to ML f =
0 is forbidden. In particular, if Li + L f + l is an odd num-
ber and MLi = 0, then only ML f �= 0 is allowed. Next, most
probably, is the production of ions in the 1D state (∼37%),
whereas there is only a probability of less than 10% to find
the final ion in the unaligned 1S state [always A20(S) = 0].
Note that also within the 1D term, there is orbital alignment
[i.e., A20(D) < 0]: It is twice as likely to find the state with
ML f = 0 than those with ML f = ±1, and ML f = ±2 is forbid-
den by the selection rules. Thus, it is very likely to observe an
alignment of the final ion, either in a 3P or 1D state.

Let us now discuss the outcome for |MLi | = 1 in Fig. 4(b)
and Table III. Again the majority of Ar2+ ions produced are
in one of the 3P states (∼62%). However, in contrast to MLi =
0, here the 3P states exhibit only a weak alignment that is
comparable to that for the residual Ar+ discussed in Sec. IV A,
but a little weaker. Worthy of note is also the alignment of the
final 1D state attributed to a larger population of states with
ML f = ±2 than for smaller ML f [for comparison, a complete
alignment with respect to ML f = ±2 has A20(D) = 2

√
5/14].

Although most of the observations are related to angular
momentum coupling, it is worthwhile to explain them ex-
plicitly with respect to the formula of the individual cross
section [Eq. (12)]. A detailed understanding might be useful
in a future study of alignment during multiphoton ionization,
which cannot be simply explained analytically by angular
momentum coupling. The observations can be explained by
a combination of the subsequent aspects.

First, in the computation of individual cross sec-
tions [Eq. (12)], we sum over all accessible final spin
projections, i.e., MS f . Owing to the selection rules, i.e., |MSi −
MS f | != 1

2 , for the final terms with S f = Si + 1
2 , two final states

(MS f = Si ± 1
2 ) are involved in the transition. In contrast, for

the final terms with S f = Si − 1
2 , only one final state (MS f =

Si − 1
2 ) is allowed. As a consequence, the states for the former

terms tend to have higher cross sections. It is because the
cross section is independent of the initial spin projection that
this argument is true for general initial states. Therefore, we
conclude that final states with S f = Si + 1

2 are generally more
probable than those with S f = Si − 1

2 . This explains why tran-
sitions to the final 3P states of Ar2+ are so dominant.

Second, if not forbidden, transitions preserving the an-
gular momentum projection, i.e., ML f = MLi , are generally
preferred, while those changing it by one are suppressed.
This is attributed to the fact that the incoming x rays are
linearly polarized (see Sec. IV A). It explains, for instance,
why final 1S states are a little more likely for MLi = 0 than for
MLi = ±1. It also explains the alignment of the 3P states for
|MLi | = 1 and that of the 1D states for MLi = 0.

However, it does not explain the alignment of the 1D
states for |MLi | = 1 or, more precisely, why the states with
ML f = ±2 are more probable than the other 1D states. This
can be explained by the square of the overlap matrix element,

TABLE IV. Alignment parameter A20(P) and A20(D) of the final
Ar3+ ion (2p−3) after 2p ionization of Ar2+ (2p−2). Results for dif-
ferent initial states are listed at a photon energy of 1000 and 3000 eV.

ωin (eV) 2Si+1Li |MLi | A20(P) A20(D)

1000 3P 0 0.707 −0.895
1000 3P 1 −0.148 0.290
1000 1D 0 −0.879 −0.598
1000 1D 1 −0.148 −0.321
1000 1D 2 0.707 0.743
1000 1S 0 −0.196
3000 3P 0 0.707 −0.904
3000 3P 1 −0.114 0.267
3000 1D 0 −0.905 −0.598
3000 1D 1 −0.114 −0.325
3000 1D 2 0.707 0.765
3000 1S 0 −0.230

〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉, also contained in the formula
for the individual cross section in Eq. (12). Thus, the third
point is that this overlap matrix element additionally affects
the orbital alignment. Obviously, a transition with a higher
overlap matrix element is more likely than that with a smaller
overlap matrix element. Hence, the ratio of individual cross
sections corresponding to the transition, being more proba-
ble, is enhanced. Therefore, transitions that do not preserve
the angular momentum projection can be preferred when
they exhibit very high overlap matrix elements. Regarding
the final term 1D, the final states with ML f = ±2 are pure
Fock states and so is the initial 2P state. When the transition
is not forbidden, for pure Fock states, the matrix element
〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉 is evidently unity (maximal pos-
sible value). Thus, this transition is quite dominant. On the
other hand, the alignment related to the previously mentioned
point can be enhanced, when overlap matrix elements are
higher for transitions with ML f = MLi than for the others. Note
that this is the case for a transition from the initial state with
MLi = 0 to the final 1D states. In this context, it is worth
mentioning that for neutral argon (Sec. IV A), the overlap
matrix element is always unity because all involved states are
pure Fock states.

Finally, some transitions are directly forbidden by the se-
lection rules for photoionization (given in the middle of this
section). This is another important, but trivial reason for the
orbital alignment.

C. Orbital alignment after 2p ionization of Ar2+ (2p−2)

In order to complete our understanding of orbital
alignment, we finally investigate photoionization of Ar2+

(1s22s22p43s23p6) as another example of an initial open-shell
configuration. For the reasons explained in Sec. IV B, the
focus is again on the photoionization of the 2p subshell. To
characterize the orbital alignment of the final Ar3+ (2p−3), we
show calculated alignment parameters A20(P) and A20(D) in
Table IV (at photon energies of 1000 and 3000 eV) and ra-

tios of individual cross sections σ
|MLi |;ML f

2Si+1Li;
2S f +1L f

/σ
|MLi |

2Si+1Li
in Fig. 5

(at 1000 eV only). It becomes evident that the degree of
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for Ar2+ (2p−2) at a photon energy of 1000 eV. The atom is initially
in (a) the 1S state with MLi = 0, (b) one of the 3P states, or (c) one
of the 1D states. Results for different |MLi | (i.e., uniform distribution
of ±MLi ), different final terms, and different ML f are shown. In all
cases, the subshell being ionized is 2p.

alignment for the produced Ar3+ ions is comparable with that
observed in the previous cases. Above all, the observations for
the final Ar3+ ions can be explained by the same arguments as
provided for the final Ar2+ ions in Sec. IV B.

Nonetheless, three things should be pointed out. First, for
the initial 3P states of Ar2+, the most probable final state of
Ar3+ is the unaligned 4S state (∼40% for MLi = 0 and ∼30%
for |MLi | = 1), as shown in Fig. 5(b). As argued in the first
point in Sec. IV B, it is because of the spin quantum number
being the highest for the final 4S state that this state becomes
dominant here. Second, for the initial 1D state with |MLi | = 2,
more than half of the resulting Ar3+ ions retain the angular
momentum quantum number and its projection, i.e., L f = 2
and ML f = ±2, as depicted in Fig. 5(c). This leads to a com-
parably strong alignment of the 2D states [see Table IV and
compare with A20(D) = 2

√
5/14 for a complete alignment

with respect to ML f = ±2]. This alignment stems from the
facts that ML f = MLi transitions are preferred (Sec. IV A) and
the overlap matrix element takes on the highest possible value
for pure Fock states (see the third point in Sec. IV B). Third,
also note the comparably high alignment of the 2P state for
initial 1D states with MLi = 0 [compare with A20(P) = −√

2
for a complete alignment with respect to ML f = 0]. This can
be explained by the same arguments as provided for the
2D states. In particular, here the overlap matrix element for
ML f = 0 is two times that for ML f = ±1. Another important
remark here is that for initial states with equal Li and MLi ,
the alignment of the final states is almost independent of
the charge state of argon and of the spin multiplicity of the
initial and final states. This can be seen by comparing the
alignment parameters given in Tables I, III, and IV. All this
is closely related to the fact that alignment mainly depends on
angular momentum coupling and that ratios of radial integrals,
which additionally affect the alignment, are very similar for all
charge states of argon (not shown here for brevity).

TABLE V. Alignment parameter A20(P) and A20(D) of the fi-
nal Ar2+ ion (3p−2) after L23M23M23 Auger-Meitner decay of Ar+

(2p−1 2P). Results for different |MLi | are listed.

|MLi | A20(P) A20(D)

0 0.707 −0.770
1 −0.354 0.385

D. Orbital alignment after Auger-Meitner decay of Ar+ (2p−1)

We would like to point out that the lifetime of the 2p
hole in Ar+ (2p−1) is about 3.9 fs, that of the 2p2 hole in
Ar2+ (2p−2) is about 1.6 fs, and that of the 2p3 hole in
Ar3+ (2p−3) is only about 0.9 fs (calculated with the first-
order strategy). Therefore, it is likely that the transient hole
states produced by photoionization undergo an Auger-Meitner
decay before further photoionization can occur, unless the
x-ray intensity is extremely high. Note that decay also hap-
pens via fluorescence, but fluorescence rates are much smaller
than Auger-Meitner decay rates for the argon ions. As a
consequence, it is indispensable to involve Auger-Meitner
decay processes in the studies of orbital alignment. This
becomes especially important when investigating the orbital
alignment dynamics of ions produced by x-ray multiphoton
ionization.

Here we consider as an example the L23M23M23 Auger-
Meitner decay of Ar+ (2p−1), so the final configuration is
Ar2+ (3p−2). To explore the orbital alignment of the final
Ar2+ (3p−2), we calculate alignment parameters A20(P) and
A20(D) via Eq. (19) in Table V and ratios of individual
transition rates via Eq. (14) in Figs. 6(a) and 6(b). As can
be seen, for a fixed initial state, i.e., only one |MLi |, Auger-
Meitner decay leads to a clear alignment of the final Ar2+ ion.
However, if the initial state has no alignment, i.e., a uniform
distribution of MLi , then the weighted means of the ratios of
individual transition rates are equal for all ML f belonging to a
final term [see Fig. 6(c)]. Here, the weighted mean is the sum
over the ratios of individual transition rates for all possible
MLi , weighted by the population probability p(MLi |Li ) of the
initial state. Note that in the uniform case, p(MLi |Li ) equals
1/(2Li + 1). Consequently, the final Ar2+ ion produced by
Auger-Meitner decay of an unaligned Ar+ ion does not pos-
sess any alignment. We have A20(P) = 0 and A20(D) = 0
when taking the weighted mean of the alignment parameters
given in Table V, a factor of 2 for |MLi | = 1 included. The
reason for the zero alignment is the following. According
to the Wigner-Eckhart theorem [66,67], the transition rate is
independent of the angular momentum projection of the total
initial and final electronic state, the Auger electron included.
Thus, a sum over the individual transition rates in Eq. (14) is
independent of the final projection ML f when it is uniformly
summed over the initial projection MLi . Therefore, in general,
the Auger-Meitner decay processes will not create any align-
ment of the final ion if it initially starts with zero alignment,
i.e., a uniform distribution.

However, if the initial ion is already aligned, then the final
ion produced by Auger-Meitner decay will show an alignment
as demonstrated in the next section.
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FIG. 6. Ratio of individual Auger-Meitner transition rates
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for Ar+ (2p−1) (a) for MLi = 0 and (b) for |MLi | =
1 (i.e., uniform distribution of MLi = ±1). The weighted mean of the
ratios with respect to MLi is shown in (c) for a uniform distribution of
MLi and in (d) for the distribution of MLi after 2p ionization of neutral
argon at 1000 eV. Results for different final terms and different ML f

are shown. In all cases, the atom initially is in a 2P state and decays
via L23M23M23 Auger-Meitner decay.

E. Orbital alignment evolution in x-ray-induced
ionization process

Let us finally discuss how the alignment evolves in a
sequence comprising a photoionization event and an Auger-
Meitner decay. We start with neutral argon (1s22s22p63s23p6)
and ionize the 2p subshell as investigated in Sec. IV A.
Then the produced Ar+ ion (2p−1) undergoes one L23M23M23

Auger-Meitner decay. For a fixed initial state, i.e., |MLi |,
and a uniform distribution, the corresponding alignment has
been investigated in the previous section. Here, the population
probability p(MLi |Li ) of Ar+ (2p−1) before the Auger-Meitner
decay is given by the ratios of individual cross sections for
neutral argon in Fig. 3. To examine the alignment of the final
Ar2+ ion (3p−2) after the sequence of 2p photoionization and
L23M23M23 Auger-Meitner decay, the means of the ratios of
individual transition rates are shown in Fig. 6(d) (at a photon
energy of 1000 eV) and alignment parameters are shown in
Table VI (for 300, 1000, and 3000 eV). Most importantly,

TABLE VI. Alignment parameter A20(P) and A20(D) of the final
Ar2+ion (3p−2) after a sequence of 2p ionization and L23M23M23

Auger-Meitner decay of initial neutral argon. Results for different
photon energies are listed.

ωin (eV) A20(P) A20(D)

300 0.089 −0.097
1000 0.098 −0.107
3000 0.114 −0.124

we observe that the Ar2+ ion exhibits a slight alignment,
which is much smaller than that for MLi = 0 (see Table V).
The reason for this is that the transiently Ar+ ions produced
by 2p photoionization also possess only a weak alignment
(see Fig. 3 and Table I). Thus, they are close to the uniform
distribution with zero alignment (see Sec. IV D). For increas-
ing photon energies, this alignment after 2p photoionization
of neutral argon becomes a little stronger (see Fig. 3 and
Table I) and, with this, also the alignment of Ar2+ after the
sequence of photoionization and Auger-Meitner decay (see
Table VI).

V. CONCLUSION

In this paper, we have presented an implementation of im-
proved electronic-structure calculations in the XATOM toolkit
that provide individual zeroth-order LS eigenstates by em-
ploying first-order many-body perturbation theory. Based on
this implementation, we have calculated individual state-to-
state photoionization cross sections and transition rates. We
have investigated orbital alignment after either single pho-
toionization or one Auger-Meitner relaxation process, and
then the evolution of orbital alignment in a sequence of pho-
toionization and relaxation.

To set the stage, we have first presented a brief outline of
the underlying method to calculate first-order-corrected ener-
gies and zeroth-order LS eigenstates for arbitrary electronic
configurations. We have also shown an analytical expression
for the individual state-to-state cross section and transition
rates. Comparing Kα fluorescence energies and KLL Auger-
Meitner electron energies of Ne+ (1s−1) with experimental
data, we have confirmed that the extended XATOM toolkit
can describe transition energies significantly better than the
original version. On the other hand, we have observed almost
no improvement on the total photoionization cross sections for
neutral argon, which can be attributed to the use of zeroth-
order states.

Having the capability to calculate individual state-to-state
cross sections by using the extended XATOM toolkit, we have
investigated orbital alignment induced by linearly polarized
x rays for initial neutral argon and two exotic open-shell
configurations of argon. Some degrees of alignment has been
found for a wide range of x-ray photon energies. For initial
neutral argon, the ions produced by photoionization exhibit a
clear preference for conservation of the angular momentum
projection. For the initial open-shell ions, however, the distri-
bution of final states is affected not only by the conservation of
the angular momentum projection, but also by the final total
spin quantum number, the selection rules, and, most impor-
tantly, the overlap matrix element. Finally, we have showcased
how the orbital alignment is affected by Auger-Meitner decay
and how it evolves during one sequence of photoionization
and Auger-Meitner decay.

There are several promising perspectives for further de-
velopments. Above all, the individual state-to-state cross
sections and transition rates calculated with our implementa-
tion could be embedded in the rate-equation model employed
in the XATOM toolkit [31,35,54]. Solving rate equations would
enable investigations of orbital alignment dynamics of ions
produced by x-ray multiphoton ionization. In this way, it
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could be explored whether the orbital alignment observed
here for ions produced by single photoionization is enhanced
or reduced by successive photoionization events and accom-
panying decay processes. Another interesting perspective is
the improvement of the cross section by calculating and
utilizing not only first-order-corrected energies but also first-
order states and by taking interchannel coupling [87] into

account. Lastly, relativistic effects and resonance effects are
incorporated in the XATOM toolkit [53], but remain to be
addressed in combination with the present implementation.
Such methodological developments are not only important for
many practical applications of focused XFEL beams, but are
also useful for a quantitative characterization of XFEL beam
properties.
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