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We investigate the energy dynamics of noncrystallized (melted) ions, confined in a Paul trap. The nonperiodic
Coulomb interaction experienced by melted ions forms a medium for nonconservative energy transfer from the
radio-frequency (rf) field to the ions, a process known as rf heating. We study rf heating by analyzing numerical
simulations of noncrystallized ion motion in Paul trap potentials, in which the energy of the ions’ secular motion
changes at discrete intervals, corresponding to ion-ion collisions. The analysis of these collisions is used as a
basis to derive a simplified model of rf heating energy dynamics, from which we conclude that the rf heating rate
is predominantly dependent on the rf field strength. We confirm the predictability of the model experimentally:
Two trapped 40Ca+ ions are deterministically driven to melt, and their fluorescence rate is used to infer the ions’
energy. Under these experimental conditions, we investigate which Doppler cooling parameters are required for
efficient recrystallization, and compare our results to simulations.
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I. INTRODUCTION

Ions confined in radio-frequency (rf) Paul traps have
enabled research in many fields of physics [1], such as
fundamental light-matter interactions [2,3], frequency mea-
surements and metrology [4], mass spectrometry [5], quantum
computation [6–9], and quantum simulation [10–12]. The
vast majority of modern trapped-ion experiments utilize a
so-called ion crystal, a regular spatial structure of multiple
ions. Such experiments rely on the fact that these crystals
contain well-localized separated particles that share common
motional modes due to their Coulomb interaction. For exam-
ple, in trapped-ion-based quantum computation, an ion crystal
represents a qubit register, and their common motional modes
are the data bus that mediates entanglement [13,14].

A prominent event that disturbs the crystal structure is a
collision with a particle from the residual background gas
[15]. Such a collision can transfer enough energy to the ions
such that the crystal structure is destroyed. The ions undergo a
transition described as melting, to a phase colloquially named
an ion cloud [16,17], and are no longer suitable to be used as
qubits for quantum computation.

Melted ions are subjected to a change in energy that is not
present in the crystal phase: Energy can be transferred to the
ions from the rf field from the trapping electrodes, leading to
an overall increase in the ions’ average kinetic energy. This
process, known as rf heating, occurs when ions experience
both nonperiodic Coulomb forces and forces from the trap’s
oscillating rf field. rf heating has previously been studied in
the context of interactions of ions with ultracold buffer gases
[18,19] and ion ensembles [20–23].

The performance of trapped-ion experiments benefits from
efficiently returning an ion cloud into the crystal state, a
process known as recrystallization. While laser-cooling tech-
niques can be employed to remove energy from the ions, the
opposing increase in energy due to rf heating hinders or even
prevents recrystallization.

rf heating due to ion-ion interactions is a dominant source
of energy gain in ion clouds, even for low numbers of ions.
Despite melting being a common occurrence in ion trap ex-
periments, rf heating has not been studied in detail, even
for the simplest case: two trapped ions. In fact, rf heating is
often mistakenly dismissed as playing only a minor role in
melted ion dynamics. Consequently, it has not previously been
investigated which laser cooling conditions are necessary to
ensure efficient recrystallization.

In this work, we study the dynamics of rf heating in
ion clouds. We aim to improve the general understanding
of rf heating by introducing an intuitive overview of the
processes involved, and providing relevant magnitudes and
timescales of energy changes. As the motion of melted
ions in an rf field is chaotic [17,24,25], it is inconceivable
to attain generalized analytic descriptions of the ion mo-
tion [20]. However, we can numerically analyze dynamics
of melted ions with multiple initial conditions, from which
we derive simplified models that provide quantitative ap-
proximations of the effects of rf heating. This approach
allows us to estimate the cooling rates that are required
for overcoming rf heating. We experimentally investigate
rf heating of a two-ion single-species ion cloud, and de-
termine which Doppler cooling parameters are required
to recrystallize it efficiently. The experimental results are
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FIG. 1. Schematic outline: (a) We simulate the full three-
dimensional (3D) dynamics of ions in a time-dependent field
allowing us to numerically analyze the processes that lead to energy
change. (b) Our analysis is used as a basis for a simplified model that
describes the rf heating rate. (c) We experimentally create controlled
melting events, from which we estimate the ion cloud energy. For
reference, typical energy scales are displayed for relevant regimes.

compared to heating and cooling dynamics that are predicted
by our model.

This paper is structured as follows. In Sec. II we provide
a general description of the process of rf heating. Subsequent
sections (III–V) detail our investigation of rf heating in three
steps, as schematically depicted in Figs. 1(a)–1(c). In Sec. III,
we use numerical simulations that track the motion of ions in
a Paul trap to investigate their dynamics under the influence
of an rf field and Coulomb interaction. From these simula-
tions we surmise that changes in energy due to rf heating
occur at discrete moments in time, corresponding to small
ion-ion distances that lead to a large Coulomb repulsion. In
Sec. IV, we derive analytical expressions that approximate
these energy changes and the intervals at which they occur.
These expressions are the basis for a simplified simulation
of ion cloud energy dynamics that avoids the computational
overhead involved in tracking the motion of all ions in an
rf field. We use the simplified simulation to investigate how
various trap parameters affect rf heating. In Sec. V we experi-
mentally validate our simulated results by a controlled melting
of a two-ion crystal and estimate the ions’ energy change by
monitoring changes in the cloud’s fluorescence.

II. HEATING IN TIME-DEPENDENT POTENTIALS:
RF HEATING

In this section we give a general overview of the process of
rf heating. We provide a qualitative description of the physical
process involved in energy exchange between the rf field and
an ion’s kinetic energy.

It is useful to describe the motion of trapped ions in
two distinct timescales: rf motion (or micromotion), which
describes the oscillation synchronous with the rf field, and
secular motion, which describes the motion in a static har-
monic potential, known as the pseudopotential [26]. The total
energy of the ions can be separated into the energies corre-
sponding to these two timescales:

Etot = Erf + Esec. (1)

The total system energy Etot is the sum of contributions from
the time-varying and static electric potential, the Coulomb
interaction between ions, and the ions’ kinetic energy.

In the crystal phase, the secular and rf components of
energy do not couple with each other. The secular energy Esec

is then conserved or well controlled, despite a time-dependent
rf energy. In this regime, multiple co-trapped ions experience
only small excursions from their respective trapping locations.
Excursions are considered small if the ions’ deviations from
their trapping locations are much smaller than the inter-ion
separation in an ion crystal. The motion of the ions can then
be expanded into normal modes of motion, with distinct fre-
quencies and ideally negligible coupling. The secular modes
of motion and micromotion have unique frequencies in sep-
arate timescales, and thus remain separated. In fact, when
assessing the ions’ motion, micromotion is often neglected.
In this secular approximation, the ions’ motion and energy are
treated as if solely in an effective static harmonic potential,
the pseudopotential.

In practice, undesired external influences can alter the
ions’ secular energy. For example, particles from the residual
background gas can collide with an ion. Such a collision can
transfer enough energy to ions such that their range of motion
exceeds the crystal’s inter-ion separation. Ions then undergo
a transition to a melted state, an ion cloud. The motion of
ions in a cloud is fundamentally different than in the crystal
state. The average position of ions is fully governed by trap
potentials, and not by Coulomb interaction. Furthermore, ions
experience aperiodic motion due to irregular ion-ion Coulomb
interactions. The frequency spectra corresponding to the sec-
ular motion and micromotion broaden and overlap due to this
aperiodic motion. This allows energy from micromotion, Erf ,
to be transferred to the secular motion Esec. Therefore, unlike
for an ion crystal, micromotion cannot be neglected when
considering motion of ions in a cloud, and the pseudopotential
approximation is no longer valid.

The energy transfer process from the rf-driven micromo-
tion to the secular motion is known as rf heating, and is
schematically outlined in one dimension in Fig. 2. In a static
potential, two ions would approach each other, experiencing
opposing Coulomb forces, and repel, as denoted by the dashed
lines. In an oscillating potential, ions deviate approximately
sinusoidally (solid lines) from this path. Since the strength of
the rf field is dependent on the ions’ positions within the trap,
the two ions experience different forces from the oscillating rf
potential. In the example in Fig. 2, directly before the moment
of closest proximity, the difference in relative velocity due to
the rf force reduces the distance between the ions compared to
the static potential. Ions therefore have more Coulomb energy
at small distances than they would have in a static potential.
As the ions begin to repel, the relative rf velocity has switched
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FIG. 2. Schematic of energy changes due to Coulomb interaction
in an rf field. While following a trajectory governed by Coulomb
repulsion, ions additionally experience an unequal force from the
rf field, due to its position dependence. In this example, the rf
phase is tuned such that, during the moments of increased Coulomb
interaction, the relative rf velocity is aligned with the direction of
motion, during both the approach and the withdrawal in the ions’
motion. This leads to an increase of �W in motional energy after the
collision. On the right, the solid circle represents the position of ion
1 as increases and decreases in the Coulomb potential, whereas the
dotted circle is the position if no rf is applied.

sign, and now the rf force aids in separating the ions. The
extra relative secular velocity that the ions have gained by this
time-varying force results in a gain in total energy in the ions’
secular motion. The rf field has thus added energy (denoted
as �W in Fig. 2) to Esec. This process would remove energy
from Esec if the phase of the rf field had been shifted by π .

The schematic in Fig. 2 provides a qualitative description
of the mechanism of energy transfer. In practice, such “head
on” encounters do not occur in three dimensions, and the rf
phase will generally not line up with the Coulomb force as
schematically presented. In the following section, we simulate
trapped-ion trajectories in a time-varying potential and assess
rf heating in three dimensions.

III. FULL ION DYNAMICS SIMULATIONS

In this section, we investigate rf heating by analyzing sim-
ulations of particle dynamics of ion clouds. We numerically
integrate the classical motion of charged particles by calculat-
ing forces given by a static (DC) field, a dynamic (rf) field, and
Coulomb interactions. We refer to these simulations as “full”
to contrast them with simplified simulations later in this work.

In our simulation, we track the dynamics of two trapped
40Ca+ ions. We use trapping parameters that match typi-
cal experimental values [27], with motional frequencies of
{ωx, ωy, ωz} = 2π{3.1, 3.4, 1.1} MHz, where our coordinate
system is chosen such that z corresponds to the direction with

no rf potential (axial) and x and y the two radial directions.
The fields in the simulation are time-dependent quadrupole
potentials. At the start of a simulation, ions are placed in their
crystallized equilibrium positions. One ion is given an initial
velocity in a random direction, mimicking a collision with a
background gas particle. An initial kinetic energy of 1.4 meV
is chosen, as it is marginally more than the required energy to
melt the crystal [28]. This energy range corresponds to more
than 105 motional quanta (�16 K), so a classic evaluation
of the equations of motion is justified. Laser cooling is not
included in these simulations.

To investigate rf heating in these simulations, we determine
the system’s energy: In an ion cloud, each ion (with index
i) has an energy given by the sum of its kinetic energy Vkin

and its potential energy due to the trap’s applied static and
rf fields, VDC and Vrf . Additionally, ions have energy due to
the Coulomb interaction potential VCoul between particles. The
total energy Etot in an ion trap system at any point in time t is
thus given by

Etot =
∑

i

[
VDC(�ri ) + Vrf (�ri, t )

+Vkin(vi ) + 1

2

∑
j �=i

VCoul(�ri, �r j )

]
(2)

for ions with positions �ri and velocities vi. The kinetic energy
for an ion with mass mi is given by Vkin = (1/2)miv

2
i . The

Coulomb interaction energy VCoul between particles i and j
with charge qi and q j is given by

VCoul(�ri, �r j ) = 1

4πε0

qiq j

|�ri − �r j | , (3)

with the vacuum permittivity ε0.
We calculate the energy of the simulated system, Etot , by

inserting the numerically obtained ion positions and velocities
into Eq. (2). However, the relevant quantity of energy is the
secular component of Etot in Eq. (1), as rf heating is defined by
changes in this secular energy. To calculate the secular energy
Esec from the particles’ simulated positions and velocities,
Eq. (2) is adjusted in two ways:

(1) The rf potential Vrf (�ri, t ) is replaced with the time-
averaged field as experienced by the ions, the pseudopotential,
which is an effective static potential Vi,ps given by

Vi,ps(�ri) = q2

4mi�
2
rf

|∇Vrf,0(�ri)|2 (4)

for an rf drive with position-dependent rf potential amplitude
Vrf,0(�ri ) and frequency �rf . For clarity, this potential is used
as a means to extract the secular energy from simulation data,
and is not used in the simulation itself.

(2) The positions and velocities of the ions, �ri and �vi,
are replaced with their secular components, �r (sec)

i and �v(sec)
i .

These components are found by removing the rf component
from the simulated positions �r (0)

i , as follows: If the secular
frequency ω{x,y} is much lower than the rf drive frequency
�rf , the rf component of position, �r (rf )

i , can be described by
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the equation of motion

d2�r (rf )
i

dt2
≈ −q∇Vrf,0

(
�r (sec)

i

)
m

cos (�rft ). (5)

This approximation is valid if the amplitude of �r (rf )
i in one

oscillation period is small enough such that ∇Vrf,0(�r (sec)
i ) is

approximately constant. Simulations do not directly provide
�r (sec)

i , so we use an iterative approach and initially use the
simulated positions �r (0)

i as an approximation for the secular
motion: �r (sec)

i ≈ �r (0)
i . The rf component of the position is then

�r (rf )
i ≈ −q∇Vrf,0

(
�r (0)

i

)
m�2

rf

cos(�rft ). (6)

The secular motion is iteratively approximated by removing
the rf component from the full simulated positions:

�r (1)
i = �r (0)

i − �r (rf )
i

= �r (0)
i + q∇Vrf,0

(
�r (0)

i

)
m�2

rf

cos(�rft ). (7)

As �r (1)
i is a better approximation for secular motion than �r (0)

i ,
we can improve our estimate for �r (rf )

i in Eq. (6). Higher-order
adjustments to the secular position can thus be found itera-
tively:

�r (n+1)
i = �r (0)

i + q∇Vrf,0
(
�r (n)

i

)
m�2

rf

cos(�rft ). (8)

Note that Eq. (8) remains an approximation for the secular
motion and is not an exact solution even as n → ∞.

Figure 3(a) demonstrates how a simulated trajectory (pro-
jected in one dimension) is adjusted using Eq. (8) in several
iterations to remove the rf component of its motion. The
remaining motion is approximately secular. The trajectories
�r (2)

i and �r (3)
i are visibly indistinguishable in Fig. 3(a). We find

that �rn
i changes negligibly for orders higher than n = 3.

Using �r (n)
i ≈ �r (sec)

i , the corresponding velocities �v(n)
i , and

the pseudopotential approximation Vi,ps, Eq. (2) can be
adapted to calculate Esec for each time step of the full sim-
ulation:

Esec =
∑

i

[
VDC

(
�r (n)

i

) + Vi,ps
(
�r (n)

i

)

+Vkin
(
v

(n)
i

) + 1

2

∑
j �=i

VCoul
(
�r (n)

i , �r (n)
j

)]
. (9)

In this work, when describing the ion cloud’s energy, we refer
to the secular energy, Esec, with n = 3.

Figure 3(b) shows traces of the energy Esec over time, for
several simulation runs. All simulations start with identical
parameters, except for a randomly chosen rf phase, which
reflects that a collision with a background particle can occur
at any time during the rf drive cycle. In every trace, energy in-
creases over time, but not necessarily continuously. Although
the only difference between the individual simulations is the

FIG. 3. Analysis of energy in Ca-Ca cloud dynamics simula-
tions. (a) To extract the nondynamic component of energy, the rf
component of the ions’ motion is numerically removed. The rf-
free motion is used to calculate the secular energy, Esec. (b) The
development of total energy is shown (thin lines) for several sim-
ulation runs, with identical starting energies. The thick blue line is
an average of the individual runs. (c) Close-up of an energy trace
for one simulation, marked in (b). The discrete changes in energy
(�W ) correspond to moments of high Coulomb interaction, i.e.,
collisions. (d) Standard deviation of energy changes σ�W in bins of
peak Coulomb energy, and (e) histogram of the magnitude of these
energy changes, which have a mean of μ = 5.2 μeV and a standard
deviation of σ = 236 μeV.
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initial rf phase, there is a large variation in the development
of energy over time, resulting in energies ranging from about
4 to 30 meV after 5 ms. This variation attests to the chaotic
nature of melted ion dynamics.

The thick blue line is an average of the individual simu-
lations, which increases approximately with the square root
of time. To further examine the dynamics that lead to energy
changes, we take a trace from Fig. 3(b) as an example and
investigate it in Fig. 3(c).

Here, one can see that the secular energy does not change
continuously, but at discrete points in time, corresponding to
moments of increased Coulomb interaction. This behavior is
ubiquitous over the full simulation duration of all traces, not
just the example presented in Fig. 3(c). We refer to these
moments of increased Coulomb interaction as collisions, since
the interaction between the charged particles results in an
exchange of momentum and energy. As described in Sec. II,
this collision is inelastic, as secular energy is not conserved.
We denote the individual changes in energy as a result of
collisions by �W .

Figure 3(d) shows the standard deviation in �W , for var-
ious bins of peak Coulomb interaction energy. All traces in
Fig. 3(b) are used for the statistics in Fig. 3(d). It is apparent
that higher peak Coulomb interaction allows for a greater
spread in resulting secular energy change. However, high
Coulomb interaction does not always result in high changes
in energy.

We observe that collisions with Coulomb interaction ener-
gies below 0.5 meV, indicated by the dotted line in Fig. 3(d),
do not result in noticeable changes in the system’s total en-
ergy. Thus, throughout this work, we will consider an ion-ion
collision to be an event where the interaction energy exceeds
this threshold.

Figure 3(e) shows the distribution of energy change which
is qualitatively symmetric. However, the mean of the distri-
bution μ = 5.2 μeV and average collision rate ( f̄coll = 528
collisions per millisecond) lead to an overall increase of en-
ergy of approximately 14 meV after 5 ms of rf heating.

The simulations show that rf heating is not a continuous
process, but occurs at discrete moments of high Coulomb
interaction energies, which we refer to as ion-ion collisions.
In the following section, we model the energy change due to
such a collision event, and the rate at which such events occur,
to build a simplified model of rf heating.

IV. COLLISION MODEL

In this section, we provide a generalized quantitative de-
scription of the parameters involved in energy dynamics in
rf heating. We use this description as a basis for a model
that predicts energy changes in ion-ion collisions, and the rate
at which these collisions occur. This allows us to assess the
contribution of various trapping parameters to rf heating rates.
The model is used to create an ion cloud energy dynamics
simulation that is computationally more efficient than the full
simulation used in the previous section. We limit the following
discussion to a single-species, two-ion cloud, but the method
can easily be extended to clouds of multiple mixed-species
ions.

A. Model parameters

Although melted ions experience an interaction energy that
depends on their distance, we have determined in the previous
section that below a certain threshold of Coulomb energy,
changes in secular energy are negligible. We thus consider the
discrete events where the Coulomb interaction surpasses the
threshold that is found empirically from the full simulation.
We refer to such an event as a collision. We model the energy
dynamics in two steps: (1) estimate the change of energy due
to a collision, and (2) estimate the collision rate.

1. Collision energy

We have established in Sec. II that when a collision occurs,
the rf field induces a change in secular energy. We draw on
results from the full ion dynamics simulation presented in
Sec. III to derive and validate a model that describes this
energy change.

The change in energy, �W , of any dynamic system of
particles i can be expressed in terms of the forces �Fi acting
on the particles with velocities �vi as

�W =
∫ ∑

i

�Fi · �vidt . (10)

In a Paul trap, the total force on the ions is the sum of static and
rf fields and the Coulomb force, �Fi = �F (DC)

i + �F (rf )
i + �F (Coul)

i .
The velocity of the ions can be expanded into the contributions
of secular and rf motion, �vi = �v(sec)

i + �v(rf )
i . As described in

Sec. II, the Coulomb force enables the transfer of energy
between the secular and rf motion. In the product expansion
of �Fi · �vi in Eq. (10), this transfer is reflected by changes in the
components

∫ �F (Coul) · �v(rf )dt and
∫ �F (Coul) · �v(sec)dt . When

evaluated over the duration of a collision, these integrals are
equal and opposite in value. This value is the energy trans-
ferred due to a collision. Rf heating, which is the change in
secular energy due to Coulomb interaction in an rf potential,
can thus be expressed as

�Wsec = −
∫ ∑

i

�F (Coul)
i · �v(rf )

i dt . (11)

One could equally well describe the change in secular energy
by the development of the integral containing v(sec). However,
since secular energy is temporarily stored in ECoul during a
collision, this integral contains sharp peaks at moments of
high Coulomb interaction. Equation (11) is thus a smoother,
and therefore more intuitive, representation of �Wsec.

Using �F (Coul)
1 = − �F (Coul)

2 for a two-ion collision, the
change in energy reduces to

�Wsec = −
∫

�F (Coul)
1 · ��v(rf )dt, (12)

with the difference in rf velocity between the two ions
��v(rf ) = �v(rf )

1 − �v(rf )
2 .

We apply the integral of Eq. (12) to numerical data of
one of the full ion dynamics simulations from Sec. III, which
enables us to validate Eq. (12). Figure 4(a) shows the energy
development as the accumulation of �W + Einit (medium red
line), with Einit = 2 meV to reflect the initial energy of the
system. For reference, the total energy Esec [see Eq. (9)] of
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FIG. 4. Comparison of energy dynamics from the simplified model and full ion dynamics simulations. (a) The total energy of an ion
dynamics simulation is shown in blue (thick line). The cumulative energy from Eq. (12) is shown in red (medium line). The thin yellow curve
uses the approximated cumulative energy equation (19), with an rf-free trajectory. (b) Comparison of energy changes as determined from the
calculated total energy with those from Eqs. (12) and (19). (c) The thick red line is the average of 20 simulation runs of the simplified energy
gain model. The thin lines represent the standard deviation (±σ ) of the individual runs. For comparison, the blue dashed curve shows the
average energy from multiple full particle dynamics simulations.

the system is also plotted (thick blue line), showing close
agreement. A comparison of the energy differences before
and after collisions using the two energy metrics is shown in
Fig. 4(b) (left). The calculated correlation between the two
metrics (R-squared [29] of 90%) confirms that Eq. (12) can
faithfully describe the change in secular energy.

Simplification of the energy transfer integral [Eq. (12)] can
be achieved by approximating ��v(rf ). The relative rf velocity
��v(rf ) is estimated knowing the ions’ positions relative to each
other, and the phase of the rf field:

For a saddle-type rf potential

Vrf (�ri, t ) = 1
2ψrf

(
r2

i,x − r2
i,y

)
cos (�rft ) (13)

with potential curvature ψrf , the force on an ion i with charge
q at position �ri = [ri,x, ri,y, ri,z] is given by

�F (rf )
i (�ri, t ) = −q∇Vrf (14)

= [−ri,x, ri,y, 0]qψrf cos (�rft ). (15)

We have shown in Sec. III that we can approximate absolute
changes in ri,x and ri,y to be constant during an oscillation
cycle with frequency �rf . Integrating

∫ �F (rf )dt = m�v(rf ) with
mass m allows us to approximate the rf component of the
velocity as

�v(rf )
i ≈ [−ri,x, ri,y, 0]

qψrf

m�rf
sin(�rft ), (16)

and the difference in rf velocity,

��v(rf ) ≈ [ − �r (sec)
x ,�r (sec)

y , 0
] qψrf

m�rf
sin(�rft ). (17)

Here �r (sec)
x and �r (sec)

y are the ions’ separation in their secu-
lar motion.

The Coulomb force is given by

F (Coul)
1 = 1

4πε0

q2

|��r|3 ��r (18)

with ��r = �r1 − �r2 the ions’ separation, and ε0 the vacuum
permittivity. The Coulomb force F (Coul)

1 is dominated by the

secular motion of the ions, such that ��r ≈ ��r (sec). Equa-
tion (12) can thus be approximated as

�Wsec ≈ q3ψrf

4πε0m�rf

∫ (
�r (sec)

x

)2 − (
�r (sec)

y

)2

|��r (sec)|3 sin(�rft )dt .

(19)

We numerically evaluate Eq. (19) using data from the full
ion dynamics simulation. Results, shown in Fig. 4(a) (thin
yellow line), are in agreement with the results generated with
Eq. (12) (medium red line). The energy changes in these
results are compared to energy changes derived from Esec

in Fig. 4(b) (right). From the correlation of the data shown
in Fig. 4(b) (R squared of 82%), we conclude that Eq. (19)
provides a good approximation of energy change in a colli-
sion. We thus have an expression that estimates secular energy
changes due to collisions that relies on relatively little infor-
mation about the trap and ions. Notably, to estimate the energy
change, neither the ions’ absolute position within the trap nor
the rf components of their motion is required. The expression
simply contains ions’ relative position during a collision, and
fixed trap parameters.

2. Collision rate

To predict the rate of energy change, we must determine
the frequency at which collisions occur. The collision rate
is estimated by calculating how often such events occur for
particles with oscillatory motion in three dimensions (and no
Coulomb interaction). Our method is outlined below.

We start by analyzing the one-dimensional case for two
identical particles. The goal is to find the duration �tx that
ions are within a chosen collision threshold rc of each other
within a secular oscillation cycle. We assume that the ions are
moving sinusoidally at their secular frequencies. This is an
approximation for ions that experience driven motion by the rf
field. This additional driven motion is, however, not dominant:
ion motion from simulations and analytic approximations in
Sec. III show that for typical trapping parameters the ampli-
tude of the rf-driven motion is less than 10% of the amplitude
of the secular motion. Furthermore, the approximation is jus-
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tified since the rf component of motion of the two ions is
strongly correlated when they are within the collision range.
Thus, the rf motion can be neglected when estimating the
duration �tx. Additionally, collisions that lead to appreciable
changes in energy occur near the center of the trap, where the
amplitude of the rf-driven motion is minimal.

The positions of ions 1 and 2 are sinusoidal in time, with
amplitudes a1,x and a2,x, and a relative phase φx. The mo-
tion of the two ions is thus given by r1,x = a1,x sin (ωxt ) and
r2,x = a2,x sin (ωxt + φx ), with the oscillation frequency ωx.
The distance dx = ad,x sin (ωxt + φd,x ) between the two ions
is sinusoidal, with amplitude and phase

ad,x =
√

a2
1,x + a2

2,x − 2a1,xa2,x cos(φx ), (20)

φd,x = tan−1

( −a2,x sin (φx )

a1,x − a2,x cos (φx )

)
. (21)

Using t = 1/ωx(sin−1(dx/ad,x ) − φdx ), the amount of time
�tx that the two particles are within collision range rc is

�tx = t (dx = rc) − t (dx = −rc) (22)

= 2

ωx
sin−1

(
rc

ad,x

)
. (23)

In one dimension, noninteracting particles will be within
collision range exactly twice per secular oscillation period
(or be continuously within range). The collision criterion of
|dx| < rc can thus be represented by a pulse wave (a periodic
rectangular function):

Bx(t ) =
{

1 if (t mod Tx ) < �tx
0 otherwise, (24)

with period Tx = π/ωx. If rc > ad,x, �tx exceeds Tx, which is
unphysical. Analytically, this results in Bx being continuously
1, which is physically accurate.

This model can be extended to three dimensions with three
pulse waves B{x,y,z}(t ), characterized by periods T{x,y,z} and
pulse durations �t{x,y,z}. The collision rate is described by the
average pulse rate of the product of the three pulse waves,
BxByBz, and is given by

f̄coll = �tx�ty�tz
TxTyTz

(
1

�tx
+ 1

�ty
+ 1

�tz

)
(25)

and average time between collisions t̄coll = 1/ f̄coll (see Ap-
pendix A).

The condition that the three functions have an overlap
ensures that the positions of the two ions are both within the
bounds of a cube of side length rc, but not necessarily that
the two ions are within a distance rc of each other. This is
taken into account in our rf heating rate model, discussed in
the following section.

B. Simplified rf heating model

In the previous section, we described the energy dynam-
ics of melted ions by deriving models for ion-ion collision
rates and associated energy changes. In this section, we use
these models to construct a simplified rf heating simulation in
which we repeatedly generate a time until a collision occurs,
tcoll [Eq. (25)], followed by a change in energy due to that

collision, �Wsec [Eq. (19)]. The simplified simulation allows
us to generalize our investigation of rf heating without the
computational overhead inherent in the full ion dynamics
simulation. The simplified simulation is outlined below.

As in the previous section, we describe the rf-free motion
of the ions i as sinusoidal in three orthogonal directions (in-
dexed k), with parameters a1,k and a2,k the amplitudes of ions
1 and 2, and relative phases φk . The energy of the system,
conserved as long as a collision does not occur, is

Esec ≈
∑
i,k

1

2
mω2

k a2
i,k . (26)

The approximation is based on the assumption that the
Coulomb energy is negligible while ions are far outside of
the collision threshold. The simulation is initialized with a
chosen energy E0 distributed randomly over the amplitudes
ai,k . The initial phases φk are chosen randomly and uniformly.
The parameters ai,k and φk characterize the state of the ions
between collision events.

Applying these parameters to Eqs. (23) and (25) yields a
collision rate f̄coll. The collision threshold is chosen to be rc =
1.44 μm, corresponding to a Coulomb energy of 0.5 meV,
based on analysis of simulations described in Sec. III. There
we argue that Coulomb energies less than 0.5 meV do not lead
to appreciable rf heating.

The time between collisions is usually longer than a typ-
ical secular motion period and can thus be assumed to be
uncorrelated due to the aperiodic nature of collisions (see
Appendix A). Therefore, the probability distribution for col-
lision times can be modeled as an exponential distribution,
P(t ) = f̄coll exp (−t f̄coll ). A random number from a known
probability distribution function P(t ) can be generated by
drawing a random value p, uniformly between zero and 1,
and transforming it with the inverse cumulative distribution
function (ICDF) [30] of P(t ). A random time tcoll is thus
generated from the ICDF of the exponential distribution, given
by − ln (1 − p)/ f̄coll.

Since subsequent collisions require a pause time of at least
half an oscillation period, we do not consider generated col-
lision times lower than this period. Therefore, if the chosen
tcoll is less than mink Tk , a new collision time is randomly
generated. The ions’ oscillation amplitudes ai,k and phases φk

remain unchanged until time tcoll, at which a collision occurs
and they need to be updated to reflect a change in energy.

We update ai,k and φk by running a Coulomb collision
simulation which generates a randomized collision trajectory,
based on values derived from ai,k and φk . The results of the
simulation, along with a randomized rf phase, are applied to
Eq. (19) to generate an energy change �W . Based on the
simulated trajectories and �W , a new set of parameters ai,k

and φk is obtained.
The Coulomb collision simulation acts as follows: For a

given set ai,k and φk , we determine the approximate velocity
of the ions at the moment of impact. The secular velocity
�vi = [vx, vy, vz] of ion i is given by vi,k ≈ ai,kωk cos θi,k , as-
suming that the rf contribution to the velocity is negligible for
modeling a collision event. θi,k is given by ωkt and ωkt + φk

for the two ions. Referring to Eq. (21) in Sec. IV A, the
separation between ions is given by dk = ad,k sin(ωkt + φd,k ).
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During a collision, the ion separation is much smaller than
the oscillation amplitude, dk � ad . We thus have ωkt ≈ −φd,k

during a collision (other solutions, which include integer mul-
tiples of π , can be dropped without loss of generality). θi,k can
then be written as

θ1,k = − tan

( −a2,k sin φk

a1,k − a2,k cos φk

)
, (27)

θ2,k = θ1,k + φk, (28)

from which we calculate �vi.
We use the ions’ velocities �vi as parameters for the collision

simulation, a numerical integrator in which the only force is
the Coulomb interaction. Two particles are placed at random
points in a box with side lengths rc, denoting their positions
as �χ (0)

i . Particles are taken out of collision range by moving
them to positions �χ (start)

i = �χ (0)
i − �vits. The time ts is chosen

to be ts = 8rc/maxi,k|vi,k|, where the value 8 is chosen so
that ions are placed far enough from each other such that the
Coulomb energy is far below the collision threshold at start
of the simulation. �χ (start)

i and �vi are starting parameters for the
simulation. The simulation is carried out for a time 2ts, which
provides the time-dependent positions �χi(t ) of the ions as
they collide. A change in energy �W is then calculated using
Eq. (19). Since the collision time is uncorrelated with the
phase of the rf field, we add a random phase to the argument
of the sine.

The calculated change in energy, �W , is used to update the
parameters ai,k and φk: The final velocities from the Coulomb
collision simulation vfin

i,k are adjusted according to Eq. (19),
�W . Expanding Eq. (19) into its two sum components, the
terms containing �r (sec)

x and �r (sec)
y are used to adjust the

values of vfin
i,x and vfin

i,y . These adjusted velocities, together with
the positions of the collision, χi,k , are used to calculate a new
set of ai,k and φi. With this updated set of parameters, a new
collision time tcoll is generated. This process is repeated until
the sum of all collision times exceeds the desired simulation
duration. Esec is calculated with Eq. (26), using the parameters
ai,k from every step of the simulation, giving a time-dependent
energy. The simplified simulation reduces the computation
duration by nearly three orders of magnitude, compared to the
full ion dynamics simulation, reducing the time required to
obtain traces such as those in Fig. 3(b) from tens of minutes
to several seconds.

This method of estimating the ion cloud energy readily
expands towards more than two ions by extending the pa-
rameter set ai,k and φi,k . In this case, a collision time t (i, j)

coll
is generated for all combinations of ion pairs i �= j, and the
ion pair with the shortest collision time is selected to undergo
a simulated collision. The parameters ai,k of the chosen ion
pair, with phase difference φi,k − φ j,k , are updated to reflect a
collision between those two ions, using the method described
above. This method is applicable if one assumes that colli-
sions are predominantly between no more than two ions. We
have determined from ion trajectory simulations (using typical
experimental parameters) that for clouds of three, four, and
five ions, about 3%, 4%, and 7% of collisions involve three or
more ions. While these percentages depend on trap parameters
and ion energies, they serve as an indication of how often a
more-than-two-body collision can be expected to occur.

We compare the performance of the full and simpli-
fied simulation, with identical trap parameters as used for
Fig. 3(b). The results of the two types of simulation are dis-
played in Fig. 4(c). The thick lines are averages of individual
simulation runs. The average energy is in good agreement for
the two simulations, though the simplified model underesti-
mates the standard deviation of all simulation runs, shown by
the thin lines, denoting one standard deviation. We have made
similar comparisons for varying parameters such as motional
frequencies and particle masses (not shown), and conclude
that the simplified energy simulations work reliably as an
indicator for average change in energy.

We use the simplified simulation to investigate various
trapping parameters, shown in Fig. 5. Each trace is an av-
erage of 20 individual simulation runs, each with randomly
generated initial parameters ai,k and φk , constrained by a fixed
initial energy (3 meV), given by Eq. (26). Unless otherwise
noted, the simulations use two 40Ca+ ions, with motional
frequencies of ω{x,y,z} = 2π{3.4, 3.3, 1.1} MHz and a 35 MHz
trap drive frequency. Figure 5(a) shows traces of energy dy-
namics for various radial motional frequencies. Lower radial
motional frequencies, and therefore a lower rf voltage, result
in a lower gain in energy for a melted crystal. This behavior is
observed by many ion-trapping experiments, where purpose-
fully lowering the radial confinement assists the refreezing of
a melted ion crystal [31]. As displayed in Fig. 5(b), a change
in the axial confinement has a less significant influence on
the rate of energy change, compared to the radial frequencies.
Figure 5(c) shows energy dynamics for various ion species,
where the motional frequencies have been kept constant by
adjusting the rf and DC fields accordingly. Higher masses
result in a higher rate of energy change. Figure 5(d) shows
the energy change for various numbers of ions. Clouds with
multiple ions exhibit a larger increase in energy, as collisions
are more frequent. The slower initial onset of energy increase
at higher ion number is because the initial energy of 3 meV is
quickly distributed over all the ions, and thus individual ions
have lower average initial energies, resulting in less energetic
collisions.

We generalize the results displayed in Fig. 5 into a sin-
gle model: We draw an analogy between melted ion energy
transfer and random-walk processes, such as diffusion due
to Brownian motion. In such processes, randomized changes
in a variable result in an increasing statistical uncertainty in
time, characterized by a diffusion constant. In our model, the
energy Esec over time t follows a trend of E ∼ √

Dt , where D
is the diffusion constant [32,33]. To determine the parameters
of the diffusive model, we perform least-squares regressions
between the model Esec = E0 + √

Dt and our data, where E0

is the initial energy (3 meV). By estimating the diffusion con-
stant D for various trap parameters, we derive a generalized
expression for D, in terms of ion mass m, axial frequency ωz,
radial frequency ωr , trap drive frequency �rf , and number of
ions, n.

We use a polynomial model for D:

D = ambωc
rω

d
z �e

rfn
f (29)

with estimated parameters a through f , displayed in Table I.
This simple model provides an effective method to quantify

the energy dynamics resulting from rf heating. Notably, this
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FIG. 5. Energy dynamics for a two-ion cloud for various trap parameters. Unless otherwise specified, plots use the following parameters:
m = 40 amu, ωz = 2π × 1.1 MHz, ωr = 2π × 3.3 MHz, �rf = 2π × 35 MHz. We vary (a) the radial motional frequencies, (b) the axial
motional frequencies, (c) the ions’ mass, and (d) the number of ions. In (c) the trapping fields are adjusted to ensure the same motional
frequencies for all masses.

model is generally applicable to any linear Paul trap, and is
easily applied by inserting known trapping parameters. Ad-
ditionally, the model can be used to estimate an ion cloud
heating rate with E ′(t ) ≈ D/(2E (t )) (this is valid under the
assumption that the initial energy E0 is small compared to E ,
which is generally the case, as can be seen in Fig. 5). Several
general conclusions can be drawn from the model:

For a fixed number of ions, the diffusion coefficient is most
sensitive to changes in the radial motional frequency ωrf , rein-
forcing the notion that reducing this parameter in an ion trap
experiment (by reducing the rf voltage) is the most effective
method of reducing the rf heating rate. The heating rate is
to a lesser extent dependent on the axial motional frequency:
this term only affects the collision rate [Eq. (25)], and does
not influence the magnitude of energy change [Eq. (19)]. The
heating rate is strongly dependent on the number of ions in the
cloud, due to the increased collision rate. This conclusion em-
phasizes the necessity of efficient recooling when operating
with increasing numbers of ions in, for example, registers of
qubits for quantum computation. In the following section we
investigate recooling of melted ions.

C. Cooling dynamics

Typical ion trap experiments use Doppler cooling to extract
energy from the ions, enabling them to become and remain
crystallized in the presence of heating processes caused by
electric field noise [34]. It is, however, often the case that the
Doppler cooling parameters that cool ions close to the Doppler
limit [35] are not suitable to efficiently remove energy from
an ion cloud. If the rf heating rate, described in the previous
sections, is higher than the Doppler cooling rate, recrystalliza-

TABLE I. Fit results for rf-induced energy diffusion model (E ∼√
Dt , D = ambωc

rω
d
z �e

rfn
f ) [D] = eV2/s.

Parameter Fit value Uncertainty

a 330 80
b 1.0 0.05
c 2.45 0.05
d 0.52 0.04
e 0.00 0.06
f 2.96 0.04

tion will not occur. In this section, we estimate the Doppler
cooling parameters that enable efficient recrystallization by
implementing a simple cooling model into our simulations.

Doppler cooling is a stochastic photon absorption and
emission process, typically spanning a manifold of many elec-
tronic levels. For example, a 40Ca+ ion is typically Doppler
cooled in an eight-level manifold using 397-nm and 866-nm
light. For ions with energies that are orders of magnitude
higher than the Doppler cooling limit, the stochastic dynamics
of this eight-level system can be approximated with a time-
averaged force acting on an effective two-level system. In
our experiment, we typically blue-detune the 866-nm repump
beam and apply an abundance of beam power. This helps
avoid dark resonances [36] and allows us to approximate the
eight-level system as an effective two-level system. For a
two-level system, the Doppler cooling force on an ion with
velocity �v is given by [37]

�F (D) = �

2

�2/2

�2/2 + �2/4 + (δ − �k · �v)2
h̄�k, (30)

with � the spontaneous decay rate, � the on-resonance cou-
pling strength, δ the detuning of the Doppler beam from
resonance (in radians per second), �k the beam’s wavevector,
and h̄ the reduced Planck constant.

The cooling force [Eq. (30)] can be included as an ad-
ditional force in the full ion dynamics simulation discussed
in Sec. III. We have compared this time-averaged force to
a simulation with identical trap parameters where Doppler
cooling is modeled by discrete changes in momentum due
to absorption and emission of photons in a two-level system.
Upon comparing the two simulations, we find that Eq. (30) is
a valid approximation of the stochastic cooling process in ion
clouds. Using a time-averaged force, however, offers a lower
computational cost.

Doppler cooling dynamics can also be included in the
simplified rf heating simulations. This allows for analysis of
Doppler cooling parameters necessary for refreezing a melted
ion chain, without the computational cost associated with
full particle dynamics. Incorporating Doppler cooling in our
energy gain model is not as straightforward as its inclusion
in the full ion dynamics simulations, since the simplified
model does not continuously track time-dependent velocities,
required for calculating �F (D). We implement Doppler cooling
into the simplified model as follows.
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As described in Sec. IV B, we determine the time between
Coulomb collisions, tcoll, and then make an update in particle
parameters ai,k and φk , based on the change in energy caused
by that collision. Additional to this change, we include the
change in energy due to the time-averaged Doppler cooling
force:

�WD =
∫ ∑

i

�F (D)
i (�vi ) · �vidt . (31)

Here, we require an analytic expression for the ions’ velocities
�vi. The changes in particle parameters ai,k due to the Doppler
force are usually small between collisions, and thus they can
be approximated as constant for this duration. We use this ap-
proximation to derive an analytical expression for the motion,
and thus the velocities, of the ions.

An ion’s motion is separable in three dimensions. Along
the axial (rf-free) dimension, the ion’s motion is purely sec-
ular, rz = az sin(ωzt ), and the velocity is vz = ωzaz cos(ωzt ).
Along a radial direction, the motion is composed of a sec-
ular and an rf component, rx = rx,sec + rx,rf , with rx,sec =
ax sin(ωxt ). We find rx,rf by reversing the approximation of
Eq. (7) in Sec. III, which removes rf from the motion of a par-
ticle to obtain secular motion. Using ∇Vrf,0 = ψrf [rx,−ry, 0]
[see Eq. (13)], �r (0) = �r, and �r (1) = �r (sec), Eq. (7) is rewritten
as

rx ≈ r (sec)
x

1 + qψrf

m�2
rf

cos (�rft )
. (32)

The velocity of ion i is then given by the time derivative of
the position,

vi,k = ωkak,i cos (ωkt )

1 + fk cos (�rft )

+ ak,i fk�rf sin (ωkt ) sin (�rft )

(1 + fk cos (�rft ))2 , (33)

with f{x,y} = qψrf/(m�2
rf ) and fz = 0. In practice, secular mo-

tional frequencies ωi are easier to measure than the rf field
curvature ψrf , so it is useful to rewrite f in terms of motional

frequencies, as f{x,y} =
√∑

k ω2
k/�rf .

The analytical expression for ion velocities is used in
Eq. (31) to calculate the change in energy induced by the
Doppler cooling beam. Values of ai,k are adjusted accordingly
before each collision.

Results of our simulations of Doppler cooling an ion cloud,
with Rabi frequencies (coupling strength) �/2π , ranging
from 0 to 80 MHz, are shown in Fig. 6(a), for a detuning
of δ/2π = −40 MHz. The wavevector is chosen to be �k =
(2π/λ)[0.07, 0.71, 0.71], with λ = 397 nm, which reflects
the wavelength and angle of incidence in our experimental
setup. We choose an initial energy of 15 meV, which is a
typical ion cloud energy after 5 ms of rf heating. The thick
lines in Fig. 6(a) are averages of 20 simulation runs, and the
thin lines are the standard deviation of all runs. Results from
the simplified simulation are compared to results from the full
dynamics simulation with identical trapping and cooling pa-
rameters (dotted lines). As in the previous section, the average
trends of the two simulations are in good agreement, although
the simplified model underestimates the total spread of energy

FIG. 6. Simulated energy dynamics with Doppler cooling.
(a) Ca-Ca cloud energy as function of time, for various Doppler
cooling coupling strengths, with detuning δ/2π = −40 MHz. For
comparison, results from both the full ion dynamics simulation and
the simplified energy change simulation are displayed. The thick line
is an average of multiple simulation runs, and the thin line represents
the standard deviation of the individual runs. (b) Energy after 5 ms
of Doppler cooling for varying cooling strengths and detunings. For
Doppler cooling parameters corresponding to regime (i), the rf heat-
ing rate is higher than the Doppler cooling rate, and recrystallization
will never occur. In both (ii) and (iii), the cloud’s energy is decreased,
but only in (iii) are the ions recrystallized after 5 ms.

in individual runs. The various plots show that with increasing
coupling strength, the Doppler cooling rate overcomes the rf
heating rate.

Figure 6(b) shows the simulated cloud (or crystal) energy
after 5 ms of rf heating and simultaneous Doppler cooling,
as a function of Doppler coupling strength � and detuning δ.
The initial conditions for these simulations are the same as
those in Fig. 6(a) (i.e., initial energy of 15 meV). The figure is
subdivided into three regions: in region (i) the final energy is
higher than initial energy, and in regions (ii) and (iii) the final
energy is lower than the initial energy. In region (iii), the final
energy is low enough for the ions to recrystallize.

Although the results in Fig. 6 are specific for the chosen
trap parameters, they are indicative of the magnitudes of
Doppler cooling parameters required for efficient recrystal-
lization. For example, if ions are Doppler cooled continuously,
recrystallization is achieved only if � � � ≈ 2π × 20 MHz
and δ � 2π × 20 MHz. In typical experimental sequences
such as those used for ion-based quantum computation, ions
are not Doppler cooled continuously, but are separated by
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periods of noncooled computation steps. If Doppler cooling
is not efficient enough to recrystallize an ion cloud before
these steps, the cloud subsequently reheats in the duration that
the cooling beam is off. In such a cycle, ions can indefinitely
remain melted. Therefore, in such sequenced experiments,
the range of Doppler cooling parameters that ensure recrys-
tallization is more stringent, corresponding to region (iii) in
Fig. 6(b).

V. EXPERIMENTAL VALIDATION

We validate the simulation methods with experimentally
measured ion cloud energy dynamics due to rf heating
and Doppler cooling. The goal is to demonstrate that low-
energy clouds undergo significant changes at the millisecond
timescale, and thereby reproduce the simulated results. In
our experiments, we deterministically generate ion clouds and
infer their energy dynamics by monitoring their fluorescence.

Our experiments are performed on two 40Ca+ ions, in a sur-
face Paul trap (see Fig. 1, lower panel). Fluorescence detection
and Doppler recooling is done by off-resonantly exciting the
4S1/2 ↔ 4P1/2 transition, at 397 nm. Undesired decay from
4P1/2 to 3D3/2 is repumped with light at 866 nm. We model
the cooling with an effective two-level coupling strength �

and detuning δ, calibrated using Eq. (30) with measured fluo-
rescence. This fluorescence is proportional to the magnitude
of the Doppler cooling force of Eq. (30). The power and
frequency of the 397-nm light are tunable parameters, whereas
the 866-nm power and wavelength are kept constant. The ef-
fective spontaneous decay rate � is assumed to be dominated
by the decay rate of the 4P1/2 → 4S1/2 transition for 40Ca+,
and is thus � = 2π × 21.6 MHz [38].

To deterministically generate a low-energy cloud, starting
from a crystal, we exert a periodic force on the ions by
applying an oscillating voltage on the trap electrodes, near
resonance with the two radial motional frequencies, colloqui-
ally termed “tickling” [39]. We use a two-tone signal, since
ions excited in the two radial dimensions require less total
energy to undergo a phase transition into a cloud, compared
to excitation in one dimension. The initial cloud energy is
thus lower, allowing a more accurate analysis of the cloud’s
energy gain. The rf tones are detuned from the motional
mode frequencies by about −100 kHz. This helps to avoid
recooling the crystal before it melts: Motional frequencies in
our anharmonic trapping potential decrease with increasing
oscillation amplitude. The oscillation frequency of ions there-
fore approaches resonance with the excitation field as the ions’
motional energy increases.

In our experiment, we induce an oscillating electric field
near the trapping region by superimposing the tickle pulse
with the rf trap drive. The rf electrodes do not produce a
field at the minimum of the pseudopotential, where ions are
ideally located. We therefore apply a bias field of about
∇V (bias)

{x,y} = 100 V/m in both radial directions, which displaces
the ions from the trapping center, improving their coupling
to the tickle field. This bias field displaces ions by �r{x,y} =
q∇V (bias)

{x,y} /(mω2
x ) from the trap center, which is less than a

micrometer in our setup, and is negligible when considering
melted ion dynamics.

FIG. 7. The Ca-Ca ion cloud energy dynamics experiments, in
which ion fluorescence is monitored using (a) a PMT and (b) a
CCD camera. An experimental sequence is divided into three steps:
(i) A tickle pulse excites the crystallized ions and induces enough
energy to cause the crystal to melt. This is indicated by a drop
in fluorescence. On the CCD camera, the two ions are no longer
resolved. (ii) During an idle period, the rf field induces heating. This
is detected as a drop of fluorescence and a dispersion of the cloud.
(iii) Recooling the cloud with a Doppler beam reduces the cloud size
and recrystallizes the ions. (c) The fluorescence rate is simulated as
a function of ion energy, which allows us to interpret the measured
fluorescence in terms of ion energy.

We determine from particle dynamics simulations that
roughly 5–10 meV of energy is required to melt an ion crystal
when exciting it in two dimensions. In our experiment, we
observe the melting by a drop in fluorescence count rate of a
detection pulse, measured with a photomultiplier tube (PMT).
In addition to the PMT counts, we also monitor the fluo-
rescence on a CCD camera, providing a spatial distribution
of fluorescence. The detection time must be short enough to
avoid a significant change in cloud energy during the detec-
tion period. Short detection times, however, result in a lower
signal-to-noise ratio in the fluorescence count rate. We choose
a detection time of 500 μs as a trade-off. As the fluorescence
rate of an ion cloud in our experiment is on the order of 103

counts per second, we detect only a few counts per sequence
cycle. We thus take an average count rate from >1000 repeti-
tions of the sequence.

Figure 7(a), case (i), displays an example of detected flu-
orescence in terms of PMT counts, as a function of duration
that the ion crystal is exposed to the tickle field. Figure 7(b),
case (i), shows corresponding CCD images (averaged over
multiple shots). In these images, the horizontal axis is the axial
direction, and the vertical axis is a radial direction, parallel
to the trap plane. After melting, the two ions are no longer
individually resolved on the CCD image.
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The total energy of the ion cloud directly after melting
depends on the frequencies, amplitudes, and durations of both
tickling pulses, and is difficult to predict exactly. Thus, in our
results we do not control the initial energy of the ion cloud.
However, stability in the rate of fluorescence in our measure-
ments indicates that the average initial energy remains stable
for the duration of the experiments with a fixed set of tickling
signal settings.

After melting, we allow the cloud to evolve for a fixed
duration, during which the ions undergo rf heating dynamics.
After the evolution time, the fluorescence is probed with a
PMT and camera. An example of such a measurement is
shown in Fig. 7(a), case (ii), and Fig. 7(b), case (ii), where the
fluorescence rate drops, and cloud size increases as a function
of wait time, indicating an increase in cloud energy. We sub-
sequently apply a 20-ms pulse of a high-power (>100 MHz),
far-detuned (∼120 MHz) Doppler cooling beam, which en-
sures that ions are recrystallized for following sequences.

The measured fluorescence count rates are to be mapped
into estimated cloud energy. We find this relation through an
independent simulation: A random set of oscillation ampli-
tude parameters ai,k (see Sec. IV B) is generated for a given
ion cloud energy Esec. These amplitude parameters are used
to calculate ion velocities �vi,k with Eq. (33) for times t ∈
[0, tmax] with tmax � 2π/(mink ωk ). Inserting these velocities
into Eq. (30) gives a time-dependent laser cooling force. The
average force in the duration tmax is proportional to the fluo-
rescence rate. Fluorescence rates are normalized to measured
rates at zero energy. In the experiment, this corresponds to the
rate of fluorescence detected from an unperturbed ion crystal
(i.e., neither displaced by a radial offset field, nor excited by
means of oscillating tickle field). The procedure of simulating
the fluorescence rate is repeated 20 times with random sets of
ai,k , from which we take an average.

Normalized fluorescence rates are shown in Fig. 7(c) as
a function of ion cloud energy. With this curve, a measured
value of fluorescence can be used to extract the cloud energy.
The mapping of fluorescence to ion energy is, however, not
unique for the full domain. The measured energies, Esec >

5 meV, are outside of this range of ambiguity for our parame-
ters, �/2π = 64 MHz and δ/2π = −40 MHz. A decrease in
fluorescence rate is thus correlated with an increase in energy.

Figure 8(a) shows the ion cloud energy, inferred from
measurements, as a function of wait time, for various ra-
dial motional frequencies. These frequencies are adjusted
by changing the power of the rf drive. The plotted points
are the mean values of calculated energy, inferred from the
>1000 repetitions of the sequence. The error bars repre-
sent the statistical uncertainty of the mean, but do not take
possible systematic errors in converting fluorescence into en-
ergy into account. The dashed lines represent the lower and
upper boundaries of the standard deviation of multiple simu-
lation runs, using the simplified rf heating model presented in
Sec. IV B. Measured and simulated data are in agreement for
both the time evolution of energy and the motional frequency
dependence.

We apply a Doppler cooling beam after allowing the crystal
to gain energy, to investigate the recooling efficiency. Variable
parameters are the beam’s coupling strength � (varied by
adjusting the beam power), the beam’s detuning from reso-

FIG. 8. Ca-Ca ion cloud energy dynamics experimental results.
(a) Energy dynamics have been measured for three sets of radial
motional frequencies. Error bars represent the statistical uncertainty
in the acquired mean energy, but do not take into account systematic
errors in converting fluorescence into energy. The thick lines are an
average of simulated energies, and the thin lines are the standard
deviation (±σ ). (b) We measure the cloud size after Doppler cooling,
using CCD imaged fluorescence. We scan the Doppler beam’s detun-
ing from resonance, effective coupling strength, and Doppler cooling
time. The reduction in cloud size indicates a loss of cloud energy.
The colors in the figure are scaled with the mean cloud size at 0 ms
and crystal size as high and low references. Simulated cloud sizes
are displayed below for comparison, shown at coupling strengths at
which the residual differences between measurement and simulation
are minimized.

nance, δ, and the cooling duration. As before, the energy of
the cloud (or potentially crystal, after sufficient cooling) is
probed with a short detection pulse. In our experiment, the
detection pulse has the same coupling strength � and detuning
δ as the cooling pulse, which means that we cannot measure
the fluorescence rate independently of cooling parameters. We
thus take CCD image data, and use the cloud size [using a
two-dimensional (2D) Gaussian fit] as an indicator of cloud
energy. Figure 7(b), case (iii), shows example images of an ion
cloud decreasing in size with increasing recooling duration.

Figure 8(b) displays the measured time evolution of ion
cloud size when Doppler cooling is applied. We investigate
various coupling strengths �/(2π ) = {44, 58, 80} MHz, at
detunings ranging from δ/(2π ) = −20 to −300 MHz. Plotted
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alongside are cloud sizes as determined from the simplified
energy simulations (Sec. IV B), including Doppler cooling. In
these simulations, we reconstruct the cloud size by calculat-
ing and correlating the ions’ positions and fluorescence rates
using the ion motion parameters ai,k within the respective
detection window. Cloud images are simulated at the same de-
tunings and times as used for the experimental results shown
in Fig. 8(b). The simulations are run for various coupling
strength parameters, ranging from 10 to 120 MHz. From
this set, we extrapolate which value of simulation coupling
strength has the best agreement with the displayed experimen-
tal data, in terms of least-squares difference. The simulation
results with the best agreements are displayed alongside the
respective experimental results in Fig. 8(b). The color scaling
is chosen such that the two color extremes represent the av-
erage size of the initial cloud and of the crystallized ions, as
detected by the CCD. We do not attribute an absolute pixel
value to this scale, as the detected cloud size is dependent
on cooling parameters. The perceived initial cloud size is
therefore not identical for the various plots.

The simulated coupling strength values differ from the
experimental values by about a factor of 2. We attribute this
discrepancy to two causes:

(1) In our simulations, we do not correct for the spatial de-
pendency of the power of the cooling beam, which is assumed
to be uniform over the entire ion cloud. In the experiment,
the beam diameter is estimated to be about 30 μm. At a
total energy of 0.02 eV and 1 MHz axial frequency, ions
typically undergo excursions of about ±18 μm from the trap
center. The spatial distribution of the Doppler beam is thus not
negligible.

(2) The force from the Doppler cooling beam is approxi-
mated by a continuous force acting on a two-level system. In
reality, this does not cover the full complexity of the stochas-
tic forces that are described by the eight-level system. For
example, in calibrating the coupling strengths �, we fit ex-
perimental data to a model that assumes a spontaneous decay
rate of �/2π = 21.6 MHz, which neglects possible decay to
the 3D3/2 electronic level. The modeled value of spontaneous
decay � is thus an upper bound for the effective two-level
spontaneous decay.

Barring the discrepancy caused by the approximations used
in the simulations, from both the experimental and simulated
data in Fig. 8(b) the conclusion can be drawn that efficient
recrystallization of a Ca-Ca cloud is achieved in about 5 ms,
using Doppler cooling with �/(2π ) > 80 MHz and δ/(2π ) ≈
150 MHz. Recrystallization is delayed or unattainable with a
lower beam power and/or incorrect detuning.

VI. CONCLUSIONS

In this work we have considered the properties of rf heating
in ion clouds in Paul traps. Using a simplified simulation,
we have attained a generalized model to describe the rate
of energy gain after ions have melted. This simple analytic
equation estimates rf heating rates for low-ion-number clouds
in linear Paul traps, for known trapping parameters. Experi-
mental trials have confirmed the energy growth trends for a
two-ion cloud, and have demonstrated requirements for cool-
ing parameters for recrystallizing the ions.

The results convey the necessity of having a recrystal-
lization setting in experimental hardware in addition to the
typical trapping and Doppler cooling settings. A detuning of
half the spontaneous decay rate of the cooled ion, δ = �/2
is a commonly used value for Doppler cooling in ion trap
experiments, since for low coupling, � � �, this detuning
yields the lowest energy [35]. Figure 7(c) shows that this
detuning is not suitable for recrystallizing an ion cloud, as
the rate of rf heating exceeds the rate of Doppler cooling. It
is therefore common for experiments with crystals consisting
of multiple ions to have a so-called refreeze beam—a high-
power, far-detuned, Doppler cooling beam. While settings for
such a beam are conceptually familiar, this work provides a
quantitative description of the heating and cooling processes
involved.

Efficiently overcoming rf heating is imperative in ion
trap systems with low ion escape barriers, such as surface
traps. Ion-trap-based quantum computers envision migrating
towards segmented surface trapping architectures to realize
scalability [40]. With increasing numbers of ions, collisions
with background particles become more frequent, and there-
fore also the number of melting events. Even if the energy
transferred in such collisions is lower than the trap depth
of surface traps (typically tens or hundreds of meV), energy
gain from rf heating can lead to loss of ions from the trap,
possibly in tens of milliseconds. Therefore, to avoid persis-
tently reloading ions, experimental sequences should include
a refreeze phase in every cycle. Our results suggest that for
recrystallization of a two-ion cloud, the Doppler cooling beam
should have a detuning of roughly δ ≈ −6� and should be
applied for more than 5 ms, with at least � > 3� coupling
strength. However, the simulations indicate that the condi-
tions for recooling are more demanding with an increasing
ion number. Lowering the power of the rf drive field during
this refreeze phase will aid recrystallization by decreasing rf
heating. Our results show that at a lower rf power, the benefit
of a lower heating rate outweighs the disadvantage of the
resulting lower trap depth.

The considerations of trap and cooling parameters become
more stringent when considering mixed-species operation
[41] in surface traps, whose use is also envisioned in ion-
based quantum computers [42]. For single-species clouds in
fixed trapping fields, rf heating rates decrease as the ions’
mass increases. This can be seen in Table I, noting that for
fixed trap parameters, m ∝ ω−1

r . On the other hand, the trap
depth, usually lowest in the radial direction perpendicular to
the trap surface, is approximately proportionally lower for
higher masses. Simulations show that mixed-species crystals
suffer from a worst-of-both-worlds situation: rf heating rates
are dominated by the lower mass ion in the cloud, while the
trap depth remains low for the higher mass ion. This also
limits the extent to which the rf drive power can be reduced
without risking ion loss. It is therefore beneficial to operate
ion traps with species of similar mass. However, regardless
of the mixed-species mass ratio, efficient recrystallization is
imperative.

In this work, we have analyzed a dynamic chaotic sys-
tem and developed a simplified model to characterize it.
The rf heating model can be further extended to include
effects of multispecies operation, larger numbers of ions,
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excess micromotion, and anharmonicities in trapping po-
tentials. Furthermore, recrystallization with Doppler cooling
can be further investigated, accounting for the effective dy-
namics of the eight-level cooling scheme. A Doppler beam
with chirped detuning [43] can, for example, be an effective
method to ensure recrystallization.

The data in this work are openly available at [44]. The
full ion dynamics data in Figs. 3(b) and 4(a) are available
upon reasonable request. The ion trajectory simulation code
is available at [45].
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APPENDIX A: DERIVATION OF 3D COLLISION RATE

In Sec. IV A, the motion of two ions is described as si-
nusoidal, with different amplitudes {ai} and frequencies {ωi}
in all three dimensions. In each dimension separately, ions are
within collision range (such that the distance between ions, di,
is below a given range r) twice per oscillation period, 2π/ωi.
This collision condition in one dimension is thus represented
by a pulse wave Bi(t ), with period Ti = π/ω and pulse du-
ration �ti, as in Eq. (24). We define a two-ion collision as
an event where the collision condition is satisfied in all three
dimensions simultaneously, given by the pulse wave B3D(t ) =
BxByBz. As this three-dimensional pulse wave is aperiodic (the
periods Ti are not rationally related), B3D(t ) does not have a
fixed pulse period. However, an average pulse period can still
be defined, given by the average time between pulses. The
collision rate f̄coll is then the average number of pulses in B3D

per time. In this section, we derive the average collision rate
in B3D as a function of pulse parameters Ti and �ti.

The probability that the 3D collision condition, B3D(t ) = 1,
is met at any moment in time t is given by the product of the
probabilities that Bi = 1 for i = x, y, z, P3D = ∏

i Pi, with the
one-dimensional (1D) probabilities Pi = �ti/Ti. Intuitively,
the collision rate is given by the product of the momentary
collision probability P3D, and the effective rate at which P3D is
resampled.

We derive f̄coll with a geometric argument, depicted in
Fig. 9 (shown in two dimensions, for clarity). The pulse wave
B2D(t ) = Bx(t )By(t ) in Fig. 9(a) is a function of time t . The
individual pulse waves Bx and By can, however, graphically
be separated into two time dimensions, tx and ty, depicted in
Fig. 9(b) as two time axes. The vertical and horizontal shaded
regions correspond to regions where Bx = 1 and By = 1, re-
spectively. The locations where the vertical and horizontal
bars meet are places that satisfy the collision condition, B2D =

FIG. 9. Graphical representation of collision condition, for de-
riving the 3D collision frequency. (a) In dimensions x and y, the
collision conditions are represented by pulse waves Bx and By. In two
dimensions, a collision is represented by the nonperiodic pulse wave
B2D = BxBy. (b) Bx (t ) and By(t ) are displayed as two orthogonal tem-
poral dimensions, such that their respective collision conditions are
vertical and horizontal bars. “Real” time is the diagonal line tx = ty.
Collisions occur where real time crosses vertical and horizontal bars
simultaneously, denoted by the yellow boxes. This is equivalent to
the real-time line crossing the green shaded area, the 45◦ projection
of collision boxes in unit cells U . Therefore, in the example unit cell
in (b), no collision occurs. The probability of a collision occurring
in a unit cell is thus given by the ratio of the projection of the green
region onto the base of the unit cell, and the base of the unit cell
itself. This probability, schematically shown in (c) two dimensions
and (d) three dimensions, is multiplied by the frequency that the time
line enters new unit cells to give the collision frequency.

1. These are graphically represented by the yellow boxes, with
side lengths �tx and �ty. “Real” time t parametrically follows
the diagonal line, tx = ty. Whenever the real-time line crosses
a yellow box, a collision occurs (starred regions).

We consider the parallelogram unit cell U (red dashed
line), whose height is given by the lowest value of {Ti} (in this
example, the lowest value is Ty; we see later that this choice
is made without loss of generality), and a base width given
by the remaining value (Tx). The parallelogram angle follows
the real-time line t , at 45◦. Each unit cell contains exactly one
collision box. The collision box is projected at 45◦ through
the unit cell, denoted by the green shaded area. Graphically,
a collision occurs if the time line passes through this area, as
the real-time line then has overlap with the collision box. In
the example unit cell of Fig. 9(b), no collision occurs. Since Tx

and Ty can be assumed to be irrationally related, the location
where the time line enters a unit cell is uniformly distributed.
Therefore, the probability of a collision occurring in a unit
cell is given by the ratio of the green shaded area to the area
of the unit cell. This is identical to the ratio of the lengths
of the base of the green area to the base of the unit cell.
The base of the green area is the projection of the collision
condition box along the axis of the time line onto the base
of the unit cell box (indicated by the thick green line). Since
the projection is along a 45◦ angle onto the x axis, the length
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of the projection is given by �tx + tan (45◦)�ty = �tx + �ty.
The probability that a collision occurs within a unit cell is
therefore PU,2D = (�tx + �ty)/Tx [see Fig. 9(c)].

Extending this concept into three dimensions [see
Fig. 9(d)], the base of the unit cell is now two dimensional,
with an area of AU = TxTy, assuming the shortest time in
{Ti} is Tz. The area of the projection of the collision box is
given by Acoll = ∑

i

∑
j>i �ti�t j . The probability of a colli-

sion occurring within a unit cell is PU = Acoll/AU . Note that
with this geometric argument PU can exceed 1, and should be
numerically capped off at this value. For typical experimental
values of �ti and Ti it is generally the case that PU � 1.

After passing through N unit cells, on average ncoll = PU N
collisions have occurred. The time line enters a new unit cell
at intervals Tz, so N = t/Tz. The collision rate is thus f̄coll =
ncoll/t = PU /Tz. Rewriting gives

f̄coll =
∏

i

(
�ti
Ti

) ∑
i

1

�ti
, (A1)

which conforms with the intuition that the collision rate is
given by the product of P3D and an effective resample rate.

APPENDIX B: NUMERICAL ANALYSIS
OF COLLISION TIME MODEL

In the simplified rf heating model presented in Sec. IV B,
we update the ions’ secular energy at intervals given by an
estimated time tcoll between ion-ion collisions. To generate
this time for a given set of ion and trap parameters, we first
find an average collision time t̄coll, as given by Eq. (25). We
then randomly sample from a truncated exponential distribu-
tion characterized by this average rate. In this Appendix, we
analyze these methods through comparison with numerical
simulations.

The average collision time t̄coll is a function of the ions’
secular motion amplitudes ai,k (for ion i in direction k), and
their relative motional phase φk . We generate a random set
of these parameters [ai,k ∈ (0, 10−4) m, φk ∈ (0, π )] and sim-
ulate the ions’ time-dependent positions under the influence
of the rf potential, though neglecting Coulomb interaction to
ensure that the parameter set ai,k and φk remains unaltered for
the duration of the simulation. We then query how often the
collision condition is met, i.e., |r1,k − r2,k| < rc, simultane-
ously for all k = {x, y, z}. The number of collisions occurring
in the duration of the simulation gives us the simulated colli-
sion rate. We compare this collision rate with the analytically
obtained collision rate given by Eq. (25). We repeat this
method 20 times with randomly generated parameters, and
plot the results in Fig. 10, which compares the simulated
and analytically obtained average collision rate (triangles).
We additionally repeat this process another 500 times, though
we replace the ion dynamics simulation with an analytic ex-
pression for ion position, as given by Eq. (32), which greatly
reduces the computation time per repetition (circles). Results
in Fig. 10 show good agreement between simulations and the
analytic model. The larger deviation at large collision times is
attributed to larger statistical errors, as only a few collisions
occur during the millisecond simulation time.

FIG. 10. Numerical analysis of collision time model. (a) Corre-
lation plot of analytically and simulated obtained average collision
times t̄coll for a randomized set of ion motion parameters ai,k and
φk . The simulated data are derived from numerical ion dynamics
simulations (triangles) and analytically approximated ion positions
(circles). (b) Distribution of collision times, normalized to the av-
erage collision rate. For comparison, an (truncated) exponential
distribution function is shown in blue (red). Various collision time
strategies are used in the simplified rf heating simulation, of which
the results are compared in (c).

After each collision event, a new collision time is to be
determined. For this, one could simply use the average time
t̄coll, since this suitably approximates the time over which
rf heating occurs after thousands of collisions. However, we
attempt to design our time selection procedure to be more
physically accurate, without compromising the computation
time of the simplified rf heating simulation. We do this by
drawing a new time randomly from a distribution function,
which is parametrized by the analytically obtained average
collision time.

Designing a physically accurate description of the dis-
tribution function is mathematically cumbersome, given the
aperiodic nature of the 3D collision criterion (see Ap-
pendix A). We thus aim to find a simplified approximation
of the distribution function. In our work, we have chosen an
exponential distribution based on the notion that the aperi-
odic collision conditions are uncorrelated events. This is a
simplification, since after a collision occurs, a subsequent
collision is more likely to occur close to a multiple of the three
motional periods. Using the same randomized parameters as
the results presented in Fig. 10(a), we obtain histogram bin
counts of times between collisions, which are normalized to
the numerically obtained average collision time. The resulting
data are shown in Fig. 10(b). For comparison, an exponential
distribution function is plotted. There is a good agreement at
longer (> t̄coll) collision times, but qualitatively less overlap
at lower times. Regardless, this method represents a compu-
tationally inexpensive improvement over simply selecting the
average time t̄coll as a new collision time. A further improve-
ment is made by assuming that the minimum time between
collisions is required to be at least one-half oscillation period
(Tk in the main text). This restriction is imposed by rejecting
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and resampling the randomly generated collision times, ef-
fectively truncating the exponential distribution function. This
truncated distribution is also shown in Fig. 10(b).

Ultimately, the main performance check is comparing the
simplified simulation to the full ion dynamics simulation, as
in Fig. 4(c). We can also compare the performance of the
simplified simulation using various strategies for generating
new collision times, using (1) the analytically obtained av-
erage time directly without sampling from a distribution, (2)
sampling from an exponential distribution characterized by
the average time, (3) sampling from a truncated exponential
distribution, and (4) simulating ion positions after a collision

to determine the time of the next collision. The energy dy-
namics of the simplified simulation with these strategies are
shown in Fig. 10(c), where each shaded region represents the
standard deviation around the mean (μ ± σ ) of 50 simulation
runs for each strategy. The change in energy is similar for all
methods. However, the simulated ion position approach has
significantly more computational overhead. In our work we
elect to use the truncated exponential distribution function.
While sampling from this distribution does not lead to a
notable improvement of the simulation results compared to
using the average time, it depicts a more accurate physical
representation, at nearly no extra computational cost.
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