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Polarization dependence of atomic high-order harmonic generation:
Description using a discrete basis
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The optical generation of high-order harmonics is known to have a strong polarization dependence: In contrast
to linearly polarized excitation, circularly polarized light induces practically no harmonics. In the current
paper we focus on atomic targets, the case when a well-established physical picture explains the effect: For
circular polarization, the photoionized electrons never return to their parent nuclei, and the energy they gained
while being accelerated by the field is not transferred into high-order harmonic radiation. This is essentially
a picture that is based on real-space electron trajectories (or the dynamics of the wave functions). Here, we
provide an alternative description that uses the discrete Sturmian basis, and points out how quantum mechanical
interference effects and selection rules can explain the polarization dependence of the process. This emphasizes
the importance of space-time symmetries during the process of high-order harmonic generation.
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I. INTRODUCTION

The highly nonlinear process of generating the high-order
harmonics of the central frequency corresponding to a strong
optical excitation has already been detected using various
physical systems as the target material [1–5]. Besides its own
importance in deepening our understanding of the underly-
ing strong-field mechanisms, the phenomenon is fundamental
also in laser technology: The emergence of short (even at-
tosecond domain) bursts of electromagnetic radiation is based
on the appropriate superposition of the harmonics [6,7]. For
gaseous samples, the physical mechanisms that are responsi-
ble for the appearance of the harmonics can be understood
using a clear, transparent interpretation in terms of the two- or
three-step models and their generalizations [8–10]. In short,
atomic electrons leave the vicinity of the nuclei as driven by
the laser field, accelerate in the field, and in the next optical
half cycle, when they return, a part of the energy they gained
is transferred to high-order harmonics that are being emitted.

In this picture, the polarization dependence of the high-
order harmonic generation (HHG) process is clear: When
the exciting field is circularly polarized, the classical elec-
tron trajectories never return to the nuclei, leading to the
absence of high-order harmonic (HH) radiation. A similar re-
sult can be obtained using a quantum mechanical description,
when the electrons’ dynamics driven by the time-dependent
Schrödinger equation show a negligible overlap of the bound
and free parts of the wave functions for circular polarization.
In fact, the finite spatial extension of the electronic wave
packet can explain the gradual disappearance of the high-
order harmonics as the degree of ellipticity increased [11,12]
(in contrast to results that are based on classical trajectories
and predict a sudden transition). The “threshold ellipticity”

[the full width at half maximum (FWHM) of this decay]
has also been defined, calculated, and measured [13–17]. For
targets larger than single atoms it is interesting to see whether
the recombination that is responsible for the generation of
the HH radiation still happens locally, or more atoms play
a significant role in the process [18]. The understanding of
these results is essentially based on a description in the real,
three-dimensional space, where a point r describes either the
time-dependent position of an electron, or the argument of the
corresponding wave function.

However, in a quantum mechanical description, position
representation is not the only possibility, as we have the
freedom to use, e.g., a different, discrete basis. This can
provide complementary information, by telling us what quan-
tum mechanical effects lead to the absence of harmonics for
circularly polarized exciting fields. As the three-step model
shows, the continuum part of the spectrum plays an essen-
tial role here, therefore the traditional hydrogenlike bound
eigenstates cannot provide an appropriate description. Instead
of complementing this set using eigenstates that correspond
to the continuum, in the following we apply Sturmian states
[19,20], which also form a true basis containing both parts
of the spectrum. Expanding the dynamical equations in this
basis, we can identify the quantum numbers that determine the
polarization dependence of the HHG process. Clearly, each
member of the Sturmian basis corresponds to a well-defined
wave function, thus our results are physically equivalent to the
usual description in real space. The most important benefit
of the method to be described in the following is that it
can straightforwardly reveal symmetry-related, fundamental
aspects of the polarization dependence of HHG.

In the current paper we focus on hydrogenlike systems.
First, in Sec. II, the properties of the Sturmian basis are
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summarized briefly, then, in Sec. III, we show that the known
polarization dependence of the HHG process can be recov-
ered using this basis. In Sec. IV, analytic calculations are
presented that explain the quantum mechanical reasons for the
observed polarization dependence. Conclusions are drawn in
Sec. V.

II. DYNAMICAL EQUATIONS AND THE STURMIAN BASIS

The Hamiltonian describing the interaction of a hydrogen-
like atom and an external laser pulse is given by

H (t ) = H0 + V (t ), (1)

where H0 denotes the atomic Hamiltonian that has the well-
known bound states usually labeled by the quantum numbers
n, l , and m. Using a length gauge and dipole approxima-
tion, the interaction with the electric field of the laser can be
written as

V (t ) = −DE(t ), (2)

where D denotes the (three-component) dipole moment oper-
ator of the atom. In the following we assume that the exciting
field is polarized in the x-y plane, i.e., Ez = 0. For elliptically
polarized excitation, we use

Ex = E0(t ) cos ωt cos θ, Ey = E0(t ) sin ωt sin θ, (3)

where the envelope E0(t ) changes slowly on the timescale
determined by the cycle time that can be calculated using
the central frequency, i.e., T = 2π/ω. The angle θ provides
a continuous transition between x-direction linear (θ = 0),
circular (θ = π/4), and y-direction linear (θ = π/2) polar-
izations. [The parameter ε (ellipticity: the ratio of the minor
and the major axes of the polarization ellipse) that was used,
e.g., in Refs. [13,14,18], is given by tan θ for θ ∈ [0, π/4]
and by cot θ for θ between π/4 and π/2.] Clearly, Eq. (3)
is not the most general possible expression, but for an initial
state that is spherically symmetric, it is only the degree of the
ellipticity and not the orientation of the polarization ellipse
that is relevant. Using Eq. (3), we can investigate the ellipticity
dependence of the process of HHG—and can also check the
accuracy of our numerical approach by monitoring the orien-
tation independence.

Let us note that Eq. (2) uses dipole approximation and
it also means a specific choice of the electromagnetic gauge
(namely, the length gauge). The latter fact is not crucial from
the viewpoint of the following results, since the selection rules
that will be considered are gauge independent. The two facets
of dipole approximation, i.e., neglecting both the spatial de-
pendence of the electric field and the influence of the magnetic
field, can be summarized as assuming a vector potential that
has weak spatial dependence [21] on the characteristic length
scale of the interaction. The latter is not trivial to identify
during the process of HHG, e.g., the spreading of the elec-
tron wave packet that escaped the atom also has to be taken
into account [21,22]. However, considering all these aspects,
we can conclude that for the parameter range considered in
the following, the dipole approximation provides an accurate
description of the problem.

In the following, we solve the time-dependent Schrödinger
equation induced by the Hamiltonian (1). To this end,

we apply Sturmian states as a basis. Due to the spher-
ical symmetry of the problem, it is convenient to use
spherical coordinates (r, ϑ, φ). With this notation, the
wave functions corresponding to the Sturmian states read
[19,20]

Sα
n,l,m(r, ϑ, φ) =α3/22l+1e−αr

(2l + 1)!

√
(l + n)!

n(−l + n − 1)!
(αr)l

1F1

× (l − n + 1; 2l + 2; 2αr)Ym
l (θ, φ). (4)

Here, Ym
l (θ, φ) and 1F1(l − n + 1; 2l + 2; 2αr) denote the

spherical harmonics and the generalized hypergeometric func-
tion, respectively. The functions (4) span the complete Hilbert
space of the problem, including both bound states with nega-
tive energies as well as states in the continuum corresponding
to positive energies. This holds for all values of α. For the sake
of definiteness, we use α = 1 in the following, and omit its
explicit notation. The orthogonality relation for the Sturmian
functions reads

〈Sn,l,m|Sn′,l ′,m′ 〉 =
∫

S∗
n,l,m(r)

1

r
Sn′,l ′,m′ (r)d3r

= δnn′δll ′δmm′ , (5)

i.e., the weight function of 1/r has to be inserted in the
integrals [20]. In order to perform calculations using the Stur-
mian basis, the matrix elements of H0 and V (t ) have to be
evaluated using the inner product above. For example, for the
x component of D = er we need the matrix elements

X n′l ′m′
nlm =〈Sn,l,m|X |Sn′,l ′,m′ 〉

=
∫

S∗
n,l,m(r)

x

r
Sn′,l ′,m′ (r)d3r

=
∫ 2π

0

∫ π

0

∫ ∞

0
S∗

n,l,m(r, ϑ, φ) sin ϑ cos φ

× Sn′,l ′,m′ (r, ϑ, φ)r2 sin ϑdrdϑdφ. (6)

(Note that using both subscripts and superscripts is just a
matter of convenience here, and e denotes the charge of
an electron, including the sign.) For numerical calculations,
the number of the Sturmian functions that we can use is
obviously finite. For the expansion of energy eigenstates cor-
responding to the principal quantum numbers of n = 1, 2,
and 3, only a few Sturmian states are needed. In the fol-
lowing, the lowest-energy eigenstate (the ground state) will
be the initial state of the time evolution. We also checked
the convergence of the dynamics, i.e., increased the size of
the truncated Sturmian basis until the results did not change
observably.

III. POLARIZATION DEPENDENCE OF THE
HHG SPECTRA

Having obtained the matrix elements of the Hamilto-
nian (1) in the Sturmian basis, we can calculate the time
evolution induced by external fields with peak intensities
in the 1012-1014 W/cm2 range. That is, we determine
the time -dependent coefficients in the expansion |
〉(t ) =∑

cnlm(t )|Sn,l,m〉, with the initial state being one of the
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FIG. 1. Power spectra of 〈Dy〉(t ) for different values of θ in
Eq. (3). The ellipticity is ε = 1 for the top panel and it gradually
decreases to zero (bottom panel). Note that the scale of the vertical
axis is logarithmic. Parameters: E0 = 0.025 (atomic units), central
wavelength λ = 800 nm, τ/T = 50, which corresponds to approxi-
mately 18 optical cycles (intensity FWHM).

eigenstates |n, l, m〉. The time-dependent Schrödinger equa-
tion using this basis reads

ih̄
d

dt
cnlm(t ) =

∑
n′,l ′,m′

Hn′l ′m′
nlm (t )cn′l ′m′ (t ). (7)

FIG. 2. The height of the ninth harmonic peak as a function of
the amplitude of the exciting field E0. The central wavelength is λ =
800 nm, τ/T = 50, which corresponds to approximately 18 optical
cycles (intensity FWHM). Note that the scale of the vertical axis is
logarithmic.

For the temporal envelope of the exciting field we use the
following,

E0(t ) = E0 sin2 πt

τ
, (8)

provided t ∈ [0, τ ], and zero otherwise. In order to ob-
tain strong, well-defined high-order harmonic peaks in the
spectra, we focus on multicycle pulses, i.e., to the range
τ � 2π/ω = T . In the numerical calculations we consider a
realistic λ = T c = 800 nm central wavelength.

As expected, when the initial atomic state is the spherically
symmetric ground state, the time evolution (and consequently
the power spectra) of the dipole moment operators is also
symmetric: 〈Dx〉(t ) for a given θ [see Eq. (3)] is numerically
the same as 〈Dy〉(t ) for θ ′ = π/4 − θ , which corresponds to
the same ellipticity but different orientation of the polariza-
tion ellipse. Therefore it is sufficient to consider the power
spectra of, e.g., 〈Dy〉(t ) for θ ∈ [π/4, π/2]. As we can see in
Fig. 1, changing the excitation from a linearly to elliptically
and finally to a circularly polarized field, leads to the gradual
disappearance of the high-order harmonic peaks in the power
spectra of the secondary radiation emitted by the atom. All
these results are in agreement with the expectations as well as
with known experimental results, and thus confirm the validity
of this model.

Figure 1 corresponds to a single amplitude of the exciting
field, but calculations for different values of E0 were also per-
formed (see Fig. 2), which—as an example—shows the height
of a single HH peak (the ninth one) for both linearly and
circularly polarized excitations. As we can see, the HH signal
is always weaker for circularly polarized excitation than for
the linear case. In fact, although the former is also increasing
with E0, it is practically on the level of the numerical noise. On
the other hand, for linearly polarized excitation, the increase
of the HH signal is pronounced, and the difference between
the multiphoton and tunnel ionization regimes can also be
seen. (The strongest field amplitude in the figure corresponds
to a Keldysh parameter slightly below 0.8.) When the external
field is strong enough to induce observable HH radiation, there
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is a several orders of magnitude difference between the signals
for linearly and circularly polarized excitations.

Although it is clearly not an effective way of generating
elliptically polarized HH radiation, it is interesting to note
that for elliptically polarized excitation, when HH peaks are
observable, the high-order harmonic radiation is also ellip-
tically polarized. Details of the methods that can efficiently
generate elliptically or circularly polarized harmonics can be
found, e.g., in Refs. [23–27].

For the case of precisely circularly polarized excitation, it
is instructive to investigate, whether the high-order harmonics
are completely absent (there is nothing that oscillates at these
frequencies during the quantum mechanical time evolution)
or it is just the measurable secondary radiation that contains
no harmonics. Our calculations are in accord with the second
case: The power spectra of the coefficients cnlm(t ) show clear
signatures of the HH peaks. This means a certain presence of
the HH frequencies, which are, however, not being radiated.
The reasons for that will be shown in the next section.

IV. EXPLAINING THE RESULTS USING THE
STURMIAN BASIS

The interaction Hamiltonian for circularly polarized exci-
tation corresponds to the cases of θ = π/4 mod π in Eq. (3).
In the following we choose θ = π/4 (“left circular polariza-
tion”):

Ex = E0(t )√
2

cos ωt, Ey = E0(t )√
2

sin ωt . (9)

This leads to the following expression for the interaction term
in Eq. (1),

V (t ) = −e
E0(t )√

2
(X cos ωt + Y sin ωt ), (10)

where coordinate operators appear on the right-hand side.
Note that all the calculations below can be repeated with
straightforward modifications for right circular polarization.
Let us introduce

X± = X ± iY, (11)

which satisfy X †
± = X∓. These operators allow us to rewrite

Eq. (10) as

V (t ) = −eE0(t )

2
√

2
(X+e−iωt + X−eiωt ). (12)

The matrix elements of X± and the selection rules in the
Sturmian basis can be determined using the fact that the ori-
entation dependence of the Sturmian functions is the same as
that of the usual hydrogen eigenfunctions, i.e., orbital angular
momentum eigenfunctions Ylm(θ, φ) appear in both cases. In
view of this, we have

〈Sn,l,m|X+|Sn′,l ′,m′ 〉 = 0, (13)

unless m′ = m − 1. Similarly, the matrix elements
〈Sn,l,m|X−|Sn′,l ′,m′ 〉 are nonzero, only if m′ = m + 1. (The
simplest way of proving this is using the commutation
relation [Lz, X±] = ±h̄X± combined with fact that
Lz|Sn,l,m〉 = h̄m|Sn,l,m〉. Since the same calculation can
be carried out using the components of the momentum

operator instead of that of position, we can explicitly see that
the selection rules are the same using both the length and
velocity gauges.)

For the sake of simplicity, let us consider monochromatic
excitation [E0(t ) = E0] from now on. In this case it is worth
introducing a time-dependent Sturmian-Floquet basis [28],

|Sn,l,m; k〉 = |Sn,l,m〉|k〉 = |Sn,l,m〉eikωt , (14)

with k being an integer (and |k〉 is simply an abstract notation
for exp ikωt that was introduced to simplify the equations to
come). Since for constant E0 the Hamiltonian is periodic in
time (with a cycle time of T = 2π/ω), general results [29]
tell us that the solutions of the corresponding time-dependent
Schrödinger equation can be searched in the following
form,

|ϕ j〉(t ) = e−i
ε j
h̄ t |u j〉(t ), (15)

where the Floquet states satisfy |uj〉(t ) = |u j〉(t + T ). The
set {|ϕ j〉(t )} can be considered to form a time-dependent
basis, and by superposition, the states |ϕ j〉(t ) can be used
to construct any solution of the time-dependent Schrödinger
equation. In principle, the corresponding linear combinations
contain infinite terms, but for practical purposes, the sum
can be truncated. The standard way of finding the states |uj〉
and the Floquet quasienergies ε j is by solving the eigenvalue
equation HF |u j〉 = ε j |u j〉, where the Floquet Hamiltonian
HF does not depend on time, and can be defined via its
action,

HF |Sn,l,m; k〉 = [(H0 + kh̄ω)|Sn,l,m〉]|k〉 − eE0

2
(X+|Sn,l,m〉

× |k − 1〉 + X−|Sn,l,m〉|k + 1〉). (16)

The selection rules together with the form (12) of V (t )
lead to the conservation of the sum of the indices m and
k. (Since H0 changes none of these indices, it trivially con-
serves m + k.) This means that the Floquet Hamiltonian above
has invariant subspaces that can be labeled by N = m + k.
That is, the eigenvalue problem of HF decomposes to sets
of equations HF |u j,N 〉 = ε j,N |u j,N 〉, that are independent for
different values of N . Different values of N , however, do
not provide physically different solutions: As we can see
easily, although |uj,N 〉(t )eiωt and ε j,N + h̄ω correspond to the
subspace labeled by N + 1 (i.e., they can be identified with
|uj,N+1〉(t ) and ε j,N+1), the time-dependent Floquet solutions
exp(−iε j,N )|u j,N 〉 and exp(−iε j,N+1)|u j,N+1〉 are the same.
Therefore it is sufficient to consider a single value of N ,
which, for the sake of simplicity, can be zero. That is, a
general solution of the original time-dependent Schrödinger
equation can be written as

|
〉(t ) =
∑

j

e−i
ε j
h̄ t

∑
n,l,m

α
j
n,l,m|Sn,l,m〉|k = −m〉, (17)

where the coefficients α are to be determined using the initial
conditions. Equation (17) shows that the condition k = −m
means that the spatial and temporal parts of the state are entan-
gled. Now let us calculate the expectation value of the dipole
moment operator in this general solution. As an example, for
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the x component, we have

〈Dx〉(t ) =e
∑

j,n,l,m

∑
j′,n′,l ′,m′

ei
ε j −ε j′

h̄ t+i(m−m′ )ωt

× X n′l ′m′
nlm α

j′
n′,l ′,m′

(
α

j
n,l,m

)∗
. (18)

On the other hand, X = (X+ + X−)/2 has nonzero matrix
elements only if m′ = m ± 1. That leads to time-dependent
factors of exp(i

ε j−ε j′
h̄ t + iωt ) and exp(i

ε j−ε j′
h̄ t − iωt ). Since

generally the difference
ε j−ε j′

h̄ is not an integer multiple of
the exciting frequency ω, we see that high-order harmonics
are completely missing from the spectrum. [The expression
for 〈Dy〉(t ) is similar to Eq. (18).]Let us recall that the terms
|k = −m〉 in Eq. (17) mean exponential factors exp imωt , i.e.,
the presence of high-order harmonics in the general solu-
tion |
〉(t ). On the other hand, when the expectation values
〈Dx〉(t ) and 〈Dy〉(t ) are calculated, the selection rules and the
spatiotemporal entanglement lead to the disappearance of the
harmonics.

It is interesting to note that the expression (12) is formally
analogous to the light-matter interaction term that appears
in the classical Rabi problem (or a two-level atom in a
monochromatic classical external field) with the usage of the
rotating-wave approximation (RWA) [30]. [Formally, apart
from the prefactors, the Rabi interaction term can be obtained
by replacing X± by σ± in Eq. (12), where σ+ (σ−) represents
an upward (downward) atomic transition.] Using RWA, the
problem is analytically solvable, and we recall that no high-
order harmonics appear in this case, independently from the
amplitude of the driving field. Let us also note that RWA is
exact for the Rabi problem in the case of circularly polarized
exciting field. This means that there are no high-order har-
monics for circularly polarized excitation—already in a model
as simple as a two-level atom.

It is also worth considering an analogy with the case of a
two-level atom in a quantized, single-mode electromagnetic
field, i.e., with the Jaynes-Cummings-Paul model [30]. Note
that the quantum optical description of the process of HHG
has recently gained considerable attention. For experimental
results, see Refs. [31,32], while theoretical models can be
found, e.g., in Refs. [33–36]. In this picture, the Hamiltonian
for circularly polarized excitation reads

Hq = h̄ωa†a + H0 − eE0(X+a + X−a†), (19)

where a and a† denote the annihilation and creation operator

of the circularly polarized mode, and E0 =
√

h̄ω
ε0V , with V

being the quantization volume and ε0 denoting the vacuum
permittivity. The last term in this Hamiltonian [the quantized
version of Eq. (12)] is very instructive: The conserved quan-
tity now is the sum of the photon numbers in the exciting
field and the atomic angular momentum index m. However,
for circular excitation (with the helicity corresponding to the
case we investigated so far), each photon carries an angular
momentum of h̄. Considering this, and the selection rules for
X±, the term X+a + X−a† simply expresses the conservation
of angular momentum: In line with the creation of a photon
with helicity of h̄, the atomic orbital angular momentum is
decreased by the same amount, and vice versa. In view of
this, it is a fundamental conservation law that hinders the
appearance of high-order harmonics for circularly polarized
excitation.

Let us note that the results of the current section were
obtained by assuming a monochromatic external field, which
is clearly an approximation when we consider excitations with
laser pulses. However, for long, many-cycle pulses, our results
are in complete agreement with the numerical calculations of
the previous section as well as with experimental results.

V. CONCLUSIONS

We considered the process of atomic high-order harmonic
generation, and introduced a description that is complemen-
tary to the usual, real-space picture. Instead of focusing on the
position dependence of the wave functions, we expanded the
dynamical equations in the Sturmian basis. This allowed us
to point out that it is essentially the conservation of angular
momentum that is responsible for the absence of the high-
order harmonics for circularly polarized excitation.
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