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Spectroscopic effects of velocity-dependent Casimir-Polder interactions induced by parallel plates
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Casimir-Polder interactions cause energy and momentum exchange between microscopic and macroscopic
bodies, a process mediated by quantum fluctuations in the coupled matter-electromagnetic field system. The dy-
namics of such effects are yet to be experimentally investigated due to the dominance of static effects at currently
attainable atomic velocities. However, Y. Guo and Z. Jacob [Opt. Express 22, 26193 (2014)] have proposed a non-
static two-plate setup where quantum-fluctuation-mediated effects have a strong velocity-dependent resonance,
leading to a giant friction force on the plates. Here a more easily realizable setup, a moving atom between two
stationary plates, is analyzed within a QED framework to establish the spectroscopic Casimir-Polder effects on
the atom and their velocity dependence. While no large velocity-dependent enhancement is found, expressions
for the plate-induced spectroscopic effects on the atom were found and further shown to be equivalent to the
Doppler-shifted static result within certain velocity constraints. A numerical analysis investigates the behavior
of this system for the well-studied case of the 6D3/2 → 7P1/2 transition in 133Cs interacting with sapphire plates.

DOI: 10.1103/PhysRevA.105.032822

I. INTRODUCTION

The study of Casimir-Polder (CP) physics dates back to
the seminal works of Lennard-Jones [1] and Casimir and
Polder [2]. Both cases considered a neutral atom in the pres-
ence of a perfectly conducting plane of infinite spatial extent
and found that the macroscopic medium causes a shift in
the atomic energy levels proportional to the mean square of
the atom’s electric dipole operator 〈d̂2〉. This was obtained
in the former paper in the nonretarded limit, while the latter
considered the opposite retarded regime by accounting for
fluctuations in both matter and the light field. More general
CP effects occur due to quantum mechanical fluctuations;
one modern definition of CP physics is any phenomenon
caused by quantum-fluctuation-mediated interactions between
uncharged macroscopic and microscopic bodies.

CP physics causes forces on atoms [1,2] or spectroscopic
shifts in atoms [3]; here we focus on the latter due to greater
experimental sensitivity. These spectroscopic effects have
been measured in a cavity-QED setup [4], and a mathemat-
ical formalism for treating atoms in the presence of arbitrary
media, in terms of Fresnel reflection coefficients within linear-
response, has also been developed [3]. Thermal effects on
CP interactions have also been investigated theoretically [5]
and experimentally [6]. However, key experiments on CP
effects involve moving atoms [4,7–9], yet ignore dynamical
corrections to the static theoretical models. That generally
good agreement between theory and experiment has been
reached for static models implies that dynamical corrections
in these situations are small. Thus, in order to probe further
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these nonstatic effects, a system analogous to that presented in
Refs. [10,11], where a large velocity-dependent enhancement
of the Casimir effect occurs at a surface-plasmon resonance,
is investigated. There the velocity dependence of the force be-
tween two parallel moving plates of infinite spatial extent was
investigated. However, the suggested experimental values of
the plate velocities and separations required to achieve the res-
onance were of the order c/10 and 70 nm, respectively, which
are experimentally unattainable at present. Furthermore, even
if such conditions were achieved, it is unclear what observable
would be measured in such an experiment.

This result is, however, indicative of the possibility of some
considerable enhancement of Casimir (and by extension CP)
effects for a nonstationary system exhibiting suitable surface
plasmon resonances. In order to experimentally verify the
existence of any such enhancement, it is desirable to consider
more easily realizable situations. To this end, we consider a
system consisting of two stationary parallel dielectrics, with
an atom in motion through the central cavity, whose spectro-
scopic properties can be used as the probe of medium-induced
CP effects. Such a system has been well-studied for stationary
atoms where the plates are perfect reflectors [12–15], and an
expression for the force on a moving atom caused by magne-
todielectric plates also exists [16]. Velocity-dependent effects
have been examined by statistical methods [17] and can also
include the effect of preaccelerated atoms [18].

Whilst many experimental difficulties accelerating atoms
to the required near-relativistic velocities remain, it is much
more feasible than accelerating macrosopic objects. In this
paper we calculate explicitly the modification to an atom’s
spectroscopic properties in the setup detailed above. Our the-
oretical framework contains a description of the atom-field
system which fully accounts for the effect of media on the
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quantized electromagnetic field: macroscopic quantum elec-
trodynamics (MQED).

II. MODEL

Our system consists of a quantum-mechanical atom in-
teracting with the quantized electromagnetic field, which
contains the effect of the macroscopic media. First we define
the atomic flip operators Âmn in terms of the atomic Hamil-
tonian’s assumed nondegenerate eigenstates |n〉 as Âmn =
|m〉 〈n|. In this basis the internal atomic Hamiltonian is diago-
nal by definition and is given in terms of the energy En of the
state |n〉 by

ĤA =
∑

n

EnÂnn. (1)

We assume that the effects of magnetization in the media are
negligible compared to the polarization, and we secondly treat
the polarization of the media in linear response to the electric
field. The fluctuation-dissipation theorem [19] requires that
we consider not only this linear term in the electric field Ê but
also the contribution of a noise term P̂N , describing random
fluctuations in the polarization field P̂. Thus the polarization
operator (for an isotropic medium) can be expressed in terms
of the dielectric response function χ (r, τ ) as

P̂(r, t ) = ε0

2π

∫ ∞

−∞
dτ χ (r, τ )Ê(r, t − τ ) + P̂N (r, t ). (2)

The response function has the causality property

χ (r, τ ) = 0 when τ < 0. (3)

We now define functions in frequency space with argument
ω as the Fourier-transformed original functions, taking the
convention

g(ω) = 1

2π

∫ ∞

−∞
g(t )eiωt dt . (4)

The noise polarization operator P̂N is constrained by the fluc-
tuation dissipation theorem; these constraints can be satisfied
by introducing canonical bosonic annihilation and creation
operators f̂ (r, ω) and f̂†(r, ω). These are vector operators
whose components we write as ( f̂x, f̂y, f̂z )T , and similarly
for f̂†(r, ω). The relation to the noise polarization operator
is given by [20]

P̂N (r, ω) = i

√
h̄ε0

π
Im[ε(r, ω)] f̂ (r, ω), (5)

where we have defined the relative permittivity ε as ε(r, ω) =
1 + χ (r, ω). The free-field Hamiltonian can be expressed us-
ing these operators as

ĤF =
∫

d3r
∫ ∞

0
dω h̄ω f̂†(r, ω) · f̂ (r, ω). (6)

We can associate a noise charge density ρ̂N = ∇ · P̂N to the
polarization noise, whose conservation equation then leads to
the identification ĴN = −iωP̂N , where ĴN is the noise current
density. We insert Eqs. (2) and (5) into the classical macro-
scopic Maxwell equations in the presence of a noise current
source ĴN . This then leads to the following expression for

the electric field operator in terms of the fundamental field
operators:

Ê(r, ω) =
∫

d3r′ Ge(r, r′, ω) · f̂ (r′, ω). (7)

Here the auxiliary Green’s tensor Ge is related to the dyadic
electromagnetic Green’s tensor G by

Ge(r, r′, ω) = i
ω2

c2

√
h̄

πε0
Im[ε(r′, ω)]G(r, r′, ω), (8)

where G satisfies the Helmholtz equation[
−ω2

c2
ε(r, ω) + ∇ × ∇×

]
G(r, r′, ω) = δ(r − r′)I, (9)

with I being the identity matrix. It can be shown [21] that
the electric and magnetic fields as constructed here satisfy the
same equal time commutation relations as for the free-space
electromagnetic field.

The atom-field coupling is introduced in the multipolar
coupling scheme, which is obtained by applying a unitary
Power-Zienau-Woolley transformation to the full minimal
coupling Hamiltonian [22]. Henceforth all states and opera-
tors are considered after this transformation has been applied.
The atomic and free-field Hamiltonians [Eqs. (1) and (6)]
retain the same form, while the atom-field interaction term,
taken in the long-wavelength approximation for a nonrela-
tivistic nonmagnetic atom [20], takes the form

ĤI (t ) = −d̂ · Ê(rA(t )) = −
∑
m,n

dmn · [ÂmnÊ(rA(t ))]. (10)

Here the function rA(t ) is the atomic position at time t , and
d̂ is the atom’s canonical electric dipole operator. In the last
equality we have used completeness of the atomic energy
eigenstates to expand in the flip operators, and d̂mn is the
matrix element 〈m| d̂ |n〉. Using the Heisenberg equation of
motion, we obtain the following time evolutions for the fun-
damental field and atomic flip operators [23]:

d f̂ (r, ω, t )

dt
= − iω f̂ (r, ω) + i

h̄

∑
m,n

G∗T
e (rA, r, ω) · dmnÂmn,

(11)

dÂmn

dt
= + iωmnÂmn + i

h̄

∑
k

(Âmkdnk − Âkndkm) · Ê(rA).

(12)

Equation (11), with the boundary condition that f̂ coincides
with its time-independent Schrödinger equivalent at t = t0,
has the following solution:

f̂ (r, ω, t ) = e−iω(t−t0 ) f̂ (r, ω) + i

h̄

∑
m,n

∫ t

t0

dt ′e−iω(t−t ′ )

× G∗T
e (rA(t ′), r, ω) · dmnÂmn(t ′). (13)

Throughout we use the convention that a vector operation on
the left (right) of a tensor implies that the operation affects
the leftmost (rightmost) index of the tensor. With this result
it is now possible to study the internal dynamics of the atom,
which is done for the specific case of the two-plate system in
the next section.
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III. DERIVATION OF RESULTS

The calculations presented out in this section mirror the
nonperturbative dynamical approach used in Ref. [24]. We
first insert Eq. (13) for the time development of the electric
field into Eq. (12), allowing the calculation of the time de-
velopment of the atom’s internal states. Further imposing the
relevant atomic superselection rules, the following dynami-
cal equations for the expectation values of the coherences
〈Âmn(t )〉 (with m �= n) and the populations 〈Ânn(t )〉 are ob-
tained:

d〈Âmn(t )〉
dt

=
[

iωmn −
∑

k

(Cnk + C∗
km)

]
〈Âmn(t )〉, (14)

d〈Ânn(t )〉
dt

= 2
∑

k

[Re(Ckn)〈Âkk (t )〉 − Re(Cnk )〈Ânn(t )〉],

(15)

where we have defined the matrix elements as

Cmn = μ0

π h̄

∫ ∞

0
dτ

∫ ∞

0
ω2dω e−i(ω−ω̃mn )τ

× [dmn · ImG(rA, r′
A, ω) · dnm]. (16)

Here the electromagnetic field was taken to be in the ground
state |0〉F defined by f̂ (r, ω) |0〉F = 0 at time t = t0, and
the initial atomic state is arbitrary. In the final equation the
integration variable τ = t − t ′ is introduced, and the atomic
source and field points r′

A and rA, respectively, are shorthand
for rA(t ′) and rA(t ). The extension of the upper limit of the
integral over τ to +∞ was an assumption of the assumed
Markovian property of the field. The validity of this as-
sumption has been questioned in Refs. [17,18,25] and further
explored in Ref. [26], although the concerns raised in the
former seem to apply only to calculations of the friction force,
not to spectroscopic rates and shifts.

In Eq. (16) it was also assumed that the atom has real dipole
matrix elements dmn. The above two equations naturally im-
ply the following relations for the transition rate 	 and the
frequency shift δωm:

	(m → n) = 2Re(Cmn), (17)

δωm =
∑

n

Im(Cmn). (18)

The shifted transition frequency ω̃mn can be seen from Eq. (14)
to be given in terms of the unperturbed frequency ωmn =
(Em − En)/h̄ by the relation ω̃mn = ωmn + δωm − δωn.

At this stage the explicit form of the Green’s tensor in-
corporating the effect of the two dielectric plates, as shown
in Fig. 1, can be introduced [27,28]. The velocity-dependent
CP-induced transition rates and energy level shifts of an
atom in the single plate setup were calculated in Ref. [29].
To simplify the form of the two-plate Green’s tensor, only
the short-distance quasistatic limit (the nonretarded limit) is
considered. This is justified because CP effects are generally
negligible except at very small distances, which is the case we
consider here in order to maximize dynamical effects.

The nonretarded approximation is valid when the atom-
plate separation L is much less than the shifted resonance

FIG. 1. The two-plate setup, with the atom in the center of the
cavity.

frequency c/ω̃mn. By splitting the wave vector into parallel
and perpendicular components k = k⊥ez + k‖ with respect to
the plane surface, and using the relation k⊥ =

√
ω2/c2 − k‖2,

we see that we can take the nonretarded c → ∞ limit by
taking k⊥ → +ik‖, with the choice of sign ensuring the well-
definedness of G. We further take the atom to be moving
with constant velocity in the center of the plates, with the x
axis chosen such that rA = r′

A + vτex (it is simple to extend
this calculation to an arbitrary position). This leads to the
following expression for the Green’s tensor [30]:

G(rA, r′
A, ω) = G(r′

A + vτex, r′
A, ω)

= 1

8π2

{∫ ∞

0
dk‖

∫ 2π

0
dφ

k‖ 2

k2(ω)
eik‖vτ cos(φ)

×
[

e−k‖L

1 − r+
p r−

p e−2k‖L
(r−

p B(φ) + r+
p BT (φ))

+ 2r+
p r−

p e−2k‖L

1 − r+
p r−

p e−2k‖L
A(φ)

]}
. (19)

Here the matrixes encapsulating the directionality of the sys-
tem’s response are given as follows:

A(φ) =

⎡
⎢⎣

− cos2(φ) − cos(φ) sin(φ) 0

− cos(φ) sin(φ) − sin2(φ) 0

0 0 1

⎤
⎥⎦, (20)

B(φ) =

⎡
⎢⎣

cos2(φ) cos(φ) sin(φ) −i cos(φ)

cos(φ) sin(φ) sin2(φ) −i sin(φ)

i cos(φ) i sin(φ) 1

⎤
⎥⎦.

(21)

As in Fig. 1, r±
p (ω) are the nonretarded reflection coeffi-

cients for p-polarized light approaching the left- or right-hand
boundary, respectively. The wave vector has been split into x-y
radial and azimuthal components k‖ and φ, respectively.

Now we regularized the τ integration by shifting ω slightly
off the real axis, and we use the Sokhotski-Plemelj formula to
make the replacement:∫ ∞

0
dτ e−i(ω−ω̃′

mn )τ → πδ(ω − ω̃′
mn) − i

P

ω − ω̃′
mn

, (22)
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where ω̃′
mn = ω̃mn + k‖v cos(φ) is the Doppler-shifted reso-

nance frequency, δ(ω) is the Dirac δ function, and P denotes
an implicit principal value integral over ω.

Upon evaluation of the principal value integral term two
separate terms appear, one evaluated at the dominant fre-
quency ω̃′

mn, and one nonresonant term which is an integral
over imaginary frequencies iχ . It can be shown using the
conjugation property of the reflection coefficients r∗(iχ ) =
r((−iχ )∗) = r(iχ ) that this term has a vanishing real part
and thus makes no contribution to the transition rates. More
generally, when considering processes close to a resonance,
frequencies far from the resonance are expected to make small
contributions, and only the first resonant term needs to be
considered in a leading-order approximation [29].

Moreover, as the Green’s tensor satisfies the Schwarz
reflection principle G∗(rA, r′

A, ω) = G(rA, r′
A,−ω∗), the res-

onant contribution to the matrix elements (16) from the
principal value integral can be written using the following
identity:

P
∫ ∞

0

dω

ω − ω̃′
mn

Im(g(ω)) = θ (ω̃′
mn)Re(g(ω̃′

mn)) + n.r. ,

(23)

where θ (ω) is the Heaviside step function, g(ω) is any
function satisfying g∗(ω) = −g(−ω∗), and n.r. indicates the
nonresonant contribution to the integral. Using this result, and
inserting the explicit form of the Green’s tensor (19) into
the matrix elements (16), we obtain our main result for the
resonant contributions to these matrix elements:

Cres
mn = −i

8π2h̄ε0

∫ 2π

0
dφ

∫ ∞

0
dk‖ θ (ω̃′

mn)

k‖2e−Lk‖

1 − r+
p (ω̃′

mn)r−
p (ω̃′

mn)e−2Lk‖ dmn

× ·[2A(φ)e−Lk‖
r+

p (ω̃′
mn)r−

p (ω̃′
mn) + B(φ)r+

p (ω̃′
mn)

+ BT (φ)r−
p (ω̃′

mn)] · dnm. (24)

This result for the resonant contributions to the medium-
induced transition rates 	 and frequency shifts δω, given
previously by Cres

mn = 	mn/2 + iδωres
mn, can now be used to cal-

culate explicitly the effects of given media on an atom. It is
also consistent with the previously known result for a single
plate, where the resonant contributions to the coefficients Cmn

are given by [29]

Cmn = −i

8π2ε0h̄

∫ 2π

0
dφ

∫ ∞

0
dk‖ k‖2e−2zk‖

θ (ω̃′
mn)

× rp(ω̃′
mn)dmn · B(φ) · dnm. (25)

This expression is equivalent to the double-plate result pre-
sented here when the limits L → 2z and r−

p → 0 are taken in
Eq. (24), where z is the distance of the atom from the single
plate, and taking the second limit corresponds to removing
the effect of the second plate on the CP interaction between
the plates and the atom.

IV. DISCUSSION

The results presented here are consistent with those ob-
tained in Ref. [23] for a static atom and a general Green’s
tensor. The general expression for the static coefficient Cmn

was found to be

Cmn = μ0

h̄
θ (ω̃mn)ω̃2

mndmn · ImG(rA, rA, ω̃mn) · dnm

− iμ0

π h̄
P

∫ ∞

0

ω2dω

ω − ω̃mn
dnm · ImG(rA, rA, ω) · dnm.

(26)

The coincidence limit r′
A = rA of the Green’s tensor is given

by taking Eq. (19) with the limit v → 0, which can then be
inserted directly into Eq. (26). Carrying out the remainder of
the calculation as done here, we see the equivalence of the two
expressions, with the Doppler shifted frequency ω̃′

mn replaced
with its static equivalent ω̃mn. Now a specific application of the
results obtained for a moving atom is given, with numerical
illustrations of the key features of these results.

A. Numerical analysis

In order to apply the result of the previous section to
realistic media, a Drude-Lorentz model is introduced. Specif-
ically we consider the 6D3/2 → 7P1/2 transition in 133Cs, with
an associated transition frequency ωmn = 1.544 × 1014 rad/s
which is close to a resonance in sapphire [31] and has an
(assumed isotropic) dipole moment of 5.85 × 10−29 Cm. In
the nonretarded limit the reflection coefficients are given by
rp(ω) = [ε(ω) − 1][ε(ω) + 1]−1, with

ε(ω) = η

(
1 − ω2

P

ω2 − ω2
T + iγω

)
. (27)

In the above expression for ε(ω) we consider a single sap-
phire resonance with the absorption frequency ωT = 1.08 ×
1014 rad/s, the plasma frequency ωP = 1.2ωT , and the reso-
nance width parameter γ = 0.02ωT . The parameter η = 2.71
accounts for the presence of other resonances in the material.
Figure 2 shows the dependence of the medium-induced tran-
sition rates 	 and the frequency shifts δω on the detuning �

between the atomic transition and the medium resonance fre-
quencies. Immediately it can be seen that the frequency shift
δω ∼ 107 rad/s is negligible compared to the bare frequency
ωab ∼ 1014 rad/s, whereas the free-space transition rate can
be shown using Einstein’s formula to be

	0 = ω3|d|2
3πε0 h̄c3

= 5.31 × 104 s−1. (28)

The medium-induced transition rates are thus several orders
of magnitude larger than the free-space transition rates, and
we will, therefore, focus on these henceforth. Figure 2 shows
the detuning dependence of the transition rates for a static
atom, and the velocity dependence of these transition rates
for the four detunings marked with dashed lines in Fig. 2 is
shown in Fig. 3. These results are easily interpreted in terms
of Doppler-broadening via Eq. (24), where for a moving atom
the integral over φ for constant k‖ samples over frequencies
of width 2vk‖. The factor e−Lk‖

k‖2 in Eq. (24) is maximum
around k‖ � L−1, so the integral as a whole is expected to
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FIG. 2. Plot of the resonant contributions to the medium-induced
atomic transition rate 	 and the frequency shift δω as a function
of the detuning � for a static atom in the center of two plates of
separation 1 μm. The black (least flat) lines represent the static case,
with 	 shown in the upper lines and δω shown in the lower lines,
and the successively broadened 	 and δω profiles for v = 10−3.5c,
10−3.2c, and 10−2.9c, respectively.

contribute most around here, giving the amount of spreading
roughly as 2v/L. In this case (for the velocity v � 104 m/s)
this corresponds to a spreading of about 1010 rad/s, i.e., much
smaller than the frequency scale � 1014 rad/s. With this small
spreading the comparison of Figs. 2 and 3 shows the expected
most negative velocity dependence at the resonance, and a
positive velocity dependence marked in blue for a transition
frequency far from the resonance in a region where spreading
picks up an increasing part of the transition rate plot.

Figure 4 shows the effect of the multiple reflections on
the CP interaction for a static atom. A reason for carrying
out this work was that it was expected that the presence of

FIG. 3. The velocity-dependent transition rates proportional to
the static rates evaluated for four different detunings � from the
resonance. The zero detuning curve is the lowermost, with detunings
of −0.4, 0.4, and 2.2 × 1012 rad/s shown in the successively higher
curves.

FIG. 4. The medium-induced transition rates for a static atom a
distance z from one or two dielectric plates as labeled, shown for
two possible atom-plate separations. The curves with the smallest
and largest maxima show the single-plate results, with the other
two curves showing the two-plate results. In both cases the larger
transition rates are for smaller atom-plate separation z.

two-plates might lead to larger CP effects becoming evident
when compared to the single-plate setup already investigated
within this formalism [29]. However, whereas Fig. 4 shows
that for the larger atom-plate separation z = 1 μm the double
plate setup does indeed lead to much larger transition rates
than for the case where only a single plate is present, this is
not true for the smaller atom-plate separation z = 0.5 μm,
where the presence of the second plate actually reduces the
induced transition rate at and in a small region around the
resonance frequency. This can be mainly attributed to the extra
term [1 − r2(ω)e−2k‖L]−1 present in the double-plate result.
The quantity r2(ω) is in general complex, and as the results
are valid only in the quasi-instantaneous nonretarded regime,
where the evanescent waves carry no energy, |r2(ω)| is not
constrained to be less than 1. Indeed, for the medium param-
eters used here it is substantially larger than 1 for a large area
around the resonance, which explains how the double-plate
transition rates can be smaller than the single-plate transition
rates despite the expected larger effect due to multiple reflec-
tions. The presence of the plate separation L in this term also
implies the possibility of adjusting this effect by adjusting the
plate separation (or equivalently in this case the atom-plate
separation).

B. Comparison with Reiche et al. [32]

The same setup was recently studied in Ref. [32], where
the CP-induced friction force on the atom in the ground state
was calculated nonperturbatively. In contrast, the velocity-
dependent resonant energy shift and the decay rate calculated
here are associated with the excited atomic state. Despite these
differences, evidence of nonadditive enhancement seems to be
common to both cases.
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C. Comparison with Guo and Jacob [10]

The numerical examples of the previous section showed
no large velocity-dependent resonance of the type discovered
by Guo and Jacob [10] for the velocities considered in the
two-plate setup. The constraint placed on the velocities for
this work is v 
 Lγ , where L is the plate separation and
γ is the resonance width. These constraints come from the
convergence requirement of the Taylor expansion in the ve-
locity used in deriving the main results, together with the
resonance width giving the timescale over which the system
has a memory, or equivalently the timescale of interactions.
Generally, and also by inspection of the result (24), we see the
leading contribution is at k‖ ∼ L−1, and thus the enhancement
in Guo and Jacob’s [10] setup occurs at v ∼ LωSP, where
ωSP is the frequency of a surface plasmon resonance in the
material.

It is clearly impossible to satisfy these requirements simul-
taneously; thus, the results presented here cannot be used to
analyze whether this resonance appears in the case of static
plates and a moving atom. Considering the relativistic correc-
tions to these expressions allows one to probe this resonance;
however, this would require the inclusion of higher-order
terms in velocity in the Hamiltonian (10), complicating the
situation.

V. SUMMARY AND OUTLOOK

In this work we have obtained expressions for the velocity-
dependent CP-induced shifts in the atomic transition rates

and frequencies in a cavity between two dielectrics. By a
resummation of the Taylor series expansion of these expres-
sions, it was shown that the result is physically equivalent to a
Doppler shift of the static result and coincides with the known
single-plate result in the appropriate limit. These results were
obtained in the nonretarded limit, and with the assumption of
Markovian fields.

A natural extension of this work would be to consider
the effects of retardation on the results. Much discussion of
Casimir-Polder effects revolves around the difference between
retarded and nonretarded effects, and, in principle, a similar
calculation should be able to uncover the behavior of the sys-
tem considered here in the retarded limit. Here the inclusion of
magnetic effects would also be expected to contribute substan-
tially to the results, as opposed to the case here where they are
neglected. In order to make closer contact with the proposal
by Guo and Jacob [10], a fully relativistic treatment of the
atomic center-of-mass motion will have to be developed. An
alternative approach would be to carry out an expansion in
powers of the velocity, following Ref. [24], which might allow
one to study retardation effects near the nonretarded limit in
the limit of small atomic velocities.
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