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Schrödinger cat states of a macroscopic charged particle co-trapped with an ion
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We investigate the feasibility of observing matter-wave interference of a micron-sized charged particle by
putting it into a quantum superposition of states with a distinguishable separation. In the proposed method, an
atomic ion is confined in a linear Paul trap along with the massive charged particle so that we can make use
of the extensive toolbox of experimental techniques developed to control quantum states of trapped ions and to
manipulate their motions with high-fidelity operations. This approach provides a stringent test of the predictions
of dynamical reduction models of delocalized quantum superpositions of a particle, reaching macroscopicities
of up to M = 17. This compares favorably with other proposed approaches and incentivizes the refinement of
experimental techniques.
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I. INTRODUCTION

Since the early days of quantum mechanics it has been
debated whether there is an intrinsic limit to the size of objects
for which superposition of quantum states can be observed.
Nowadays, about a century later, there are many powerful
experimental techniques that can probe the quantum-classical
crossover and investigate phenomenological models of wave-
function collapse that have been proposed, such as continuous
spontaneous localization (CSL) and gravity-induced collapse
[1]. This paper describes a theoretical study of an approach
that extends the experimental techniques that have been de-
veloped to perform high-fidelity operations with atomic ions
in electrodynamic (Paul) traps for work with charged particles
of much higher mass. We envision a hybrid system with the
two species of charged particles confined in close proximity
such that the atomic ions that interact with laser radiation
provide a “handle” for manipulating the quantum states of the
micron-sized objects (as illustrated in Fig. 1). The electrostatic
force between the two different types of charged particles
allows us to exploit sophisticated laser techniques that have
been developed in the context of single-ion clocks and quan-
tum information processing with linear arrays of trapped ions.
Systems of two atomic ions with different masses have been
studied in detail for key applications in the transfer of quantum
information between different species [2–4]. This allows the
exchange of quantum information between an atomic species
that has transitions amenable for excitation using laser ra-
diation and other species that are otherwise inaccessible. In
a recent breakthrough, coherent laser spectroscopy of highly
charged ions was carried out by confining a Ar+13 ion within a
cloud of laser-cooled lighter ions (9Be+). Quantum logic was
used to read out information about the highly charged ion via
the fluorescence from the lighter ions [5].

Numerous methods have been developed to observe
matter-wave interferometry. Interference of the wave packets
of rubidium atoms with a spatial splitting of 0.5 m between

the two arms of the interferometer has been demonstrated
[6]. Work to increase the mass of the particles undergoing
interference has been carried out with large molecules of
mass 2 × 10−23 kg going through gratings with period 266 nm
[7–10]. In recent years there have also been many experiments
directed towards preparing oscillators in their ground state.
This can be achieved by cryogenic techniques for solid-state
systems such as beams or cantilevers that have high oscilla-
tion frequencies; it is more difficult for free particles, but a
breakthrough has recently been achieved experimentally by
cooling a trapped nanoparticle in an optical cavity [11,12].
The macroscopicity of quantum superposition tests with en-
tangled nanomechanical oscillators, as well as interference
of Bose-Einstein condensates and Leggett-Garg tests with
atomic random walks, is analyzed in [13].

There are also proposals to use levitated nano- and mi-
crodiamonds that contain a single nitrogen vacancy (NV)
center, and so these particles have an electronic spin degree of
freedom [14] that facilitates the formation of superpositions.
These massive objects with spin have parallels with the system
investigated here (and similar ideas are discussed in [15]),
namely, the atomic ion has spin (which provides a handle on
different quantum states) and the strong repulsive electrostatic
interaction leads to collective oscillations of the two-particle
system.

In this design study we show how the laser techniques
that have been developed for atomic ions in Paul traps can
be applied to indirectly control the motional degrees of free-
dom of more massive charged objects, e.g., masses of around
109 u (1.7 × 10−18 kg). This approach confines both types of
charged particles by electrodynamic fields in ultrahigh vac-
uum and has several desirable features. Although trapping
such highly charged particles is not within current capabilities,
there is experimental progress in that direction.

Here we describe the principle and explore the physics
underlying the measurements on the assumption that suit-
able starting conditions can be obtained experimentally. We

2469-9926/2022/105(3)/033109(14) 033109-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4852-1919
https://orcid.org/0000-0001-8822-919X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.033109&domain=pdf&date_stamp=2022-03-24
https://doi.org/10.1103/PhysRevA.105.033109


S. LEONTICA AND C. J. FOOT PHYSICAL REVIEW A 105, 033109 (2022)

FIG. 1. Schematic representation of the experimental setup. Ion
and charged graphene flake are co-trapped in a longitudinal quadratic
potential and interact through electrostatic repulsion. Raman beams
are used to entangle the spin state of the ion to the common center-
of-mass mode.

present estimates to show the feasibility of reaching these con-
ditions with advances in experimental techniques for loading
micron-sized objects with a charge-to-mass ratio within a few
orders of magnitude of that of high-mass atomic ions, e.g.,
Yb+. The motivation for pursuing this goal is twofold: (i)
to probe quantum macroscopicity by putting objects into a
superposition of quantum states [16], and verifying this by
matter-wave interference, as well as (ii) providing technology
that can make sensitive quantum sensors.

II. VIBRATIONAL MODE ANALYSIS

Recent developments show that it is possible to drive Paul
traps with different frequencies in order to effectively confine
charged objects of largely different charge-to-mass ratios [17].
In our theoretical treatment we assume two pointlike particles
of masses m, M, and charges e and Q are confined to the
central axis of the Paul trap and the radial oscillation modes
do not become excited during the experiment. As a result we
will only retain the form of the potential created by the trap
along its axis of symmetry. Taking this into account, we can
express the potential energy of the crystal as

V = 1

2
mω2

1z2
1 + 1

2
Mω2

2z2
2 + eQ

4πε0|z2 − z1| , (1)

where ω1 and ω2 are the angular oscillation frequencies of the
particles in the trap, and z1 and z2 are the absolute positions in
the trap. Since the trapping along this axis is entirely electro-
static, we can express ω2 in terms of ω1 as

ω2
2 = Q

e
ω2

1. (2)

We assume z1 < z2, so the ion is always to the left of the
macroscopic particle. In this form the equilibrium positions
of the two particles with respect to the center of the trap are

given by

d3 = eQ

4πε0mω2
1

(
1 + e

Q

)
≈ eQ

4πε0mω2
1

, (3a)

z(0)
1 = − Qd

e + Q
, (3b)

z(0)
2 = ed

e + Q
, (3c)

where d is the distance between the particles at equilibrium,
and z(0)

1 , z(0)
2 are the positions with respect to the trap center

at equilibrium. We now transform from absolute positions
to displacement variables for the particles and describe the
motion of the two-ion crystal in terms of small oscillations
around equilibrium. This allows truncation of the series of the
Coulomb potential after the second term, thus transforming
the problem into a system of two coupled oscillators. We
discuss the validity region of this truncation in Appendix B.
This standard procedure results in new coordinates for the two
normal modes, in phase (zi) and out of phase (zo):

z1 = b1izi + b1ozo, (4a)

z2 = b2izi + b2ozo. (4b)

These are normalized such that

zi =
√

h̄

2mωi
(ai + a†

i ), (5a)

zo =
√

h̄

2mωo
(ao + a†

o). (5b)

The amplitudes are determined by two parameters: the
ratios of the masses μ and of the charge-to-mass ratios ξ ,

μ = M

m
, (6)

ξ = Q

M

m

q
. (7)

For neatness we also define the quantity

β = 1
2 (3 − ξ ). (8)

In terms of μ, ξ , and β the mode amplitudes are

b1i = 1√
1 + μβ2

, (9a)

b2i = β b1i, (9b)

b2o = 1√
μ

b1i, (9c)

b1o = −μβ b2o. (9d)

For our case of interest, μ � 1 and ξ � 1. Therefore β � 3/2
(in (8)) so that in the in-phase mode the two particles have
comparable amplitudes (9b).

The Hamiltonian can be expressed as the sum of two quan-
tized harmonic oscillators written in terms of creation and
annihilation operators defined the usual way:

Ĥ = h̄ωi
(
â†

i âi + 1
2

) + h̄ωo
(
â†

oâo + 1
2

)
, (10)
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where the angular frequencies of the decoupled oscillations
are expressed as ωi = √

ξω1 and ωo = √
3 ω1.

III. MACROSCOPICITY

Choosing to work with a mass of around M = 109 u rules
out a wider range of possible modifications of the Schrödinger
equation in the sense described in [7]. For the macroscopic
particle, we assume a graphene flake of radius R ≈ 0.8 μm.
This is favorable because it allows us to produce spatial super-
positions larger than the thickness of the flake. It is desirable
to work with an atomic ion that has a relatively low charge-to-
mass ratio, so in the rest of this paper we choose parameters
for 174Yb+; a relatively massive atomic ion in common use
for ion-trapping experiments [18]. This sets the value of
the mass quotient [defined in (6)] to μ = 5.7 × 106. If we
want a specific relationship between the center-of-mass and
breathing-mode frequencies then this also sets the value of the
necessary charge. A ratio of ωo/ωi = 200, or ξ = 7.5 × 10−5

in Eq. (7), implies the flake must be charged to a value of
around Q = 430e. The feasibility of obtaining this charge
is discussed in Appendix A. We set the trap frequency to
ω1/2π = 1 MHz. This gives a distance between the atomic
ion and the flake of d = 21 μm. For this choice of parameters
we can estimate the macroscopicity from the formula [7],

M = log10

[∣∣∣∣ 1

ln f

∣∣∣∣
(

M

me

)2(
�x

R

)2 t

1s

]
, (11)

where �x ≈ 1.2 nm is the proposed size of the superposition,
R is the radius of the flake, and f is the fraction of observed-to-
expected fringe visibility after a time t . An additional factor
of (�x/R)2 has been introduced (cf. [7]) to account for the
fact that two of the dimensions of the flake are much larger
than the size of the superposition. This reduces M by ∼6.5
as compared to an experiment performed with a pointlike
particle of the same mass.

If the decoherence rate can be made sufficiently low that
spin coherence is retained after the splitting time of t ∼ 1 ms
and interference fringes are observed ( f ∼ 0.1 − 1), then we
can obtain values in the range of M ≈ 17, three orders of
magnitude higher than in previous work [10]. The assump-
tions that lead to this estimate are elaborated in Sec. VII.

We can also aim to model the behavior of the system in
the presence of spontaneous-collapse-type modifications of
the Schrödinger equation. For this we assume the existence of
an extra dynamical term in the von Neumann equation used to
evolve the density matrix ρ:

∂ρ

∂t
= − i

h̄
[H, ρ] + Lρ, (12a)

Lρ = 1

τ

[∫
d2αg(α)D(α)ρD†(α) − ρ

]
, (12b)

where the operators D(α) are phase-space displacement oper-
ators, defined in (21a), g(α) is some phase-space distribution,
and τ is a free parameter quantifying the frequency of the
kicks. A theorem by Holevo [19] proves that this is the most
general modification which still preserves Galilean invariance.
We follow [7] and assume that the distribution g(α), which
sets the probability of displacements of a given magnitude, is

completely characterized by the standard deviations along the
x and p axes of the phase space. From the effect of scaling
Eq. (12b) from elementary particles to rigid composite sys-
tems, we can speculate further that space translations should
have a negligible effect, leaving us with a single parameter
σp that specifies the distribution of kicks. This can be equiva-
lently stated as σ = h̄/σp, a length scale for the separation in a
spatial superposition called the critical length. The strength of
the modification lies in the coherence time parameter τ , which
depends on the mass of the macroscopic object as τ ∝ m−2 in
the region where the size of the object is much smaller than
the critical length [7]. We define τe, the coherence time of an
electron, as a free parameter of the theory. Possible methods
of distinguishing spontaneous collapses from other sources
of noise that may be present during experimental operation
include measuring the dependence on mass, shape, and critical
length.

IV. COOLING

Several schemes have been proposed for cooling massive
particles to their motional ground state [20,21]. Electrical
cooling techniques based on coupling between the electrodes
of the ion trap and outside RLC circuits have been studied
theoretically [22]. Other researchers proved that it is possi-
ble to cool a glass sphere to its ground state using optical
tweezers [11]. These indicate that future technological ad-
vancement will enable the preliminary step of initializing a
massive particle in its ground state of motion for levitated
electromechanics experiments such as that proposed here. We
show that our method is resilient to small initial excitation of
the center-of-mass mode in a first-order approximation and
therefore only requires the massive particle to be prepared
in a low-lying thermal state rather than purely in the ground
state. Since the out-of-phase mode is dominated by the atomic
ion as seen in (9d), we expect that cooling this mode to the
ground state is equivalent to cooling the isolated ion and can
be performed in the same way. Also, the internal degrees of
freedom of the macroscopic particle need not be cooled, as
the use of ancillary ions avoids having to interact directly with
the massive object. For the two-dimensional (2D) graphene
flakes considered in this work it is also necessary to cool the
rotational degrees of freedom and obtain stable orientations.
In principle, this would also allow the study of regimes of
quantum-mechanical behavior where the particle undergoing
interferometry is not cold [15,23]. The ability to hold the flake
in different orientations may also enable the anisotropy of col-
lapses for nonspherical objects to be used as a discriminator
between CSL effects and heating from other sources, although
we do not investigate this possibility in this paper.

V. THEORY

A. Spin-dependent force

In order to create the desired spatial separation we consider
two internal states of the ion, which we denote |↑〉 and |↓〉.
To create Schrödinger cat states with the macroscopic particle
we apply a state-dependent force resonant to the transition be-
tween the different energy states of the center-of-mass mode.
By introducing a phase difference of π between the forces
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driving the different spin states of the ion we can effectively
create spatial superpositions of the common center-of-mass
mode. This in turn delocalizes the massive flake without inter-
acting with its internal degrees of freedom. In this paper, we
consider the effect of laser interactions driving Raman tran-
sitions to realize the initial splitting, but several other options
exist. We assume a system of lasers which drive transitions be-
tween our spin states and another auxiliary state, as described
in [24]; the only part of the Hamiltonian that survives in the
interaction picture takes the form

ĤI =
∑

m=↑,↓
|m〉 〈m| h̄
R

2
ei(δkz1−δ t+φm ) + H.a., (13)

where 
R is the Raman frequency, δk is the wave number
of the Raman pair, and δ is the (angular frequency) detuning
from resonance. To shorten notation we will retain only one of
the terms and drop the subscript m, keeping in mind through-
out that the expression is true for both spin states. We now
focus our attention on the spatial variation of the exponential
in (13) and introduce an expression for the position of the ion,

eiδkz1 = eiηi (â
†
i +âi )eiηo(â†

o+âo)

= [1 + iηi(â
†
i + âi ) + · · · ]

[
1 + iηo(â†

o + âo)

− 1
2η2

o(â†
o + âo)2 + · · · ], (14)

where ηi and ηo are the Lamb-Dicke parameters of the two
modes [24]. Assessing the importance of terms that appear in
the expansion is not an easy task, but we may ignore some
terms based on two criteria: the Rabi frequency of the term
is small compared to the detuning from resonance and the
timescale of the evolution is long compared to the duration
of the experiment. We expect the duration of the experiment
to be on the scale of �t ≈ 1


Rηi
≈ 1 ms, roughly equal to the

inverse strength of the in-phase mode term in the expansion.
Only terms that create variations on this timescale need to be
considered, namely,

eiδkz1 = 1 + iηi(â
†
i + âi ) + iηo(â†

o + âo)

− 1
2η2

o(â†
o + âo)2 + · · · . (15)

We analyze these three terms separately to understand
their effect on the system. When the first term is driven on
resonance we get a linearly increasing displacement of the
in-phase mode (in opposite directions for the two spins) which
we will refer to as the spin-dependent force (SDF). The second
and third terms excite the parasitic out-of-phase mode, and it
is desirable to drive this mode around closed loops in phase
space during the experimental sequence to ensure maximum
visibility of the interferometric fringes, as we shall show. This
would be straightforward in the absence of the third term
(corresponding to a second-order effect), which causes a slow
but constant drift of the mode away from the origin of the
phase space. We show that it is possible to treat all terms
analytically and so design efficient simulations. The small
Lamb-Dicke parameter of the in-phase mode (i.e., 2 × 10−4)
allows us to neglect off-resonant coupling between the two
modes, effectively splitting the problem into two separate

quantum systems which evolve according to the interaction
Hamiltonians:

Ĥi = h̄
Rηi sin(δ t − φ)(aie
iωit + a†

i e−iωit ), (16a)

Ĥo = h̄
Rηo sin(δ t − φ)(aoeiωot + a†
oe−iωot )

− 1
2 h̄
Rη2

o cos(δ t − φ)(aoeiωot + a†
oe−iωot )2. (16b)

B. Parametric amplification

By applying a rf potential to the electrode caps of the
trap we can modulate the strength of the harmonic oscillator
and resonantly excite oscillation of the in-phase mode. This
induces an exponential amplification of the amplitude if the
frequency and phase are sufficiently steady over time, which
we call parametric amplification (PA). Additionally, this ap-
proach helps to speed up the execution time and therefore
reduce the accumulated decoherence associated with laser
scattering. As the magnitude of all terms added to the Hamil-
tonian by this interaction is the same for all modes, we will
only consider the one that is resonant with the in-phase mode.
This can be cast in the form

Ĥi = 1
2 h̄
PA sin(2ωit − φPA)(aie

iωit + a†
i e−iωit )2, (17)

with 
PA an interaction strength and φPA the phase of the
modulation. The use of such terms has been considered in
the context of quantum computing with trapped ions to speed
up entangling gates [25,26]; these references also provide
a thorough analysis of the limiting factors of the approach
and discuss various operation sequences which optimize the
outcome fidelity.

There is only a single off-resonant term which is non-
negligible which arises from the oscillating force acting on
the out-of-phase mode. This additional Hamiltonian is

H (1)
o = h̄
Rη(1)

o sin(2ωit − φPA)

× (aoeiωot + a†
oe−iωot ), (18)

which we express in the same form as the force from the SDF
for convenience. The effective Lamb-Dicke parameter is given
by

η(1)
o = 
PA


R
b1oz(0)

1

√
2mω2

i

h̄ωo
. (19)

If the driving intensity 
PA is large this term dominates
the one originating from the SDF. There is a simple physical
intuition behind this term and its dependence on the relevant
parameters: when the strength of the longitudinal voltage is
varied, the electric field produced by the endcap electrodes
varies significantly at the position of the atomic ion, since
its equilibrium position is displaced from the trap center.
This gives a contribution to the potential energy propor-
tional to the displacement from equilibrium, or equivalently,
a homogeneous oscillating force. More information about the
approximations employed can be found in Appendix B.
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C. Forced harmonic oscillator with modulated strength

In order to learn more about the behavior of the system, let
us move our viewpoint to a more general form of Hamiltonian:

Ĥ = h̄ f (t )(aeiωt + a†e−iωt )

+ 1
2 h̄g(t )(aeiωt + a†e−iωt )2. (20)

This is a generalization of the particular types of time-
dependent Hamiltonians encountered in both the motion of the
in-phase mode as given by Eqs. (16a) and (17), as well as the
out-of-phase mode driven by Eq. (16b). A formal solution for
the unitary evolution produced by this Hamiltonian is possible
using a time-ordered exponential, but we will concentrate on
a more practical class of analytical solutions expressible in
terms of squeezed coherent states. The ability to solve the
evolution analytically provides a powerful tool for the efficient
description and simulation of the splitting protocol.

We introduce the displacement and squeeze operators
which lie at the core of the analysis:

D(α) = exp(αâ† − α∗â), (21a)

S(ζ ) = exp
[

1
2 (ζ ∗â2 − ζ â†2)

]
. (21b)

In terms of these, the squeezed coherent states are

|α, ζ 〉 = D(α)S(ζ ) |0〉 . (22)

The question we want to answer is how the parameters α, ζ

evolve for this state for a Hamiltonian of the form (20).
Since these states form an overcomplete basis, we can use
P representations [27] to compute time evolution of arbitrary
states and compute expectation values by integrals of Gaus-
sian functions. The composition relations of the displacement
and squeeze operators that are used in the calculations are

D̂(α)D̂(β ) = e(αβ∗−α∗β )/2D̂(α + β ), (23a)

S(ζ1)S(ζ2) = S(ζ3) exp

[
σ3

2
ln

1 + τ1τ
∗
2

1 + τ ∗
1 τ2

]
,

τ3 := τ1 + τ2

1 + τ ∗
1 τ2

, σ3 := a†a + 1

2
, (23b)

where τi is related to ζi for i = 1, 2, 3 by the relations

τi = eiθi tanh ri, (24a)

ζi = rie
iθi . (24b)

We also use of the commutation relation between squeezing
and displacement operators given by

D̂(α)Ŝ(ζ ) = Ŝ(ζ )D̂(γ ),

where α = γ cosh r − γ ∗eiθ sinh r. (25)

We separate the full Hamiltonian into three parts whose
action is more easily tractable in the algebraic manipulations:

H0 = h̄ f (t )(aeiωt + a†e−iωt ), (26a)

H1 = 1
2 h̄g(t )(a2e2iωt + a† 2e−2iωt ), (26b)

H2 = h̄g(t )
(
a†a + 1

2

) = g(t )σ3. (26c)

We begin by writing the infinitesimal time propagator of the
system:

U (t + dt, t ) = I − i

h̄
Hdt + O(dt2)

= e− i
h̄ H0dt e− i

h̄ H1dt e− i
h̄ H2dt + O(dt2). (27)

Since the three exponentials are infinitesimally close to the
identity we can study their effects separately on a squeezed
coherent state and conjoin them at the end. The first (26a) is
simply an infinitesimal displacement operator of amplitude:

dα1 = −i f (t )eiωt dt . (28)

This can be merged with the existing displacement α, also
giving rise to the well-known geometric phase:

d�1 = − f (t )

2
(α∗eiωt + αe−iωt )dt

= − i

2
(α∗dα1 − αdα∗

1 ). (29)

The exponential of H1 in (26b) is a squeeze operator of
magnitude

δz1 = ig(t )ei2ωt dt . (30)

Using the commutation relation (25) to interchange posi-
tion with the displacement operator gives rise to an additional
infinitesimal displacement given by

dα2 = −α∗δz1. (31)

This is proportional to the magnitude of α and is the primary
term driving exponential amplification. It is worth noting that
this appears directly inside the displacement operator, so it
does not give rise to a phase similar to d�1 in (29). The
infinitesimal squeeze can now be combined with the squeez-
ing operator using Eq. (23b). The exponential acts directly on
vacuum, so we get σ3 = 1/2 and it becomes a simple phase:

d�2 = 1

4i
(δz1τ

∗ − δz∗
1τ ). (32)

Here τ is related to ζ by the definition in (24). The change in
τ can be expressed as

dτ1 = δz1 − τ 2δz∗
1, (33)

and it fully determines the evolution of the squeezing param-
eter ζ . No analytic closed form exists for the evolution of ζ , so
we choose to work with τ in the rest of this calculation. This
avoids having to write separate equations for the squeezing
magnitude r and direction θ .

The last term H2 in (26c) can be dealt with by recognizing
that the constant term inside the brackets simply leads to the
accumulation of a phase

d�3 = 1
2 g(t )dt, (34)

leaving us to compute the following expression:

[1 + ig(t )dt a†a]D(α)S(ζ ) |0〉 . (35)

The first step is to pass the number operator to the right of the
displacement using the commutation relations:

[1+ ig(t )dta†a]D(α) = D(α)[1+ ig(t )dt (a† + α∗)(a + α)].
(36)

033109-5



S. LEONTICA AND C. J. FOOT PHYSICAL REVIEW A 105, 033109 (2022)

This factor can be now separated into a phase, a displace-
ment, and another factor of the same form as the one on the
left-hand side. Merging the infinitesimal displacement with
the displacement operator gives rise to yet another phase.
These are given by the following expressions:

d�4 = g(t )|α|2dt, (37a)

dα3 = iαg(t )dt, (37b)

d�5 = − i

2
(αdα∗

3 − α∗dα3). (37c)

Passing the number operator left through the squeeze operator
gives

[1 + ig(t )a†a]S(ζ )

= S(ζ )[1+ig(t )dt (â† cosh r − e−iθ â sinh r)

× (â cosh r − eiθ â† sinh r)]. (38)

After acting on the vacuum this turns into an infinitesimal
squeeze and a phase,

δz2 = ig(t )dt eiθ sinh 2r, (39a)

d�6 = g(t )dt sinh2 r. (39b)

In the end we combine the two squeezes to get another
modification of the squeezing parameter and an additional
phase:

dτ2 = 2ig(t )τdt, (40a)

d�7 = cosh2 r

4i
(τdτ ∗

2 − τ ∗dτ2). (40b)

Gathering all the terms we get the promised differential equa-
tions for α and τ :

dα

dt
= −i f (t )eiωt − iα∗g(t )e2iωt + iαg(t ), (41a)

dτ

dt
= ig(t )(eiωt + τe−iωt )2, (41b)

where we note that the equation for τ provides an implicit
equation for the squeezing ζ through the definition (24). We
can also express the unitary propagator in a simpler form

U (t ) = D(α0(t ))S(ζ0(t ))e−iχ (t )σ3 , (42)

up to a phase. The time functions α0(t ) and ζ0(t ) are the
solutions of Eqs. (41) starting from 0. The exponential term
arises from Eq. (23b) merging the squeeze operators and has

χ (t ) =
∫

g(t )�(e−2iωtτ0(t ))dt . (43)

It is easy to see that the displacement α(t ) behaves as
expected. Consider now the particular example of this type
of dynamics given by the SDF + PA driving of the center-of-
mass mode. The first term is a result of the SDF and leads to
linear increase of amplitude when the force is in resonance
with the oscillator. The remaining two terms describe the
effect of amplification and lead to exponential increase of
amplitude when the rf modulation of the trapping potential is
close to twice the frequency of the harmonic oscillator ωi, as
already included in Eq. (17). We see that in order to achieve

the desired spatial superposition it is sufficient that the SDF
function f (t ) takes opposite signs for the two spins. This
follows because if α(t ) is a solution for the pair of driving
functions f (t ) and g(t ), then −α(t ) will be a solution of − f (t )
and g(t ). The two solutions are illustrated in Fig. 2.

VI. METHOD

We describe here the interference protocol for creating a
spatial superposition of the macroscopic particle using the
co-trapped atomic ion. We suppose that the ion is initially
prepared in the spin state |↑〉, and the motional degrees of
freedom of the two charged particles are described by thermal
density matrices at temperatures Ti and To for the in-phase and
out-of-phase modes, respectively. This can be expressed as

ρ = |↑〉 〈↑| ⊗ ρ
(i)
th ⊗ ρ

(o)
th

= |↑〉 〈↑| ⊗ ρth. (44)

We start by applying a carrier π/2 pulse to put the spin
degree of freedom in a superposition and get a total density
matrix,

ρ = 1

2

[
ρth ρth

ρth ρth

]
. (45)

Let us denote by U↑(t ) and U↓(t ) the evolution operators
of the type shown in Eq. (42), acting on the two spins. These
are the result of acting simultaneously with the SDF (16a) and
the PA (17), choosing opposite signs of the SDF for the two
spins. After applying the interactions driven by f and g for
some time the density matrix becomes

ρ = 1

2

[
U↑ρthU

†
↑ U↑ρthU

†
↓

U↓ρthU
†
↑ U↓ρthU

†
↓

]

= 1

2

[
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

]
. (46)

The ideal control sequence will lead to the final state being
close to a spatial superposition of the form

|ψ〉 = |↑〉 |α f 〉i |0〉o + |↓〉 |−α f 〉i |0〉o . (47)

We call the time it takes to split the state into this super-
position ts. In order to achieve these states we divide ts into
two equal parts. The SDF is applied consistently throughout
both parts, but the phase of the trap potential modulation is
switched at the middle point. The effect of this is to squeeze
and unsqueeze the mode in order to obtain the desired ampli-
fied coherent state at the end, while the squeezing variable τ

performs a full lap and returns to 0. The protocol is illustrated
in Fig. 2. In order to quantify the benefits of squeezing we
introduce the amplification parameter G = er , where r is re-
lated to the maximum value of τ achieved at ts/2 by Eq. (23b).
We can show that the displacement obtained in the presence
of squeezing is larger by a factor of G−1

ln G compared to the
value obtained in the same time interval by SDF alone in the
validity region of the rotating-wave approximation (RWA).
For simplicity, we only concern ourselves with the sequence
described above. Through careful pulse optimization it may
be possible to further speed up the splitting and extend the
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FIG. 2. Wigner functions illustrating the splitting and amplification procedure of the two spins. Initially the spin wave functions are
overlapped, as seen in (a). Maximum squeezing is achieved after half the operation time ts/2 and is represented in (b). In the second half the
state is unsqueezed, resulting in amplified displacements. The final superposition of coherent states is shown in (c). The recombination process
follows the same steps in reversed order.

result outside the validity region of the RWA approximation.
We work with the simple expression for the displacement:

α f = G − 1

ln G
αSDF, (48a)

αSDF = 1

2

Rηits, (48b)

where αSDF is the splitting obtained without amplification.
Proposed theoretical models suggest that this type of su-

perposition state will decohere rapidly once the separation
distance 2α f is above a certain threshold. Therefore once we
reach the required separation in the state we can stop applying
any exterior interactions and let the state evolve according
to the harmonic oscillator Hamiltonian alone for a time tint,
equal to an integer multiple of the in-phase mode period. In
order to verify if coherence is retained, we invert the splitting
operation to recombine the spins and apply a μ-carrier gate
described by the operator

U = 1√
2

[
1 eiμ

e−iμ −1

]
. (49)

By measurement of the spin orientation we should be able
to observe fringes of intensity when varying the phase μ if
coherence is retained. The visibility V of these fringes is
related to the trace of the off-diagonal blocks of the density
matrix at the end of the evolution by

V = |trρ↑↓|, (50)

where ρ↑↓ is defined as in (46). For a better visibility we re-
quire the spatial overlap of the states associated with evolution
through U↑ and U↓ to be as high as possible. We observe
that if the in-phase and out-of-phase modes are initially not
entangled they remain unentangled throughout so that the
total visibility of the fringes can be written as a product of
the independent visibilities of the in-phase and out-of-phase
modes as

V = |trρ↑↓(i)||trρ↑↓(o)| = ViVo. (51)

If the unitaries of the type given by Eq. (42) corresponding
to the two different spins ↑ and ↓ are different, then their
action on ρth is nontrace preserving. We can find the reduction

in the visibility from an expectation value of the form

V = |tr{D(α)S(ζ )ei�ĤρT }|, (52)

which can be analytically reduced to calculating an overlap of
Gaussian functions. This is a simple computational task, and
we provide code for the calculation of such integrals.

Here the values of parameters α, ζ , and � are determined
through manipulations of the squeezing and displacement
operators. This expression can be evaluated very efficiently
using numerical methods. For the case ζ ,� = 0 there is a
simple analytic form

V = e− |α|
2 coth β h̄ω

2 , (53)

The visibility is plotted in Fig. 3 for various thermal occu-
pancy numbers. We can use this expression to compute the
visibility of ρ↑↓ by writing it as

V = |tr{D(α↑ − α↓)ρT }|. (54)

This result proves that the visibility is first-order insensitive
to both small calibration errors on the scale of one harmonic
oscillator length and imperfect cooling to the ground state.

FIG. 3. Visibility of fringes as a function of displacement be-
tween ↑ and ↓ spin states. Different colors represent different thermal
occupancies of the mode prior to the experiment, from 0.05 (dark
blue) to 3 (light blue). Experimental errors may lead to imperfect
overlap when the states are recombined and a decrease in visibility.
However, the FWHM varies only weakly with temperature, making
the experiment robust against faults in cooling the particle to its
ground state. Natural quantum harmonic oscillator units are used for
the displacement.
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FIG. 4. (a) An example phase-space evolution of the center-of-mass mode for the up (red/light gray) and down (blue/dark gray) spin parts
of the superposition in the interaction picture of the harmonic oscillator, in the presence of spontaneous collapses. Natural quantum harmonic
oscillator units are used. The arrows distinguish between the splitting and recombination (moving out and back from position zero). The
amplification of small collapses (vertical jumps) causes the momentum to diffuse (in a random direction), giving a significant accumulation of
momentum (upwards in this example); see text for further details of the squeezing, evolution, and unsqueezing protocol. Real-space separation
of the superposition of the macroscopic particle is around �x = 1.2 nm. (b) Example evolution of the phase difference between the two spins.
The variance is sufficiently low to produce fringes when executing runs with tint = 0.

The expression can be generalized easily to account for vari-
ous probabilistic error models (imperfect control of frequency,
time of evolution, phase), for which there exists a mapping
between the parameter value and the final spin displacement
α↑ − α↓. The case of continuous entropy production is more
complex but can be treated phenomenologically as described
in Sec. VIII.

We now perform the experiment for different values of
tint and measure the visibility of the fringes each time. This
follows an exponential decay law of the type V ∝ exp(−�tint ).
By fitting the data we can obtain an estimate of the dephasing
rate � and implicitly set an upper bound on the collapse
rate. The connection between the two is explored further in
Sec. VII.

VII. COMPUTER SIMULATION

We can efficiently perform numerical simulations of
Eqs. (41) in the RWA regime for the two spins to obtain
their trajectories. We also present a simple method to simulate
the effect of spontaneous collapses modeled by Eq. (12b)
directly into the present framework. This has the advantage of
retaining independence on the initial conditions, as we are still
simulating the evolution of the propagator (42) as opposed
to a particular state. The other benefit is the low number
of parameters which fully characterize the evolution and do
not require explicit numerical manipulations of infinitely di-
mensional matrices. This is done by performing Monte Carlo
simulations of the stochastic equivalent for the von Neumann
equation. A detailed description of this procedure is included
in Appendix C.

Sample trajectories obtained using this method are illus-
trated in Fig. 4. In order to obtain these we aimed for a
maximum splitting time of ts = 1/2�, such that the split-
ting procedure alone does not produce a large decreases
in visibility. We used an amplification parameter G = 10,
which appears plausible in the current context, as discussed in

Appendix B. In practice we would leave the system to evolve
freely for a number of full periods, but this was not in-
cluded in the simulation. The rotation in phase space due to
the natural Hamiltonian of the oscillator does not appear as
we are working in the interaction picture. The amplitude of
oscillation of the flake is obtained by converting the displace-
ment of the center-of-mass mode to a real distance using the
normalizations (5a) and (4b) and is around 0.6 nm in our
simulation. The displacement between the two sides of the
superposition which oscillate out of phase is then �x = 1.2
nm at amplitude. To quantify the behavior of the spontaneous
collapses we chose the Ghirardi-Rimini-Weber (GRW) [28]
values for the coherence time τe = 1016 s and a critical length
of σ = 10−7 m. Since the collapses defined by (12b) affect
both sides of the superposition equally (they do not have any
spin or position dependence), the spatial parts of the super-
position are perfectly recombined at the end of the evolution,
given that no other control errors occur. The central spikes
are a result of the squeezing procedure, which amplifies and
deamplifies the small vertical displacements which appear
as a result of the collapses. The squeezing parameter is not
affected by the kicks, so it also returns to 0 at the end of the
evolution.

The loss of visibility in the final interference fringes arises
from the shot-to-shot phase difference between the two spins,
as seen in the sample phase trajectory 4(b). For this choice of
parameters the standard deviation of the final phase difference
is close to 1 radian, which should produce a measurable de-
crease in contrast. We can directly measure the rate at which
visibility is lost at maximum amplitude by scanning over a
range of values for the time of intermediary free flight. We
can approximate this by assuming the final phase follows
a Gaussian distribution with a mean of zero and standard
deviation given by

σφ = α f
zi

σ

√
m

M

√
γ t = σ0

√
γ t, (55)
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FIG. 5. Parameter region excluded by bounding the dephasing
rate of spontaneous collapses to � = 75 s−1. The macroscopicity
obtained is M = 16.4. The values proposed by GRW [28] and Adler
[34] are indicated.

where t is approximately the time of free flight. This follows
a diffusive model where random phase kicks of size σ0 occur
at the rate γ given by the collapse theory. This would predict
a visibility of

V = exp
(−σ 2

0 γ t
)
. (56)

An exponential decay of V with rate � = σ 2
0 γ . This quan-

tity can be measured experimentally. We follow [7] and
parametrize a collapse theory by τe and σ , where τe is the
collapse time of a particle with the mass of an electron and σ

is the critical length. In general the observed decay rate of
the coherences is not solely due to collapses, as discussed
in Sec. VIII, but it allows us to establish an upper bound
on the parameter τe for various choices of the critical length
σ . For this relation to hold we require that τR = 1/� as a
result of both collapses, and noise-related dephasing must be
larger than the splitting time. Assuming that we drive the
center-of-mass mode at the largest amplitude allowed by this
time constraint and observe fringes which decay in visibility
at a rate �, we can plot the parameter exclusion region of this
experiment, as shown in Fig. 5.

VIII. ERROR ANALYSIS

A. Decoherence

We are especially interested in sources of decoherence
which scale with electric charge or mass. In this category
we have stray magnetic fields, current induced in electrodes
by Shockley-Ramo effect, Johnson-Nyquist noise in resistors
coupled to the electrodes, collision with air molecules, scatter-
ing, absorption, and emission of thermal photons. Estimation
of the strength of these effects is important in deciding if the
particle can maintain its coherence throughout the experiment
in the absence of spontaneous collapses. In the simplest form
we can incorporate these into the evolution through an ex-
ponential decay factor exp(−�T ), where T ≈ 2ts + tint is the
total time of the evolution, and � is the decay rate of the off-
diagonal terms in position representation. The contribution
to this from known effects must be estimated and subtracted

from the experimentally observed decay rate of visibility to
obtain an upper bound on the collapse rate. A detailed analysis
of the heating sources that would affect such a system are
described in [29]. In order to estimate the decay rate with
sufficient precision, we require that the splitting time alone
does not completely destroy the coherence. The duration of
the splitting in our simulations is around ts ≈ 1 ms, so it is
sufficient to reduce the decoherence rate to the range � =
0.1 − 1 ms−1. We expect this to be achievable in specialized
traps by cooling the electrodes and increasing the dimensions
of the trap such as to reduce the effect of fluctuating patch
potentials [30]. We estimate the environmental conditions re-
quired by this restriction in Appendix D. Since the magnitude
of these effects can be controlled to some extent, we can
perform the experiment under multiple conditions and use
Richardson extrapolation [31] to infer the visibility in the
no-decoherence limit. This method has recently been explored
in the context of error mitigation [32,33].

We neglect errors in the control parameters, since fringe
visibility is only affected by differential displacements accu-
mulated on the two paths, and numerical simulation shows
that some calibration errors cancel out when we consider
the displacement of the spins rather than their individual
trajectories.

B. Out-of-phase mode

The trajectory of this mode is governed by off-resonant
side effects of the SDF + PA driving of the in-phase mode.
Since the Lamb-Dicke parameters for both of these processes
are small and the coupling strength for the out-of-phase mode
is of order ηiηo, we claim that they do not become entangled
and can be evolved separately. We note that the oscillating
forces of type (16b) and (18) generate periodic trajectories,
with frequency given by the difference between the driving
frequency and the natural frequency of the mode. To max-
imize our fringe visibility we would like these to return to
equilibrium at the end of the experiment, or at least that the
spatial overlap of the two spin states is large. To achieve
this we choose the evolution times to be integer multiples
of the in-phase mode period. This is not a very restrictive
constraint, as the period is small enough compared to the total
evolution time to produce sufficient data but large enough to
be accurately measured in practice. We carried out numerical
simulations of the out-of-phase mode evolution equations in
the form (41) to show that this is indeed achieved to a large
extent.

IX. DISCUSSION

This study presents the theoretical foundations for a
interferometric platform suitable for the study of spatial super-
positions of an object that is much more massive than atoms
or ions. We outline here the main advantages of the method as
well as possible further directions of study.

The core idea behind the design is to avoid having to
interact with the macroscopic particle directly. This approach
is first-order insensitive to the internal degrees of freedom of
the object as the oscillation amplitude of around 0.6 nm is
very small compared to other distances in the trap. As a result,
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we only need to engage the macroscopic observables such as
its total charge and center-of-mass position and momenta. In
addition, it also enables us to optimize over a broad range
of geometries, masses, and chemical compositions. The large
distance between the two trapped objects leads to very low
coupling of the internal degrees of freedom and the center-of-
mass mode (i.e., the electric field of the ion is nearly uniform
over the flake, so it does not resolve its structure). This
opens up the possibility of testing, not only for macroscopic
objects in their vibrational ground state but also warmer parti-
cles [23], bringing us a step closer to the realization of true
“Schröödinger’s cat” type of superpositions. We also show
that perfect cooling of the center-of-mass mode to the ground
state is not required under the premise that we can perfectly
recombine the spins at the end. Laser phase fluctuations in the
experiment may affect this in practice, but the results shown
in Fig. 3 show that the additional loss of visibility arising
from finite temperature is marginal. It is assumed throughout
the analysis that the rotational degrees of freedom are cooled
to their ground state, but we expect to have good tolerance
for thermal occupation in practice, for the same reason as
above.

We note that there is no fundamental limit to the parameter
range that can be tested with this method. The limitations
arise strictly from environmental noise and control errors, and
therefore it can be extended to larger objects as technology
improves. The existing toolbox of ion-trapping techniques
can be used straightaway with only minor modifications.
This is because we only directly interact with the atomic
ion, whose behavior has been widely studied. We also take
advantage of the long quantum state coherence times that
have been demonstrated for trapped ions. We therefore ex-
pect the technique to exclude a wide range of parameter
values which appear in attempts to modify the Schrödinger
equation.

The design is very versatile, and prototypes would be re-
quired to decide on the best trap geometry, atomic ion species,
and macroscopic particles. Further study is required in order
to assess more carefully the impact of different error sources
such as blackbody radiation, induced currents, and mechan-
ical noise on the trap electrodes. Experimental studies are
also necessary to establish the difficulty of trapping particles
of different charge-to-mass ratios and cooling them to their
motional ground state.

It is also possible to consider different strategies to pro-
duce an SDF that does not rely on Raman beams, such as
using magnetic field gradients in surface-electrode traps [35],
or microwave radiation [36]. This can be accommodated by
the current formalism, so long as the force is of the type
described by Eq. (20). A proposed protocol for implementing
double-slit interference of superconducting microspheres by
manipulating their quantum states with magnetic fields is di-
rected towards the creation of even larger scale superpositions
[37] than this paper.
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APPENDIX A: EXPERIMENTAL CONSIDERATIONS FOR
CHARGED PARTICLES

The maximum charge that can be placed on a sphere of
radius R in an electric field of magnitude E can be estimated
from the Pauthenier limit (as discussed in [22]),

Q = 4πε0R2 pE , (A1)

where the numerical factor has the value p = 3 for conductors.
This equation is derived from straightforward electrostatics
by considering the superposition of the Coulomb electric field
near the surface of a uniformly charged shell, Q/4πε0R2, and
the electric field arising from the induced dipole moment. The
charge achieved experimentally is generally much less than
this theoretical limit, but the prediction of proportionality to
R2 is a useful guide. The charging of levitated particles is
discussed in [22], and the maximum amount of positive charge
is much greater than for negative charge. Particles of diam-
eter 5 μm have been positively charged to Q/e = 7 × 106

(where e > 0 is the magnitude of the electron charge) [38].
This experimental result is for spherical melamine particles,
but comparable results should be obtained for disks, since
the polarizability and the electric field at the surface depend
mainly on dimensions rather than shape. These statements
could be made more precise by calculations for a disk as
the limiting case of a conducting spheroid as its thickness
decreases (at constant radius), but, as indicated above, the
electrostatic calculations only give an approximate guide. The
following estimate shows the plausibility of obtaining the
charge-to-mass ratio required for the scheme proposed in this
paper, but further experimental investigation is necessary.

We assume an approximately disk-shaped flake of
graphene of dimensions R � 0.8 μm; this may be a hexagonal
platelet that is a natural form for the crystal structure of this
material with a single atomic layer. Graphene has an areal
density of 7.6 × 10−7 kg m−2 [39]; hence the flake has a mass
of m = 1.7 × 10−18 kg, which is 7.1 × 107 carbon atoms.
Hence for the micron-sized flake to have a charge-to-mass
ratio equal to 7.5 × 10−5, that of 174Yb+ requires a positive
charge of 6 × 10−6 e per carbon atom corresponding to
Q/e = 430 to be placed on the flake. There are no obvious
physical reasons why this cannot be achieved. The strong
covalent bonding (σ orbitals) of the hexagonal lattice of
carbon atoms will not be significantly affected by removal of
some delocalized electrons (from π orbitals). The exceptional
strength of graphene should also prevent atoms from breaking
away from the edges of the flake where the electric field
will be highest (but less than the fields within atoms). A
graphene flake has been loaded into a Paul trap and used for
experimental measurements [40,41].

APPENDIX B: APPROXIMATIONS

The results in the paper rely on various approximation
regimes. Understanding these limitations is crucial in decid-
ing whether the approach is experimentally viable when the
parameters are optimized. It is also important in the attempt
to discover the main difficulties and improve the protocol
accordingly. This section acts as a description of the approxi-
mation regimes employed in the main text.

033109-10



SCHRÖDINGER CAT STATES OF A MACROSCOPIC … PHYSICAL REVIEW A 105, 033109 (2022)

1. Raman transition condition

From the theory of Raman interaction [24] we have the
conditions

ωi � ωs � �, g � �, (B1)

where ωi is the frequency of the in-phase mode, ωs is the fre-
quency split between the two atomic levels we use to encode
spin, � is the frequency offset on the laser driving transitions
to the auxiliary state, and g is proportional to the laser electric
field. If these approximations are satisfied, we can obtain the
effective SDF Hamiltonian given in Eq. (13). The effective
Rabi frequency is given by


R = g2

2�
. (B2)

Hence the strength of the SDF is limited by the achievable
laser power. The (angular) frequency detuning from resonance
must be small on the scale of atomic transitions, and we expect
� ≈ 2π × 1011 s−1 to be a realistic order of magnitude. The
value of g must be a few orders of magnitude smaller, e.g.,
for g ≈ 2π × 109 s−1 we can achieve Rabi frequencies in the
range 2π × 106 − 107 s−1. Such strong interactions are nec-
essary because of the extremely small Lamb-Dicke parameter
of the in-phase mode that we are trying to excite.

2. Linearization of Coulomb potential

We analyze here the assumption that we can safely regard
the electrostatic interaction between the two particles as being
quadratic for the relevant amplitudes of oscillation. For this
we need to take into account that the high degree of squeezing
we use to excite the macroscopic particle leads to nonzero
values of the wave function at large distances from the equi-
librium position. This effect can be estimated by the standard
deviation of the position in a squeezed state, which has the
well-known expression

σx =
√

h̄

2mωi
er . (B3)

We denote the amplification factor in our protocol by G =
er . We obtain an upper bound on the squeezing that can be
used before the nonlinearity in the electrostatic interaction
becomes apparent from

|z1 − z2| ≈ (b1i − b2i )σx � d, (B4)

where d is the distance between the particles at equilibrium.
The upper bound on G is then

G �
√

2mωi

h̄

d

b1i − b2i
≈ 106. (B5)

We can also derive an expression for the allowed displace-
ment size of the out-of-phase mode. If this is quantized by the
variable |αo|, we can estimate the physical displacement of the
atomic ion by

z1 ≈ αob1o

√
h̄

2mωo
, (B6)

and the condition is that this must also be much smaller than
d . The resulting constraint on αo is expressed as

αo �
√

2mωo

h̄

d

b1o
≈ 104. (B7)

3. Approximate PA Hamiltonian

In our treatment of the parametric amplification protocol
we assumed that the Hamiltonian in (17) is the only effect
of applying an ac voltage to the endcap electrodes. This is
a good approximation, as the other terms which appear in
the expansion of the interaction are of the same magnitude,
but far off-resonant. Other effects include slight shifts in the
equilibrium positions of the two particles in the trap, which
also has an impact on the natural frequencies of the modes.
It may be possible to avoid these unwanted effects by cen-
tering the superposed oscillating potential on the macroscopic
particle and canceling the effect on the ion using additional
electrodes.

APPENDIX C: MONTE CARLO SIMULATION

The stochastic equation for the evolution of a quantum state
undergoing a nonunitary process generated by jump operators
D(α) [42] can be written as

d |ψ (t )〉 = − iHdt |ψ (t )〉

+
∫

dα2[D(α) − 1] |ψ (t )〉 dN (α), (C1)

where dN (α) are independent Poisson increments with rate
γ (α) = g(α)/τ . (In this Appendix we use the convention
h̄ = 1). It can be shown that the von Neumann equation with
Lindbladian (12b) is recovered as the equation of the density
matrix corresponding to the ensemble of solutions of (C1). It
is easily seen that in the case of unitary jump operators the
equation remains linear in the state vector. This means we
can translate this into an equivalent equation for the propa-
gator, which can be simulated and applied to any initial state,
similar to the case of deterministic evolution. This equation
reads

dU (t ) = exp(−iHdt )U (t )

+
∫

dα2[D(α) − 1]U (t )dN (α). (C2)

A realization of this random process has a simple interpre-
tation. It is a piecewise continuous evolution interrupted in a
finite number of positions by jumps of the form U �→ D(α)U ,
where α is chosen according to the distribution g(α). The
integrated rate of the jumps is then simply given by γ = 1/τ .
This process is also compatible with the ansatz (42) due to the
simple equation for merging displacements. The localization
effect of the process becomes clear when considering the extra
phase introduced by a combination of displacements (23a).
This phase depends on the value of α, and it will therefore
have a different sign when acting on the two branches of
the superposition U↑ and U↓. To compute the visibility we
must average over all realizations of the random process,
which amounts to summing over density matrices ρ↑↓ which
acquired different phases. This means although all realizations
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return to the initial position with a visibility of 1, the ensemble
will have reduced visibility. The algorithm which samples this
random process is illustrated in Algorithm 1. In the actual
implementation we update the parameters in the ansatz of U
rather than store U itself (which is infinite dimensional).

Algorithm 1. Monte Carlo Simulation

t ← 0
while t < t f do
rand ∼ Uniform[0, 1] {check if a kick happens at t}
if rand > γ dt then
U ← exp(−iHdt )U
else
α ∼ g
U ← D(α)U
end if
t ← t + dt
end while

APPENDIX D: DECOHERENCE PROCESSES

We estimate the decoherence rate of the superposition from
some known sources. As for spontaneous collapse, we can
describe the strength of these using two parameters, the lo-
calization distance a and the value of the decoherence rate
� in the limit �x � a of large-distance superpositions. All
the formulas have been derived for the simpler case of a
sphere of radius R, as opposed to the actual geometry of a
graphene flake. However, we expect the difference to be only
a numerical factor, which can be considered as being close to
unity for these order-of-magnitude estimates.

1. Collisions with background gas

To estimate the pressure needed to keep decoherence rates
below the required � � 100 s−1, we consider the rate at which
air molecules collide with the macroscopic particle. Following
[43] we have

� = 16π
√

2π

3

PR2

√
mairkBT

, (D1)

where mair is the average mass of an air molecule. For a par-
ticle radius of R � 0.8 μm, as above, and room temperature
T = 293 K, the pressure needed to obtain the decoherence
rate stated above is P = 1 × 10−14 Pa ≡ 1 × 10−12 mbar,
which is obtainable using ultrahigh vacuum techniques in a
charged-particle trapping apparatus [4]. Another considera-
tion, also treated in [43], relates to the thermal de Broglie
wavelength of the colliding particles given by

a = π h̄√
2πmairkBT

. (D2)

For a larger than the amplitude of around 0.6 nm in our
case, the paths remain indistinguishable and decoherence is

suppressed. This occurs for temperatures substantially below
the threshold value of 70 mK. Thus cooling is likely to be
technically more difficult than achieving the required vac-
uum (but cryo-cooling would help reduce the background gas
pressure).

2. Interaction with thermal photons

Our charged particle can interact with the background ther-
mal radiation through scattering, absorption, and emission of
photons. This will carry away which-path information about
our system and produce decoherence if the wavelength of
the photons is sufficiently small to resolve the superposition
separation λth � �x [44]. We can estimate the temperature
necessary for this condition to hold by

T � h̄c

kB�x
= 1.5 × 106 K . (D3)

Even if the experiment is performed at room temperature, this
proves that we can safely neglect the decoherence induced by
interactions with all thermal photons.

3. Shockley-Ramo effect

The electrostatic coupling of the macroscopic charged par-
ticle to the trap electrodes means that oscillations of the
charged particle induce currents in the trap’s LCR circuit;
this is known as the Shockley-Ramo effect [22,45]. Since
the oscillations of the two parts of the superpositions are
out of phase, the state of the macroscopic particle becomes
entangled with that of the rf circuit. The resistance in the
circuit will lead to effective measurements of the current di-
rection and therefore also introduce decoherence in the state
of the entangled macroscopic particle. Since the circuit can be
viewed as a quantum harmonic oscillator, we can estimate the
importance of this effect by looking at the overlap between the
two states of the circuit corresponding to the two parts of the
superposition. For this we can use Eq. (53) and require that
the exponent be much smaller than 1. The magnitude of the
current induced can be approximated from

I = Q

D
v, (D4)

where Q is the charge on the macroscopic particle, D is the
distance between the electrodes, and v is the velocity of the
particle. At maximum amplitude this is estimated at I ≈ 2 ×
10−18 A. The previously stated condition is then expressed as

I√
h̄ωLC

L

coth
βLC h̄ωLC

2
� 1, (D5)

where L is the effective inductance of the circuit, ωLC is the
frequency, and βLC is the inverse temperature. For the reason-
able choices ωLC = 2π × 1 MHz, L = 4μ H, and T = 1 K we
get a value of 6.5 × 10−3 � 1.

[1] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H.
Ulbricht, Models of wave-function collapse, underlying the-

ories, and experimental tests, Rev. Mod. Phys. 85, 471
(2013).

033109-12

https://doi.org/10.1103/RevModPhys.85.471


SCHRÖDINGER CAT STATES OF A MACROSCOPIC … PHYSICAL REVIEW A 105, 033109 (2022)

[2] P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C.
Bergquist, and D. J. Wineland, Spectroscopy using quantum
logic, Science 309, 749 (2005).

[3] A. C. Hughes, V. M. Schäfer, K. Thirumalai, D. P. Nadlinger,
S. R. Woodrow, D. M. Lucas, and C. J. Ballance, Benchmarking
a High-Fidelity Mixed-Species Entangling Gate, Phys. Rev.
Lett. 125, 080504 (2020).

[4] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E.
King, and D. M. Meekhof, Experimental issues in coherent
quantum-state manipulation of trapped atomic ions, J. Res.
NIST 103, 259 (1998).

[5] P. Micke, T. Leopold, S. King, E. Benkler, L. Spiess, L.
Schmoeger, M. Schwarz, J. Crespo Lopez-Urrutia, and P. O.
Schmidt, Coherent laser spectroscopy of highly charged ions
using quantum logic, Nature (London) 578, 60 (2020).

[6] T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly,
S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A.
Kasevich, Quantum superposition at the half-metre scale,
Nature (London) 528, 530 (2015).

[7] S. Nimmrichter and K. Hornberger, Macroscopicity of Me-
chanical Quantum Superposition States, Phys. Rev. Lett. 110,
160403 (2013).

[8] P. Haslinger, N. Doerre, P. Geyer, J. Rodewald, S. Nimmrichter,
and M. Arndt, A universal matter-wave interferometer with
optical ionization gratings in the time domain, Nat. Phys. 9, 144
(2013).

[9] S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tuexen,
Matter-wave interference of particles selected from a molecular
library with masses exceeding 10 000 amu, Phys. Chem. Chem.
Phys. 15, 14696 (2013).

[10] Y. Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor,
S. Gerlich, and M. Arndt, Quantum superposition of molecules
beyond 25 kDa, Nat. Phys. 15, 1242 (2019).
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