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He atom in a quantum dot: Structural, entanglement, and information-theoretical measures
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Energy eigenvalues of ground and singly excited 1sns (1,3S) (n = 2 − 5, being the principal quantum number)
states of a He atom in a quantum dot have been investigated in detail by incorporating explicitly correlated
Hylleraas-type wave functions in the framework of the Ritz variational method. The quantum dot environment
is simulated by considering the influence of the finite oscillator (FO) potential. We have examined the behavior
of different energy components contributing to the total energy. In this regard, the Hund’s spin multiplicity
rule for 1sns (1,3S) (n = 2 − 5) states of a He atom has been examined in depth in terms of observed unusual
ordering of the electron repulsion and total energy. The energy contribution due to the total correlation (in the
presence of both radial and angular correlation) effect, the radial correlation limit and angular correlation limit
of a He atom under different strengths of the FO potential have been studied. As a quantitative replication of our
results, we have introduced and verified the Hellmann-Feynman theorem and virial theorem for both a He atom
and its first ionization threshold, i.e., He+ (1s, 2S) ion under the influence of the FO potential. The expectation
value of different radial quantities r1, r2

1 , r12, r2
12, r< = min(r1, r2), r> = max(r1, r2), angular quantities, e.g.,

interparticle angles θ1, θ12, one-electron delta function δ(�r1), and two-electron delta function δ(�r12) have been
determined for different strengths of the FO potential. The effect of the FO potential on the quantum similarity
index and dissimilarity between the He+ (1s, 2S) and He (1s2, 1S and 1s2s, 1,3S) as well as between He (1s2s, 1S)
and He (1s2s, 3S) has been examined. The von Neumann, linear, and Shannon information entropy for the ground
state He atom have been computed to ascertain the characteristic features of the electronic entanglement and the
charge distribution under the FO potential.
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I. INTRODUCTION

Fabrication of quantum systems with increasingly precise
control has been identified [1] as the main research activity
in atomic, molecular, and optical science and technology in
the coming decade. In this context, the breakthrough advances
in the design and fabrication of nanoscale electronic devices
depend on our understanding of the structure and stability of
quantum confined electronic systems. Theoretical studies in
this direction have considered different types of phenomeno-
logical potentials to model atoms or ions within different
confining environments [2–15]. The theoretical investigation
on quantum dots (QDs) has attracted special attention due
to its wide range of applications in biotechnology, modeling
molecules with tunable bonds, semiconductors, LEDs, tran-
sistors, diode lasers, solar cells, and medical imaging [16–22].
The electronic and optical properties of the QDs or artificial
atoms are very similar to the normal atoms.

Different types of electronic and optical properties for such
low-dimensional QDs have been investigated by considering
various types of model potentials like Coulomb, harmonic,
rectangular, parabolic, finite oscillator (FO), Woods-Saxon,
Poschl-Teller, Rosen-Morese, Tietz, and Eckart potential
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[23–38] to mimic the modified interactions. Among these, one
of the most preferred model potentials is the FO potential,
which has flexibility in changing its shape and size by tuning
the depth and width of the potential. Winkler [29] used the
FO potential to analyze the effect of such potential on the
bound and resonance state of a He atom using a complex co-
ordinate rotation method and excluding the electron-electron
correlation effect. However, the uncertainties in his calcula-
tion could not be removed even after the explicit inclusion
of the correlation effect. Later, Kimani et al. [31] used this
FO potential to study the ground states of few-electron QDs
through a restricted Hartree-Fock (RHF) method by includ-
ing the electron correlation effect, stepwise, in a series of
approximations based on the single particle Green’s function
approach. Chakraborty and Ho [32] investigated the effect of
FO potential on the resonance state of two electron atoms in
the framework of the stabilization method by including the
electron correlation effect and expanding the wave function
in a single exponent Hyllaraas-type basis. The position of
the bound states and the parameters of resonance states of
He atoms have been investigated by Saha et al. [30] and
Jiao and Ho [39] by considering correlated basis sets. Ou
et al. [19] used both attractive and repulsive FO potentials to
estimate the energy eigenvalue corresponding to the ground
state and singly excited state of He atoms. It is evident that
most of the work reported in the literature is focused mainly
on the variation of the energy eigenvalue of a few low-lying
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bound and resonance states of He atoms trapped inside a QD
environment.

Our aim in the present paper is to study the detailed vari-
ation of a comprehensive set of the structural properties of a
He atom by tuning the parameters (depth V0 and width �)
of the confining FO potential simulating a QD environment.
The same system can alternatively be treated as a two-electron
QD with an attractive Coulomb impurity at the center. A
minimalistic extension of the present method can also throw
light on the properties of two-electron QDs with repulsive
Coulomb impurity at the center. The results presented in this
paper are meant to accurately characterize the model system
under consideration. For this purpose, we have adopted Ritz
variational framework where the wave function is expanded
in an explicitly correlated multiexponent Hylleraas-type basis
set. In the present case, the cavity width � has been changed
in a wide region between 0.001 a.u. to 1000 a.u. while the
cavity depth V0 has been set with values 0.2 a.u., 0.5 a.u.,
and 1.0 a.u. Different important geometrical properties of the
ground state and a few singly excited states of He atoms have
been estimated and we have found that there is a considerable
change in all geometrical properties within the approximate
range 0.1 − 10.0 a.u. of the cavity width for any constant
value of cavity depth V0. For free He atoms, there are several
works [40–42], but to the best of our knowledge, there exist
no similar estimations for He atoms under such a confining
environment (mimicked by FO potential). It has also been
noted that the variation of different energy components of the
same states of a He atom has a sharp change within the same
region of cavity width � and for any value of cavity depth V0.
An interesting part in the study of energy components in this
paper relates to the study of the validity of Hund’s rule for the
singlet and triplet states arising from He in 1sns (n = 2 − 5)
configuration in conjunction with the relative ordering of the
electron repulsion energy. The linear dependency of the total
energy on the potential energy components and kinetic energy
of the confined He atom as well as a He+ ion have been
derived by applying the suitable version of the Hellmann-
Feynman and the virial theorems. We have observed that the
energy components obtained from Hellmann-Feynman and
virial theorems are very much consistent with the results
estimated from the present correlated variational approach.
A study of the variation of the electron correlation energy
for the ground-state He atom has been done. This has been
achieved via the accurate B-spline basis calculations of the
Hartree-Fock energy (EHF) for the ground state of the confined
He atom. The correlation energy is estimated using Lowdin’s
definition as Ecorr = Eexact − EHF. Further, we have analyzed
the radial and angular correlation limit of the correlation en-
ergy for different cavity parameters. It is to be mentioned that
in contrast to the angular correlation, the energy contribution
from the radial correlation has a distinct peak within the
approximate range 0.1–10.0 a.u of cavity width �. The quan-
tum similarity index (QSI)between two different one-electron
densities has been estimated to quantify the similarity or the
lack of it among the various spin states arising from the dif-
ferent electronic configurations of the confined He atom. The
changes in quantum similarity and dissimilarity index among
He+ (1s, 2S), He (1s2, 1S), He (1s2s, 1S), and He (1s2s, 3S) has
also been analyzed in detail by tuning cavity parameters. In

this context, our estimated result clearly reflects the fact that
the similarity or dissimilarity between two quantum states can
be manipulated by solely tuning the cavity parameters.

Another intriguing phenomenon in quantum mechanics is
the quantum entanglement which has no classical analog.
Recently, the study of quantum entanglement has become a
subject of great interest among researchers, as such study
plays an important role in different research areas like
quantum information, quantum teleportation, quantum com-
putation, and quantum cryptography [43–46]. One of the most
important aspects of the entanglement measures is that it can
be used as an alternative way to quantify the quantum cor-
relation. Interestingly, it is now possible that by controlling
the nanostructure parameter in a nanodevice, the amount of
entanglement of an atom or ion in a QD can be manipu-
lated. Researchers have already made several efforts to study
the quantum entanglement corresponding to the bound and
resonant states of free He atoms and He-like ions [47–59].
Besides, few investigations on the entanglement measurement
of He atom under Debye palsmas are also present in liter-
ature [60,61]. An interesting piece of work related to the
estimation of quantum entanglement for two interacting ul-
tracold bosonic atoms in one-dimensional harmonic traps is
by Peng and Ho [62]. However, there are very few works
on the measure of the quantum entanglement corresponding
to He-like atoms or ions under QDs [63–71]. For instance,
Coden et al. [69] studied the effects of Coulomb impurities
on the entanglement and investigated all the possibilities of
manipulating the entanglement of the electrons through com-
pletely controlling the parameters of the Gaussian attractive
potentials, while Kóscik [70] estimated the von Neumann en-
tropy corresponding to different S states of two Coulombically
attracting electrons by considering the harmonic potential in
the presence of a off-center Coulomb impurities. Kóscik and
Saha [71] analyzed the effect of the FO potential on the
ground state of He atoms by considering the trial variational
wave function expanded in a perimetric Hylleraas-type basis
set. A nonmonotonic behavior of the von Neumann entropy
and the linear entropy of the ground state of the He atom
under the confining FO potential has been noted and it is worth
mentioning that these entropies can easily be manipulated
through tuning the cavity parameters. In the present paper, we
have reproduced and verified the results obtained by Kóscik
and Saha [71]. In addition, we have investigated the variation
of linear entropy for different parameters of the FO potential.

Recent years have witnessed an overwhelming interest
among researchers in different branches of physics and chem-
istry about the theoretical estimation of quantum information
entropy [72–76]. The characterization of the atomic and
molecular systems in terms of the information theoretical
measures, such as the Shannon entropy and the Fisher infor-
mation at the classical level and the von Neumann and other
entanglement measures [77,78] at the quantum level, com-
plements their quantum mechanical description based mostly
on the total electronic energy. The information theoretical
analysis is generally carried out in terms of the entropic
spreading measures of the electron distribution using the one-
electron and two-electron pair densities [75,79–87] as the
key parameters. The various measures are then used to quan-
tify the uncertainty, randomness, disorder, localization, and
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electron correlation effects of N-electron systems. While the
one-electron density has been extensively used in the analy-
sis, there have been several recent studies which involve the
information theoretical measures using the electron pair den-
sities. In this paper, we report the results of our calculations,
Shannon information entropy using the one-electron density,
ρ(r) and the linear entropy SL, and von Neumann entropy SvN

in terms of reduced density matrix, ρred, from the Hylleraas
wave functions. We note here that the entanglement entropic
study undertaken here explicitly includes the spatial electron
correlation effects which specifically define the nature of
chemical binding in the He atom confined inside the finite
HO potential. Further, the accurate numerical results reported
here will be useful in precisely defining the present system and
differentiating it from those containing the He atom embedded
inside the various other confining potentials. A detailed in-
formation theoretical study including the relative information
entropy derived from the Hartree-Fock and correlated pair
densities for the present system is currently under progress
and will be published separately. Extensive calculations of the
quantum information entropy have been reported for free and
confined hydrogen, He, and He-like atoms [19,28,74–76,88–
90]. Sen [91] made a detailed study on Shannon entropy for
both hydrogenlike and He-like ions by considering infinite
confinement. Ou et al. [19] investigated the Shannon informa-
tion entropy in position space corresponding to the ground and
singly excited states of He atoms by considering attractive as
well as repulsive FO potentials and correlated Hylleraas wave
functions were used to estimate the Shannon entropy. In the
present paper, we have made a detailed investigation on the
variation of the Shannon information entropy corresponding
to the ground state of a He atom and the result shows reason-
able agreement with Ref. [19]. It is found that the influence of
the confining potential determines the entropy of the system
and thereby shows the variations of the electron localization.
We have organized our paper as follows: the present method-
ology has been discussed in Sec. II. The results obtained in the
paper have been presented and discussed in detail in Sec. III.
A summary of the main conclusions obtained in this paper is
presented in Sec. IV.

II. METHOD

A. Hamiltonian

The nonrelativistic Hamiltonian describing a two-electron
system (atomic unit is used throughout unless otherwise spec-
ified) inside a cavity is given by

H = − 1
2∇2

1 − 1
2∇2

2 + Veff, (1)

where the subscripts 1 and 2 represent the electrons. The first
two terms in Eq. (1) are the kinetic energy of electrons and
the last term is the effective potential of the system. Here, the
interparticle distance r12 is defined as r12 = |�r12| = |�r1 − �r2|.
The effective potential Veff of the system is given by

Veff =
2∑

i=1

[
− 2

ri
+ VFO(ri )

]
+ 1

r12
. (2)

The first part within the summation of Eq. (2) is the Coulomb
attractive potential between the electrons and the nucleus. The

second term represents the interaction potential between the
electrons and the cavity while the third part represents the
Coulomb repulsive potential between the two electrons. In
this present paper, the QD environment has been characterized
by the spherically symmetric FO potential [31,32,71], which
takes the form

VFO(r) = −V0(1 + cwr)e−cwr, (3)

where V0, cw are the depth of the potential well and cavity
constant, respectively. The cavity constant is defined as

cw = 1

�
√

V0
, (4)

where the term � represents the width of the potential. By
tuning the parameters V0 and �, the size of the cavity potential
can be changed. It is interesting to note that for a fixed value
of cw, the harmonic nature of the potential VFO(r) ∼ r2 can
be observed at the limit r → 0, i.e., very near to the center of
the QD, the FO potential behaves as a harmonic potential. In
contrast to this, for the large value of r (→ ∞), the potential
deviates from the harmonic nature and it becomes a quite
similar profile to the Gaussian potential.

B. Correlated wave function

We constructed our trial wave function of any bound 1,3S
state of He atoms by expanding in the Hylleraas-type basis set
of the type

�(r1, r2, r12) = (1 + κP̂12)
N∑

i=1

Ciχi, (5)

where, χi = rli
1 rmi

2 rni
12 e−αir1−βir2 with li + mi + ni � wi and

wi, li, mi, ni are positive integer or zero. The coefficients Ci

(i = 1, 2, ..., N ; N represents the total number of terms in the
wave function) in Eq. (5) are the linear-variational parameters,
while the 2N number of exponents αi and βi (i = 1, 2, ..., N)
are the nonlinear variational parameters (αi > 0, βi > 0). In
Eq. (5), P̂12 represents the permutation operator between the
two identical electrons in the He atom. For the singlet state,
the value of κ is +1 and κ = −1 for the triplet state. To
find the optimal choice of the nonlinear parameters αi and
βi (i = 1, 2, ..., N), we applied the Nelder-Mead optimization
technique [92]. Further, the nonlinear parameters αi’s and βi’s
in Eq. (5) are chosen quasirandomly from a two-dimensional
box. Here, the simplest version of the procedure to choose the
nonlinear parameters has been explained in the following way.
Let the index i (1 � i � N) be such that p=mod(i, 3) + 1,
where mod(i, 3) represents the modular division or the integer
remainder due to the division of i by 3. Therefore, the nonlin-
ear parameters αi and βi can be chosen from the two positive
intervals [A(p)

1 ,A(p)
2 ] and [B(p)

1 ,B(p)
2 ] as follows:

αi = 〈〈
1
2 i(i + 1)

√
2
〉〉(
A(p)

2 − A(p)
1

) + A(p)
1 ,

(6)
βi = 〈〈

1
2 i(i + 1)

√
3
〉〉(
B(p)

2 − B(p)
1

) + B(p)
1 ,

where the notation 〈〈 A 〉〉 represents the fractional part of the
real number A. It is to be noted that there is no restriction
whether A(p)

2 � A(p)
1 or A(p)

1 � A(p)
2 , which is also true for

B(p)
1 and B(p)

2 . Further, it is also true that for any value of p,
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the value of the relative position of the interval [A(p)
1 ,A(p)

2 ]
can be arbitrary with respect to the interval [A(p+1)

1 ,A(p+1)
2 ]

or [A(p−1)
1 ,A(p+1)

2 ]. The same is also true for the interval
[B(p)

1 ,B(p)
2 ]. Therefore, the bound-state energies are obtained

by solving the generalized eigenvalue equation

HC = ES C, (7)

where the Hamiltonian matrix H = 〈χi|H|χ j〉, overlap matrix
S = 〈χi|χ j} and C is the column matrix which consists of the
linear variational parameters.

C. Hartree-Fock calculations

The RHF calculations [93–95] reported in this paper for
the ground state He atom have been carried out using the
computer code originally written by Saito [96–98], which
employs the B-spline basis set to express the radial wave
functions. We refer the reader to Refs. [96–98] for a detailed
description of the code. In the present paper, we have adapted
the code so as to include the potential in Eq. (3) along with the
standard effective one-electron Fock operator. In this section,
we shall present the B-spline basis set parameters used in our
calculations. The RHF orbital with symmetry λ can be written
as

ψnλm(r, θ, ϕ) = r−1Pnλ(r)Y m
λ (θ, ϕ), (8)

where Pnλ and Y m
λ (θ, ϕ), respectively, denote the radial func-

tion and the spherical harmonics. The B splines of order
K {Bi,K} are piecewise polynomials of degree K − 1 on a knot
sequence in a cavity of radius R [99]. The knot sequence {ti}
is a set of points defined on an interval [ 0, R ]. Bi,K (r) is
nonzero in the interval [ ti, ti+K ). The Pnλ(r) are expanded
by the B-spline set defined in an interval [ 0, R ] with the
boundary conditions Pnλ(0) = 0 and Pnλ(R) = 0. The Pnλ(r)
is expanded in terms of N-term B-spline set {Bi,K}i=2,...,N+1 as

Pnλ(r) =
N∑

i=1

Cnλ,iBi+1,K (r). (9)

In the present paper, we have used a 100-term B-spline
basis set with K = 9 and R = 40 on an exponential-type knot
sequence [100] with the initial interval R1 = 10−4. The total
energy values calculated in this paper have an accuracy of 12
decimal digits in a.u.

D. Ionization threshold

To investigate the behavior of two-electron energy levels
within a finite domain, it is essential to calculate the re-
spective one-electron threshold within the confinement. The
variational equation for the ground state of a He+ ion within
a FO potential can be written as

δ

∫ ∞

0

[
1

2

(
∂ f

∂r

)2

+
{
−2

r
+ VFO(r) − Eth

}
f 2

]
r2dr = 0.

(10)

The radial function f (r) for the ground state of a hydrogenlike
ion is expanded in the pure exponential basis set as

f (r) =
∑

i

Die
−αir . (11)

In this calculation, we have taken 101 different nonlinear pa-
rameters α in a geometrical sequence αi+1 = αiγ , γ being the
geometrical ratio. The energy values Eth and linear coefficients
Di’s are determined by using equation similar to Eq. (7).

III. RESULTS AND DISCUSSIONS

The nonlinear parameters αi’s and βi’s in the exponent of
the wave function defined in Eq. (5) are chosen quasiran-
domly from two different one-dimensional boxes, the lengths
of which are initially set with two different guess values.
Subsequently, the energies of the ground and singly excited
bound states are optimized with respect to the box lengths for
fixed values of N by adopting Nelder-Mead simplex algorithm
[92]. This procedure has been repeated for He atoms with
different confining parameters (V0,�).

The convergence of the energy eigenvalues of the ground
state and the singly excited states of a He atom with respect to
the number of terms N defined in the wave function Eq. (5) has
been tested for different values of the confining parameters.
We have noted a consistent convergence pattern (at least up to
the tenth decimal place)with respect to the enlargement of ω

up to 16 (N = 525).
To demonstrate the accuracy of the present method, a com-

parison analysis of energy eigenvalues of 1s2 (1S) and 1s2s
(1S) state of He atom with the available theoretical estimates
has been made in Table I. It is clear that our estimated re-
sults show good agreement with those of Refs. [19,39,101].
For instance, Ou et al. [19] estimated the ground-state en-
ergy for free He atoms as −2.903724371 a.u. by considering
Hylleraas-type wave functions while our estimated energy
value of the same is −2.9037243768 a.u. Jiao et al. [39]
also evaluated the energy of the same as −2.90364 a.u. with
configuration interaction (CI) basis (538 terms in the wave
function) and −2.90372 a.u. with Hylleraas-type basis (525
terms in the wave function) in the framework of the Ritz-
variational method. One of the highly precise estimates of
the nonrelativistic energy of the same state is due to Drake
et al. [101] as −2.903724377034119479 a.u. by considering
the double basis set method in Hylleraas coordinates. The
same analysis has also been made for the 1s2s (1S) state of
a He atom. Our estimated energy corresponding to the 1s2s
(1S) state of a He atom with V0 = 1.0 a.u. and � = 100.0 a.u.
is −3.1444769986 a.u. while the available energy of the same
is given by Ou et al. [19] as −3.144476898 a.u. Thus, we may
opine that the accuracy of our obtained results for any state
and any arbitrary set of (V0, �) is at least up to the order of
10−8 a.u.

A. Variation of energy components

The total energy eigenvalue corresponding to the ground
state of He atom has been listed in Table II for differ-
ent sets of (V0,�). The ground-state energy of a free He
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TABLE I. Comparison of present energy eigenvalues −E of (1s2, 1S) and (1s2s, 1S) states of He with available theoretical estimates for
different cavity widths � and cavity depths V0. All entities are in a.u. a: Drake et al. [101]; b: Jiao et al. (with CI-type basis) [39]; b†: Jiao et al.
(with Hylleraas basis) [39]; c: Ou et al. (with Hylleraas basis) [19].

1s2, 1S 1s2s, 1S

V0 � Present Others Present Others

0.0 − 2.9037243768 2.9037243770a 2.1459740450 2.1459740460a

2.90364b 2.14596b

2.90372b†
2.14597b†

2.903724371c 2.145974012c

0.2 0.01 2.9037304704 2.903730428c 2.1459784505 2.145978326c

1.0 3.0933446236 3.093344574c 2.2606931719 2.260693038c

100 3.3036079245 3.303607882c 2.5445287982 2.544528698c

0.5 0.1 2.9300410394 2.92997b 2.1646145256 2.16460b

2.93004b†
2.16461b†

2.930040819c 2.164613565c

1.0 3.5649046788 3.56482b 2.5371478848 2.53713b

3.56490b†
2.53715b†

3.564904622c 2.537147708c

100 3.9036068759 3.90353b 3.1444769986 3.14446b

3.90361b†
3.14448b†

3.903606833c 3.144476898c

atom is estimated as −2.90372438 a.u. while it becomes
−2.90372444 a.u. for (V0,�) = (0.5, 0.001) a.u. and it
saturates at −3.90372318 a.u. for (V0,�) = (0.5, 1000.0) a.u.
However, this decrement in energy with respect to � for
constant V0 is not monotonic. In contrast, for constant �,
the increment of V0 monotonically decreases the bound-state
energy. The variation of the total energy for the ground and
singly excited 1sns (1,3S) (n = 2 − 5) states of He atom with
respect to � is depicted in Fig. 1. It is interesting to note
that the ground and singly excited 1sns (1,3S) (n = 2 − 5)
energy levels of a He atom cannot overcome the He+ (1s,
2S) threshold (black dashed line) and therefore implies that
it is not possible to ionize the He atom solely by tuning the
parameters (V0,�) of the FO potential. In Table II, we have
listed different energy components, i.e., total kinetic energy
Ek , Coulomb attraction energy Ea, Coulomb repulsion energy
Er , and confining FO potential energy Ec corresponding to
the ground state of He atom. The cavity depth V0 is fixed
at 0.5 a.u. We notice a sharp change in the energy compo-
nents Ek , Ea, and Er for � ranging from 0.1 a.u to 10.0
a.u. The kinetic energy Ek is estimated as 2.90372456 a.u.

for � = 0.001 a.u. which increases 11.78% to 3.24584969
a.u. as � changes to 1.0 a.u. and finally attains 2.90372675
a.u. as � becomes 1000.0 a.u. In Figs. 2(a), 2(c) and 2(d),
the respective variations of Ek , Ea, and Er with respect to �

are shown. It can be seen that at around � = 1.0 a.u., Ek of
ground state of He atom has a maximum. But for excited 1sns
(1,3S) (n = 3 − 5) states of He atoms, there are two distinct
points of maximum of Ek . Unlike this, Ea has a single point
of minima around � = 1.0 a.u. for the ground state of He
atom and there are two minimum points of Ea for the excited
states 1sns (1,3S) (n = 3 − 5) of the He atom. In case of Er ,
it has a single maxima for ground and excited states of He
atoms. It is worth noting that the point of maxima is shifted
toward the higher � value as we go from the lower to upper
excited state. The asymptotic behavior of the confining FO
potential Ec energy can clearly be visualized from Table II.
At low values of � (= 0.001 a.u.), the energy due to the
confining potential is almost zero (Ec = −0.00000006 a.u.)
and for high � (= 1000.0 a.u.) gives Ec = −0.99999881 a.u.
(∼ − 2V0) with V0=0.5 a.u. To get a more general view about
such behavior of the FO potential, we have investigated the

TABLE II. Total energy eigenvalue −E , kinetic energy Ek , Coulomb attractive potential energy −Ea, Coulomb repulsive potential energy
Er , and potential energy contribution from confining finite oscillator potential −Ec corresponding to ground state of He for different cavity
widths � and cavity depths V0. All entities are in a.u.

V0 � −E Ek −Ea Er −Ec

0.0 − 2.90372438 2.90372437 6.75326720 0.94581844 0.0
0.5 0.001 2.90372444 2.90372456 6.75326741 0.94581847 0.00000006

1.0 3.56490468 3.24584969 7.15945133 1.02286458 0.67416762
1000.0 3.90372318 2.90372675 6.75327024 0.94581911 0.99999881

1.0 0.001 2.90372473 2.90372544 6.75326839 0.94581857 0.00000036
1.0 4.46334161 3.41199876 7.34671803 1.06067672 1.58929907

1000.0 4.90372318 2.90372675 6.75327025 0.94581911 1.99999880

032821-5



MONDAL, SEN, AND SAHA PHYSICAL REVIEW A 105, 032821 (2022)

FIG. 1. Variation of energy eigenvalues E of He (1sns, 1S) (n =
1 − 5) (solid lines), He (1sns, 3S) (n = 2 − 5) (dashed lines) and He+

(1s, 2S) (black dashed line) with respect to cavity width �. Cavity
depth V0 is fixed at 0.5. All entities are in a.u.

same for V0 = 1.0 a.u. and the same argument is found to
be true for this case also. The detailed variation of the FO
potential energy Ec with respect to � for constant V0 = 0.5
a.u. corresponding to the ground and singly excited 1sns (1,3S)
(n = 2 − 5) states of He atoms is depicted in Fig. 2(b). It may
be concluded that the overall variation of the total energy
is actually controlled by the energy component due to the
confining FO potential Ec.

B. Hund’s rule and the electron repulsion energy

The set of three Hund’s spin multiplicity rules were pro-
posed empirically in a series of publications [102–105] prior
to the beginning of the era of new quantum mechanics. In
this section, we are concerned with the first spin multiplicity
rule which states that for a given atomic open shell electronic
configuration, the term with the maximum spin multiplic-
ity corresponds to the lowest energy. Slater [106], using the
first-order perturbation theory along with the assumption of
the common set of frozen orbitals for the multiplets, showed
that the stability of the higher spin multiplet originated from
the lowering of interelectronic repulsion due to the exchange
stablization. However, the assumption of the frozen orbitals
common to all the multiplets gives rise to the different terms
having a common kinetic energy but different total energies,
which violates the virial theorem. Davidson [107] studied the
singly excited states of He within the Hartree-Fock frame-
work, in which the orbitals are optimized, individually, for
a total of 18 terms (singlet and triplet), thus including the
variationally relaxed orbitals within the theoretical analysis.
This work concluded with a remarkably intriguing observa-
tion: “In every case, however, the electron-repulsion integral
is larger for the triplet than for the singlet. Thus it is not

true, as is usually assumed, that the triplet lies lower because
it has less electron repulsion.” Subsequently, several studies
on different atoms and QDs have been reported [107–115]
which suggest that while the Hund’s rule remains valid in
such systems, the relative ordering of the electron-repulsion
integral can actually be either larger or smaller in the higher
spin multiplet. We shall now present the results of our calcu-
lations on the He atom in the QD modeled by Eq. (1) with
reference to the validity of the Hund’s rule, in general, for
the configuration He (1sns) with n = 2 − 5. Special consid-
eration will be given to the 1S and 3S states originating from
the He (1sns) configuration in analyzing the electron-electron
interaction vis-à-vis the difference in the total energy of the
3S and 1S states. In Fig. 1, we have displayed the total energy,
E , versus the cavity width, �, for the 1S and 3S states arising
from the He (1sns) with n = 2 − 5. It is observed that at all
values of �, the 3S state is always lower than the 1S state, as
predicted by the Hund’s spin multiplicity rule. The magnitude
of the singlet-triplet total energy difference decreases as n in-
creases for the excited He (1sns). This result is similar to those
reported for the He atom in the free [107] and the screened
Coulomb potential [114,115]. In Fig. 3, we have shown the
variation of the difference between the electron-repulsion en-
ergy, [〈 1

r12
〉3S − 〈 1

r12
〉1S], with the cavity width �. We report the

interesting result that in each case of the 3S and 1S arising out
of He (1sns) with n = 2 − 5 configuration, there exist three
ranges of � as marked in Fig. 3, over which the ordering of
the electronic repulsion energy given by (i) 〈 1

r12
〉3S > 〈 1

r12
〉1S,

(ii) 〈 1
r12

〉3S < 〈 1
r12

〉1S, (iii) 〈 1
r12

〉3S > 〈 1
r12

〉1S, respectively. In all
these cases, the virial theorem dictates that the total potential
energy corresponding to the triplet state is more negative than
the singlet state. This underscores the important role played by
the nuclear attraction term in determining the overall stability
of the triplet state at all values of the cavity width �. To the
best of our knowledge, the He atom in a QD described by
the FO potential given by Eq. (1) represents a model potential
which exhibits both higher and lower electron repulsion in
the higher spin multiplet as the parameter � of the poten-
tial is continuously varied over which the total energy of
the higher spin state is always lying below the lower spin
multiplet.

The FO potential in Eq. (1) at fixed V0 is characterized by
the cavity width �. At large values of �, the FO potential is
very wide, so the electrons in the He impurity interact only
feebly because they are localized by the Coulomb potential.
At small values of �, the FO potential is too narrow and its
effect diminished again since the electrons in the He impurity
interact with it when they are very close to the nucleus, a
region where the radial probability vanishes (because of the
volume element, that depends on r2). As a consequence, in
Fig. 3, at the two limiting values �, the variation of the
difference 〈 1

r12
〉3S − 〈 1

r12
〉1S is found to be nearly similar with

〈 1
r12

〉3S > 〈 1
r12

〉1S. The latter order of the electron repulsion is
similar to the free He atom.

At the intermediate range of �, the FO potential induces
a reversal of the relative magnitudes of the singlet versus
triplet interelectronic repulsions. This specific behavior of the
singlet versus triplet interelectronic repulsions along the He
isoelectronic sequence is indeed observed [115] at larger Z
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FIG. 2. Variation of (a) kinetic energy Ek , (b) FOP energy Ec, (c) attractive potential energy Ea, (d) repulsive potential energy Er

corresponding to He in 1sns (1S) (n = 1 − 5) states (solid lines) and 1sns (3S) (n = 2 − 5) states (dashed lines) with respect to cavity width �.
Cavity depth V0 is fixed at 0.5. All entities are in a.u.

values wherein the interelectronic repulsion is higher in the
singlet. This higher-Z behavior is in agreement with first-order
perturbation theory, where 1/Z = 0 (Z = infinity) is taken as
the zero-order Hamiltonian. In this limit, the interelectronic
repulsion is J + K for the singlet and J − K for the triplet,
both the Coulomb integral, J , and the exchange integral K
being positive.

On the basis of this observation, we conclude that the
cavity width � of the FO potential in the intermediate range
given in Fig. 3 enhances the one-body attraction to the nucleus

thus acting in the same way as observed in the He series at
higher Z values in the free state.

C. Variation of correlation energy

The estimation of total correlation energy leads to un-
derstanding the nonlocality of the electrons and also it is
related to the quantum entanglement [57]. The total correla-
tion energy Ecorr can be estimated by subtracting Hatree-Fock
energy EHF from the energy obtained with explicitly correlated
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FIG. 3. Variation of [〈 1
r12

〉3S − 〈 1
r12

〉1S] corresponding to He in

1sns (1,3S) (n = 2 − 5) states with respect to cavity width �. Cavity
depth V0 is fixed at 0.5. All entities are in a.u.

Hylleraas type wave function EHyl as

Ecorr = EHyl − EHF. (12)

The component of radial Erad,corr and angular Eang,corr corre-
lations in the total correlation energy have been determined
as

Erad,corr = E rad
Hyl − EHF,

(13)
Eang,corr = EHyl − E rad

Hyl,

where the energy E rad
Hyl is obtained in the absence of any r12

term in the wave function defined in Eq. (5).
A detailed study on the Ecorr, Erad,corr, and Eang,corr sepa-

rately in the total energy have been performed for the ground
state of the confined He atom. The variations of Ecorr (black
line), Erad,corr (blue line), and Eang,corr (red line) with respect
to cavity width � corresponding to cavity depth V0 = 0.5 a.u.
has been demonstrated in Fig. 4. It can be noted that the value
of Ecorr has a decreasing trend for smaller values of � and after
which it has a sharp peak around � = 1.0 a.u. The exactly
opposite nature of the energy contribution from Erad,corr and
Eang,corr are clearly visualized in Fig. 4. In Table III, we have
listed some of our estimated results of Ecorr, Erad,corr, and
Eang,corr for different sets of (V0,�). It is observed that Ecorr

remains almost constant up to � = 0.05 a.u. The contribution
of the Ecorr within this region is almost 1.45% of the total
energy and the maximum part of this correlation comes from
the Eang,corr, which is almost 58.75% of the Ecorr. At � = 0.2

FIG. 4. Variation of (a) radial correlation limit of total correlation
energy Erad,corr (◦, blue line), (b) angular correlation limit of total
correlation energy Eang,corr (�, red line), and (c) the total correlation
energy Ecorr (�, black line) corresponding to the ground state of He
with respect to cavity width �. Cavity depth V0 is fixed at 0.5. All
entities are in a.u.

a.u., Ecorr takes the minimum value i.e., −0.04226946 a.u. and
at that point the value of Eang,corr is −0.02477133 a.u. which
is 58.60% of Ecorr. Beyond � = 0.2 a.u., Ecorr has a smooth
transition within which Ecorr decreases rapidly and the value
of Ecorr becomes −0.04164917 a.u. at � = 0.9 a.u. Up to
� = 0.9 a.u. the Eang,corr increases monotonically and then
it saturates to the value −0.02470162 a.u. for � = 1000.0
a.u. by making 58.75% contribution in Ecorr. In contrast,
up to � = 0.9 a.u., Erad,corr decreases fast which becomes
−0.01560716 a.u. at � = 0.9 a.u. with 37.47% contribution
in Ecorr and after that it saturates to the value −0.01734276
a.u. with 41.25% contribution in Ecorr. The interplay between
Eang,corr and Erad,corr in Ecorr is therefore very interesting in the
region of cavity width � = 0.1 − 10 a.u. for the cavity depth
fixed at V0 = 0.5 a.u.

D. Entanglement entropy

The linear entropy SL and von Neumann entropy SvN in
terms of reduced density matrix ρred are defined as follows

TABLE III. Hatree-Fock energy EHF, total correlation energy Ecorr, radial correlation energy Erad,corr and angular correlation energy Eang,corr

corresponding to the ground state of He for different cavity widths � and cavity depths V0. All entities are in a.u

V0 � −EHF −Ecorr −Erad,corr −Eang,corr

0.0 − 2.86168000 0.04204440 0.01734279 0.02470161
0.5 0.001 2.86168006 0.04204434 0.01734279 0.02470155

1.0 3.52327365 0.04163105 0.01558573 0.02604532
1000.0 3.86167881 0.04204439 0.01734276 0.02470162

1.0 0.001 2.86168035 0.04204438 0.01734279 0.02470159
1.0 4.42190798 0.04143363 0.01460633 0.02682730

1000.0 4.86167881 0.04204437 0.01734276 0.02470161
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TABLE IV. Convergence of von Neumann entropy SvN and linear
entropy SL corresponding to the ground state of He atom with respect
to lmax for nmaax = 100 and 200. The cavity width � and cavity depth
V0 are set at 1.0 and 0.5, respectively. All entities are in a.u.

nmax = 100 nmax = 200

lmax SvN SL SvN SL

0 0.03493860 0.01496846 0.03386940 0.01343357
1 0.07136378 0.01496422 0.07029066 0.01342933
2 0.07397524 0.01496421 0.07290078 0.01342932
4 0.07453588 0.01496421 0.07346006 0.01342932
6 0.07459150 0.01496421 0.07351505 0.01342932
8 0.07460262 0.01496421 0.07352584 0.01342932
10 0.07460586 0.01496421 0.07352890 0.01342932

[48,49,54,55]:

SvN = −Tr(ρred log2 ρred); SL = 1 − Tr
(
ρ2

red

)
, (14)

where the reduced density matrix of a two-electron system is
defined as ρred = |�〉〈�|. The eigenvalues of the reduced den-
sity matrix ρred have been estimated with the aid of Schmidt
decomposition method [63,116,117]. Specifically, the von
Neumann entropy and the Linear entropy can be written in
terms of λnl (the eigenvalue of the reduced density matrix) as
follows:

SvN = −
∑
nlm

λnl log2 (λnl ); SL = 1 −
∑
nlm

(λnl )
2. (15)

Since the value of m runs from −l to +l i.e., 2l + 1 degenerate
values, the above two equations can be modified as

SvN = −
∑

nl

(2l + 1)λnl log2 (λnl );

SL = 1 −
∑

nl

(2l + 1)(λnl )
2. (16)

The numerical procedure used here to compute the von Neu-
mann and the linear entropy has been explained in detail by
Kóscik [70].

The von Neumann entropy SvN and the linear entropy SL

corresponding to He (1s2, 1S) and He (1s2s, 1S) have been
estimated with N = 34 and 50 terms, respectively, in the
Hyllerass-type basis set. The upper limits (lmax and nmax) in
the summation of Eq. (16) are increased to attain a desired
level of accuracy. We have changed lmax from 0 to 10 by
fixing nmax with 100 and 200, respectively. In Table IV, the
convergence in SvN and SL with respect to lmax and nmax is
listed. The values of SvN and SL in the second and third column
of Table IV are given for nmax = 100 while the fourth and
fifth columns of same are given for nmax = 200. The present
result shows qualitative agreement with the available results
[48–55,60,70,71] which can be seen from Table V. Table V
depicts some representative estimates of SvN and SL corre-
sponding to He (1s2, 1S) and He (1s2s, 1S) with lmax = 10 and
nmax = 200 for different sets of (V0,�). It can be seen that for
a constant value of V0, the value of SvN and SL corresponding
to He (1s2, 1S) and He (1s2s, 1S) of He atoms have a sharp
minimum with respect to the cavity width �. The detailed
variation of the SvN and SL with respect to cavity width �

for fixed value of V0 = 0.5 a.u. is plotted for the ground state
of a confined He atom, given in Fig. 5.

E. Variation of geometrical properties

By computing the optimal variational parameters αi and βi

and the linear coefficients Ci of the wave function � defined
in Eq. (5), we have estimated different geometrical properties
of the confined He atom, namely, the expectation value of
inter-particle distances i.e., radial moments 〈r1〉, 〈r12〉, 〈r2

1〉,
and 〈r2

12〉, expectation value of interparticle angles i.e., angu-
lar moments 〈θ1〉 and 〈θ12〉 with the same order of accuracy
as described for energy. Furthermore, we have evaluated the

TABLE V. The von Neumann entropy SvN and the Linear entropy SL corresponding to (1s2, 1S) and (1s2s, 1S) states of He for different
cavity widths � and cavity depths V0. [lmax = 10 and nmax = 200]. All entities are in a.u. a: Lin and Ho [60], b: Dehesa et al. [48,49], c: Benenti
et al. [50], d: Lin et al. [51], e: Lin et al. [52], f : Lin and Ho [55], g: Kościk and Okopińska [54], h: Hofer [53], i: Kościk [70].

1s2, 1S 1s2s, 1S

V0 � SvN SL SvN SL

Free 0.08497 0.01601 0.99203 0.48899
0.084998a 0.015937a 0.991917a 0.488737a

0.015914b 0.48866b

0.0785c 0.01606c 0.991099c 0.48871c

0.015943d 0.488736d

0.0159156e

0.08489987 f 0.01591564 f 0.99191721 f 0.48874040 f

0.0848999g 0.0159157g

0.06749889h 0.01595052h

0.0159172i

0.5 0.001 0.08497 0.01601 0.99211 0.48921
1.0 0.07353 0.01343 0.99554 0.49016

1000.0 0.08497 0.01601 0.99211 0.48920
1.0 0.001 0.08497 0.01601 0.99211 0.48921

1.0 0.06860 0.01235 0.99882 0.48706
100.0 0.08497 0.01601 0.99211 0.48920
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FIG. 5. Variation of (a) von Neumann entropy SvN , (b) linear entropy SL corresponding to the ground state of He with respect to cavity
width �. Cavity depth V0 is fixed at 0.5. All entities are in a.u.

expectation value of the inner radius r< = min(r1, r2) and the
outer radius r> = max(r1, r2) [42,118,119]. The two-electron
He atom always prefers two different radii r< and r> at any
instant of time [120,121] to minimize the electron-electron
repulsion effect. The expectation value of electron-electron
delta function δ(�r12) and electron-nuclear delta function δ(�r1)
have also been estimated in this paper. We have listed all
results up to eight decimal places.

In Tables VI and VII, we have, respectively, listed
the one-particle and two-particle radial moments [〈r1〉, 〈r2

1〉,〈r12〉, 〈r2
12〉], the angular moments (〈θ1〉, 〈θ12〉) along with the

delta functions [〈δ(�r1)〉, 〈δ(�r12)〉] for different cavity parame-
ters (V0,�). The respective structural properties of the ground
and 1s2s (3S) states of the free He atom is listed in the first
row of Tables VI and VII. It is observed that for a specific
value of V0, the radial moments (i.e., 〈r1〉, 〈r2

1〉, 〈r12〉, and
〈r2

12〉) of ground and singly excited states of He atoms are
insensitive for lower values of �, but the system starts to
squeeze as the value of � reaches 0.1 a.u. Interestingly, the
rate of such squeezing increases rapidly up to a certain limit of

� (say, �m), beyond which the system again starts to expand
and for large values of �, the system again behaves the same
as the free one. It is also worthwhile to note that the value
of �m moves toward the higher region as we consider the
singly excited state. In particular, the value of �m is ≈0.8 a.u.
for the ground state of the He atom, which rises to ≈2 a.u.
in case of singlet or triplet 1s2s state of He atom. Besides,
there is a distinct minimum for ground state and lower singly
excited state, which vanishes for higher singly excited states.
Figures 6 and 7 clearly depict the variation of different radial
moments for different sets of (V0,�) and it can be noted that
for all singly excited states, the value of radial moments of
a singly excited singlet state always remains greater as com-
pared to the respective triplet state irrespective of any value of
V0 and �. The detailed variation of the one- and two-electron
angular moments corresponding to ground and 1s2s (3S) states
of He atoms for different V0 and � are clearly illustrated in
Fig. 8. We find unique characteristics [shown in Fig. 8(a)]
of the electron-nucleus angular moment of ground state of
He atom in which we have observed a sharp transition from

TABLE VI. Variation of one-particle radial moments 〈r1〉, 〈r2
1 〉 (a.u.), one-particle angular moment 〈θ1〉 (degree), and one-particle delta

function 〈δ(�r1)〉 (a.u.) corresponding to (1s2, 1S) and (1s2s, 3S) states of He for different cavity widths � (a.u.) and cavity depths V0 (a.u.).

1s2, 1S 1s2s, 3S

V0 � 〈r1〉 〈r2
1 〉 〈θ1〉 〈δ(�r1)〉 〈r1〉 〈r2

1 〉 〈θ1〉 〈δ(�r1)〉
0.0 – 0.92947229 1.19348300 49.608 1.81042767 2.55046268 11.46432162 55.751 1.32035503
0.5 0.001 0.92947228 1.19348295 49.608 1.81042617 2.55046265 11.46432140 55.751 1.32035551

1.0 0.85747304 0.99651065 49.528 2.01752780 2.20999955 8.41731367 55.372 1.45036235
1000.0 0.92947153 1.19348046 49.608 1.81042636 2.55032861 11.46277122 55.751 1.32036129

1.0 0.001 0.92947219 1.19348275 49.608 1.81043281 2.55046251 11.46432037 55.751 1.32035774
1.0 0.82451242 0.90896844 49.463 2.10948066 1.76560504 4.96954520 54.550 1.56787612

1000.0 0.92947153 1.19348046 49.608 1.81042750 2.55032826 11.46276696 55.751 1.32036140
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TABLE VII. Variation of two-particle radial moments 〈r12〉, 〈r2
12〉 (a.u.), two-particle angular moment 〈θ12〉 (degree), and two-particle delta

function 〈δ(�r12)〉 (a.u.) corresponding to (1s2, 1S) and (1s2s, 3S) states of He for different cavity widths � (a.u.) and cavity depths V0 (a.u.).

1s2, 1S 1s2s, 3S

V0 � 〈r12〉 〈r2
12〉 〈θ12〉 〈δ(�r12)〉 〈r12〉 〈r2

12〉 〈θ12〉 〈δ(�r12)〉
0.0 1.42207026 2.51643931 93.681 0.10677637 4.44753522 23.04619748 90.908 0.0
0.5 0.001 1.42207023 2.51643922 93.681 0.10677768 4.44753517 23.04619702 90.908 0.0

1.0 1.30427403 2.10119584 93.588 0.13223847 3.80916589 16.93851119 90.998 0.0
1000.0 1.42206896 2.51643408 93.681 0.10677784 4.44727274 23.04309951 90.908 0.0

1.0 0.001 1.42207009 2.51643876 93.681 0.10677771 4.44753496 23.04619494 90.908 0.0
1.0 1.24994803 1.91777046 93.563 0.14511388 2.96409633 10.03964514 91.255 0.0

1000.0 1.42206896 2.51643408 93.681 0.10677783 4.44727204 23.04309100 90.908 0.0

maximum to a minimum value as � increases for a specific
value of V0. The value of 〈θ1〉 corresponding to ground state
of a He atom with V0 = 0.5 a.u. increases monotonically to
49.652◦ at � = 0.2 a.u. and thereafter it decreases rapidly to
the value 49.50◦ at � = 2.0 a.u., beyond which it increases
smoothly and converges to the value 49.588◦ for high �. In
contrast, for singly excited singlet or triplet states of He atoms,
both 〈θ1〉 and 〈θ12〉 have a distinct maxima within the � value
0.1 a.u. and 10.0 a.u. Further, it is also apparent from Fig. 8
that there are two distinct points of �, one below �m and the
other above �m, at which the value of 〈θ1〉 is the same for both
singly excited singlet and triplet states of He atoms. For the
1s2s state, these two points are at approximately 2.0 a.u. and
6.0 a.u., which increases to approximately 5.0 a.u. and 100.0
a.u. for the 1s5s state of the He atom. Similar characteristics
of 〈θ12〉 can also be noticed in Fig. 8(b), but in that case we
observed a sharp maxima with in the � range [0.1,10.0] a.u.

The influence of the FO potential on one-electron delta
function 〈δ(�r1)〉 corresponding to ground state and singly
excited singlet and triplet states of He atoms is very much
prominent and we have noticed a sharp maximum for the same
with in the approximate � range [0.1,10] a.u. Unlike this,
the two-electron delta function 〈δ(�r12)〉 of the singly excited
triplet state of a He atom always remains zero irrespective of
any value of V0 and �. In Fig. 9, we have shown the variation
of 〈δ(�r1)〉 and 〈δ(�r12)〉 corresponding to ground and singly
excited states of He atoms for different values of � by fixing
the V0 at 0.5 a.u.

The variation of the inner radius expectation value 〈r<〉
and outer radius expectation value 〈r>〉 corresponding to the

ground state and 1s2s (3S) of He atoms under FO potential are
summarized in Table VIII. It is clear from the results that the
inner radius 〈r<〉 and the outer radius 〈r>〉 are being modified
in the presence of the FO potential. Moreover, the values of
〈r<〉 and 〈r>〉 are greater for smaller V0, corresponding to
a specific value of �, and the behavior of 〈r<〉 and 〈r>〉,
corresponding to different excited states of He atoms are the
same as for the ground state of a He atom. Although the values
of 〈r<〉 and 〈r>〉 are always greater for the upper excited state
as compared to the lower one. To view this, we have listed
some representative values of 〈r<〉 and 〈r>〉 for the 1s2s (3S)
state of He atoms in Table VIII. Figure 10 also depicts the
variation of 〈r<〉 and 〈r>〉 for different values of � but with
V0 = 0.5 a.u. It can be observed that the value of 〈r<〉 is
minimum (≈ 0.562 a.u.) at around � = 1.0 a.u. and at around
that point the minimum value of 〈r>〉 is (≈ 1.145 a.u.). The
variation of 〈r<〉 corresponding to the singlet 1sns (n = 2 − 5)
states of He atom with respect to � are very closely spaced
but in the case of triplet states, the variations are distinct and
stay below the singlet state. In contrast, the variation of 〈r>〉
for singly excited singlet and triplet states of He atoms are
very much distinct. The variation of 〈r>〉 of a particular triplet
state changes in the same way as a singlet state but the value
corresponding to the singlet state is always larger as compared
to the respective triplet state.

F. Hellmann-Feynman and virial theorems

The Hellmann-Feynman and virial theorems have been
verified for both a He atom in ground state and its first ion-
ization threshold, i.e., He+(1s) ion.

TABLE VIII. Expectation value of inner radius r< and outer radius r> corresponding to (1s2, 1S) and (1s2s, 3S) states of He for different
cavity widths � and cavity depths V0. All entities are in a.u.

1s2, 1S 1s2s, 3S

V0 � 〈r<〉 〈r>〉 〈r<〉 〈r>〉
0.0 – 0.60235942 1.25658517 0.72946094 4.37146441
0.5 0.001 0.60235940 1.25658515 0.72946093 4.37146437

1.0 0.56673911 1.14820699 0.68843973 3.73155937
1000.0 0.60235914 1.25658392 0.72945833 4.37119889

1.0 0.001 0.60235934 1.25658504 0.72946085 4.37146417
1.0 0.55162689 1.09739795 0.65414828 2.87706181

1000.0 0.60235914 1.25658394 0.72945832 4.37119819
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FIG. 6. Variation of (a) one-electron radial moment 〈r1〉 of He in ground state, (b) two-electron radial moment 〈r12〉 of He in ground
state, (c) one-electron radial moment 〈r1〉 of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines),
(d) two-electron radial moment 〈r12〉 of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines) with
respect to cavity width �. Cavity depth V0 is fixed at 0.5. All entities are in a.u.

1. He atom

Hamiltonian of He atom under FO potential defined in
Eq. (1) can be written as

H = T + V c
1 + V c

12 + Vcw = T + V c
t + Vcw, (17)

where T = −∑2
i=1

1
2∇2

i , V c
1 = −∑2

i=1
Z
ri

, V c
12 = 1

r12
and

Vcw = −∑2
i=1 V0(1 + cwri)e−cwri . If φ is the eigenvector and

corresponding eigenvalue e, then we can define t = 〈T 〉, vc
1 =

〈V c
1 〉, vc

12 = 〈V c
12〉, vc

t = 〈V c
1 + V c

12〉, and vcw = 〈Vcw〉. Thus,

the total energy eigenvalue can be written as

e = t + vc
1 + vc

12 + vcw = t + vc
t + vcw. (18)

The Hellmann-Feynman theorem with respect to � gives

u = �

V0

de

d�
, (19)
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FIG. 7. Variation of (a) one-electron radial moment 〈r2
1 〉 of He in ground state, (b) two-electron radial moment 〈r2

12〉 of He in ground
state, (c) one-electron radial moment 〈r2

1 〉 of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines),
(d) two-electron radial moment 〈r2

12〉 of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines) with
respect to cavity width �. Cavity depth V0 is fixed at 0.5. All entities are in a.u.

where, u = −c2
w〈[r2

1e−cwr1 + r2
2e−cwr2 ]〉. Using Eq. (19),

Hellmann-Feynman theorem with respect to V0 gives

vcw = V0
de

dV0
− �

2

de

d�
(20)

and the Hellmann-Feynman theorem with respect to Z gives

vc
1 = Z

de

dZ
. (21)

Therefore, from the virial theorem, it is quite straightforward
to show that

2t + vc
t = −�

de

d�
. (22)

Therefore, using Eq. (18) and Eq. (20), Eq. (22) can be recast
as

t = V0
de

dV0
− 3

2
�

de

d�
− e. (23)
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FIG. 8. Variation of (a) nucleus-electron angle 〈θ1〉 (degree) of He in ground state, (b) interelectronic angle 〈θ12〉 (degree) of He in ground
state, (c) nucleus-electron angle 〈θ1〉 (degree) of He in 1sns (1S)(n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed
lines), (d) inter electronic angle θ12 (degree) of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines)
with respect to cavity width � (a.u.). Cavity depth V0 is fixed at 0.5 a.u.

Total Coulomb potential energy vc
t can further be obtained by

putting the value of t and vcw from Eq. (23) and Eq. (20) in
Eq. (18). Thus,

vc
t = 2

(
e − V0

de

dV0
+ �

de

d�

)
. (24)

Using Eq. (24) and Eq. (21), Coulomb repulsion potential
energy (vc

12) can be written as

vc
12 = 2

(
e − V0

de

dV0
+ �

de

d�

)
− Z

de

dZ
. (25)

2. He+(1s) threshold

Nonrelativistic Hamiltonian of hydrogen atom under FO
potential reads as

H = T + Vc + Vcw, (26)

where T = − 1
2∇2, Vc = − Z

r and Vcw = −V0(1 + cwr)e−cwr .
By considering t = 〈T 〉, vc = 〈Vc〉, and vcw = 〈Vcw〉, we can
write the total energy eigenvalue as

e = t + vc + vcw. (27)

032821-14



HE ATOM IN A QUANTUM DOT: STRUCTURAL, … PHYSICAL REVIEW A 105, 032821 (2022)

FIG. 9. Variation of the expectation value of (a) one-electron delta function δ(�r1) of He in ground state, (b) two-electron delta function
δ(�r12) of He in ground state, (c) one-electron delta function δ(�r1) of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5)
states (dashed lines), (d) two-electron delta function δ(�r12) of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states
(dashed lines), with respect to cavity width �. Cavity depth V0 is fixed at 0.5. All entities are in a.u.

Using Hellmann-Feynman theorem and considering � as a
parameter, one can write

u = �

V0

de

d�
, (28)

where u = −c2
w〈r2e−cwr〉. Using Eq. (28), the Hellmann-

Feynman theorem with respect to V0 yields

vcw = V0
de

dV0
− �

2

de

d�
. (29)

Further using virial theorem, it is straightforward to show that

2t + vc = − de

d�
. (30)

Now using Eqs. (27), (29), and (30), we find

t = V0
de

dV0
− 3

2
�

de

d�
− e (31)
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FIG. 10. Variation of the expectation value of (a) inner electron radius r< of He in ground state, (b) outer electron radius r> of He in ground
state, (c) inner electron radius r< of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S) (n = 2 − 5) states (dashed lines), (d) outer
radius r> of He in 1sns (1S) (n = 2 − 5) states (solid lines) and in 1sns (3S)(n = 2 − 5) states (dashed lines), with respect to cavity width �.
Cavity depth V0 is fixed at 0.5. All entities are in a.u.

and thus, from Eq. (27), it can be shown that

vc = 2

(
e − V0

de

dV0
+ �

de

d�

)
. (32)

A detailed study on the verification of the Hellmann-Feynman
and virial theorem under FO potential has been performed on
the ground state of a He atom and the corresponding different
energy components which are defined in Eqs. (23), (21), (25),
and (20) have been summarized in Table IX. Remarkably, all
the energy components estimated from Hellmann-Feynman
and virial theorem show good agreement with the data

presented in Table II. Specifically, kinetic energy (t) esti-
mated from the Hellmann-Feynman and virial theorem is
−3.24585002 a.u. for � = 1.0 a.u. and V0 = 0.5 a.u., whereas
the value of the same has been reported as −3.24584969
a.u. in Table II. Similarly, the value of vc

12 obtained from
the Hellmann-Feynman and virial theorem and the same from
Table II for V0 = 1.0 a.u. and � = 1.0 a.u. yield 1.06067543
a.u. and 1.06067672 a.u., respectively. It has been observed
that for any value of Z , de/dZ is always negative and it
decreases rapidly as Z increases. Interestingly, de/dZ is also
very much sensitive with the strength of the FO potential. It
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TABLE IX. Validation test of Hellmann-Feynman and virial theorem corresponding to (1s2, 1S) state of He and (1s, 2S) state of He+ for
different cavity widths � and cavity depths V0. All entities are in a.u.

1s2, 1S 1s, 2S

V0 � t −vc
1 vc

12 −vcw t −vc −vcw

0.5 0.001 2.90372457 6.75326563 0.94581669 0.00000006 2.00000004 4.00000008 0.0
1.0 3.24585002 7.15945039 1.02286319 0.67416750 2.15667936 4.15302872 0.36721000

1000.0 2.90372676 6.75326846 0.94581733 0.99999881 1.99999963 3.99999926 0.50000000
1.0 0.001 2.90372545 6.75326760 0.94581777 0.00000036 2.00000025 4.00000050 0.0

1.0 3.41199947 7.34671771 1.06067543 1.58929880 2.22261445 4.21498390 0.83557250
1000.0 2.90372676 6.75326945 0.94581832 1.99999881 1.99999963 3.99999926 1.00000000

is noted that for a specific value of V0, the value of de/dZ
decreases for both small and large � and in the intermediate
region it has a maxima. We have observed an asymptotic na-
ture of the derivative de/d� that becomes zero for both � →
0 and � → ∞. In contrast, for a specific V0, the derivative
term V0de/dV0 → 0 for � → 0 while V0de/dV0 → −2V0 for
� → ∞. We have included the results obtained from virial
and the Hellmann-Feynman theorem corresponding to He+

(1s) ion under FO potential and all the energy components
which are represented by Eqs. (29), (31), and (32) have been
listed in Table IX.

G. Quantum similarity index

The quantum similarity measure between two isolated
atoms is defined as [122,123]

MAB ≡
∫

ρA(�r1)δ(�r1 − �r2)ρB(�r2)d�r1d�r2, (33)

where ρA(�r1) and ρB(�r2) are the spinless one-electron radial
density for systems A and B, respectively. Now Eq. (33) can
be recast as

MAB = 4π

∫
ρA(r)ρB(r)r2dr, (34)

where the one-electron radial density ρ(r1) estimated from the
two-electron wave function � is of the form

ρ(r1) = 2π

r1

∫ ∞

0

∫ r1+r2

|�r1−�r2|
|�|2r2r12dr2dr12. (35)

Therefore, the QSI can be defined as

QSI = MAB√
MAA MBB

(36)

and quantum dissimilarity between two systems A and B is
given by

DAB ≡ MAA + MBB − 2MAB. (37)

We have investigated four different cases corresponding to
QSI based on one-electron radial density normalized to 1
(1-N density) of (i) [He(1s2, 1S); He+ (1s, 2S)], (ii) [He(1s2s,
1S); He+ (1s, 2S)], (iii) [He(1s2s, 3S); He+ (1s, 2S)], and (iv)
[He(1s2s, 1S); He(1s2s, 3S)] which are summarizedin Table X.
It is to be noted that for constant cavity depth V0, the similarity
between He(1s2, 1S) and He+ (1s, 2S) increases up to a certain
value of � and then it again decreases with the increment of
�. In contrast, quantum dissimilarity (DAB) between the two
systems He (1s2, 1S) and He+ (1s, 2S) decreases initially up to

a specific value of � beyond which dissimilarity increases.
We have identified that the increment of V0 increases the
similarity and decreases the dissimilarity value. To demon-
strate the exactness of the results, we have listed the value
of normalization constants N1 and N2 in the third and fourth
columns of Table X corresponding to systems A and B, re-
spectively. The variation of QSI between He (1s2, 1S) and
He+ (1s, 2S) for V0 = 0.5 a.u. with respect to � is clearly
depicted in Fig. 11(a). Interestingly, a sharp peak of the QSI at
around � = 1.0 a.u. can be visualized from the figure. More-
over, variation of QSI is very prominent within the region
� = 0.1 − 10.0 a.u. and, beyond that region, the value of the
QSI is almost constant with value 0.99446. It is observed that
unlike the QSI between the He (1s2, 1S) and He+ (1s, 2S), in
this case QSI decreases initially up to a � value and then it
increases again. In addition, the value of QSI always remains
higher for the set [He+ (1s, 2S); He (1s2s, 1S)] as compared
to [He+ (1s, 2S); He (1s2s, 3S)] for any arbitrary value of
V0 and �. Specifically, the QSI of the set [He+ (1s, 2S); He
(1s2s, 1S)] for � = 1.0 a.u., and V0 = 0.5 a.u. is 0.99874275

FIG. 11. Variation of quantum similarity index (QSI) between
(a) He (1s2, 1S) and He+ (1s, 2S) (◦, blue line), (b) He (1s2s, 1S) and
He +(1s, 2S) (�, red line), He (1s2s, 3S) and He+ (1s, 2S) (�, maroon
line), (c) He (1s2s, 1S) and He (1s2s, 3S) (, black line) with respect
to cavity width � (a.u.). Cavity depth V0 is fixed at 0.5 a.u.
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TABLE X. Quantum similarity measures MAB, MAA, and MBB, quantum similarity index (QSI) and quantum dissimilarity DAB between
systems A and B for different cavity widths � and cavity depths V0. N1 and N2 represent the normalization constant corresponding to systems
A and B, respectively. All entities are in a.u.

V0 � N1 N2 MAB MAA MBB QSI DAB

A: He+ (1s, 2S), B: He (1s2, 1S)

0.5 0.001 0.99999964 0.99999996 0.24524715 0.43711054 0.56418951 0.99446083 0.01888113
1.0 0.99999974 0.99999997 0.28448389 0.47681990 0.59957575 0.99508287 0.01788051

100.0 0.99999962 0.99999997 0.24526922 0.43713783 0.56420486 0.99446117 0.01887817
1.0 0.001 0.99999964 0.99999997 0.24524725 0.56418962 0.43711063 0.99446083 0.01888114

1.0 0.99999974 0.99999997 0.30100373 0.61054046 0.49531855 0.99534315 0.01609266
100.0 0.99999965 0.99999997 0.24526295 0.56418964 0.43713801 0.99446218 0.01887369

A: He+ (1s, 2S), B: He (1s2s, 1S)

0.5 0.001 0.99999936 0.99999756 0.16428488 0.56418885 0.29145288 0.99909031 0.07468407
1.0 0.99999938 0.99999975 0.18562003 0.31124312 0.59713350 0.99874275 0.08220064

100.0 0.99999931 0.99999845 0.16438622 0.29163040 0.56420420 0.99907089 0.07460222
1.0 0.001 0.99999934 0.99999659 0.16429477 0.56418897 0.29147045 0.99909004 0.07467466

1.0 0.99999938 0.99999980 0.20194981 0.61053971 0.33161395 0.99746290 0.07882692
100.0 0.99999936 0.99999817 0.16439558 0.56418898 0.29165508 0.99907013 0.07458074

A: He+ (1s, 2S), B: He (1s2s, 3S)

0.5 0.001 0.99999936 0.99999960 0.16399822 0.56418885 0.29116435 0.99833532 0.07508930
1.0 0.99999938 0.99999980 0.18619253 0.31253723 0.59713350 0.99767490 0.08186289

100.0 0.99999931 0.99999969 0.16406151 0.29127525 0.56420420 0.99831320 0.07504463
1.0 0.001 0.99999934 0.99999957 0.16399889 0.56418896 0.29116549 0.99833529 0.07508875

1.0 0.99999938 0.99999979 0.20227646 0.61053971 0.33274705 0.99567412 0.07892640
100.0 0.99999936 0.99999969 0.16405873 0.56418898 0.29127832 0.99831265 0.07503481

A: He (1s2s, 1S), B: He (1s2s, 3S)

0.5 0.001 0.99999960 0.99999756 0.08482937 0.29145288 0.29116435 0.99963094 0.00006272
1.0 0.99999980 0.99999975 0.09722652 0.31124312 0.31253723 0.99950101 0.00009875

100.0 0.99999960 0.99999757 0.08483030 0.29145489 0.29116554 0.99963091 0.00006273
1.0 0.001 0.99999957 0.99999659 0.08483481 0.29116549 0.29147045 0.99963091 0.00006274

1.0 0.99999979 0.99999979 0.11025129 0.33274705 0.33161395 0.99916372 0.00018584
100.0 0.99999969 0.99999817 0.08492126 0.29127832 0.29165508 0.99962868 0.00006323

as compared to the value 0.99767490 corresponding to the set
[He+ (1s, 2S); He (1s2s, 3S)] with same � and V0. To visualize
this, we have plotted the variation of the QSI between He+(1s,
2S) and He(1s, 1,3S) as a function of � for V0 = 0.5 a.u., which
is shown in Fig. 11(b). Red solid line with square symbol
represents the QSI between He+(1s, 2S) and He (1s, 1S) while
the QSI between He+ (1s, 2S) and He (1s, 3S) is shown by
maroon solid line with triangle symbol. Table X also contains
the results of the same systems corresponding to V0 = 1.0 a.u.
It can be noted that the value QSI between He (1s2s, 1S) and
He (1s2s, 3S) for any V0 and � is very close to unity, which
is evidently due to the strong similarity between the electron
probability density distribution of the two systems. Smaller
values of the quantum dissimilarity (DAB) that are listed in
the last column of Table X strengthens this fact further. In
Fig. 11(c) (black line), QSI between He (1s2s, 1S) and He
(1s2s, 3S) has been presented for different values of � and
V0 = 0.5 a.u. It is noted that QSI between the singlet and
triplet He (1s2s) state has a minimum value within a range
� = 0.5 to 100.0 a.u. and outside of which it has a constant
value 0.99963.

H. Shannon information entropy

The Shannon information entropy [124] of an atomic sys-
tem is a measure of the spread or the extent of delocalization
of the total electronic charge density. The more the delocal-
ization in the electron radial charge distribution, the larger
the Shannon information entropy of the system. In a nut-
shell, Shannon information entropy measures the probability
distribution of a system and it is associated with statistical
correlation between the particles of a system. While the von
Neumann entropy and linear entropy (linear approximation of
von Neumann entropy) are the measures of quantum corre-
lations between the particles, the details of which have been
discussed in Sec. III D. The Shannon information entropy (S)
in position space for case of a multielectron system can be
defined by the one-electron radial density ρ(r) as follows [19]:

S = −
∫ ∞

0
ρ(r) ln ρ(r)4πr2dr. (38)

The one-electron radial density ρ(r1) for the case of a He atom
is given by Eq. (35) and is taken to be 1-normalized.
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TABLE XI. Comparison of present Shannon information entropy S of (1s2, 1S) and (1s2s, 1,3S) states of He with available theoretical
calculations for different cavity widths � and cavity depths V0. All entities are in a.u. a, b: Ou and Ho [19,74], c: Lin and Ho [88], d: Restrepo
Cuartas and Sanz-Vicario [89].

1s2, 1S 1s2s, 1S 1s2s, 3S

V0 � Present Others Present Others Present Others

Free − 2.70509 2.70510285a 5.49136 5.49196837a 5.23596
2.70510285b 5.49196878b 5.23597814b

2.7051028c

2.705d 5.492d 5.236d

0.5 0.001 2.70509 5.49182 5.23597
0.01 2.70503 2.7050463a 5.49178 5.23593
1.0 2.46613 2.4661404a 5.17319 5.1733749a 4.89762
4.0 2.63293030 2.6329358a 4.86851 4.8685244a 4.718830

100.0 2.70486 2.7048699a 5.47552 5.4755194a 5.22589
1000.0 2.70509 5.49164 5.23586

1.0 0.001 2.70509 5.49182 5.23597
1.0 2.34930 4.57870 4.37750

1000.0 2.70509 5.49164 5.23586

In Table XI, we have made a comparative study on some
of our computed results corresponding to He (1s2, 1S) and
He (1s2s, 1,3S) for free as well as for different values of �

and V0 by considering N = 34 terms in the wave function.
It is evident from Table XI that the results presented in this
paper are in good agreement with the work done by different
researchers [19,74,88,89]. Figure 12 depicts the detailed vari-
ation of Shannon entropy of the ground state of He atom with
V0 = 0.5 a.u. and for different values of �. Over the range of
small values of � in Fig. 12, designated by points A and B,
as well as over the range of large values of � (points D and
E), the FO potential is not effectively felt by the electrons.

FIG. 12. Variation of Shannon information entropy S of the
ground state of He with respect to cavity width �. Cavity depth V0 is
fixed at 0.5. All entities are in a.u.

It becomes relevant over the intermediate range marked by
B–D. An increase in the width at the end of the narrow range
of values of � (point B) where the FO potential starts to
become relevant, leads to an increase in the localization of
the charge density which is reminiscent of the increase in the
nuclear charge along the isoelectronic series. Similar localiza-
tion effect is observed at the other end as � decreases over the
range marked by points D and C. There exists a characteristic
width at a given fixed depth of the FO potential corresponding
to which the Shannon information entropy is at its minimum
value (maximum charge localization). We recall here that the
variation of the electron repulsion terms in Sec. III B, Fig. 3
has been rationalized earlier in the similar manner.

IV. CONCLUSION

Precise structural properties, quantum similarity, entan-
glement, and information theoretic measures corresponding
to the 1sns (1,3S) (n = 1 − 5) states of He atoms under the
influence of two-parameter FO model potential mimicking a
QD environment have been estimated in the framework of Ritz
variational method and explicitly correlated multiexponent
Hylleraas-type basis set. A detailed analysis of the results has
been presented, which reveals several characteristic features
of the embedded He atom. The main findings are listed as
follows:

(1) We have noted that the increment of any single param-
eter (cavity width � or cavity depth V0) in the FO potential
changes the overall physical characteristics of the He atom.
However, it is observed that for a constant potential depth V0,
the structural changes of 1sns (1,3S) (n = 1 − 5) states of a He
atom under the FO potential are the most prominent over the
approximate range of cavity width � = 0.1 to 10 a.u. for a
fixed depth V0.

(2) We have verified the Hund’s spin multiplicity rule for
1sns (1,3S) (n = 2 − 5) states of He atom. For a fixed V0, as �

increases, the electron repulsion energy of the triplet S states is
found to be larger than the singlet S states when � is either too
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small or too large. At the intermediate range of � values, this
trend is reversed. The difference between the repulsion energy
of singlet and triplet statesdecreases with the increment of the
n value.

(3) It has been observed that the energy contribution from
radial and angular correlation changes with the increasing
influence of the FO potential. For a constant V0 and small
�, the major contribution of the correlation energy comes
from the angular correlation limit, which increases up to a
certain value of �. In contrast, the energy contribution from
the radial correlation limit is less and it decreases further with
the increment of �.

(4) It is observed that an arbitrary increase in the strength
of the FO potential cannot ionize the He atom or, in other
words, the ground state of He atom stays lower than that of
the respective first ionization threshold throughout the entire
range of cavity width.

(5) The expectation value of different radial quantities r1,
r2

1 , r12, r2
12, r<, r>, angular quantities θ1, θ12, one-particle

delta function δ(�r1) and two-particle delta function δ(�r12) have
been estimated with high precision and depicted some unique
variations.

(6) The different energy components both for the ground
states of confined He atom and its respective first ionization
threshold estimated with aid the Hellmann-Feynman theorem
and the virial theorem are found to be in quantitative agree-
ment with their values calculated from direct variationally
optimized wave functions. Such an agreement between the
two sets of values establish the high quality of the calculations
reported in this paper.

(7) The nonmonotonic nature of QSI and dissimilarity (D)
estimated electron charge distribution among (1s, 2S) state of
He+ ions and (1sns, 1,3S) states (n = 1, 2) of He atoms have
been observed and it is found that the QSI as well as D
undergoes a sharp changes within the approximate range of
cavity width � = 0.1 to 10 a.u.

(8) Within the aforementioned range, the von Neumann
entropy, linear entropy, and Shannon entropy experience the
maximum effect of FO potential and, beyond that range, the
value of the same almost remains constant.

It is hoped that the present paper involving the FO potential
will stimulate more investigations involving different, other
model-confining potentials, which would give rise to interest-
ing changes in the properties of He atoms.
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