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Magneto-optical trapping of mercury at high phase-space density

Quentin Lavigne , Thorsten Groh, and Simon Stellmer *

Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany

(Received 21 December 2021; accepted 25 February 2022; published 15 March 2022)

We present a realization of a magneto-optical trap of mercury atoms on the 1S0 → 3P1 intercombination
line. We report on trapping of all stable mercury isotopes. We characterize the effect of laser detuning, laser
intensity, and gradient field on the trapping performance of our system. The atom number for the most abundant
isotope 202Hg is 5 × 107 atoms. Moreover, we study the difference in cooling processes for bosonic and fermionic
isotopes. We observe agreement with the Doppler cooling theory for the bosonic species and show sub-Doppler
cooling for the fermionic species. We reach a phase-space density of a few parts in 10−7, which constitutes a
promising starting condition for dipole trap loading and evaporative cooling.
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I. INTRODUCTION

All atoms in the class of alkaline-earth(-like) metal ele-
ments share a unique combination of properties: two valence
electrons and a J = 0 ground state. The level structure decom-
poses into singlet and triplet states; the latter can be metastable
and are connected to the single ground state via narrow in-
tercombination lines. In recent years, this class of atoms has
received widespread attention in the field of optical clocks [1],
in quantum simulation based on laser-cooled atoms [2], and
in low-energy searches for physics beyond the standard model
[3,4]. Within this class of elements, mercury assumes a unique
role: it is the heaviest element with stable isotopes that can be
laser cooled, it has the highest ionization threshold, and as a
consequence, all of its principal optical transitions are deep in
the ultraviolet (UV) range. As the technology of UV lasers
matured over the past few decades, cold-atom experiments
with mercury atoms became feasible.

Magneto-optical trapping of mercury was first realized in
seminal work by the group of Katori [5] and forms the ba-
sis of optical clocks based on mercury [6–10], benefiting in
particular from its insensitivity to blackbody radiation shifts.
Related research on laser cooling of mercury is also described
in Refs. [11–15].

Here, we present a detailed study on laser cooling of
mercury. The identification of optimal parameter ranges, in
combination with increased laser power, has allowed us to
substantially improve the atom number and phase-space den-
sity of laser-cooled samples compared to previous works.
With these improvements, interesting experiments have come
into reach [16], including a competitive measurement of the
Hg electric dipole moment using laser-cooled atoms to search
for physics beyond the standard model [17,18], isotope shift
measurements [19–21], and evaporation towards degenerate
quantum gases.

*stellmer@uni-bonn.de

II. EXPERIMENTAL SETUP

In this work, laser cooling of neutral mercury is performed
on the 1S0 → 3P1 intercombination line at 254 nm, which
has a linewidth of � = 2π × 1.3 MHz and a corresponding
Doppler temperature TD = 31 μK. The saturation intensity of
this transition is Isat = 10 mW/cm2. Note that precooling on
the broad 1S0 → 1P1 singlet transition is challenging due to
its wavelength of 185 nm, for which high-power cw laser
development is still in its infancy [22].

Our experimental apparatus, depicted in Fig. 1, is designed
as a test setup to identify optimal parameters for laser cooling
of mercury. The mercury atoms are loaded from the back-
ground gas. The atom source is composed of a stainless-steel
reservoir filled with a few droplets of liquid mercury. This
reservoir is cooled under vacuum by a four-stage Peltier el-
ement down to −50 ◦C. For loading of a magneto-optical
trap (MOT), the oven is operated at a temperature of −35 ◦C,
resulting in a partial pressure of about 5 × 10−6 mbar at the
source. The source section is pumped with a 2 L/s ion pump
to protect the in-vacuum electronics from mercury corrosion.

A CF40 tube with a length of 380 mm (conductiv-
ity ∼1.55 L/s) connects the source to the MOT chamber.
The vacuum chamber, which is assembled from standard
CF40 vacuum components, is pumped down to the range of
10−8 mbar by a 55 L/s ion pump and a standard titanium
sublimation pump.

The magnetic quadrupole field required for atom trapping
is generated by a pair of coils in anti-Helmholtz configuration.
The coils are made of 6 × 6 mm2 hollow-core square copper
tubing and are water cooled. They consist of 12 windings
each and have a diameter of 160 mm. These coils generate
an axial gradient field ∂Bz/∂z of 0.20 G/(cm A). In typical
operation, the axial gradient field is set to about 10 G/cm at a
current of 50 A. The low inductance of the coils (∼100 μH)
enables us to quickly turn off (<1 ms) the magnetic field with
an insulated-gate bipolar transistor. In practice, the switching
time is limited by a metal frame to typically 6 ms. Three
mutually orthogonal pairs of coils in Helmholtz configuration
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FIG. 1. Experimental setup. (a) Central region of the vacuum
chamber, including coil systems and optics. (b) Cut-away view of
the atomic source. A stainless-steel bucket filled with liquid mercury
is temperature controlled via a four-stage Peltier element to set the
vapor pressure in the vacuum chamber.

allow us to compensate for Earth’s magnetic field and any
other background field.

The light at 254 nm is generated by a commercial fre-
quency quadrupled laser. The fundamental mode at 1016 nm
is generated by a diode laser, which is stabilized to a commer-
cial high-finesse cavity (Menlo, finesse 74 000 at 1016 nm)
for linewidth reduction. A fiber-coupled phase modulator
(Jenoptik PM1064) with 7-GHz bandwidth is used to imprint
variable sidebands, which are used to steer the laser frequency
with respect to the cavity mode.

The diode emission at 1016 nm is amplified by a ta-
pered semiconductor amplifier, passed through a filter of σ =
5.7 GHz transmission bandwidth to remove undesired inco-
herent background radiation (amplified spontaneous emission
of the semiconductor laser), and amplified by a fiber ampli-
fier to about 8 W. Two consecutive and resonant stages of
second-harmonic generation generate more than 350 mW of
UV power.

Polarization components are used to split the light at
254 nm into three pathways using a spectroscopy cell for
monitoring purposes, the MOT beams, and the imaging beam.
The light for the MOT is passed through an acousto-optical
modulator (AOM) for intensity and frequency control before
being split into three arms. The mean waist is increased up to

w0 = 6.5 mm. The three mutually orthogonal MOT beams are
retroreflected and have a typical power PMOT of 15 to 30 mW
per beam, depending on the UV degradation of the optics. All
beams are aligned with submillimeter accuracy to the center
of the quadrupole field.

Absorption imaging is performed on the same optical
transition. The imaging beam is passed through an AOM
for frequency adjustment and switching; it is then focused
through a 100-μm pinhole for mode cleaning, expanded to
a waist of 7.5 mm, and delivered to the MOT region. It is
linearly polarized and has a typical power of 1 mW. Our
imaging system is composed of a single lens in the 2 f -2 f
configuration to obtain a magnification of M = 1. A CCD
camera (ANDOR model iXon3 885) with quantum efficiency
in excess of 30% is used for imaging.

A typical measurement sequence consists of a 5-s-long
MOT-loading phase in which the gradient field and the MOT
beams are turned on. Then, the gradient field and MOT
beam are switched off. The atom number and temperature of
the atomic cloud are determined from standard time-of-flight
(TOF) images.

III. RESULTS

A. Magneto-optical trapping of all seven stable isotopes

We begin our study by presenting magneto-optical trapping
of all seven stable mercury isotopes (see Fig. 2). A list of the
stable isotopes of mercury is provided in Table I: five bosonic
isotopes with nuclear spin I = 0 and two fermionic isotopes,
199Hg with I = 1/2 and 201Hg with I = 3/2, exist. We adjust
the waist of the MOT beams to w0 = 5.2 mm and set the
power per beam to P = 26 mW, corresponding to a saturation
parameter s = I/Isat of s = 6. The magnetic field gradient
is set to ∂Bz/∂z = 10 G/cm. We scan the frequency of the
MOT beams across the resonance frequency of each isotope.
A maximum in atom number N is reached for a detuning �

of about −15 � for the abundant bosonic isotopes. For the
fermionic isotopes, the maximum atom number is obtained
for 199Hg at a detuning of about −11 � and for 201Hg at
about −8 �.

We capitalize on the high laser power available, which
allows us to increase the diameters of the MOT beams. We
were able to observe a MOT of the least abundant isotope,
196Hg, with a natural abundance of only 0.15%. This isotope
was not detected in previous studies [5,6,11,13–15].

We observe that for the bosonic isotopes, the observed
MOT atom numbers correspond, within the uncertainties, to
the natural abundances. For that we normalize the peak MOT
atom numbers N of each isotope to that of the most abundant
isotope, 202Hg. We then compare the normalized MOT atom
numbers N ′ = N/N202 of each isotope to its normalized nat-
ural abundance AN ′ = AN/AN

202 (last column of Table I). The
observed correspondence for the bosons is expected, as the
electronic structures of these isotopes are exactly identical.
This observation indicates that the MOT atom number is not
yet saturated for the set of parameters used here.

For the fermions, however, we do observe a clear mismatch
between the normalized atom number and isotope abundance:
cooling and trapping efficiency is reduced by a factor of about
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FIG. 2. Magneto-optical trapping of all stable Hg isotopes. (a) Absorption images of the MOTs after 0-ms time of flight. The image of
196Hg is Gaussian filtered to increase visibility. (b) Number of trapped atoms N as a function of the detuning � for each isotope. (c) Normalized
atom number as a function of the detuning from the 202Hg resonance, with the same data as in (b). The horizontal lines represent the normalized
isotope abundance.

3 for 199Hg and by a factor of about 5 for 201Hg. Compared to
the bosonic isotopes, these two isotopes possess multiple mF

components in the 1S0 ground state, as well as hyperfine and
Zeeman structure in the 3P1 excited state. The MOT is oper-
ated on the F = 1/2 → F ′ = 3/2 transition for 199Hg and on
the F = 3/2 → F ′ = 5/2 transition for 201Hg. The reduced
efficiency of fermionic MOTs was explained in Ref. [24] and
is observed with many alkaline-earth-metal elements. In short,
the vastly different g factors of the 1S0 ground state (g ≈ 10−4)
and the 3P1 excited state (g ≈ 1.5), as well as the multitude
of Zeeman states, reduce cooling power and open up loss
channels.

While the vast majority of magneto-optical traps are oper-
ated on F → F ′ = F + 1 transitions, there is also an interest
to study unconventional MOT operation for the cases F ′ � F .
These cases are relevant for laser cooling of molecules and
might use blue-detuned light [25]. Indeed, we observe stable
magneto-optical trapping of the 199Hg isotope on the F =
1/2 → F ′ = 1/2 transition. With similar trap parameters we
reach around N = 1.1(2) × 104 atoms at a detuning of � ≈
−3 �. This is a reduction of about two orders of magnitude
with respect to the “ordinary” 199Hg F = 1/2 → F ′ = 3/2
MOT.

TABLE I. Naturally occurring mercury isotopes. For each isotope, we state the nuclear spin I; its natural abundance AN [23]; the observed
atom number normalized to the most abundant isotope, 202Hg, N ′; and the trapping efficiency N ′/AN ′

. The latter is expressed as the ratio of the
normalized atom number and normalized natural abundance and shows a strong deviation from unity only for the fermionic isotopes.

Spin Nuclear Natural Normalized Normalized Trapping
Isotope statistics spin I abundance AN abundance AN ′

atom number N ′ efficiency N ′/AN ′

196Hg bosonic 0 0.15 0.0052 0.0043(13) 0.83
198Hg bosonic 0 9.97 0.3455 0.3220(12) 0.93
199Hg fermionic 1/2 16.87 0.5845 0.2166(10) 0.37
200Hg bosonic 0 23.10 0.8004 0.8200(12) 1.03
201Hg fermionic 3/2 13.18 0.4567 0.0862(7) 0.19
202Hg bosonic 0 29.86 1 1 1
204Hg bosonic 0 6.87 0.2380 0.1970(9) 0.83
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FIG. 3. Number of trapped atoms N as a function of (a) the de-
tuning � and the saturation parameter s for a fixed magnetic gradient
field of ∂Bz/∂z = 10 G/cm and (b) the detuning � and the magnetic
gradient field ∂Bz/∂z for a fixed saturation parameter of s = 2.6.

In the following, we will focus our studies on the most
abundant isotope, 202Hg. We will explore the key parameters
such as laser detuning, intensity, and magnetic field gradient
to optimize the performance of the experiment. These mea-
surements significantly expand previous studies [8,12] to a
broader parameter range.

B. Atom number

An important quantity of any cold-atom experiment is the
atom number. For a fixed magnetic field gradient of ∂Bz/∂z =
10 G/cm, we investigate the dependence of the atom num-
ber on the laser detuning � and on the saturation parameter
s = I/Isat. The results are depicted in Fig. 3(a). In this contour
plot, the circles indicate measurement points, and the color
of the circle’s filling denotes the measurement value. As a
background, we provide a two-dimensional (2D) interpolation
to improve the readability.

The atom number increases as the detuning increases and
reaches a maximum of 2 × 107 atoms around � = −10 �.
Beyond that maximum, the radiation pressure force becomes
too weak to efficiently confine the atoms in the trap. At a
detuning of � = −10 �, the atom number increases linearly
with the saturation parameter s. Due to degradation of the
laser and the optics, we could reach a saturation parameter of
only s ≈ 3 in this study. Up to this value, we do not observe
saturation of the atom number.

Figure 3(b) shows the dependence of the atom number N
on the magnetic field gradient ∂Bz/∂z and laser detuning �

FIG. 4. Influence of the Hg partial pressure on (a) the initial load-
ing rate, (b) the loading time, and (c) the equilibrium atom number.
The partial pressure in the chamber cannot be measured directly;
shown is the pressure reading of the small ion pump in the source
chamber. The top axis shows the associated source temperature.

for a fixed saturation parameter, s = 2.6. An increase in the
gradient field improves the atom number until it reaches a
maximum around 10 G/cm, largely independent of detuning.
Beyond this maximum, a reduction in the atom number is
observed, explained by the reduction in capture volume at
higher gradients fields. Typical atom numbers for the 202Hg
isotope are in the range of 107 atoms.

Our MOT is loaded from the background gas, and its
equilibrium atom number depends on the loading rate (pro-
portional to the Hg partial pressure) and the atom loss
rate. Quite generally, the loss rate is a combination of one-
body losses (induced by collisions with room-temperature Hg
atoms and all other residual gas atoms), two-body losses (e.g.,
light-assisted collisions), and three-body losses (molecule for-
mation). For the densities obtained in this study, we conclude
that only one-particle losses are relevant.

We vary the Hg partial pressure by controlling the oven
temperature Ts from −37 ◦C to −13 ◦C. The loading rate in-
creases linearly with partial pressure [see Fig. 4(a)]. The atom
number saturates at a source temperature of around −25 ◦C,
which corresponds to about 1.6 × 10−6 mbar in the source
section. At this point, the residual gas in the vacuum chamber
is dominated by mercury, and the MOT atom number becomes
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independent of Hg partial pressure [see Fig. 4(c)]. Increasing
the partial pressure further increases both the loading rate and
the one-body loss rate, thus accelerating the loading dynam-
ics, but does not increase the equilibrium atom number. A
selective increase in the loading rate, and thus an increase in
the MOT atom number, could be achieved through implemen-
tation of a Zeeman slower or a 2D MOT.

The maximum atom number, obtained with 35 mW of
power per MOT beam (s = 6.2, before degradation of the
optics), stands at 5 × 107 atoms. We believe that even higher
atom numbers could be achieved with higher laser power and
a cleaner mode profile.

C. Temperature

The series of mercury isotopes lends itself well to an in-
vestigation of laser-cooling mechanisms. On the one hand,
the bosonic isotopes, which do not have a degenerate ground
state, are particularly well suited to study simple Doppler
cooling theory [26]. On the other hand, the fermionic iso-
tope 199Hg, which has a nuclear spin of I = 1/2, represents
the simplest system which can support sub-Doppler cooling
mechanisms, in particular Sisyphus cooling [27]. The de-
pendence of cooling performance on the number of Zeeman
substates can then be explored further through the 201Hg iso-
tope with a nuclear spin of I = 3/2.

1. Dependence of the temperature on trapping parameters

To measure the temperature T of the atomic cloud, we
use the TOF technique: we release the atomic cloud from
the MOT and record its ballistic expansion for a set of re-
lease times tTOF via absorption imaging. The comparably
narrow linewidth of 1.3 MHz leads to a comparably small
absorption signal. For typical temperatures of the order of
100 μK and atom numbers of the order of 107, the absorption
signal falls below the imaging photon shot noise at a TOF
of about 10 ms. At this point of expansion, the cloud size
r ≈ √

kBT/m tTOF does not yet dominate over the initial cloud
size (see Sec. III D). Therefore, we cannot assume the initial
cloud size is negligible, and each temperature measurement
is obtained from a series of seven absorption images with
the TOF varying between 0 and 7 ms. In this way, we can
reconstruct the initial size and the expansion dynamics to infer
the temperature. The radius of the cloud r accessible from our
two-dimensional images for varying tTOF corresponds to the
rms of the fitted one-dimensional radii rx and rz along the x
and z directions. Unless stated otherwise, temperatures given
here are the rms temperature of all three dimensions.

The dependence of the temperature T on laser detuning
� and the saturation parameter s is shown in Fig. 5(a). The
temperature T increases with the saturation parameter s. In-
deed, a high intensity of the MOT beams induces a heating
mechanism which originates from reabsorption of scattered
photons. The detuning � is the most critical parameter, and
the lowest temperature, T = 84(5) μK, is obtained for a de-
tuning of � = −�. As shown in Fig. 5(a), a larger detuning
leads to a temperature increase of the atomic cloud.

This is also expected from one-dimensional Doppler cool-
ing theory [26], which relates the temperature T to the

FIG. 5. Temperature T of the cloud of atoms as a function of
(a) the detuning � and the saturation parameter s for a fixed mag-
netic gradient field ∂Bz/∂z = 10 G/cm and (b) the detuning � and
the magnetic gradient field ∂Bz/∂z for a fixed saturation parameter
s = 2.6.

detuning � and the saturation parameter s,

T = h̄�2

8kB|�|
[

1 + 6s +
(

2�

�

)2]
, (1)

where kB is the Boltzmann constant and h̄ is the reduced
Planck constant.

The temperature of the cloud T has been measured as a
function of the magnetic field gradient ∂Bz/∂z and the detun-
ing � for a fixed saturation parameter s = 2.6 [see Fig. 5(b)].
The gradient does not have a significant influence on the
temperature T , as predicted by the Doppler cooling theory.
In general, the temperatures observed in the experiment are
higher than those predicted by the Doppler cooling theory but
follow the predicted dependence on detuning and the satura-
tion parameter. This behavior was already observed in other
experiments with alkaline-earth(-like) atoms [28–31].

2. Sub-Doppler cooling

We will now explore the lower limit of the temperature
that can be achieved by laser cooling. As discussed above, the
temperature depends only mildly on the gradient field and on
the saturation parameter. Therefore, we fix these parameters
to ∂Bz/∂z = 12.2 G/cm and s = 2.7 for the following study.
The atom cloud has a pronounced oblate shape, and in the
temperature regime studied here, the cloud barely expands be-
yond its initial size in the horizontal direction. Therefore, we
will constrain our analysis to the temperature in the vertical
(z) direction.

033106-5



LAVIGNE, GROH, AND STELLMER PHYSICAL REVIEW A 105, 033106 (2022)

FIG. 6. Temperature T of the atomic cloud as a function of the
detuning �, obtained for a saturation parameter of s = 2.7 and a
fixed magnetic gradient field of ∂Bz/∂z = 12.2 G/cm for several
mercury isotopes. The Doppler limit (dashed line) is the same for
both bosonic and fermionic species.

The temperature of the atomic cloud Tz as a function of
detuning � for two bosonic and two fermionic isotopes is
presented in Fig. 6. Each data point is the weighted average of
at least five time-of-flight sequences. Each sequence is com-
posed of 0.5-ms steps and lasts until the disappearance of the
signal. The temperature of the bosonic species 202Hg (200Hg)
reaches a minimum at 98(2) μK [104(3) μK] at � = −1.6 �

(� = −1.5 �).
To compare our results with the Doppler theory, we now fit

our data with the expression from Eq. (1), where we leave the
saturation s as a free parameter. The model fits the measured
temperatures well, but the derived saturation parameters are
slightly lower [s = 1.5(1) for 200Hg and s = 1.8(1) for 202Hg]
compared to the experimentally measured intensities. This
difference is caused by the non-Gaussian profile of the MOT
beams: when measuring the beam waist to determine the peak
intensity of the beams, and thus the saturation parameter, we
assume the beam shape is Gaussian. Degradation of the optics
is proportional to the intensity and results in increased atten-
uation in the center of the beam. The beam profile acquires
a flat top, which leads us to systematically overestimate the
peak intensity.

In summary, we confirm that the cooling mechanism of
bosonic mercury isotopes is properly described by Doppler
theory [12]. The lack of degenerate ground states (I = 0)
precludes sub-Doppler cooling mechanisms. This situation is
different for the fermionic isotopes 199Hg and 201Hg, which
do possess multiple Zeeman substates and indeed show tem-
peratures substantially lower than their bosonic counterparts.

The cloud of 199Hg atoms has a temperature ∼40 μK for
a detuning between 2� and 3�. Above 3�, the temperature
increases. The 201Hg atoms reach the lowest temperature of
30.9(2.3) μK right at the Doppler temperature TD = 31 μK.

FIG. 7. Radius r of the atomic cloud as a function of (a) the de-
tuning � and the saturation parameter s for a fixed magnetic gradient
field ∂Bz/∂z = 10 G/cm and (b) the detuning � and the magnetic
gradient field ∂Bz/∂z for a fixed saturation parameter s = 2.6.

These two fermionic species undergo Sisyphus cooling, but
there is a subtle difference in the number of Zeeman substates.
Indeed, ground-state-level degeneracy is the key parameter of
sub-Doppler cooling because it affects the velocity capture
range [29]. Thus, the richer atomic structure of 201Hg is an
asset to reach lower temperatures than 199Hg. Mercury ap-
pears to be a promising system to study the interplay between
Doppler and sub-Doppler cooling mechanisms [32,33].

D. Cloud size and atomic density

1. Cloud size and Doppler theory

The cloud radius is an important parameter when studying
the performance of a MOT. From the same measurements
used to generate Fig. 3(a), we extract the radius r =√

rx
2 + rz

2 of the atomic cloud as a function of detuning �

and saturation parameter s (see Fig. 7). We observe that the
cloud size increases with detuning, it decreases with mag-
netic field gradient, and it is rather independent of the light
intensity.

Considering the good agreement of the 1D Doppler theory
for the bosonic species, we will compare the predicted radius
of the cloud with our data in the z direction (see Fig. 8). Using
the equipartition theorem, the radius r and temperature T of
the cloud are related through

1

2
κr2 = 1

2
kBT . (2)
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FIG. 8. Radius rz of the cloud of atoms as a function of the
detuning � with s = 2.7 and ∂Bz/∂z = 12.2 G/cm for several mer-
cury isotopes. The black line shows the Doppler theory prediction,
assuming s = 1.5 as determined from the temperature measurement.

Here, kB is the Boltzmann constant, and κ is the trap-spring
constant, which can be expressed as

κ = 8k|�|
�

s(
1 + 6s + (

2�
�

)2
)2 g jμB

∂Bz

∂z
, (3)

where μB is the Bohr magneton, g j is the Landé factor of the
excited state, and k is the photon wave vector [26].

Combining Eqs. (1), (2), and (3), we can obtain an expres-
sion for the radius of the cloud:

rz =

√√√√√ h̄�3

64�2k g jμB

[
1 + 6s + (

2�
�

)2
]3

s

(
∂Bz

∂z

)−1

. (4)

The dependence of cloud size on detuning is shown in
Fig. 8: the cloud radius grows with the detuning. Moreover,
the size of the cloud is largely independent of the atom num-
ber.

The radius in the vertical dimension is similar to the the-
ory prediction for s = 1.5, as derived from the temperature
measurement in Fig. 6. Using the experimentally determined
saturation parameter of s = 2.7 provides around a 20% lower
predicted radius than measured. Related studies have observed
larger-than-expected cloud sizes as well [12]. The simple
Doppler theory does not properly describe the experimental
data. The discrepancy is likely explained by inhomogeneous
and non-Gaussian beam profiles, as well as the effective re-
pulsion between atoms from reabsorption of the cooling light.

2. Atomic density

We assume the atoms follow a three-dimensional Gaussian
density distribution with a peak density n = N/(2π )3/2rxryrz,
where ri is the cloud radius in direction i. This assumption is

FIG. 9. Atomic density n of the atomic cloud as a function of
(a) the detuning � and the saturation parameter s for a fixed mag-
netic gradient field ∂Bz/∂z = 10 G/cm and (b) the detuning � and
the magnetic gradient field ∂Bz/∂z for a fixed saturation parameter
s = 2.6.

valid in the low-density regime and supported by absorption
images with a very short time of flight. To maximize the
density, we identify an optimum detuning near � = −� [see
Fig. 9(a)]. The density favors large gradient fields and mild
saturation parameters. The highest densities of the bosonic
isotope 202Hg are observed for a gradient field between 10
and 15 G/cm and reach a value of n202 = 1.1(5) × 1011 cm−3.
Increased loss mechanisms, such as light-assisted inelastic
collisions [34], as well as photon reabsorption [35], lead to
a saturation of the density for even higher gradient fields.

E. Phase-space density

The phase-space density ρ is the relevant quantity in the
context of degenerate quantum gases [36]; it combines the
atomic density n and the thermal de Broglie wavelength 	.
It is expressed as

ρ = n	3 = n

(
h̄
√

2π√
mkBT

)3

, (5)

where kB is the Boltzmann constant, h̄ is the reduced Planck
constant, and m is the mass of an atom.

The dependence of the phase-space density ρ on the detun-
ing � and the saturation parameter s is shown in Fig. 10(a).
The highest phase-space density is obtained for low satu-
ration parameters s � 1, which avoids heating of the cloud
through reabsorption of scattered photons. In terms of detun-
ing, adjusting the frequency of the laser close to resonance is
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FIG. 10. Phase-space density ρ of 202Hg as a function of (a) de-
tuning � and the saturation parameter s for a fixed magnetic field
gradient ∂Bz/∂z = 10 G/cm and (b) as a function of detuning �

and magnetic gradient field ∂Bz/∂z at a fixed saturation parameter
of s = 2.6.

beneficial to minimize the cloud temperature. Thus, favoring
cooling over the atom number is the best strategy to maximize
the phase-space density. In our experiment, a detuning of
� ≈ −� provides the highest phase-space density.

Moreover, the phase-space density grows with the gradient
of the magnetic field [see Fig. 10(b)] as the trap volume
is reduced. The highest phase-space density for the bosonic
isotope 202Hg is ρ202 = 6.4(6) × 10−8, reached at a gradient
field of ∂Bz/∂z = 12.5 G/cm with about 5 × 105 atoms. For
higher gradient fields, we expect that the scattering losses
increase and reduce the phase-space density, as suggested by
the parameters to obtain the highest atom number N in Fig. 3.

For the fermionic isotopes 199Hg and 201Hg, we also per-
form a measurement of the phase-space density as a function

of detuning � and saturation s at a gradient of ∂Bz/∂z =
12.2 G/cm. The picture resembles the bosonic case: the high-
est phase-space densities are obtained for small detuning and
low intensity. Specifically, we obtain ρ199 = 1.6(2) × 10−7

and ρ201Hg = 4.7(4) × 10−7.
These numbers provide a promising basis for dipole trap

loading to further increase the phase-space density. Here, dy-
namic compression and cooling phases could be implemented.
Evaporative cooling, en route to quantum degeneracy, will
increase the phase-space density further.

IV. CONCLUSION

In conclusion, we have presented an in-depth study of laser
cooling of mercury. With more laser power than available
in previous experiments, we scanned the three-dimensional
parameter space of the laser detuning, field gradient, and
laser intensity. An optimum set of parameters allowed us to
increase the number of trapped atoms by about an order of
magnitude compared to previous studies. Inhomogeneities in
the laser’s mode profile reduce the cooling performance and
lead to a discrepancy between the calculated and measured
temperatures and MOT size in dependence of laser intensity.
We showed that sub-Doppler cooling for the two fermionic
isotopes closely follows theoretical expectations. We obtained
phase-space densities of the order of 10−7 which appear to
be a solid basis for dipole trap loading. It is interesting to
note that the phase-space density obtained with the fermionic
isotopes is about an order of magnitude larger than for the
bosonic counterparts: clearly, the sub-Doppler cooling mech-
anisms overcompensate for the smaller capture efficiency.
Work towards quantum degeneracy would benefit from the
implementation of a Zeeman slower or 2D MOT to reduce
the background pressure and improve the loading rate.
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