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Photoexcitation of atoms by cylindrically polarized Laguerre-Gaussian beams
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We analyze the photoexcitation of atoms with a single valence electron by cylindrically polarized Laguerre-
Gaussian beams. Theoretical analysis is performed within the framework of first-order perturbation theory and by
expanding the vector potential of the Laguerre-Gaussian beam in terms of its multipole components. For cylindri-
cally polarized Laguerre-Gaussian beams, we show that the (magnetic) sub-components of electric-quadrupole
field vary significantly in the beam cross section with beam waist and radial distance from the beam axis.
We discuss the influence of varying magnetic multipole components in the beam cross section on the sublevel
population of a localized atomic target. In addition, we calculate the total excitation rate of electric-quadrupole
transition (4s 2S1/2 → 3d 2D5/2) in a mesoscopic target of a Ca+ ion. These calculations shows that the total rate
of excitation is sensitive to the beam waist and the distance between the center of the target and the beam axis.
However, the excitation by a cylindrically polarized Laguerre-Gaussian beam is found more efficient in driving
electric-quadrupole transition in the mesoscopic atomic target than the circularly polarized beams.
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I. INTRODUCTION

The pioneering work of Allen and co-workers [1] in 1992
showed that the twisted light beam possesses orbital angular
momentum (OAM). Since then, research on twisted light (or
vortex) beams has been a burgeoning research area in the
scientific community [2–5]. The existence of an extra an-
gular momentum in the vortex beam is associated with an
azimuthally varying phase of the beam [6]. The presence
of OAM in the twisted light beams makes it very suitable
for a number of applications such as high harmonic gener-
ation [7] and optical tweezers [8]. Moreover, twisted light
beams have been utilized as alphabets to encode informa-
tion beyond one bit per single photon [9]. This makes the
Laguerre-Gaussian (LG) beams a promising candidate for
high-dimensional quantum information [10], quantum mem-
ories [11], and quantum cryptography [12].

Atomic processes with twisted light beams, such as pho-
toionization of atoms [13–15] and the scattering of twisted
light beams by ions [16] or electrons [17] have also gained
much attention. In addition to photoionization and scattering
processes, the photoexcitation of atoms [18–20] by twisted
light beams has attracted much interest in recent years. In
a recent experiment, Schmiegelow et al. [21] observed for
the first time the transfer of OAM from LG beams to the
bound electrons of an atom during the excitation process. This
experiment investigated the electric-quadrupole transition in
the Ca+ ion positioned on the beam axis and demonstrated
the suppression of ac-Stark shift in the dark center of the
LG beams. Later, a theoretical study [22] showed that the
OAM is imprinted in the magnetic sublevel population and
fluorescence following the excitation by a twisted light beam.

In contrast to the plane waves, twisted light beams support
many different states of polarization, such as cylindrical po-
larization. However, photoexcitation of atoms by cylindrically
polarized LG beams remains less explored. In this work, we
analyze the multipole distribution of the cylindrically polar-
ized LG beams and thus discuss its influence on the magnetic
sublevel population in the target atom. Furthermore, for a
target with Gaussian spatial distribution we calculate the total
rate of excitation. Our calculation shows that the cylindrical
polarization is more efficient than circular polarization in
driving the electric-quadrupole transition in the target atoms.
As an example, we consider the electric-quadrupole transition
4s 2S1/2 → 3d 2D5/2 in the Ca+ ion. This particular transition
has already been observed in the past experimental, as well as
studied in theoretical works and thus serves as an ideal case
for a comparison of our theoretical work.

This paper is structured as follows. In Sec. II A we first
recall circularly polarized LG beams. We then use the knowl-
edge of circularly polarized LG beams to understand the
cylindrical polarization and to construct the vector potential of
cylindrically polarized LG beams in Sec. II B. Moreover, we
expand the vector potential of a LG beam into its multipole
components to obtain complex weight factors for a given
polarization in Sec. II C. In Sec. II D we use the multipole ex-
pansion of vector potential to derive the transition amplitude
for the photoexcitation of atoms by cylindrically polarized LG
beams. We evaluate the strength of the electric-quadrupole
field in the beam cross section of a radially polarized LG beam
with respect to a circularly polarized LG beam in Sec. III A.
Furthermore, in Sec. III B we analyze the distribution of the
projection of an electric-quadrupole field in the beam cross
section with respect to the beam waist wo and radial distance
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b from the beam axis of cylindrically polarized LG beams.
In the first part of Sec. III C we illustrate the photoexcita-
tion of a well-localized target by cylindrically polarized LG
beams and in the second part we calculate the total rate of
excitation for the electric-quadrupole transition between the
4s 2S1/2 → 3d 2D5/2 state in the Ca+ ion target with a Gaus-
sian spatial distribution. Finally, a summary of the paper is
given in Sec. IV.

II. THEORETICAL BACKGROUND

A. Circularly polarized LG beams

LG beams are paraxial twisted light beams whose ampli-
tude distribution u(r) is known to satisfy the paraxial wave
equation [23]

∇2u + 2ik
∂

∂z
u = 0. (1)

This paraxial wave approximation is valid, if the amplitude
distribution u(r) changes slowly with the distance z and this
z dependence is less compared to variations of u(r) in the
transverse direction:
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In cylindrical coordinates the amplitude distribution of the LG
beam is given by
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where m� is the projection of the OAM upon the propagation
axis, p is the radial index of the LG beam, zR is the (so-called)
Rayleigh range, and w(z) is the beam width of the LG beam.
The beam width w(z) of the LG beam varies along the prop-
agation distance and is minimum for z = 0. This minimum
beam width of a LG beam is known also as beam waist wo

≡ w(z = 0). Moreover, Eq. (3) can be used to obtain the
intensity distribution |u(r)|2 of the LG beam which exhibits
a concentric ringlike structure in the beam cross section.

The wave amplitude of the circularly polarized LG beam
in momentum space is expressed as a Fourier transformation
of the amplitude distribution (3). Then the vector potential of
a circularly polarized LG beam in Coulomb gauge is given by
(see [22] for a detailed derivation)

A(circ)
m�,λ,p(r) =

∫
d2k⊥vpm�

(k⊥)ei(m�+λ)φk ek,λeik·r, (4)

where vpm�
(k⊥)ei(m�+λ)φk is the momentum space

wave function and ek,λeik·r is the vector potential
of a circularly polarized plane wave. In the above
equation momentum space wave function vpm�
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As seen from Eq. (4), the LG beams with circular polarization
can be expressed as a coherent superposition of circularly
polarized plane waves in the momentum space. The momen-
tum vector k of these plane waves lies on the surface of
a cone in the momentum space with an opening angle of
θk = arctan(k⊥/kz ).

B. Cylindrically polarized LG beams

Cylindrically polarized LG beams can be constructed as
a linear combination of two circularly polarized LG modes
[24]. This results in nonseparable spatial and polarization
modes [25]. As a consequence of nonseparable spatial and
polarization modes, the state of polarization across the beam
cross section in cylindrically polarized LG beams is spatially
inhomogeneous [26]. Beams which are linear combinations of
two LG modes are known as vector beams [27] and constitute
a vector solution to the paraxial wave equation.

Radial and azimuthal polarizations are two special cases of
a cylindrical polarization constructed as a linear combination
of two LG modes with the projection of OAM m� = ±1
and helicity λ = ∓1 [28]. The electric field of the radially
polarized LG beam always points in the radial direction and is
perpendicular to the beam axis [29,30]. The vector potential
of a radially polarized LG beam is constructed as a linear
combination of vector potential of right circularly polarized
A(circ)

m�=−1,λ=1,p(r) and left circularly polarized A(circ)
m�=1,λ=−1,p(r)

LG beams and is given by

A(rad)
p (r) = −i√

2

[
A(circ)

m�=1,λ=−1,p(r) + A(circ)
m�=−1,λ=1,p(r)

]
. (6)

Similarly, the electric field direction of the azimuthally
polarized LG beams is always perpendicular to the radial
direction [30,31] and its vector potential is given by

A(azmth)
p (r) = 1√

2

[
A(circ)

m�=1,λ=−1,p(r) − A(circ)
m�=−1,λ=1,p(r)

]
. (7)

Further, we use the vector potential of the LG beam of a given
polarization to obtain the complex weight factors using the
multipole expansion in the next section.

C. Multipole expansion of a vector potential of the LG beam

A multipole expansion of the radiation field enables us
generally to expand the vector potential in angular momentum
basis [32,33]. Since the intensity distribution of the LG beam
is nonuniform in the beam cross section [34], we perform
multipole expansion of the vector potential of a LG beam at a
radial distance b from the beam axis. That is, when the z axis
is translated by a vector b = bex from the beam axis. Then the
multipole expansion of such a vector potential at a position
b from the beam axis, for a circularly polarized LG beam is
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given by

A(circ)
m�,λ,p(r; b,wo) =

∑
L,M,	

W (circ)
m�,λ,p(L, M,	; b,wo) a	

L,M (r),
(8)

where L and M are the eigenvalues of the total angular
momentum (TAM) and the projection of TAM operators, re-
spectively. The W (circ)

m�,λ,p(L, M,	; b,wo) is the complex weight

factor of the expansion which depends on the radial distance
from the beam axis b, the beam waist wo, projection of orbital
angular momentum m�, the radial index p, and the helicity
λ. The multipole expansion expresses the vector potential
of the LG beam as a linear combination of electric (	 = 1)
and magnetic (	 = 0) multipole components a	

L,M (r). Math-
ematically, a	

L,M (r) are expressed in terms of vector spherical
harmonics of rank L [35,36]. For circularly polarized LG
beams, the complex weight factors are given by
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Using these, we define the complex weight factors for the radially polarized LG beam as

W (rad)
p (L, M,	; b,wo) = −i√

2

[
W (circ)

m�=1,λ=−1,p(L, M,	; b,wo) + W (circ)
m�=−1,λ=1,p(L, M,	; b,wo)

]
, (10)

and for the azimuthally polarized LG beam as

W (azmth)
p (L, M,	; b,wo) = 1√

2

[
W (circ)

m�=1,λ=−1,p(L, M,	; b,wo) − W (circ)
m�=−1,λ=1,p(L, M,	; b,wo)

]
. (11)

With the help of complex weight factors, we can study the strength of the individual multipole components of the radiation
field. Since these complex weight factors depend on the radial distance b and the beam waist wo, we can control the multipole
distribution of the LG beam by carefully choosing b and wo.

D. Interaction of LG beams with the target atom

The transition between the initial |αiJiMi〉 and the final
|α f J f M f 〉 bound states of an atom is given by the transition
amplitude M f i

M f i = 〈α f J f M f |α · A(r)|αiJiMi〉, (12)

where A(r) is the vector potential of either radially polarized
or azimuthally polarized LG beams, α is the Dirac matrix, and
the atomic initial (final) states are characterized by TAM Ji

(Jf ), TAM projection Mi (M f ) quantum numbers, and α refers
to all additional quantum numbers, respectively.

We substitute the multipole expansion of the vector po-
tential of LG beams into Eq. (12) to obtain the transition
amplitude

M f i(b,wo) =
∑

L,M,	

W (L, M,	; b,wo)

× 〈α f J f M f |α · a	
L,M (r)|αiJiMi〉, (13)

where W (L, M,	; b,wo) is the complex weight factor of ei-
ther a radially polarized or azimuthally polarized LG beam.
The rest of the transition amplitude equation is solved using
the Wigner-Eckart theorem [32,33], which gives the transition
amplitude

M f i(b,wo) =
∑

L,M,	

W (L, M,	; b,wo)〈JiMi, LM|Jf M f 〉

× 〈α f J f ||α · a	
L (r)||αiJi〉 (14)

as the product of geometrical and atomic factors. The geo-
metrical properties are described by Clebsch-Gordan (CG) co-
efficients and the complex weight factors W (L, M,	; b,wo).
Similarly, the reduced matrix elements describe the atomic
properties. The atomic excitation process is influenced by both
geometrical and atomic properties. It is clear from the above
Eq. (14) that the transition amplitude depends on the complex
weight factors W (L, M,	; b,wo), which together with the
CG coefficients and reduced matrix elements determine the
amplitudes of the individual transitions.

The transition amplitude of the atomic transition between
two bound states must satisfy the following set of rules, known
as selection rules, given by

Mi + M = M f , (15)

|Jf − Ji| � L � |Jf + Ji|, (16)

πiπ f = (−1)L+p+1. (17)

Here πiπ f are the parity of the initial and final atomic states.

III. RESULTS AND DISCUSSION

A. Distribution of electric-quadrupole field in the beam cross
section of cylindrically polarized LG beams

We now use the complex weight factors
Wm�,λ,p(L, M,	; b,wo) to analyze the distribution of the
electric-quadrupole field in the beam cross section of
cylindrically polarized LG beams. The strength of a
multipole component L, in particular the electric-quadrupole
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FIG. 1. The relative strength of the electric-quadrupole field
Sr (E2) is plotted against the radial distance b from the beam axis
of the LG beam. The top plot shows variation of Sr (E2) for three
different radial indices p = 0, 1, 2. The plot describes the variation
of the strength of the electric-quadrupole field of radial polarization
with respect to circular polarization in the beam cross section of
the LG beam with beam waist of wo = 2.7 μm. The bottom plot
describes the intensity profile of the LG beams with radial index
p = 0, 1, 2.

component (L = 2), in the beam cross section is given
by

∑+L
M=−L |Wm�,λ,p(L = 2, M,	 = 1; b,wo)|2 for a

corresponding polarization of the LG beam. We define
the relative strength of the electric-quadrupole field

Sr (E2) =
∑+L

M=−L |W (circ)
m�,λ,p(L = 2, M,	 = 1; b,wo)|2∑+L

M=−L |W (rad)
p (L = 2, M,	 = 1; b,wo)|2 (18)

as a ratio of strength of the electric-quadrupole field between
circularly polarized and radially polarized LG beams.

In Fig. 1, we plot Sr (E2) against the radial distance b from
the beam axis of a LG beam for different radial index p values
in the top panel and the corresponding intensity profile of LG
beams in the bottom panel. For the radial index p = 0, we
observe the value of Sr (E2) to be greater than 1 near the
beam axis (b ≈ 0) and decreases rapidly to less than 1 as
radial distance b increases. The behavior of the ratio Sr (E2)
indicates that the strength of the electric-quadrupole field is
suppressed near the beam axis of the cylindrically polarized
LG beam. However, for large b values the ratio Sr (E2) is
less than 1, indicating a strong electric-quadrupole field in the
beam cross section of the cylindrically polarized LG beam.

The radial index p of the LG beam modifies the strength
of the electric-quadrupole field in the beam cross section as
described by Fig. 1 for p = 1, 2. Similar to the p = 0 case, the
ratio Sr (E2) is greater than 1 near the beam axis, indicating the
suppression of an electric-quadrupole field near the beam axis
for the cylindrically polarized LG beam. For large b values, we
observe the ratio Sr (E2) to be less than 1 near the dark region
in the beam cross section of the LG beam. The vertical lines
in Fig. 1 are used to denote the corresponding dark region in
the beam cross section of the LG beam with the help of an
intensity profile. In contrast to the p = 0 case, cylindrically
polarized LG beams possess a dominant electric-quadrupole
field with respect to circularly polarized LG beams only near
the dark region in the off-axis region.

The electric-quadrupole component can be associated with
the electric field gradient of the light beam and is responsi-
ble for driving the electric-quadrupole transition in the target
atoms. Therefore, the region in Fig. 1 with a value of Sr (E2)
less than 1 describes a strong electric field gradient region in
the beam cross section of cylindrically polarized LG beams.
This suggests that, if we were to place an atom in such a region
the electric-quadrupole transition would be more efficiently
driven by a cylindrical polarization over a circularly polarized
LG beam.

B. Influence of the beam waist and radial position on the
projection of TAM of LG beams

We shall now discuss the strength of the projection of mul-
tipole component M in the beam cross section of the LG beam
using the complex weight factors. As seen from the complex
weight factors, the multipole distribution of the LG beam
varies with the beam waist wo and the radial distance b from
the beam axis. To understand the variation of the projection
of TAM across the beam cross section, we define the relative
weight of projection of the electric-quadrupole field as

Wr (M ) = |Wp(L = 2, M,	 = 1; b,wo)|2∑+L
M=−L |Wp(L = 2, M,	 = 1; b,wo)|2 , (19)

where |Wp(L = 2, M,	 = 1; b,wo)|2 denotes the modulus
squared of the complex weight factor of a radially or az-
imuthally polarized LG beam.

In Fig. 2, we plot Wr (M ) against the radial distance from
the beam axis b while keeping the beam waist fixed at 2.7
μm [21]. For radially polarized LG beams, on the beam axis
we observe the M = −1 component to be dominant while
the M = 0 component is dominant for the azimuthally polar-
ized LG beam. For large values of b, we notice the M = +1
component to be dominant for both radially and azimuthally
polarized LG beams.

Similarly in Fig. 3, we plot Wr (M ) against the beam waist
wo of the cylindrically polarized LG beam for a fixed b value.
Since we consider a paraxial LG beam, the minimum beam
waist is given by the diffraction limit

w(min)
o = λ√

2π
, (20)

where λ = 729 nm corresponds to the wavelength of the LG
beam used for the driving transition between the 4s and 3d
states of a Ca+ ion [21]. For this beam waist wo = 0.16 μm,
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FIG. 2. The relative weight of the projection of the quadrupole
component Wr (M ) is plotted against the radial distance b from the
beam axis for the radially polarized (top) and the azimuthally polar-
ized LG beam (bottom). In the above plots radial index p = 0 and
the beam waist is fixed to wo = 2.7 μm.

we observe the M = +1 component to be dominant in both
radial and azimuthal polarization. For larger beam waist wo,
the M = −1 and M = 0 components dominate in radially and
azimuthally polarized LG beams, respectively.

Thus, by carefully selecting the beam waist wo and radial
distance b we can control the relative strength of M in the
beam cross section of the LG beam of either radial or az-
imuthal polarization.

C. Photoexcitation of Ca+ ion by LG beams

1. Single ion target

We now illustrate the photoexcitation of a well-localized
target by a cylindrically polarized Laguerre-Gaussian beam
of beam waist wo and radial index p with the help of Figs. 2
and 3 and the selection rule Mi + M = M f . For example,
we consider the electric-quadrupole transition between the
|4S1/2, Mi = −1/2〉 and |3D5/2, M f = ±5/2〉 states in a sin-
gle Ca+ ion driven by cylindrically polarized LG beams of
wavelength 729 nm [21].

For a single Ca+ ion positioned along the beam axis,
a radially polarized LG beam drives the transition between
|4S1/2, Mi = −1/2〉 and the |3D5/2, M f = −3/2〉 magnetic
substate transferring the M = −1 component, as shown in
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FIG. 3. The relative weight of the projection of quadrupole com-
ponent Wr (M ) is plotted against the beam waist wo for the radially
polarized (top) and the azimuthally polarized LG beam (bottom). In
the above plots radial index p = 0 and the radial distance is fixed to
b = 0.5 μm.

Fig. 2. As the radial distance b between the target Ca+ ion and
the beam axis is increased, we observe a transition between
|4S1/2, Mi = −1/2〉 and the |3D5/2, M f = 1/2〉 magnetic sub-
state absorbing M = +1 component. For the target Ca+ ion
positioned in the off-axis region, say, b = 0.5 μm interacting
with a radially polarized LG beam of minimum beam waist
wo = 0.16 μm, we observe a transition between |4S1/2, Mi =
−1/2〉 and the |3D5/2, M f = +1/2〉 magnetic substate ab-
sorbing M = +1 component as shown in Fig. 3. But as we
increase the beam waist wo, the strength of the M = +1
component in the beam cross section of the radially polarized
LG beam decreases rapidly and the strength of the M = −1
component increases. This results in the transition between
the |4S1/2, Mi = −1/2〉 and |3D5/2, M f = −3/2〉 magnetic
substates.

Similar to the above discussion, we can explain the photo-
excitation of a well-localized Ca+ ion and the corresponding
atomic transitions driven by the azimuthally polarized LG
beam.

2. Macroscopic target

The well-localized pointlike target considered in
Sec. III C 1 is an idealistic model and is difficult to realize
in the experimental setups. In experiments, even a single ion
target trapped in Paul traps has a thermal spatial spread [21].
Hence, we now consider the atomic target to have a Gaussian
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FIG. 4. Logarithmic plot of the total rate of excitation for the
electric-quadrupole transition between the 4s 2S1/2 → 3d 2D5/2 levels
of the Ca+ ion driven by a LG beam is plotted as a function of the
width of the target σ for azimuthal (green solid line), radial (brown
dashed line), and circular polarization (blue dotted line). In the top
figure the target is placed on the beam axis bo,x = 0 and in the bottom
figure the target is displaced from the beam axis by bo,x = 2 μm. In
both the plots, radial index p and beam waist wo are kept fixed at 0
and 2.7 μm, respectively.

spatial distribution as observed in the experiments [21,37]
and which is given by

f (b) = 1

2πσ 2
exp

(
− (b − bo)2

2σ 2

)
, (21)

where σ is the width of the target and vector bo = boex ≡ bo,x

is the distance from the beam axis to the center of the target.
For an atomic target with a Gaussian spatial distribution inter-
acting with the Laguerre-Gaussian beams we define the total
rate of excitation as

W LG
f i = 2π

α2

∑
M f

∫
d2b f (b)|M f i(b,wo)|2. (22)

Since we consider a target prepared in a specific magnetic
state Mi, we do not sum and average over all initial states.
As seen from Eqs. (21) and (22) the rate is proportional to the
modulus squared of the transition amplitude and the Gaussian
distribution of the target. The full many-electron transition
amplitude for the electric-quadrupole transition (4s 2S1/2 →
3d 2D5/2) was calculated using the JAC [38] package (and
GRASP [39]).

In Fig. 4 we plot the total rate of excitation for electric-
quadrupole transition as a function of the width of the target
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FIG. 5. Logarithmic plot of the total rate of excitation for the
electric-quadrupole transition between 4s 2S1/2 → 3d 2D5/2 levels of
the Ca+ ion driven by the LG beam is plotted as a function of the
width of the target σ for azimuthal (green solid line), radial (brown
dashed line), and circular (blue dotted line) polarization. In the top
figure the target is placed on the beam axis bo,x = 0 and in the bottom
figure the target is displaced from the beam axis by bo,x = 2 μm. In
both the plots, radial index p and beam waist wo are kept fixed at 0
and 0.16 μm, respectively.

for the beam waist of the cylindrically polarized LG beam
of wo = 2.7 μm. In addition, we show the total rate of ex-
citation for circularly polarized LG beams as a comparison.
The width of the target σ is varied from 0 to a maximum of
0.06 μm as observed in the experiments. For the target placed
on the beam axis, we observe the azimuthally polarized LG
beam to be more efficient in driving the electric-quadrupole
transition for a target with small as well as large width σ .
In the bottom of Fig. 4, we consider the target to be placed
near the maximum intensity region in the beam cross section,
that is, when the x component of bo (bo,x ) = 2 μm. For such
a case, we observe both circular and cylindrical polarization
to have the same W LG

f i for a small width of the target. But as
we increase the width of the target, we observe W LG

f i to de-
crease rapidly for both the cylindrical as well as the circularly
polarized LG beam. However, for larger width of the target
we notice W LG

f i to be more for cylindrical polarization than
for circular polarization. As shown in Fig. 1 the strength of
the electric-quadrupole field for the cylindrically polarized LG
beam increases as we move away from the beam axis, hence
we obtain a maximum W LG

f i than circular polarization.
In Fig. 5 the variation of the total rate of excitation is

plotted as a function of the width of the target placed in the
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center of the beam and displaced from the beam axis for the
minimum possible beam waist wo = 0.16 μm. Similar to the
case for beam waist wo = 2.7 μm, we observe the azimuthal
polarization to have a maximum total rate of excitation when
compared to circular and radial polarization as shown in the
top figure. In contrast to the beam waist wo = 2.7 μm, we
observe a higher total rate of excitation for radial polarization
when we consider wo = 0.16 μm. For the target placed in the
region of maximum intensity, we observe that both radial and
azimuthal polarization yield the same total rate of excitation.
Furthermore, we can observe that the W LG

f i for cylindrical
polarization is significantly more than circular polarization
when the target is placed in the maximum intensity region of
the beam with beam waist wo = 0.16 μm.

IV. SUMMARY

We have theoretically investigated the photoexcitation of
atoms by LG beams especially for cylindrical polarization. To
do so, we constructed the complex weight factor of cylindri-
cally polarized LG beams as a linear combination of complex
weight factors for circular polarization. We analyzed the
strength of the electric-quadrupole field across the beam cross
section of cylindrically polarized LG beams. We observed that
the strength of the electric-quadrupole field of cylindrical po-
larization is maximum away from the beam axis. In addition,
we observed that the strength of the electric-quadrupole field

in the beam cross section is sensitive to the radial index p
of the LG beam. The variation of the magnetic component
of the electric-quadrupole field was analyzed as a function of
beam waist wo and the radial distance b from the beam axis. To
better understand the variation of the magnetic component of
the electric-quadrupole field, we plotted the relative weight of
the projection of electric-quadrupole Wr (M ) against the beam
waist and the radial distance from the beam axis.

Furthermore, we illustrated the effects of varying multipole
distribution on the magnetic sublevel population in the target
atom. As an example, we considered the electric-quadrupole
transition in the target Ca+ ion. In addition, we calculated total
rate of excitation of electric-quadrupole transition (4s 2S1/2 →
3d 2D5/2) in the target Ca+ ion with a Gaussian spatial dis-
tribution. We observed that the total rate of excitation for
the target Ca+ ion excited by the cylindrically polarized LG
beam varies with beam waist wo and the distance between
the center of the target and the beam axis bo,x. Our calcu-
lation explicitly shows that the cylindrically polarized LG
beam is more efficient than circular polarization for driving
an electric-quadrupole transition in a mesoscopic target.
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