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Determination of quadrupole polarizabilities of the excited states of alkali-metal atoms
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The scalar and tensor components of the electric quadrupole (E2) polarizabilities of the first two excited states
of all the alkali-metal atoms are determined. To validate the calculations, we have evaluated the ground state E2
polarizabilities of these atoms and compared them with the literature values. We could not find the ground state
E2 polarizability value for Fr in the literature to compare with our result. The dominant parts of these quantities
are estimated by combining the precisely calculated E2 transition matrix elements of many low-lying transitions
with the experimental energies, while the other contributions are estimated using lower-order methods. Our
estimated values for the ground states of the above atoms are in good agreement with the literature values
suggesting that our estimated E2 polarizabilities for the excited states of the alkali atoms, which were not known
earlier except for the Li atom, are also quite accurate. These reported E2 polarizabilities could be useful in
guiding many precision measurements in the alkali atoms.
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I. INTRODUCTION

Studies of electric polarizabilities of atoms, molecules and
clusters are highly demanding for both the experimental and
theoretical perspectives [1,2]. High precision values of polar-
izabilities of these systems are very useful in several branches
of science [3–5]. Some of the examples of prominent appli-
cations of electric polarizabilities in atomic systems, which
are of present interest, include the optical atomic clock mea-
surements [6], discrete symmetry violations [7], condensates
of dilute atomic gases [8], etc. [9,10]. Atoms are spherically
symmetric, but upon the influence of stray electric fields result
in multi-order shifts in energy levels [11]. The interaction be-
tween any system and an electric field is predominately treated
in the framework of electric dipole (E1) approximation [11].
However, higher-order contributions from the interaction of
quadrupole operator with external electric field gradient may
become significant for some of the applications that aim to
achieve ultraprecision measurements [12–17]. The first-order
shift due to electric quadrupole (E2) interaction renders an E2
moment that is generally zero for atomic states with angular
momentum J < 3/2; otherwise they can also offer nonvan-
ishing contributions [18]. The second-order shift gives finite
E2 polarizability and plays a dominant part after E1 polariz-
abilities and E2 moments [19]. Particularly, E2 polarizabilities
arising due to contribution from the forbidden transitions,
might play a significant role in deducing one of the dominant
environment induced black-body radiation shifts in order to
reach the required accuracy level below 10−19 in the atomic
clocks [20–22].

Alkali metal atoms are desired for many experimental stud-
ies as they form well controlled and characterized systems.
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Owing to their easily laser accessible level structures, they are
used for vital applications such as atomic clocks [23,24], scat-
tering phenomena [25], quantum computation [26], quantum
sensing [27], cold collision [28], long-range interactions [29],
etc. Among alkali atoms, the Rb and Cs atoms have been con-
sidered as the best candidates for microwave clocks [30,31],
whereas the Fr atom has attracted a lot of attention as a
candidate for studying fundamental symmetry tests [32–35].
Since there is a similarity between the energy level spacing
between Rb and Fr, Fr can also be laser cooled and trapped
using available lasers [36]. This is what, besides being the
heaviest alkali atom, makes it favorite for probing new physics
beyond the Standard Model of elementary particles [37].

Precise determination of E2 polarizabilities for alkali
atoms have been given a very little attention, especially for the
excited states. Compared to the E1 polarizabilities, it is stren-
uous to measure the E2 polarizabilities in atomic systems due
to their extremely weak contributions to the energy level shifts
caused by the spatial gradient of electric fields. This is why
accurate theoretical calculations of these quantities are very
crucial. While a number of theoretical studies exist for the
ground state E2 polarizabilities of the alkali atoms [20,38–43]
(except for Fr), very limited studies have been conducted for
the excited states [44]. Since the D1 and D2 lines of the
alkali atoms directly participate in the laser cooling process
of alkali atoms, accurate knowledge of the E2 polarizabili-
ties for the first two excited states of alkali atoms are quite
useful. Furthermore, accurate knowledge of quadrupole po-
larizabilities are essential for estimating dispersion potentials
among atomic systems [45,46]. The importance of polariz-
abilities of excited states of atoms was demonstrated by Zhu
et al. in the studies of long-range interactions of the alkali-
metal atoms in their ground and excited states with helium
atom for astrophysical applications [47]. Their reliable values
are also crucial in order to describe the the van der Waal
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atom-surface potentials [46,48,49]. Accurate values of
quadrupole polarizabilities are required to construct the scat-
tering potentials in the ultracold physics and determining
scattering cross-sections of electrons or positrons from an
atomic system [50,51]. Precise calculations of polarizabilities
of heavier atomic systems depend upon the potential of the
many-body method used to account for the relativistic and
electron correlation effects [52–55].

Previously, the static E2 polarizabilities for the ground
states of the alkali atoms have been calculated using simple
analytic wave functions by Patil et al. [38] and semi-empirical
calculations by Jiang et al. [39]. Combining the relativistic
many-body perturbation theory (RMBPT) and random phase
approximations (RPA), the ground state E2 polarizabilities of
the alkali metals have been evaluated by Porsev and Dere-
vianko [20]. Safronova et al. have calculated high-precision
spectroscopic properties including E2 polarizabilities of the
ground states of Li, K, Rb, and Cs using linearized coupled-
cluster method [40–43]. The static E2 polarizabilities of the
ground state and a few low-lying excited states of Li have
been evaluated by Wansbeek et al. by adopting relativistic
coupled-cluster method in fully ab initio procedure [44].

In the present work, we conduct extensive calculations
of many E2 matrix elements of the transitions of alkali-
metal atoms using the relativistic all-order (AO) method that
predominantly contribute to the determination of E2 polariz-
abilities. We provide both the scalar and tensor components
of the E2 polarizabilities of the excited nP3/2 states, with
the ground state principal quantum number n, along with
the scalar E2 polarizabilities of the ground states nS1/2 and
excited state nP1/2, of the considered atoms. The accuracy
of these quantities are estimated by comparing the E2 ma-
trix elements and polarizability values of the ground states
from the previous works. The bifurcation of the paper is as
follows: Sec. II includes a brief theory on E2 polarizability.
Section III consists of methods of evaluation of wave func-
tions and E2 matrix elements in the framework of relativistic
all-order approach. The E2 polarizability results along with
their uncertainties have been given and discussed in Sec. IV.
Finally, we have concluded our work in Sec. V.

II. THEORY

When an atom is placed in a static electric field, it experi-
ences shifts in the energy levels which can be conveniently
expressed in terms of electric multipole effects. In particu-
lar, the perturbation interaction Hamiltonian, Hq

int = Q · �∇E
with quadrupole operator Q = ∑

i qi, due to interaction of
quadrupole effect with the gradient of an electric field ( �∇E)
gives second-order energy shift in the energy level of an atom
in state |�n〉, is given by

�Eq(2)
n =

∑
k �=n

[
(q∗)nk (q)kn

δEnk

]
. (1)

where (q)nk = 〈�n|Hq
int|�k〉 with k denoting the index for the

intermediate states that are permitted by the quadrupole selec-
tion rules and δEnk = En − Ek with Ei=n,k’s are the energies
of the corresponding states. The quadrupole moments of the
nP3/2 states, which can be used to estimate the first-order

effects, in the considered systems have been determined ac-
curately earlier [56]. For the computational simplicity, �Eq(2)

n

for linearly polarized light with polarization vector along the
quantization axis can be expressed as [57]

�Eq(2)
n = − 1

8αq
n (∇E )2 (2)

with

αq
n =

[
αq(0)

n − αq(2)
n

3M2
Jn

− Jn(Jn + 1)

Jn(2Jn − 1)

− 3αq(4)
n

(
5M2

n − J2
n − 2Jn

)
×

(
5M2

n + 1 − J2
n

) − 10M2
n

(
4M2

n − 1
)

Jn(Jn − 1)(2Jn − 1)(2Jn − 3)

]
, (3)

where MJn is the magnetic quantum number. Here α
q
n is the

total quadrupole polarizability, which is given in terms of MJn

independent quantities as α
q(0)
n , α

q(2)
n and α

q(4)
n –referred to as

the scalar, tensor of rank 2 and tensor of rank 4 components,
respectively [19,58]. It clearly shows that for Jn = 1/2, con-
tributions from both α

q(2)
n and α

q(4)
n to α

q
n vanish; otherwise

they will contribute. Similarly, α(4)
nq is nonzero when Jn > 3/2.

Since we consider states with Jn = 1/2 and Jn = 3/2 in the
present work, contributions from α

q(4)
n become irrelevant. Ex-

pressions for the MJn independent α
q(0)
n and α

q(2)
n are given

by [19]

αq(0)
n = −2

∑
k �=n

W q(0)
n

[ |〈ψn||Q||ψk〉|2
δEnk

]
(4)

and

αq(2)
n = −2

∑
k �=n

W q(2)
n,k

[ |〈ψn||Q||ψk〉|2
δEnk

]
, (5)

where the factors W q(0)
n and W q(2)

n,k are given by

W q(0)
n = 1

5(2Jn + 1)
(6)

and

W q(2)
n,k =

√
10Jn(2Jn − 1)

7(Jn + 1)(2Jn + 1)(2Jn + 3)

× (−1)Jn+Jk+1

{
Jn 2 Jn

2 Jk 2

}
(7)

with {Jn 2 Jn

2 Jk 2 } as the Wigner angular momentum coupling
6- j symbol.

III. METHOD OF EVALUATION

The procedure to determine wave functions of the ground
and intermediate states of alkali atoms using the relativis-
tic AO method are already presented in Ref. [59]. In brief,
using Dirac-Fock (DF) method, the electronic configuration
of alkali atoms are divided into a closed-core and a valence
orbital in order to obtain the mean-field wave function of the
respective closed-shell (|0c〉). Further, the mean-field wave
functions of the atomic states are obtained by appending the

032819-2



DETERMINATION OF QUADRUPOLE POLARIZABILITIES … PHYSICAL REVIEW A 105, 032819 (2022)

respective valence orbital v as

|φv〉 = a†
v|0c〉. (8)

To obtain the DF orbitals, we use a set of 50 B splines of order
k = 11 for each angular momentum. The basis set orbitals are
constrained to a large spherical cavity of a radius R = 220 a.u.

Contribution to the evaluation of a matrix element can be
divided into core, core-valence, and valence contributions as
described in Ref. [60] which in turn divide the scalar and
tensor components of polarizability from Eqs. (4) and (5) into
respective contributions of polarizability given as

αq(t=0,2)
n = αq(t=0,2)

n,c + αq(t=0,2)
n,vc + αq(t=0,2)

n,v , (9)

where the superscript t denotes the scalar (t = 0) and tensor
(t = 2) components of polarizability, and subscripts c, vc, and
v denote contributions from core, core-valence and valence
correlations, respectively. It can be noted that α

q(0)
n,c is same

for all atomic states as they have a common closed-core while
α

q(2)
n,c is zero. Compared to α

q(t=0,2)
n,v , magnitudes of α

q(t=0,2)
n,c

and α
q(t=0,2)
n,vc are typically much smaller. These dominating va-

lence contributions need to be estimated precisely for accurate
determination of E2 polarizabilities. The α

q(t=0,2)
n,v contribu-

tions are evaluated by

αq(t=0,2)
n,v = −2

∑
k>Nc,k �=n

W q(t=0,2)
n

[ |〈ψn||Q||ψk〉|2
δEnk

]
, (10)

where the sum is restricted by the number of core orbitals Nc

to exclude their contributions. We calculate many E2 matrix
elements up to k � I states that contribute significantly to
the above quantity using our relativistic AO method and use
experimental energies from the National Institute of Science
and Technology (NIST) database [61]. These contributions
are referred as main part and are denoted by α

q(t=0,2)
n,v(M ) in the

present work. To evaluate the E2 matrix elements for the main
part, atomic wave functions |ψv〉, with v denoting different
valence orbitals, are expressed in the singles and doubles
approximated (SD) AO method as [62]

|ψv〉SD =
[

1 +
∑
ma

ρmaa†
maa + 1

2

∑
mlab

ρmlaba†
ma†

l abaa

+
∑
m �=v

ρmva†
mav +

∑
mla

ρmlvaa†
ma†

l aaav

]
|φv〉, (11)

where a† and a represent second quantization creation and
annihilation operators, respectively, whereas excitation coef-
ficients are denoted by ρ. The subscripts m, l, r and a, b, c
refer to the virtual and core orbitals, respectively. ρma and
ρmv are the single whereas ρmlab and ρmlva are the double
excitation coefficients. In addition to this, we also evaluated
wave functions that includes the missing third-order terms,
by adding the two triple-excitation coefficients - ρ

pert
mlrabc and

ρ
pert
mlrvab perturbatively in the SD wave function solving equa-

tion (SDpT) by defining as follows [62]:

|ψv〉SDpT = |ψv〉SD +
[

1

18

∑
mlrabc

ρ
pert
mlrabca†

ma†
l a†

r acabaa

+ 1

6

∑
mlrab

ρ
pert
mlrvaba†

ma†
l a†

r abaaav

]
|φv〉. (12)

After obtaining wave functions of the considered states of
alkali-metal atoms, we determine E2 matrix elements using
the following expression [63]:

Qvk = 〈ψv|Q|ψk〉√〈ψv|ψv〉〈ψk|ψk〉
. (13)

In order to estimate contributions due to the neglected
physical effects, we scale the wave functions (through the am-
plitudes of the excitation coefficients) to match the calculated
energies with their experimental values [64], i.e.,

ρ ′
mv = ρmv

δE expt
v

δE theory
v

, (14)

where δE expt
v are the energy differences between the experi-

mental and DF values, and δE theory
v are the energy differences

between the experimental results and our final calculations.
Then, the E2 matrix elements are reevaluated using the
modified excitation amplitudes. By analyzing the differences
between the ab initio values and the scaled values of the E2
matrix elements, we quote the uncertainties to the E2 matrix
elements.

Contributions from the remaining excited states including
continuum for valence polarizability are estimated separately
using the DF method which are referred to as the tail part of
the valence contribution (αq(t=0,2)

n,v(T ) ) and are evaluated using the
relation

α
q(t=0,2)
n,v(T ) = −2

∑
k>I

W q(t=0,2)
n

[ |〈φn||Q||φk〉|2
δεnk

]
, (15)

with δεnk = εn − εk for the DF energies εi and the sum k > I
corresponding to the excited states whose matrix elements are
not accounted earlier. The valence-core contributions (αq(t=0)

n,vc )
are estimated using the DF method. To estimate the core
contribution (αq(t=0)

n,c ), however, we have used the following
formula [65,66]:

αq(t=0)
n,c = 〈φn|Q|ψ (1)

n 〉 (16)

where |ψ (1)
n 〉 = ∑

k �=n ck|φk〉 〈φk |Q|φn〉
εk−εn

is the first-order per-
turbed wave function due to application of Q operator on
ground state |ψn〉 with ck is a coefficient containing all-order
core-polarization effects due to the residual Coulomb inter-
actions. We have obtained |ψ (1)

n 〉 in the RPA as described in
Ref. [66].

IV. RESULTS AND DISCUSSION

A. Quadrupole polarizability of ground state

We present the static values of α
q(0)
n of the ground states

of alkali-metal atoms and compare them with other available
data in Table I. The scaled SD values of matrix elements for
the main part of the polarizability have been taken as final
values as recommended in previous studies for E2 transi-
tions [41,64,69]. The breakdown of total polarizability into
the main, tail, core, and valence-core polarizabilities are pre-
sented. The valence-core contributions for Li, Na, and K are
zero due to nonavailability of D orbitals in the core of these
atoms whereas very insignificant contributions have been en-
countered for Rb, Cs, and Fr. To provide estimates for error
bars in the net value of each contribution of polarizability, we
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TABLE I. Contributions to the ground state quadrupole polarizabilities (in a.u.) of the Li, Na, K, Rb, Cs, and Fr atoms. Uncertainties to
the estimates values are quoted in the parentheses. Final results are compared with the previously available values.

Li Na K Rb Cs Fr

α
q(0)
n,v(M ) 1310 1773 4866 6209 9670 7909

α
q(0)
n,v(T ) 114(3) 104(8) 98(64) 224(145) 644(32) 478(72)

αq(0)
n,c 0.112(5) 1.5(2) 16(1) 35(2) 86(7) 125(10)

αq(0)
n,vc 0 0 0 ∼0 ∼0 ∼0

Total(αq(0)
n ) 1424(35) 1880(5) 4934(107) 6440(246) 10606(736) 8756(560)

Others 1424 [13] 1885 [13] 5000 [13] 6520 [13] 10470 [13]
1421 [67] 1906 [67] 4933 [67] 6525 [42] 10390 [39]
1424 [39] 1878 [39] 5000 [39] 6479 [39] 10521 [43]
1420 [44] 5018 [41]

have incorporated the uncertainties for the main, tail, and core
using different procedures. The uncertainty in the main part of
valence polarizability is solely attributed to the uncertainty in
matrix elements of the dominant transitions. The percentage
uncertainty in the tail part has been estimated by calculating
the percentage deviation between the polarizability contribu-
tion of highest lying transition of main part calculated by
DF and SD method. Recent experimental measurements on
quadrupole core polarizability by Berl et al. [70] are found to
be in good agreement with the core polarizability calculated
using RPA for Rb. However, the RPA value for Rb gives maxi-
mum of 8% uncertainty when compared with the experimental
value. Therefore, we have assigned 8% uncertainty to the core
polarizability for all the atoms. The net uncertainty in the
total value of polarizability has been accomodated by adding
individual uncertainties in quadrature.

As Table I suggests, the main part of valence polariz-
ability is responsible for over 90% of the total polarizability
value for every considered atom. We ascribe 3%, 5%, 65%,
65%, 5%, and 15% uncertainty to the tail part for Li, Na,
K, Rb, Cs and Fr, respectively. Our values for the static
quadrupole polarizability of Li, Na and K are found to be
1424(35), 1880(5), and 4934(107) a.u., respectively. Our re-
sulted values match very well with other theoretical values
calculated using semiempirical [39], RMBPT [13] and cou-
pled cluster single-double (CCSD) [67] methods. For K, the
quadrupole polarizability value recommended by Safronova
et al. is 5018 using the SD values with 70 splines [41]. To
authenticate our precisely calculated E2 matrix elements of
the dominant transitions, we compare our E2 matrix element
for Rb, Cs, and Fr with the values that are available in the
literature. Our E2 matrix elements, 32.88(74) and 40.29(90)
a.u., from the 5S1/2 → 4D3/2 and 5S1/2 → 4D5/2 transitions,
respectively of Rb are in excellent agreement with the values
of 32.94(14) and 40.37(17) a.u. that are recommended by
Safronova et al. [69]. Furthermore, Gossel et al. reported the
matrix element of 33.42 a.u. for the 5S1/2 → 4D3/2 transition
calculated using the relativistic Hartree-Fock approximation
in a V N−1 potential [71] which lies within the uncertainty
limit of our value. Theoretical E2 values of the corresponding
matrix elements for Cs, 33.61(28) and 41.46(24) a.u., for the
6S1/2 → 5D3/2 and 6S1/2 → 5D5/2 transitions, respectively,
are in excellent agreement with our values, 33.62(1.77) and
41.56(2.07) a.u. as reported in a recent study [69]. These

values for the 6S1/2 → 5D3/2 transition computed using the
highly accurate methods deviate from the experimental value
which has been measured by the method of two-photon ion-
ization of the ground 6S state, using the 5D as an intermediate
state [72] by 2% only. On comparing the E2 matrix elements
of most dominant transitions of Fr, i.e., 7P1/2 → 6D3/2 and
7P1/2 → 6D5/2, our values, 33.40(1.33) and 41.54(1.47) a.u.
are again in reasonable agreement with the values, 33.43(19)
and 41.58(18) a.u., recommended by Safronova et al. [69].
Our final quadrupole polarizability values of 6440(246) and
10606(736) a.u. of Rb and Cs, respectively advocate the
results evaluated by Safronova et al. [42,43] and are com-
parable to the values calculated using RMBPT [13] and
semiempirical [39] approaches. Combining all the individual
contributions for Fr, the ground state quadrupole polarizability
value comes out to be 8756(560) a.u. The trend of rising
quadrupole polarizability down the group I breaks at Cs as
Fr offers lower value of the ground state quadrupole polariz-
ability than Cs. Quantitatively, both the matrix elements and
energies of the transitions play principal roles in the deter-
mination of this lower value of polarizability. The smaller
values of the E2 matrix elements and large values of the
energy differences among the primary transitions of Fr are
responsible for such smaller value as compared to its preced-
ing alkali atom. The quadrupole polarizability for Fr has not
been explored to date by any other group. Nevertheless, the
accuracy in the ground state quadrupole polarizability values
of all other alkali-metal atoms makes the resulted polarizabil-
ity value for Fr as much authentic as for other considered
alkali-metal atoms.

B. Quadrupole polarizabilities of excited states

The calculated values of static quadrupole polarizabilities
of the first two excited states, nP1/2 and nP3/2, of alkali-
metal atoms are presented in Tables II and III. The same
procedures have been followed for the calculations of these
quantities, i.e., main, tail, valence-core, and core contribu-
tions as discussed in Sec. IV A. The nP3/2 state quadrupole
polarizabilities have contributions from the scalar as well as
tensor components. The main contributions arising from the
most dominant E2 matrix elements are quoted explicitly here,
while the rest are given separately as ‘Remaining’ in the
above tables. The difference between the tail and ‘Remaining’
contributions is that the tail contributions are coming from the
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TABLE II. The scalar and tensor components of the quadrupole polarizabilities (in a.u.) of the first two excited states of the Li, Na, and
K atoms. Different contributions along with the corresponding uncertainties to these quantities are listed explicitly. The numbers in square
brackets represent powers of 10. Our results are compared with the values reported earlier for Li.

Li

2P1/2 2P3/2

Contribution E2 αq(0)
n Contribution E2 αq(0)

n αq(2)
n

α
q(t )
n,v(M ) α

q(t )
n,v(M )

2P1/2-2P3/2 24.22(2) 757.26(15)[5] 2P3/2-2P1/2 24.22(2) −378.63(75)[5] 378.63(75)[5]
2P1/2-3P3/2 21.147(2) 122.51(2)[1] 2P3/2-3P3/2 21.147(2) 612.6(1)[1] 0
2P1/2-4F5/2 22.99(3) 106.8(3)[1] 2P3/2-4F5/2 12.30(1) 152.7(2)[0] 109.1(7)[0]
2P1/2-5F5/2 14.45(6) 37.9(3)[1] 2P3/2-4F7/2 30.13(2) 917(1)[0] −262.0(3)[0]
Remaining 461.3(1)[0] Remaining 145.7(1)[1] −776.8(6)[0]
α

q(t )
n,v(T ) 1.01(7)[3] α

q(t )
n,v(T ) 1.00(7)[3] −1.6(1)[2]

αq(t )
n,c 1.10(8)[-1] αq(t )

n,c 1.10(8)[-1] 0
αq(t )

n,vc 0 αq(t )
n,vc 0 0

Total(αq(t )
n ) 757.31(15)[5] Total(αq(t )

n ) −378.59(75)[5] 378.62(75)[5]
Others 1.434[5] [68]

Na

3P1/2 3P3/2

α
q(t )
n,v(M ) α

q(t )
n,v(M )

3P1/2-3P3/2 35.939(12) 329.70(22)[4] 3P3/2-3P1/2 35.939(12) −164.85(11)[4] 164.85(11)[4]
3P1/2-4P3/2 27.93(1) 257.2(2)[1] 3P3/2-4P3/2 28.008(6) 129.46(6)[1] 0
3P1/2-4F5/2 38.73(2) 3735(3)[0] 3P3/2-4F5/2 20.749(7) 536.4(4)[0] 383.2(2)[0]
3P1/2-5F5/2 22.073(8) 106.4(1)[1] 3P3/2-4F7/2 50.755(86) 3209(11)[0] −917(3)[0]
Remaining 1085.9(4)[0] Remaining 345.9(2)[1] −170.3(1)[1]
α

q(t )
n,v(T ) 1.62(15)[3] α

q(t )
n,v(T ) 1.62(14)[3] −2.6(2)[2]

αq(t )
n,c 1.50(12)[0] αq(t )

n,c 1.50(12) 0
αq(t )

n,vc 0 αq(t )
n,vc 0 0

Total(αq(t )
n ) 330.71(22)[4] Total(αq(t )

n ) −163.84(11)[4] 164.60(11)[4]

K

4P1/2 4P3/2

α
q(t )
n,v(M ) α

q(t )
n,v(M )

4P1/2-4P3/2 47.08(41) 16.86(29)[5] 4P3/2-4P1/2 47.08(41) −8.43(14)[5] 8.43(14)[5]
4P1/2-5P3/2 33.57(22) 42.16(56)[2] 4P3/2-5P3/2 34.134(74) 219.0(1)[1] 0
4P1/2-4F5/2 55.10(98) 8.80(31)[3] 4P3/2-4F5/2 29.68(36) 12.82(31)[2] 9.16(22)[2]
4P1/2-5F5/2 28.46(22) 20.17(31)[2] 4P3/2-4F7/2 72.71(87) 7.69(18)[3] −21.98(53)[2]
Remaining 18.12(10)[2] Remaining 61.0(3)[2] −29.4(1)[2]
α

q(t )
n,v(T ) 1.98(36)[3] α

q(t )
n,v(T ) 1.98(36)[3] −3.37(61)[2]

αq(t )
n,c 1.63(13)[1] αq(t )

n,c 1.63(13)[1] 0
αq(t )

n,vc 0 αq(t )
n,vc 0 0

Total(αq(t )
n ) 17.05(29)[5] Total(αq(t )

n ) −8.24(14)[5] 8.38(14)[5]

high-lying states including continuum and estimated using the
DF method, while the ‘Remaining’ contributions are arising
from the low-lying bound states and estimated more accu-
rately by combining the E2 matrix element from the scaled
SD methods and the experimental energies. We could not find
any other values in the literature for comparative analysis of
our quadrupole values apart from the result for the 2P1/2 state
of Li as discussed below.

1. Li

Table II consists of static quadrupole polarizability values
for both the 2P1/2 and 2P3/2 states of Li along with the main,

tail, and core contributions. For Li, we used energies for the
(6 − 8)F5/2,7/2 states from the SD method as the NIST ener-
gies are not available. For the main part, other than the listed
transitions, 2P1/2 → (4 − 7)P3/2, (6 − 8)F5/2 transitions have
been included, the contribution of these transitions are given
in the Remaining part of α

q(t )
n,v(M ). As shown in Table II, the

individual contributions from the dominant transitions con-
sidered for the 2P1/2 state of Li clearly suggest that the
largest contribution towards the total polarizability value is
coming from the 2P1/2 → 2P3/2 transition by the reason of
large matrix element as well as a very small difference be-
tween the experimental excitations energies (0.34 cm−1) of
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TABLE III. The scalar and tensor components of the quadrupole polarizabilities (in a.u.) of the P1/2 and P3/2 states of the Rb, Cs, and Fr
atoms are given. Individual contributions are listed explicitly. There are no literature values available to compare with our results.

Rb

5P1/2 5P3/2

Contribution E2 αq(0)
n Contribution E2 αq(0)

n αq(2)
n

α
q(t )
n,v(M ) α

q(t )
n,v(M )

5P1/2-5P3/2 52.85(57) 5.16(11)[5] 5P3/2-5P1/2 52.85(57) −25.80(56)[4] 25.80(56)[4]
5P1/2-6P3/2 35.76(51) 5.00(14)[3] 5P3/2-6P3/2 37.47(47) 28.07(71)[2] 0
5P1/2-4F5/2 63.35(99) 12.39(39)[3] 5P3/2-4F5/2 34.98(51) 19.22(55)[2] 13.73(40)[2]
5P1/2-5F5/2 31.10(28) 25.42(45)[2] 5P3/2-4F7/2 85.69(1.24) 11.53(33)[3] −32.94(95)[2]
Remaining 21.56(13)[2] Remaining 7.92(16)[3] −38.98(12)[2]
α

q(t )
n,v(T ) 2.0(4)[3] α

q(t )
n,v(T ) 1.99(34)[3] −3.5(6)[2]

αq(t )
n,c 3.54(28)[1] αq(t )

n,c 3.54(28)[1] 0
αq(t )

n,vc −9(4)[-5] αq(t )
n,vc −9(4)[-5] 0

Total(αq(t )
n ) 5.40(11)[5] Total(αq(t )

n ) −23.18(56)[4] 25.18(56)[4]

Cs

6P1/2 6P3/2

α
q(t )
n,v(M ) α

q(t )
n,v(M )

6P1/2-6P3/2 59.94(96) 28.47(91)[4] 6P3/2-6P1/2 59.94(96) −14.23(46)[4] 14.23(46)[4]
6P1/2-7P3/2 37.2(9) 5.63(27)[3] 6P3/2-7P3/2 41.81(81) 3.76(15)[3] 0
6P1/2-4F5/2 73.34(1.71) 17.76(83)[3] 6P3/2-4F5/2 42.30(86) 3.08(12)[3] 22.01(89)[2]
6P1/2-5F5/2 33.68(39) 31.5(8)[2] 6P3/2-4F7/2 103.61(2.09) 18.49(75)[3] −5.28(21)[3]
Remaining 24.80(13)[2] Remaining 10.61(16)[3] −55.28(18)[2]
α

q(t )
n,v(T ) 1.9(5)[3] α

q(t )
n,v(T ) 1.8(4)[3] −3.5(9)[2]

αq(t )
n,c 8.64(69)[1] αq(t )

n,c 8.64(69)[1] 0
αq(t )

n,vc −5(2)[-4] αq(t )
n,vc −5(2)[-4] 0

Total(αq(t )
n ) 31.57(92)[4] Total(αq(t )

n ) −10.45(47)[4] 13.34(46)[4]

Fr

7P1/2 7P3/2

α
q(t )
n,v(M ) α

q(t )
n,v(M )

7P1/2-7P3/2 61.25(1.46) 9.76(47)[4] 7P3/2-7P1/2 61.25(1.46) −4.88(23)[4] 4.88(23)[4]
7P1/2-8P3/2 30.66(1.3) 3.61(31)[3] 7P3/2-8P3/2 44.90(1.2) 4.54(25)[3] 0
7P1/2-5F5/2 70.96(2.7) 1.59(12)[4] 7P3/2-5F5/2 47.65(1.4) 4.09(24)[3] 2.92(17)[3]
7P1/2-6F5/2 32.84(53) 28.80(94)[2] 7P3/2-5F7/2 116.75(3.44) 2.46(14)[4] −7.0(4)[3]
Remaining 19.61(33)[2] Remaining 13.43(31)[3] −88.66(19)[2]
α

q(t )
n,v(T ) 2.20(88)[3] α

q(t )
n,v(T ) 1.91(57)[3] −3.6(1.1)[2]

αq(t )
n,c 1.25(10)[2] αq(t )

n,c 1.25(10)[2] 0
αq(t )

n,vc −3(2)[-4] αq(t )
n,vc −3(2)[-4] 0

Total(αq(t )
n ) 12.43(49)[5] Total(αq(t )

n ) −1468(2844)[-1] 3.63(24)[4]

the corresponding states. This small difference in the energy
can be attributed to very small fine splitting of the 2P state
coming into effect due to spin-orbit coupling. Another effec-
tive contribution towards the main part of total polarizability
of the 2P1/2 state has been provided by the 2P1/2 → 4F5/2

transition. For the 2P1/2 state, the tail part offers a very
little contribution (<1%) whereas the core polarizability is
0.11 a.u.. A7% uncertainty has been considered in the tail
part. Total polarizability value of the 2P1/2 state of Li is
found to be 757.31(15)×105 a.u. We found another work
reported by Wansbeek et al. for the calculation of quadrupole
polarizability of the 2P1/2 excited state of Li atom using
ab initio CCSD(T) method [44,68]. As can be noticed from the
Table II, there is a large deviation in the results between this

work and the value reported in Refs. [44,68]. From the contri-
butions explicitly quoted in Table II, it is obvious that such a
huge deviation would have been caused due to estimate of dif-
ferent contribution from its fine-structure partner 2P3/2 excited
state as the magnitudes of other contributions are relatively
small. A furthermore analysis suggests that the fine-structure
splitting of the 2P state is extremely small and it is a chal-
lenge to estimate this splitting as precisely as the experimental
value using a numerical calculation without considering con-
tributions from the higher-order relativistic effects. This is
the only reason why we observe a huge difference between
the ab initio calculation of Refs. [44,68] and the present
work, where we have considered the experimental energies in
the sum-over-states approach to determinate the quadrupole
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polarizabilities. From this view point, the result reported
in this work is more reliable. For the P3/2 state, we have
estimated contributions from a large number of dominant tran-
sitions, i.e., 2P3/2 → (2 − 7)P1/2, (3 − 8)P3/2, (4 − 8)F5/2,7/2

out of which four dominant transitions are listed in the ta-
ble, in the sum-over-states approach for the evaluation of
quadrupole polarizability. The transitions which have not
been explicitly mentioned are included in the Remaining part
of the main valence contribution. It can be observed that the
contribution due to the first transition in Table II towards
the scalar component of the main part of the total polariz-
ability is negative, which is ascribed to lower energy value
of the 2P1/2 level than the 2P3/2 level. However, for tensor
component of the 2P3/2 state, the same transition provides
a positive contribution which is attributed to negative W q(2)

n,k
coefficient of the tensor component that negates with negative
sign in Eq. (5). Moreover, the contributions of P3/2 → P3/2

transitions for any principal quantum number in the main part
of the tensor polarizability for P3/2 states of all the alkali-metal
atoms are zero because the 6- j symbols in Eq. (7) vanish when
triangle conditions are not fulfilled. Owing to negative Wigner
coefficient W q(2)

n,k for the 2P3/2 → mF7/2 transitions, where
m > 4, the contributions of these transitions are negative for
main part of the tensor component of the polarizability. This
type of behavior is true for all the alkali-metal atoms. Since
a lot of dominant transitions have been examined for the
main part of tensor component, a very small percentage of
the tail part has been encountered giving scalar value of the
quadrupole polarizability of −378.59(75)×105 a.u. and the
tensor polarizability value as 378.62(75)×105 a.u.

2. Na

Table II provides the individual contributions of the main,
tail, and core of the total quadrupole polarizability for the
3P1/2 and 3P3/2 states of Na. Using the experimental en-
ergies and the precisely calculated E2 matrix elements of
all the dominant transitions 3P1/2 → (3 − 8)P3/2, (4 − 8)F5/2,
the value of the main part for the 3P1/2 state is amount-
ing about 95% contribution towards the total polarizability
value. Such large fraction is solely attributed to the contri-
bution of the first transition of the main polarizability given
in the table. The tail and core contribution are quite small
with 9% and 8% uncertainties, respectively. With all the
contributions of polarizability, the total value of the 3P1/2

state comes out to be 330.71(22)×104. The same can be
noticed for scalar and tensor components of the quadrupole
polarizability of the 3P3/2 state for which the 3P3/2 → 3P1/2

transition is giving a dominant contribution. Other than
listed transitions, we included the contributions from 3P3/2 →
(4 − 8)P1/2, (5 − 9)P3/2, (5 − 8)F5/2,7/2 in the Remaining
part of the main valence contribution. After adding all the in-
dividual contributions and uncertainties in the quadrature, the
total polarizability values of the scalar and tensor components
for 3P3/2 state are −163.84(11)×104 and 164.60(11)×104

a.u., respectively.

3. K

We present all the contributions to the quadrupole polariz-
ability for the 4P1/2 and 4P3/2 excited states of K in Table II.

Around 98% of the share of total polarizability has been
imparted by the main part of the valence polarizability, which
include contributions from 4P1/2 → (4 − 9)P3/2, (4 − 8)F5/2

transitions. The Remainder share is coming from both the
tail and core polarizabilities for the 4P1/2 state. The 8% and
18% uncertainty has been given to the core and tail polariz-
abilities, respectively. Net quadrupole polarizability value of
4P1/2 state of K comes out to be 17.05(29)×105 a.u.. For the
4P3/2 state, one can observe that the large matrix elements
are rendered by the 4P3/2 → 4P1/2, 5P3/2, 4F5/2 and 4F7/2

transitions. The largest matrix element given by the 4P3/2 →
4F7/2 transition does not provide an immense contribution
towards total polarizability due to significant difference in
the energy state. Other transitions (4P3/2 → (5 − 9)P1/2, (6 −
10)P3/2, (5 − 8)F5/2,7/2) which account for very little contri-
bution as compared to the dominant ones have been listed
as Remaining in the table. From the DF method, the tail
part has been estimated with 18% uncertainty. Adding all
the contributions, the scalar and tensor polarizabilities are
−8.24(14)×105 a.u. and 8.38(14)×105 a.u., respectively for
the 4P3/2 state.

4. Rb

The total polarizability values of the 5P1/2 and 5P3/2 ex-
cited states for Rb are given in Table III with individual
contributions from the main, tail, core, and valence-core
correlations. For the 5P1/2 state, we carried out precise E2 ma-
trix element calculations of the 5P1/2 → (5 − 10)P3/2, (4 −
5)F5/2 transitions. The 5P1/2 → 5P3/2 transition is offering
an overwhelming contribution of around 96% to the total
polarizability for the 5P1/2 state. The tail and core contri-
butions are only 0.4% and 0.006%, respectively, of the total
polarizability for the 5P1/2 state with a tail uncertainty of 22%
whereas the valence-core contribution is nearly zero. Thus, a
total quadrupole polarizability of 5.40(11)×105 a.u. has been
encountered for the 5P1/2 state. For the 5P3/2 state of Rb,
similar findings can be observed for both the scalar and tensor
components. The 5P3/2 → (5 − 10)P1/2, (6 − 11)P3/2, (4 −
8)F5/2,7/2 transtions have been considered for the main part
out of which contributions from the four transitions are listed
in Table III and the contributions for the remaining have been
listed as Remaining. The tail contribution is very small in
comparison to the main part. We assign maximum 17% un-
certainty to the tail contribution for both the scalar and tensor
components. The scalar and tensor quadrupole polarizabili-
ties of the 5P3/2 state are −23.18(56)×104 and 25.18(56)×
104 a.u., respectively.

5. Cs

The matrix elements and polarizability contributions from
the considered transitions of the main part for Cs have been
summarized in Table III. The first transition, i.e., 6P1/2 →
6P3/2, of the main part in the given table for the 6P1/2 state is
accountable for a large value of total polarizability. Other tab-
ulated transitions are also contributing dominantly. Remaining
contributions of the main part include contributions from the
6P1/2 → (7 − 11)P3/2, (5 − 8)F5/2 tranistions. The tail and
core correlations provide ∼0.6% and ∼0.027% contributions
of the total polarizability value. 27% uncertainty has been

032819-7



KAUR, SINGH, ARORA, AND SAHOO PHYSICAL REVIEW A 105, 032819 (2022)

assigned to the tail part. Thus, the total polarizability value of
the 6P1/2 state for Cs turns out to be 31.57(92)×104 a.u. For
the scalar component of the 6P3/2 state, the assertive positive
contributions in the main part are given by the 6P3/2 → (7 −
11)P1/2, (7 − 12)P3/2, (4 − 8)F5/2,7/2 transitions, core and tail
part cancel with some share of the negative contribution
given by the most prominent 6P3/2 → 6P1/2 transition, ulti-
mately giving a small value for the main polarizability of
−10.64×104, whereas tensor polarizability is 13.37×104 a.u..
The assigned tail uncertainty for the 6P3/2 state is 25%.
Finally, the total polarizability values for scalar and ten-
sor components of the 6P3/2 state are −10.45(47)×104 and
13.34(46)×104, respectively.

6. Fr

The total polarizability value of the 7P1/2 and 7P3/2 states
for Fr with the main, tail, core, and valence-core contributions
is given in Table III. We calculated the E2 matrix elements for
the 7P1/2 → (7 − 12)P3/2, (4 − 8)F5/2 transitions to estimate
the quadrupole polarizability of the 7P1/2 state and the E2 ma-
trix elements for the 7P3/2 → (7 − 12)P1/2, (8 − 13)P3/2(4 −
8)F5/2,7/2 transitions of determining quadrupole polarizability
of the 7P3/2 state. For the (5 − 8)F5/2,7/2 states, we have used
our SD excitation energy values as the energies from the
NIST database are not available. Our energy values for the
(5 − 8)F5/2,7/2 states agree well with values recommended
by Tang et al. calculated using the relativistic Fock space
multireference coupled-cluster method [73]. The percentage
differences of our energy values with respect to the values
evaluated by Tang et al. for the (5 − 8)F5/2,7/2 states ranges
from 0.04 to 0.09%. For Fr, the 7P1/2 → 7P3/2 and 7P1/2 →
5F5/2 transitions play major roles in total polarizability value
of the 7P1/2 state as can be observed from the individual con-
tribution given in Table III. Though matrix elements are large,
the effect of the polarizability contribution is not prodigious.
The reason behind this being the large doublet separation
of the 7P state. Including the tail and core polarizabilities
of 2.20(88)×103 a.u. and 125 a.u. with the corresponding
uncertainties of 40% and 8%, the total polarizability value for
the 7P1/2 state is 12.43(49)×104 a.u. For the 7P3/2 state, the
7P3/2 → 7P1/2, 8P3/2, 5F5/2,7/2 transitions for the scalar com-
ponent contribute dominantly. It is worth noting that unlike all
other atoms considered in this work, the main part of scalar

component for the 7P3/2 state is giving a very small negative
contribution. With tail part having 30% uncertainity and core
contribution, the final value for the scalar component for the
7P3/2 state is −146.8 a.u. with a large uncertainty of 2844 a.u.
For the tensor component, the 7P3/2 → 7P1/2, 8P1/2, 5F5/2,7/2

transitions contribute dominantly for the main part leading
to total polarizability of 3.63(24)×104 a.u., respectively after
adding all other components. However, the total polarizability
value coming from both the scalar and tensor components of
the 7P3/2 state depend upon the magnetic sublevels MJ values.

V. CONCLUSION

We have presented the static quadrupole polarizabilities of
the ground state and the first two excited states nP1/2,3/2 of
the alkali-metal atoms. Uncertainties to these quantities are
reduced by using very precise values of electric quadrupole
matrix elements of a large number of intermediate states and
considering experimental energies. The electric quadrupole
matrix elements were evaluated by employing an all-order
relativistic many-body method in the singles-doubles scaling
procedure that takes experimental correlation effects into ac-
count. The calculated quadrupole polarizability values were
validated by reproducing the values for the ground states of
the above atoms with the literature values. This confirms the
credibility of our results for the excited states. To understand
their accuracies further, breakdown of contributions towards
the net values along with the quadrupole matrix elements and
their uncertainties for dominant transitions are also given.
The precise values of quadrupole matrix elements given in
this work can be used to estimate the dynamic quadrupole
polarizabilities of the considered states at real and imagi-
nary frequencies, which are useful for many applications.
The reported quadrupole polarizability values can be helpful
for estimating systematics associated with the high-precision
experiments using alkali-metal atoms.
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