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Theoretical study of the molecular-frame photoemission time delay for K-shell photoionization of N2
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Photoelectron emission Wigner time delay for K-shell ionization of a nitrogen molecule is studied theoretically
in the frame of a molecular reference for parallel and perpendicular orientations of the molecule with respect to
the electric field vector of linearly polarized ionizing light. Electronic structure calculations are performed by the
single center method for photoelectron kinetic energies from 5 to 20 eV and at different levels of approximation.
Thereby, the influence of core relaxation effects and interchannel coupling on the 1s-photoemission time
delays, computed across the σ ∗-shape resonance, is investigated in detail. The present theoretical results can
be considered as reliable predictions for future experiments.
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I. INTRODUCTION

Photoionization is not an instantaneous process, since it
takes typically a few to hundred attoseconds (as) to create an
outgoing photoelectron wave packet which then starts leav-
ing a system [1]. Strictly speaking, the emitted photoelectron
wave is phase shifted by an ionic potential, and the elec-
tron’s kinetic energy derivative of this half-scattering phase
is termed the Wigner time delay [2–4]. Recent progress in
the attosecond physics [5] enabled first observations of the
photoemission time delays in atoms [6,7] by IR-laser field
streaking or by reconstruction of attosecond beating by in-
terference of two-photon transitions (RABBIT) techniques
[8]. Since then, photoemission time delays were routinely
measured in atoms and molecules [9–15]. In the case of an
anisotropic potential of a molecule, the Wigner delay depends
on the emission direction of the photoelectron and orientation
of the light polarization with respect to the molecular axis
[16]. Those theoretical predictions were first confirmed ex-
perimentally in Ref. [17] by measuring stereo time delays for
parallel and perpendicular orientations of an oxygen molecule
with respect to the light polarization direction.

Recent joint experimental and theoretical studies of the
Wigner time delay in the inner-shell [18] and independently
in the outer-shell [19] photoionization of molecules also
confirmed its polarization and emission-angle dependencies.
These works introduced an approach to access photoioniza-
tion time delays in molecules without requiring any ultrashort
pulses. It relies on the scheme of so-called complete ex-
periments [20], where the amplitudes and phases of all
emitted partial electron waves are extracted from the mea-
sured molecular-frame photoelectron angular distributions
(MFPADs [21–24]). The multiple scattering effects, which
form intricate diffraction patterns in observed MFPADs, result
also in angle-dependent Wigner time delays. By scanning the
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photon energy, an energy derivative of the photoelectron’s
phase and, as a result, the angle-dependent Wigner delay can
be accessed. A theoretical study of the C K-shell photoion-
ization of CO across the σ ∗-shape resonance, performed in
Ref. [18] for the εσ and επ channels, confirmed observations
that the time delay in photoemission varies with respect to the
emission angle within a few hundreds of attoseconds.

In the present paper, we report a theoretical study of the
K-shell photoionization of the N2 molecule. In addition to the
presence of a σ ∗-shape resonance in the K-shell photoioniza-
tion of N2, an interchannel coupling between two εσ channels
(1σgεσu and 1σuεσg) plays here an extremely important role
[25,26]. As reported in those works, including the relaxation
of the core caused by the field of a created core vacancy yields
here a correct energy position of the shape resonance, while
the coupling between channels results in an appearance of the
shape resonance (which without coupling is present only in
the 1σgεσu channel) in both channels. Here, we investigate
an influence of both effects on the respective angle-dependent
photoemission time delays.

II. THEORY

For a linear molecule, whose axis forms an angle β with
the electric field vector of linearly polarized light, the total
amplitude for the emission of a photoelectron with energy
ε in the direction defined by an angle θ with respect to the
molecular axis is given by [18,27,28]

T (ε, β, θ ) =
∑
�mk

(−i)� D1
k0(α, β, γ ) Aε�mk Y�m(θ, ϕ). (1)

Here, D1
k0 and Y�m are the rotation matrices and spherical func-

tions, respectively. For a parallel orientation of the molecular
axis with respect to the light polarization direction, the Euler
angle β is equal to 0, and for a perpendicular β = π

2 . Choosing
the other orientation angles α = 0 and γ = 0 and the pho-
toelectron emission angle ϕ = 0, π makes the polarization
and the emission planes to be the xz plane. The quantities
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Aε�mk are the dipole transition amplitudes for the emission
of the partial photoelectron continuum waves with angular
momentum quantum numbers � and m via the absorption of
a photon of polarization k, as given in the molecular frame.
The total transition amplitude (1) provides a direct access to
the MFPADs and the angle-dependent Wigner time delays via
[18] (atomic units are used throughout)

σ (ε, β, θ ) = |T (ε, β, θ )|2, (2)

τ (ε, β, θ ) = d

dε
{arg [T (ε, β, θ )]}. (3)

The photoionization transition amplitudes Aε�mk were com-
puted in the present work by the single center (SC) method
and code [29,30] which was successfully applied in the past
to study MFPADs of diatomic [28,31–35] and polyatomic
[27,36–39] molecules.

For purposes of the present work, let us first outline the
essential points of the SC method. In the method, the spatial
part of a one-particle molecular orbital is represented with re-
spect to a single molecular center as an expansion by spherical
functions:

�ε(r) =
∑
�m

Pε�m(r)

r
Y�m(θ, ϕ). (4)

In the one-channel approximation, the radial parts Pε�m satisfy
a system of coupled Hartree-Fock (HF) equations [29,30]. In
order to overcome difficulties in the numerical solution of
those equations, caused by the nonlocal exchange interaction,
we introduced the generalized spherical potentials Yckq(r),
which represent the harmonics of multiplicities kq of the ex-
change interaction of the photoelectron with all core electrons
Pc [29,30]. By combining the partial radial harmonics Pε�m(r)
of the photoelectron and all generalized potentials Yckq(r) in
the united vector solution P(r),

P =
(

Pε�m

Yckq

)
, (5)

one arrives at the following homogeneous system of coupled
equations,

d2P

dr2
= F̂P, with F̂ =

(
F�m�′m′ F�mckq

Fckq�′m′ Fckqc′k′q′

)
. (6)

which can be solved noniteratively. Explicit expressions for
the matrix F̂ and details on the numerical integration proce-
dure can be found in our previous works [29,30].

In order to go beyond the one-particle HF approximation
and to account for the interchannel coupling between different
photoionization channels, we outline here the multichannel
SC method (more details will be published elsewhere). Let
us consider two singlet photoionization channels,

↗ � (bε) = |a2b1ε 1 f 〉
|a2b2 1i〉 + ω � (7)

↘ � (aε′ ) = |a1b2ε′ 1 f 〉,
which are open for ionization at the chosen photon energy
ω and coupled by the following Coulomb matrix element

(includes the direct and exchange contributions):

〈� (bε)|Hee|� (aε′ )〉 = −
〈
aε

∣∣∣∣ 1

r12

∣∣∣∣bε′
〉
+ 2

〈
aε

∣∣∣∣ 1

r12

∣∣∣∣ε′b
〉
. (8)

This coupling can be considered as though a photoelectron
emitted from one of the molecular orbitals knocks out an
electron from another orbital and is itself recaptured to the

original one. Combined from two solutions (5) for the P
(bε)

and P
(aε′ )

channels,

P =
(

P
(bε)

P
(aε′ )

)
, (9)

the coupled-channel solution P satisfies a similar homoge-
neous system of coupled differential equations

d2P
dr2

= F̂P, (10)

with the matrix F̂ defined as

F̂ =

⎛
⎜⎜⎝

F̂ (bε) F (bεaε′ )
�m�′m′ F (bεaε′ )

�makq
0 0

F (aε′bε)
�m�′m′ F (aε′bε)

�mbkq
0 0

F̂ (aε′ )

⎞
⎟⎟⎠, (11)

where F̂ (bε) and F̂ (aε′ ) are the one-particle matrices (6) for
independent channels.

As one can see from Eq. (11), the solutions for two chan-
nels (7) are coupled via direct F (bεaε′ )

�m�′m′ and F (aε′bε)
�m�′m′ and also

exchange F (bεaε′ )
�makq and F (aε′bε)

�mbkq Coulomb interactions according
to the coupling matrix element (8). Explicit analytic expres-
sions for those interactions read

F (bεaε′ )
�m�′m′ = − 2

∑
�ama

∑
�′

bm′
b

∑
kq

(−1)ma+m′

×
√

(2� + 1)(2�′ + 1)(2�a + 1)(2�′
b + 1)

×
(

�a k �′
b

0 0 0

)(
�a k �′

b−ma q m′
b

)

×
(

�′ k �

0 0 0

)(
�′ k �

−m′ q m

)

× yk (�ama, �
′
bm′

b), (12)

F (bεaε′ )
�makq = 4

r

∑
�′

bm′
b

(−1)m′
b

√
(2� + 1)(2�′

b + 1)

×
(

�′
b k �

0 0 0

)(
�′

b k �

−m′
b q m

)
Pε�′

bm′
b
. (13)

Expressions for the couplings F (aε′bε)
�m�′m′ and F (aε′bε)

�mbkq can be ob-
tained from Eqs. (12) and (13) by interchanging indices aε′
and bε. The exchange interactions (13) couple partial photo-
electron waves from each channel only with the generalized
exchange potentials corresponding to the core orbitals being
ionized in the opposite channel. The system of equations (10)
can be solved by the same numerical procedure [29,30] as
Eqs. (6).
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FIG. 1. The K-shell photoionization cross section of N2 for the
emission of εσ (upper panel) and επ (lower panel) partial waves.
Circles: Experiment [40]. Green short-dashed curves: Frozen-core
Hartree-Fock, total for 1σg and 1σu orbitals. Magenta dashed-
dotted-dotted curves: Relaxed core Hartree-Fock, 1σg orbital. Violet
short-dotted curves: Relaxed core Hartree-Fock, 1σu orbital. Red
dashed curves: Coupled-channel relaxed core, 1σg orbital. Blue
dashed-dotted curves: Coupled-channel relaxed core, 1σu orbital.
Black solid curves: Coupled-channel relaxed core, total for 1σg and
1σu orbitals.

The present calculations were performed in different ap-
proximations (see below) at the equilibrium internuclear
distance of N2 using single center expansions with �c � 99
and � � 49 for the core orbitals and for photoelectron in con-
tinuum, respectively. The energy derivative of the phase of the
total transition amplitude in Eq. (3) was evaluated numerically
in energy steps of 100 meV.

III. RESULTS AND DISCUSSION

A. Cross sections

Figure 1 illustrates an impact of the core relaxation
and interchannel coupling on the photoionization cross sec-
tions computed for the εσ (upper panel) and επ (lower panel)
channels. In the former channel, frozen-core Hartree-Fock
(FCHF) calculations (green short-dashed curve in the up-
per panel of Fig. 1) yield the σ ∗-shape resonance at a too
low photoelectron energy, as compared to the experimental
data (circles) from Ref. [40]. The shape resonance appears

FIG. 2. The Wigner photoemission time delays (panels) and
respective MFPADs (polar plots), computed at the photoelectron
kinetic energy of 10 eV for the partial 1σgεσu (upper row), 1σuεσg

(middle row), and total 1σTotεσ (lower row) channels of N2 in differ-
ent approximations (see the legend).

only in the 1σgεσu channel (not shown for FCHF results). In
the relaxed-core Hartree-Fock (RCHF) calculations (magenta
dashed-dotted-dotted curve), this resonance manifests itself at
the correct kinetic energy. Because of the interchannel cou-
pling [coupled-channel relaxed core (CCRC) approximation],
the 1σuεσg channel borrows the shape resonance from the
1σgεσu channel [25,26] (cf. the blue dashed-dotted and violet
short-dotted curves and, separately, red dashed and magenta
dashed-dotted-dotted curves in the upper panel of Fig. 1). The
fact that the σ ∗-shape resonance in the experimental cross
section is somewhat broader than that in the computed one
(cf. the circles and black solid curve) can be attributed to the
vibrational broadening [25,26], which was not included in the
present calculations.

Because of the absence of a shape resonance in the
presently chosen photoelectron energy range, even the FCHF
approximation provides a reasonable description of the επ

channel (cf. the green short-dashed curve with circles in the
lower panel of Fig. 1). Here, relaxation of the core causes only
moderate changes in the total and partial cross sections (not
shown for brevity). Similarly, coupling between the 1σgεπu

and 1σuεπg channels (note that owing to symmetry consid-
erations εσ and επ do not couple to each other) does not
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FIG. 3. The partial 1σgεσu, 1σuεσg, and total 1σTotεσ (see the
legend) Wigner photoemission time delays (panels) and respective
MFPADs (polar plots) of N2, computed for the photoelectron kinetic
energies 5 eV (upper row), 10 eV (middle row), and 15 eV (lower
row) in the CCRC approximation.

significantly influence the total cross section (cf. the green
short-dashed and black solid curves in the lower panel). How-
ever, this coupling influences partial cross sections for these
two channels and results in a swapping of their strengths in
the chosen energy range (cf. the blue dashed-dotted and violet
short-dotted curves and, separately, red dashed and magenta
dashed-dotted-dotted curves in the lower panel of Fig. 1). As
one can also see from the experimental data of Ref. [40],
the photoelectron energy range below about 5 eV is strongly
affected by doubly excited states, which are not included in
the present theory.

B. The εσ channel

Figure 2 depicts the Wigner time delays and the MF-
PADs, computed in different approximations for the partial
and total εσ channels and the photoelectron kinetic energy
of 10 eV. For the 1σgεσu partial channel (upper panel and
polar plot), the FCHF approximation considerably underes-
timated the photoemission delay and the respective MFPAD
(red short-dashed curves). This is because the chosen kinetic
energy of ε = 10 eV lies considerably off the respective
shape resonance (at about 5 eV in the FCHF approximation).

FIG. 4. The total photoemission time delay of N2 as a function
of the photoelectron kinetic energy and emission angle, computed in
the CCRC approximation for the εσ channel.

Because this energy corresponds to the σ ∗-shape resonance
in the RCHF approximation, the computed MFPAD increases
considerably. The same reason results in an overall increase
of the computed time delay by about 200 as, since this shape
resonance traps an emitted photoelectron wave inside a cen-
trifugal barrier. The time delays (and separately MFPADs),
computed for the 1σuεσg channel (middle panel and polar plot
of Fig. 2) in the FCHF and RCHF approximations, are very
similar. Importantly, the respective MFPADs are almost ten
times smaller than for the other channel (note the scales on
the respective polar plots), and the respective time delays are
much smaller as well (in between −40 and 10 as).

As was pointed out in the preceding section, the inter-
channel coupling shares the shape resonance between the
two partial channels. Because of very different strengths of
the channels, the MFPAD of the stronger 1σgεσu channel
decreases slightly, while that of the weaker 1σuεσg channel
increases considerably. The same trend applies to the com-
puted time delays (see the black solid curves in the upper
and middle panels and polar plots of Fig. 2). One should
stress that photoelectron lines representing the 1σgεσu and
1σuεσg channels are separated by only about 100 meV [41].
Therefore, one typically observes a statistical average over the
two channels. Such an averaged MFPAD is just a sum of the
respective MFPADs, and the partial Wigner time delays must
be weighted accordingly with the respective MFPADs:

τTot (ε, β, θ ) =
∑

i=g,u τi(ε, β, θ ) σi(ε, β, θ )∑
i=g,u σi(ε, β, θ )

. (14)

This procedure is exemplified in Fig. 3 for the final results,
obtained for the εσ channel in the CCRC approximation. As
one can see from its middle panel and polar plot (represent
data for the 10 eV photoelectron), the total (averaged) time
delay oscillates between the partial time delays obtained for
each channel separately: It is closer to the partial delay of
a channel whose emission probability dominates at a given
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FIG. 5. The Wigner photoemission time delays (panels) and
respective MFPADs (polar plots), computed at the photoelectron
kinetic energy of 10 eV for the partial 1σgεπu (upper row), 1σuεπg

(middle row), and total 1σTotεπ (lower row) channels of N2 in differ-
ent approximations (see the legend).

emission angle θ . The lower panel and polar plot of Fig. 2
depicts such total time delays and MFPADs, computed in
different approximations for the photoelectron kinetic energy
of 10 eV. As one can see, the core relaxation increases the
absolute values of the time delay (because of the shape res-
onance), while the interchannel coupling broadens dips in its
angular dependence (cf. FCHF with RCHF and further with
CCRC results).

Figure 3 illustrates trends in the energy dependence of the
partial and total time delays and MFPADs, obtained in the
CCRC approximation for the εσ channel. For the photoelec-
tron energy of 5 eV, the total time delay (black solid curve
in the upper panel) is large and varies as a function of the
emission angle in between 30 and 270 as. Intuitively, it should
decrease with the increase of the photoelectron energy, since
a faster electron can easier escape the ion than a slower one.
However, because of the shape resonance, the total time delay
computed for the photoelectron energy of 10 eV varies in an
almost similar interval of 40–260 as. For the higher kinetic
energy of 15 eV (about 5 eV above the shape resonance), the
total time delay drops significantly and varies in between 5
and 60 as. A complete overview of the angle-dependent time

FIG. 6. The partial 1σgεπu, 1σuεπg, and total 1σTotεπ (see the
legend) Wigner photoemission time delays (panels) and respective
MFPADs (polar plots) of N2, computed for the photoelectron kinetic
energies 5 eV (upper row), 10 eV (middle row), and 15 eV (lower
row) in the CCRC approximation.

delay of the εσ channel, computed in the CCRC approxima-
tion for the photoelectron kinetic energy range of 5–20 eV, is
presented in Fig. 4. This figure supports the above-discussed
trend in the energy dependence of the delay across the shape
resonance and suggests that it varies in the considered energy
interval with respect to the emission angle in between about
−10 and 310 as.

C. The επ channel

Figure 5 demonstrates that relaxation of the core results
in moderate changes of the partial and total Wigner time
delays and MFPADs, computed for the επ channel at the
photoelectron kinetic energy of 10 eV (cf. red dashed and blue
dashed-dotted-dotted curves in each panel and polar plot). For
the 1σgεπu channel, the interchannel coupling results in mod-
erate changes of the time delay as well, while for the 1σuεπg

channel, the changes are significant (cf. blue dashed-dotted-
dotted and black solid curves separately in the upper panel and
middle panels). These large changes in the 1σuεπg channel are
irrelevant for the total time delay (lower panel of Fig. 5), since
they take place at the emission angles around θ = 90◦, where
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FIG. 7. The total photoemission time delay of N2 as a function
of the photoelectron kinetic energy and emission angle, computed in
the CCRC approximation for the επ channel.

the emission probability in this channel vanishes (see the polar
plot in the middle row).

Trends in the energy dependence of the partial and total
time delays and MFPADs, computed for the επ channel in the
CCRC approximation, are illustrated in Fig. 6. For the energy
of 5 eV, the total time delay (black solid curve in the upper
panel) is relatively large and varies with the emission angle
in between 65 and 90 as. As expected, for the higher photo-
electron energy of 10 eV, it drops considerably, and belongs
now to the interval from −5 to 25 as (black solid curve in
the middle panel). The total photoemission delay decreases

further as the photoelectron kinetic energy decreases, and for
15 eV it lies in between −20 and 20 as. As one can see
from Fig. 7, which summarizes the total angle-dependent time
delay computed for the επ channel in the CCRC approxima-
tion in the photoelectron kinetic energy range of 5–20 eV,
it varies with respect to the emission angle and considered
photoelectron energies in between about −20 and 90 as.

IV. CONCLUSION

Angle-dependent Wigner time delays for the K-shell pho-
toelectron emission of the N2 molecule are computed in
different approximations for the εσ and επ channels. Calcu-
lations are performed with the single center (SC) method and
code. The εσ channel exhibits a strong shape resonance in
the considered photoelectric kinetic energy range of 5–20 eV.
Therefore, the corresponding MFPADs and angle-dependent
time delays are very sensitive to the level of an approxima-
tion considered in the calculations. The core relaxation and
coupling between the partial 1σgεσu and 1σuεσg channels in-
fluences the computed time delays significantly: These effects
determine not only the absolute values of the delays, but also
their dependencies on the emission angle. For the επ channel,
on the contrary, only the interchannel coupling influences the
absolute values of the computed delays, without significantly
changing their angular dependencies. Recent studies [18,19]
provide a road map to access the presently studied angle-
dependent Wigner time delay in the K-shell photoionization
of N2 by means of coincident experiments.
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