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Gradient-descent optimization of fermion nodes in the diffusion Monte Carlo technique
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We present a method for optimizing the location of the fermion ground-state nodes using a combination of
diffusion Monte Carlo (DMC) and projected gradient descent (PGD). A PGD iteration shifts the parameters of
an arbitrary node-fixing trial function in the opposite direction of the DMC energy gradient, while maintaining
the cusp condition for atomic electrons. The energy gradient is calculated from DMC walker distributions by
one of three methods we derive from an exact analytical expression. We combine our energy gradient calculation
methods with different gradient-descent algorithms and a projection operator that maintains the cusp condition.
We apply this stochastic PGD method to trial functions of Be, Li2, and Ne, all consisting of a single Slater
determinant with randomized parameters, and find that the nodes dramatically improve to the same DMC energy
as nodes optimized by variational Monte Carlo. Our method, therefore, departs from the standard procedure of
optimizing the nodes with a non-DMC scheme such as variational Monte Carlo, density-functional theory, or
configuration-interaction-based calculation, which do not directly minimize the DMC energy.
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I. INTRODUCTION

Diffusion Monte Carlo (DMC) [1–3], also known as
Green’s-function Monte Carlo or projector Monte Carlo, is a
technique for projecting the many-body wave function to the
ground state. It has been used to accurately tackle bosonic or
nonfrustrated quantum-spin systems (see Ref. [4] for a list of
references). In the case of fermionic systems, in general one
has to restrict oneself to the fixed-node approximation, where
it has been accurately applied to nuclear physics [5–7] when
the required initial trial function was accurate enough. Node
relaxation has led to accurate results for the electron gas in the
continuum [2] and for electrons on a lattice [8–10]. There are
variants of the method, such as the constraint path [11,12],
which have been successfully applied to condensed-matter
physics [12,13] problems.

The DMC method samples the ground-state wave func-
tion � of N particles with walkers. These are points in a
dN-dimensional space (d being the dimensionality of space)
with a probability density equal to ��g, where �g is a guiding
function used for importance sampling. DMC projects � to
the ground state by propagating it along the imaginary-time
axis, which is done by changing the position and weight of
each walker in a way that samples the Green’s function (i.e.,
the matrix elements of the evolution operator). To prevent
large variations in weights, walkers are regularly deleted, du-
plicated, or combined in a way that the initial and final ��g

are proportional.
For a fermionic �, it is generally necessary to impose zero

boundary conditions at an a priori chosen nodal surface. That
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is, the nodal surface of � is taken to be the nodal surface
of a trial function �t , which is an approximate ground-state
wave function produced by a non-DMC method. Typically
�t is a product of a symmetric Jastrow function [14] factor,
which describes correlations, and an antisymmetric factor,
which is a single Slater determinant or a combination of Slater
determinants [15] that describes the nodes. It is standard to
set �t = �g, in which case nodal boundary conditions are
naturally imposed by imaginary-time propagation alone. In
the present paper we distinguish �t from �g because we often
use a nodeless �g, in which case nodal boundary conditions
are imposed by deleting those walkers that attempt to cross
the nodes.

DMC error is improved with a �t that better approximates
the exact ground-state wave function. The only source of error
that cannot be eliminated with the DMC propagation is the
fixed-node error, which is contained in just the antisymmetric
part of �t . The other sources of error, namely, the finite time-
step error, statistical error, and population control error, can
be respectively controlled with a smaller time step, a greater
sample number, and a larger walker population.

This makes the choice of the nodes of �t the fundamental
approximation of DMC. The resulting fixed-node error typi-
cally ranges from about 82 to 435 meV per atom [16], and
is generally controlled by increasing the complexity of �t

and better optimizing its parameters. Because DMC energy
is an upper bound to the true ground-state energy [17], a
parameter optimization method that minimizes DMC energy
is the most accurate. However, optimization methods in use
will minimize some other quantity, such as the variational
Monte Carlo (VMC) energy, the Kohn-Sham energy, or the
local VMC energy variance [18,19].

The first attempt to optimize the parameters of �t using
DMC walker distributions alone was by Reboredo et al. [20].
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They iteratively generated a new �t by projecting the co-
efficients of its determinants (or pfaffians) from the walker
distribution of the previous �t . Mindful that it becomes
expensive to evaluate a �t with an increasing number of
determinants, they also proposed a method to reduce the com-
plexity of �t by minimizing a cost function between the initial
and reduced �t that heavily penalized changes of the nodes.

We propose to directly use the DMC energy as a “cost
function” when optimizing the parameters of �t . This dif-
fers from using the VMC energy as a cost function [21].
Our method iteratively performs projected gradient descent
(PGD) on �t by shifting its parameters in a direction roughly
opposite to the energy gradient, while maintaining any con-
straints (the electron-nuclear cusp condition in our examples)
by projecting the parameters back to the surface satisfying
the constraint with each iteration. Gradient descent has an
advantage for large parameter number Np in that it does not
require an estimate of Np × Np matrices, which is required by
many others, e.g., the linear method.

We calculate the gradient of each parameter iteration from
walker samples using one of three methods that we label A,
B, and C. The walker distributions are produced by DMC
imaginary-time propagation with nodes fixed by the parame-
ters. We experiment with several gradient-descent algorithms
commonly used for machine learning. In order to keep our
method self-reliant, during PGD we do not rely on a preopti-
mized Jastrow function, which does not affect the fixed-node
error, although it does affect the other errors.

Our paper is organized as follows: In Sec. II we present
the three methods for evaluating the derivative of the energy
from the DMC walker distribution. In Sec. III we describe
our implementation of gradient descent, including the DMC
scheme used, practical issues, and the form of �t and �g. In
Sec. IV we present tests on the accuracy and speed of the
three methods used and results of PGD on trial functions of
Be, Li2, Ne, and F2. In Sec. V, we discuss the advantages of
our method and ways to improve it. We discuss parameter
fluctuations in Appendix A, and we describe the gradient-
descent algorithms used in Appendix B and we compare them
in Appendix C.

II. METHOD

A PGD iteration shifts the nodes in a direction expected to
lower the DMC energy E . The nodes are determined by the
parameters θi of the antisymmetric part of �t , and the shift of
the nodes is determined by the gradient ∂E

∂θi
. The gradient of

a nodal surface is calculated with walker samples produced
by DMC imaginary-time propagation of ��g, with � the
fixed-node ground state and �g a guiding function. Thus PGD
iterations change the nodal surface, while DMC iterations
generate data for the gradient of a given nodal surface.

Provided the θi are not already at a local minimum, E will
be lowered by the following change of parameters:

θi → θi − ai
∂E
∂θi

, (1)

provided that ai is positive and sufficiently small. However,
the presence of stochastic error in our gradient means that only
the expectation of E will be lowered with sufficiently small
ai. If the θi are constrained (e.g., from the cusp condition or

FIG. 1. Nodal pocket.

symmetry) we modify Eq. (1) to

θi → P
(
θi − ai

∂E
∂θi

)
, (2)

where P is the projection operator that moves the parame-
ters to the nearest point on the manifold that satisfies the
constraint. Some gradient-descent algorithms, e.g., Adam,
simulate momentum with friction by replacing ∂E

∂θi
with an

exponential trailing average of current and past iterations.

A. Derivative of the energy

Central to our method is calculating the DMC energy
gradient in parameter space. Working in atomic units, we
derive an expression for ∂E

∂θi
, also derived by Berman [22]. To

simplify the derivation, let us again set the ground state � to
zero except for one nodal pocket, as justified in Sec. II A. Now
let us examine how the energy, given as

E = 〈�| H |�〉
〈�|�〉 , (3)

changes due to an infinitesimal change δθi in one of the param-
eters, which shifts the node and, thus, changes � to � + δ�.
By doing that the change in energy δE is given by

δE = 〈δ�| (H − E ) |�〉
〈�|�〉 + 〈�| (H − E ) |δ�〉

〈�|�〉
+〈δ�| (H − E ) |δ�〉

〈�|�〉 . (4)

We convert the above expression to an integral over the 3N
dimensional position vector R and integrate by parts to obtain

δE =
∫

dR 2δ�(H − E )� + δ�(H − E )δ�

〈�|�〉 . (5)

The δ�(H − E )� term of Eq. (5) is zero except at the original
nodes, where the action of the Laplacian on a discontinuity of
∇� produces a delta function. The term δ�(H − E )δ� of
the above equation is second order in δθi except at the original
and shifted nodes, where the action of the Laplacian on the
discontinuities of ∇δ� produces zeroth-order delta functions.
Thus, we only need to consider the operation of the Laplacian
on these discontinuities at the original and shifted nodes to
evaluate Eq. (5) up to first order in δθi.

Let us now choose a coordinate system with the shape of
the nodes. Let z be the coordinate perpendicular to the node,
zero at the initial node, and pointing towards the direction
where � �= 0 (see Fig. 1 for an illustration). Let A be the
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remaining 3N − 1 dimensional coordinates that parametrize
the nodal surface at z = 0. Then � to first order is

�(A, z) = g(A)R(z), (6)

where g(A) ≡ |∇�(A, z = 0+)|, and R is the ramp function:

R(z) =
{

z if 0 � z
0 if z < 0 .

To express δ� near the node, let us define η(A) as the dis-
placement of the node in the z direction that results from δθi.
Then, to first order in �, δ� is the difference between the
displaced and original wave function, that is,

δ�(A, z) = g(A)R[z − η(A)] − g(A)R(z). (7)

The delta functions resulting from the Laplacian are then
given by

∇2�(A, z) = g(A)δ(z), (8)

∇2δ�(A, z) = g(A)δ(z − η) − g(A)δ(z). (9)

Since only the delta functions contribute to first order, we
leave only their contribution to Eq. (5), yielding

δE = −
∫

dR δ�(A, z)g(A)[δ(z) + δ(z − η)]

2 〈�|�〉 . (10)

We reduce this to an integral over the nodal surface by inte-
grating over z. Absorbing the Jacobian determinant into dA
we obtain

δE = −
∫

node dA g(A)[δ�(A, 0) + δ�(A, η)]

2 〈�|�〉 . (11)

From Eq. (7) we find that δ�(A, 0) + δ�(A, η) = g(A)η(A)
both when η(A) > 0 and when η(A) < 0. This yields

δE =
∫

node dA η(A)g2(A)

2 〈�|�〉 . (12)

By taking a derivative with respect to θi we derive our analyt-
ical expression:

∂E

∂θi
=

∫
node dA |∇�(A)|2∂θiη(A)

2 〈�|�〉 . (13)

B. Practical methods to estimate the energy gradient

Starting from Eq. (13) we have derived three different
equations for calculating the energy gradient from walker
distributions, which we refer to as method A, B, and C. Since
DMC usually samples terms linear in �, but Eq. (13) contains
two terms bilinear in �, an approximation used by methods A
and B replaces the bilinear terms with a mixed estimate of the
true ground-state wave function and the trial function, i.e.,

〈�|�〉 → 〈�t |�〉 , |∇�|2 → ∇�t · ∇�. (14)

Then, using

∂η

∂θi
= − 1

|∇�t |
∂�t

∂θi
, (15)

we approximate Eq. (13) with

∂E

∂θi
≈ −

∫
node dA |∇�(A)|∂θi�t (A)

2 〈�t |�〉 . (16)

Unfortunately, this relies on the quality of �t , although this
quality is improved with PGD. Method C does not make
this approximation, and thus in principle requires no Jastrow
optimization.

C. Method A: The energy gradient from a standard walker
distribution

Method A calculates Eq. (16) with a standard walker dis-
tribution equal to �t�, which we think will make it easiest to
implement into existing DMC code. It requires the evaluation
of �t , its parameter derivative, and the parameter derivative
of its 3N dimensional Laplacian. To get Eq. (16) in a form
where this is possible, we change the nodal integral to a
volume integral. Using the z coordinate as defined in Sec. II
and Gauss’s theorem, we transform Eq. (16) to

∂E

∂θi
≈ − 1

2 〈�t |�〉
∫

node
dA lim

ε→0

∫ ε

−ε

dz
∂�t

∂θi
∇2�, (17)

where we used the fact that |∇�| = ∂�
∂z for z > 0 and � = 0

for z < 0.
We replace ∇2 with 2(E − H ) in Eq. (17) in order to

increase the bounds of the z integral to all space, which is
possible since (E − H )� = 0 everywhere except the nodes.
We then integrate by parts to obtain

∂E

∂θi
≈

∫
vol dR �(H − E )∂θi�t∫

vol dR �t�
. (18)

Interestingly, one can also arrive at Eq. (18) by taking the
derivative of the mixed estimator 〈�|H |�t 〉

〈�|�t 〉 with � fixed.
Method A calculates the integrals of Eq. (18) from posi-

tions Rk and weights wk of a walker distribution equal to �t�

with the equation

∂E

∂θi
≈

∑
k wk�

−1
t (Rk )(H − E )∂θi�t (Rk )∑

k wk
. (19)

D. Method B: The energy gradient from a nodal walker
distribution

Method B requires the evaluation of �t and its parame-
ter derivative. It samples |∇�| of Eq. (16) directly from a
walker distribution on the nodal surface, which we generate
by recording walkers that cross the nodal surface and are thus
deleted. We note that shifting crossed walker positions closer
to the nodes using Newton’s method noticeably improves per-
formance. Unlike those of method A, the precrossed walkers
cannot be guided by �t . This is partly because no walkers will
cross the nodes of �t in the zero time-step limit. Instead we
guide them with a nodeless function �g.

We wish to relate |∇�| at the nodal surface to the number
of walkers that cross the nodal surface per area dF/dA during
time �τ . Let us assume a constant fixed-node walker distribu-
tion equal to �g�. If we suddenly remove the nodal surface,
there will be an initial increase of walker population resulting
from walkers that would have crossed the nodal surface where
it is present. Therefore the resulting population increase per
nodal area to first order in time is dF/dA. Let us make �τ

small enough that � does not change at a distance ε from the
node; then, the population increase per nodal area from the
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released nodes is

dF (A)

dA
= �g(RA)

∫ ε

−ε

∫ �τ

0
dzdτ

d�(A, z)

dτ
, (20)

where RA = (A, 0). We can rewrite the above as

dF (A)

dA
= �g(RA)

∫ ε

−ε

∫ �τ

0
dzdτ (−H )�(A, z). (21)

We take the ε → 0 limit of Eq. (21), which leaves only a
kinetic contribution from the discontinuity of ∇�:

dF (A)

dA
= �g(RA)

∫ ε

−ε

∫ �τ

0
dzdτ 1

2∇2�(A, z). (22)

Then, using

∇2�(A, ε) = ∂2
z �(A, ε),

|∇�(A, ε)| = ∂z�(A, ε),

|∇�(A,−ε)| = 0, (23)

we write

dF (A)

dA
= 1

2�τ�g(RA)|∇�(RA)|. (24)

We can now use Eq. (24) to sample the |∇�(RA)| term of
Eq. (16), which yields the equation

∂E

∂θi
≈ −

∑
j w j�

−1
g (Rj ) ∂θi�t (Rj )

�τ 〈�t |�〉 , (25)

where Rj and w j are, respectively, the positions and weights
of walkers that crossed the nodes during the period �τ . To
sample the denominator, we simply use

�τ 〈�t |�〉 =
∫ �τ

0
dτ

∑
k

�t (Rk, τ )

�g(Rk, τ )
wk (τ ), (26)

with Rk and wk the positions and weights of all walkers as a
function of time τ .

Method B therefore calculates the energy gradient with

∂E

∂θi
≈ −

∑
j w j�

−1
g (Rj )∂θi�t (Rj )∫ �τ

0 dτ
∑

k wk�−1
g (Rk )�t (Rk )

. (27)

E. Method C: The exact energy gradient

Method C does not use the approximation of Eq. (14). It
samples one factor of |∇�| in Eq. (13) with the same nodal
walker distribution used by method B, and samples the other
factor of |∇�| using forward walking. Just as with method
B, method C requires the evaluation of �t and its parameter
derivative.

We start by writing the � projector as a time evolution
operator

|�〉 〈�|
〈�|�〉 = lim

τ→∞ exp[τ (E -H )] (28)

and contract the left side of Eq. (28) with 〈�t | and the right
with |J〉R where

|J〉R ≡ 1

�t (R)
|R〉, (29)

resulting in

�(R) 〈�t |�〉
�t (R) 〈�|�〉 = lim

τ→∞ 〈�t | exp[τ (E -H )]|J〉R. (30)

We recognize that

〈�t | exp[τ (E -H )]|J〉R =
∫

dR′G̃(R′, R, τ ), (31)

where G̃, a Green’s function, is the evolution operator of �t�.
Because �(R)/�t (R) approaches |∇�(RA)|/|∇�t (RA)| as R
approaches the nodal surface (since ∇ = ∂z at z → 0+), at the
nodal surface we have

|∇�(RA)| = |∇�t (RA)| 〈�|�〉
〈�t |�〉 lim

τ→∞

∫
dR′G̃(R′, RA, τ ).

(32)

We now substitute one |∇�| term of Eq. (13) with Eq. (32)
and again use ∂η

∂θi
= − 1

|∇�t |
∂�t
∂θi

to get

∂E

∂θi
= − 1

2 〈�t |�〉
∫

node
dA

∂�t

∂θi
|∇�(RA)|

× lim
τ→∞

∫
dR′ G̃(R′, RA, τ ). (33)

Equation (33) is identical to Eq. (16) except the added
factor limτ→∞

∫
dR′G̃(R′, RA, τ ). We sample this factor with

the value ξ we define as the final weight of a walker that had
an initial weight of 1 and an initial position of RA, and was
then propagated for time τ with �t as the guiding function,
that is, 〈

ξ (RA, τ )
〉 =

∫
dR′G̃(R′, RA, τ ). (34)

Instead of taking the τ → ∞ limit, we cut the propagation
time short at τc. The value we choose should be long enough
for 〈ξ (RA, τ )〉 to become roughly constant.

Placing a walker guided by �t at the nodes can be prob-
lematic since the local energy and raw drift velocity V =
∇ ln �t are divergent at the nodes when �t is used as the
guiding function. When calculating ξ , we suppress the effects
of both divergences in the standard way, where we modify the
drift velocity and weight increase by multiplying them with
−1+√

1+2V 2δτ
V 2δτ

, where δτ is the time step. To ensure walkers
move towards the positive side of the node, we also multiply
the drift velocity by sign(�t ).

Method C calculates Eq. (33) with node crossing walkers
following the same logic we used for method B and Eq. (16),
but with the extra factor ξ . We multiply Eq. (27) with ξ (Rj, τc)
to obtain our equation for method C:

∂E

∂θi
≈ −

∑
j w jξ (Rj, τc)�−1

g (Rj )∂θi�t (Rj )∫ �τ

0 dτ
∑

k wk�−1
g (Rk )�t (Rk )

. (35)

III. IMPLEMENTATION

To test our method, we developed a DMC code with walker
propagation that for the most part follows the prescription
of Umrigar et al. [23]. In addition, we introduced our PGD
iteration method in the code. The main steps are outlined next.
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We will apply our technique on three systems: atomic Be, Li2,
and atomic Ne.

A. Trial and guiding function

The �t used for all of our calculations were of the well-
known Slater-Jastrow form

�t = J�S, �S = D↑D↓, (36)

where D↑ and D↓ are spin-up and spin-down Slater determi-
nants of single-particle orbitals φa(r) described in the next
paragraph. J is a Jastrow function:

J =
∏
i< j

fi j, fi j = e
− ai j ri j

1+bri j (37)

where ri j is the electron-electron distance and ai j is equal to
1/4 (or 1/2) when both i and j correspond to electrons of
parallel (or antiparallel) spin projections [23].

The single-particle orbitals φ of the Slater determinants are
made of a basis of Slater functions, taking the form

φa(r) =
Nbasis∑
b=1

Cabrnb−1
b e−ξbrbYlbmb (r̂b), (38)

where rb = |r − Rb|, and nb, lb, and mb are quantum numbers
characterizing the b basis state which is centered at the atomic
nuclear position Rb. The parameters we optimize are Cab and
ξb, with ξb being shared by all orbitals.

Since J is nodeless, and, thus, does not affect the energy,
our method cannot improve it. We therefore do not include
it during PGD since we have no a priori knowledge of its
parameters. Although there is a reason to expect that a quality
J will improve the methods A and B, since they rely on a � →
�t approximation, we do not notice such an improvement.
Method C on the other hand makes no such approximation,
so in principle, it does not require an optimized J . We only
include J when evaluating the energy after optimization.

Our walker distributions for methods B and C use an
electron-nuclear Jastrow function as a guiding function �g.
It has the form

�g =
∏
i,k

exp

(
− Zk|Rk − ri|

1 + |Rk − ri|

)
, (39)

with Rk the nuclear coordinate, Zk the nuclear charge, and ri

the electron coordinate. We choose this �g instead of �g =
1 to reduce the statistical, time-step, and population growth
errors. This �g also results in many more walkers crossing the
node per time, and the electrons are far less likely to ionize.
Ionization can still be a problem with poor nodes; when this
is the case, we surround the system with a potential barrier.

B. Projection on the cusp-condition satisfying parameter space

The electron-nuclear cusp condition [24,25] is given by

Sk ≡ −1

2

d ln �2
t

dr

∣∣∣
r=0

, Sk = Zk, (40)

where rk is the radial coordinate from nucleus k, Zk is the
nuclear charge, and �2

t is defined as the angular average of
�2

t about rk = 0. It is a necessary requirement to avoid a large

divergence of local energy near the nucleus, which gives rise
to a large increase of all errors besides the fixed-node error.
Since the cusps Sk of our �t depend on �S and its varied
parameters θi, we project θi back to the manifold of the cusp
condition after each iteration of gradient descent.

The cusp condition of �S is satisfied when the cusps Ska

of all single-particle orbitals φa satisfy Ska = Zk . We assume
the shift in parameters is small enough (due to small ai) that
a linear approximation of the cusp S̃ka can be made at the
preprojected parameters θi0:

S̃ka(θi ) ≡ Ska(θi0) +
∑

i

(θi − θi0)
∂Ska(θi0)

∂θi
. (41)

θi is then shifted to the closest point satisfying

S̃ka(θi ) = S̃ka(θi0) + c[Zk − S̃ka(θi0)], (42)

where c is added for stability and is between zero and one (we
used 0.5). We repeat this until Ska − Zk is within a threshold.

C. Details of the PGD iterations

After each PGD iteration, we update the energy and effec-
tive time step [17] with data of that iteration. We use the mixed
estimate

E = 〈�t | H |�〉
〈�t |�〉 ,

for method A, and for methods B and C we use the growth
estimate

E = �τ−1 ln
�(0)

�(�τ )
,

where �(τ ) is the sum of the weights of all the walkers at
imaginary time τ , ignoring weight normalization.

To calculate the gradient, we propagate the walker distri-
bution f until the number of samples (walker positions and
weights) reaches a threshold. Samples for method A are taken
every time step, and samples for methods B and C are taken
from all node-crossing walkers. After an iteration of projected
gradient descent, we propagate f for an extra time (around
0.1 Ha−1) to adjust it to the new �t before taking samples
for the next gradient. This is necessary to do for method A
because after a shift of the node, f does not go to zero at the
nodes fast enough for the expectation of the sum of Eq. (19)
to be finite, due to the �−1

t factor. For method A, requiring
f to go to zero sufficiently fast also requires us to use an
accept-reject step.

The gradient has stochastic error that prevents PGD of the
parameters θi from fully settling to an accurate minimum,
where the signal to noise ratio of the gradient diverges. In-
stead, θi continues to fluctuate around the minimum after some
PGD iterations. We argue in Appendix A that to first order in
the ai of Eq. (1), the variance of fluctuations is proportional
to both the variance of the gradient error and ai. Thus we
can suppress the fluctuations through smaller ai and/or by
reducing the statistical error of the energy derivative with
more samples.

An important choice to make is the value of ai. The opti-
mal value depends on many factors, such as the parameters
θi, the form of �t , the number of PGD iterations, and the
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stochastic gradient error. Generally, decreasing ai requires
more PGD iterations to reach a minimum, and may exacerbate
the problem of getting stuck in local minima, while increasing
ai increases fluctuations from the gradient error and may cause
overshooting of θi from its optimum value.

The most basic gradient-descent scheme uses a common
value of ai for all parameters and iterations. We experi-
ment with this and with the two adaptive gradient-descent
algorithms Adam [26] and RMSprop [27]. The adaptive
algorithms make ai inversely proportional to a trailing root
mean square of past gradient components, and are described
more in Appendix B. The ai of all our algorithms have a
common factor which we label the learning rate α, which we
determine empirically. We sometimes decrease this value with
PGD iterations to suppress fluctuations of θi. In Appendix C
we examine the effective range of α for different gradient-
descent algorithms and systems.

IV. RESULTS

We tested our methods for three systems—atomic Be, Li2,
and atomic Ne—and we compared our results to those ob-
tained by the DMC calculation of Umrigar et al. [23] where
the fermion nodes were optimized using VMC.

A. Derivative of the energy calculation

We present tests of the energy gradient calculation methods
A, B, and C in this subsection. They examine one parameter
of a basis we added to the simple Be trial function that is fully
described in Ref. [23]. The basis has quantum numbers n = 2,
l = 1, and m = 0, and the parameter is the non-normalized
coefficient of the basis. We varied this parameter and obtained
its partial first and second energy derivatives by means of a
fixed-node DMC calculation, which is shown in the upper
panel of Fig. 2. As can be noticed, the energy obtained from
the fixed-node DMC is well approximated with a parabola.
We wish to compare the derivative of the parabola with the
energy derivatives obtained by our three methods which are
shown in the center panel of Fig. 2 and are well approximated
with lines intersecting the origin.

The energy derivative obtained by method C agrees with
that from the parabola to within 1%, while the energy deriva-
tive obtained using methods A and B is proportional to that
from the parabola but off by a factor of 2, which we attribute
to the approximation of Eq. (14). We expect that when each
of the components of the energy derivative has the correct
sign it results in shifting the parameters towards the direction
where the energy is lower. In addition, many gradient-descent
algorithms divide each gradient component by a trailing root
mean square of past gradient components; thus, the exact
value of the slope is not needed by such algorithms. As a result
methods A and B may still be useful.

The bottom panel of Fig. 2 shows how the energy derivative
obtained with method C depends on the cutoff time τc. Our
choice of τc when optimizing with method C is based on this
dependence.

We compare the efficiency of the three methods in Fig. 3
by plotting the error of the energy derivative versus wall time,
which is proportional to the sample size. In this figure we

FIG. 2. We compare the DMC energy (top) of a Be trial function
for a varied parameter with the energy derivative with respect to said
parameter (center) that is calculated with methods A–C. Data points
are shown as dots with an associated best fit line or parabola. The
parabola curvature is within 1% of the slope of method C, which
uses τc = 1(Ha−1). We examine how the slope of method C (bottom)
depends on τc.

show the best-fit power laws which, as expected, are approxi-
mately proportional to the inverse square root of sample size.
Methods B and C seem to require similar wall time to reach
a given error level when using τc = 0.25 Ha−1. Method A
on the other hand is considerably more expensive, though a
fair comparison is difficult partly because method A may not
require the same time step, and the error depends both on the
associate parameter and on �t .

B. Projected gradient-descent evolution

In order to demonstrate the utility of the method, we start
from random values for the parameters C and ξ of all-electron
single-determinant wave functions of Be, Li2, and Ne, and we
perform PGD iterations with our cusp condition projection.
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FIG. 3. We compare the efficiency of methods A, B, and C by
plotting their energy derivative error for the parameter of Fig. 2 as
wall time (sample size) is increased, using a common time step. Best-
fit (dotted lines) power laws are roughly proportional to the inverse
square root of sample size. Methods B and C require similar wall
time to achieve the same error, while method A requires on the order
of 50 times more.

We present a history of the energy of their nodes in Fig. 4.
One can see the DMC energies rapidly decrease with iteration
to the energy of the VMC optimized nodal surface obtained
by Umrigar et al. [23] (red dotted lines). Ne continues to
fluctuate after initial decrease, which we attribute to statistical
error of the energy gradient and an excessively large decent
rate [ai term of Eq. (1)]. Adam was used for all examples,
and we decreased the descent rate [α parameter of Eq. (B3)]
with iteration number. Method C was used for all except Be,
where method A was used, demonstrating the utility of the
approximation of Eq. (16).

We chose these three systems because a full description
of their VMC optimized wave functions was present in the
literature [23], allowing us to directly compare our PGD op-
timization using wave functions of the same form. There are
DMC calculations for larger atoms and many atom systems;
however, many of the atomic electrons (the inner) are absent
in most of these calculations because they are using pseu-
dopotentials and, therefore, do have to implement the cusp
condition. Nevertheless, we have applied PGD to a somewhat
larger system of an all electron single determinant of F2,
shown in Fig. 5. Unfortunately we do not have a wave function
of the same form optimized by other means for comparison.
However, a DMC calculation of F2 was done by Giner et al.
[28], who used a configuration-interaction optimized wave
function consisting of 105 determinants. They achieved an
energy of −199.2977(1) Ha, while our lowest PGD iteration
was −196.7(3) Ha. This discrepancy can partly be attributed
to the fact that our wave function had just one determinant
(a current limitation of our code), and a single-particle basis of
just 20 Slater-type orbitals. The decrease in error of the F2 en-
ergy with iteration number suggests that PGD also indirectly
reduces local energy variance.

C. Energy upper-bound estimation

The set {E1, E2, . . . , En, . . .} formed by the values of the
energy Ei at the ith step of the PGD method shown in Fig. 4
is to be taken as a set of energy upper bounds. As already
discussed the variations from step to step are due to the fact
that the sign of the energy derivative with respect to the

FIG. 4. Projected gradient descent of initially random parame-
ters. See text for detailed explanation.

PGD parameter α is sampled and, thus, its choice has some
random element. For every such choice, the DMC evolution
can be carried out with a controlled level of error because
the nodal surface is fixed. Therefore, the best energy upper
bound E corresponds to the lowest value of the energy in
the set, i.e., E = min{E1, E2, . . . , En, . . .}. The last iteration
energy obtained for the three systems studied in this paper

032815-7



JOHN McFARLAND AND EFSTRATIOS MANOUSAKIS PHYSICAL REVIEW A 105, 032815 (2022)

FIG. 5. See text for detailed explanation.

are compared with the best DMC energy obtained with nodes
determined by a VMC optimization [23] in Table I.

The present calculation suggests that the nodes obtained
with VMC optimization are not far from the optimum at least
within the error of the present calculation. Therefore, the small
discrepancy with the exact nonrelativistic values could be
attributed to the fact that the form of the one-body factor is
limited with the space of a single Slater determinant and the
lack of spin-spin correlations because the one-body factor is
taken to be a product of the form D↑D↓.

V. DISCUSSION

We are not yet comfortable claiming that one of the meth-
ods A, B, or C is ideal, and the best choice may depend on
circumstance. For example, although method A was least effi-
cient in our test, it may not require as small of a time step, and
we think it would be the simplest to implement into existing
code due to its use of a standard walker distribution. Although
the efficiency of method C was comparable to that of method
B in our test, it requires additional wall time to calculate ξ ,
which also introduces the additional parameter τc for which
we do not yet have a good procedure for determining.

Nevertheless, method C performed the best in our tests and
also has the advantage of not relying on the quality of �t .
We recommend pairing method C with Adam. In our tests we
were able to optimize the location of the nodes to roughly the
same energy as with the VMC optimized nodes using any of
the methods and without using Jastrow factors in our guiding
function.

TABLE I. DMC energy comparison between the last PGD itera-
tion nodes with VMC optimized nodes. Exact nonrelativistic values
are presented.

System Last PGD iteration VMC optimized nodes Exact energy

Be −14.6567(5) −14.6571(1) −14.66736 [29]
Li2 −14.989(1) −14.9898(1) −14.9954 [29]
Ne −128.92(1) −128.919(3) −128.939 [30]

Without the requirement of an optimized Jastrow function,
our method is independent of prerequisite optimization by
VMC. Nevertheless, simultaneously optimizing the Jastrow
and Slater parameters may be a fruitful avenue, as a quality
Jastrow function reduces many sources of error (except for
the fixed-node error) and should improve the approximation of
methods A and B. This could be done with the standard VMC
method, or possibly with DMC and gradient descent, which
require a gradient different than one of the DMC energy,
perhaps one of the local energy variance.

An important advantage of PGD optimization is that the
use of DMC propagation produces correct correlations in the
fixed-node wave function, whereas VMC optimizes the nodal
surface within a limited Jastrow form, which captures only
pairwise correlations. Thus, the exact path to optimization due
to the interplay between the adjustment of these correlations
as the position of the nodal surface changes and vice versa
was not fully accounted for in previous DMC studies.

We would like to give an example of a system which
demonstrates the significance of the present paper. Variational
calculations of liquid 3He, where just a Jastrow-Slater wave
function is used, yield [31] an unphysical result that the fully
polarized liquid is of lower energy at its equilibrium density
than the unpolarized liquid at its equilibrium density. Adding
three-body correlation factors in the wave function does not
change the above conclusion. It is when one includes back-
flow correlations, which are state dependent and modify the
nodal surface of the variational wave function, that one finds
[31] that the unpolarized state of liquid 3He is energetically
favorable.

Therefore, let us pretend that we do not know the fact
that the naturally occurring liquid 3He is spin unpolarized;
we might then be naive and use a Slater-Jastrow variational
calculation to determine the optimum polarization. The nodes
that would be determined by such a VMC optimization would
be those that correspond to a polarized liquid. A subsequent
fixed-node DMC calculation with these nodes is not going
to change this result, and we would reach an unphysical
conclusion. The PGD method described in the present pa-
per, however, should find that the unpolarized state is the
ground state.

Another advantage of PGD is that it requires only one
gradient calculation to shift all the parameters in the correct
direction, whereas if one were to vary the parameters and
select values with lower calculated DMC energy, the number
of required energy calculations would scale with the number
of parameters used. We should point out that in our PGD
evolution examples, far more CPU time was spent calculating
the energy of a single nodal surface than the entire PGD
process.

PGD optimization opens up a possible way to optimize
atomic positions to minimize DMC energy. If one were to
combine the nuclei and electrons into one walker type, then
DMC imaginary-time propagation combined with the PGD
method should naturally relax the atomic positions. Unfortu-
nately we could not attempt this because the electron-nuclear
cusp of the particular type of �t we used depends on both the
atomic positions and the variational parameters, requiring the
atoms be fixed. Using a �t that does not have this dependence
would be an interesting avenue to explore.
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VI. SUMMARY

We presented a general and self-reliant method using
DMC and projected gradient descent that optimizes the nodal
surface of a trial function to minimize the fixed-node ground
state, i.e., the DMC energy. We derived three methods for
calculating the DMC energy gradient from walker distribution
(methods A, B, and C). Methods B and C required comparable
CPU time in our test, while method A was more expensive.

We combined the three methods with several gradient-
descent algorithms and a projection operation that maintains
the cusp condition. We benchmarked this projected gradient-
descent method to trial functions with randomized parameters
of Be, Li2, and Ne. Their energies were lowered to the same
level as VMC optimized parameters, without the use of a
Jastrow factor.

Our paper is a proof of concept using simple systems,
but we see no reason it cannot be applied to larger and pe-
riodic systems, or be implemented into existing DMC code
for various types of node determining wave functions. How-
ever, before attempting these goals, our paper may be further
improved with better and more adaptive choices for various
parameters, by simultaneously optimizing Jastrow parameters
during PGD, by better suppressing PGD fluctuations, and
by establishing criteria for convergence. In addition, we see
no reason why the method could not be extended to DMC
on a discrete lattice or to finite temperature path-integral
Monte Carlo.

ACKNOWLEDGMENTS

We would like to thank the Florida State University high
performance computing center for the allocation of CPU time
to carry out the calculations presented in this paper.

APPENDIX A: PARAMETER FLUCTUATIONS

After a number of PGD iterations, the parameters will
continue to fluctuate around a local minimum due to stochastic
error of the energy gradient. Here, we investigate the variance
of these fluctuations. First let us perform a coordinate shift
so that the parameters are zero at the local minima, then let
us rotate them so that the Hessian ∂2E

∂θi∂θ j
is diagonal. Then, if

we expand E to second order in θi, one iteration of gradient
descent using Eq. (1) will result in new parameters θ ′

i given by

θ ′
i = θi − ai(Kiθi + σiη), (A1)

where Ki ≡ ∂2E
∂θ2

i
, σi is the standard deviation of stochastic

error, and η is a random number with 〈η〉 = 0 and 〈η2〉 = 1.
Let us take the variance of both sides of Eq. (A1):〈

θ ′2
i

〉 = 〈
θ2

i

〉 + a2
i

(
K2

i

〈
θ2

i

〉 + σ 2
i

) − 2aiKi
〈
θ2

i

〉
. (A2)

After enough PGD iterations, the variance of fluctuations will
become constant, i.e., 〈

θ ′2
i

〉 = 〈
θ2

i

〉
. (A3)

FIG. 6. An example of how the energy, calculated after 100 PGD
iterations, depends on different learning rates α. These data were
used for the sixth row of Table II.

If this is the case, we can use Eq. (A1) to evaluate the variance
of latter PGD iterations, namely,〈

θ2
i

〉 = aiσ
2
i

2Ki − aiK2
i

. (A4)

We notice that the variance blows up if any ai approach
2/Ki, which is the result of overshooting the minimum by
more than double the distance. For ai << 2/Ki we see that
the variance has the property〈

θ2
i

〉 ∝ aiσ
2
i . (A5)

APPENDIX B: GRADIENT-DESCENT ALGORITHMS

We list the gradient-descent algorithms we tested. We use
gi ≡ ∂E

∂θi
as the gradient, and determine α empirically. We

sometimes decrease α with iteration number to suppress pa-
rameter fluctuations around the minimum.

Basic gradient descent:

θi → θi − αgi. (B1)

RMSprop:

vi → βvi + (β − 1)g2
i ,

θi → θi − αgi√
vi

.
(B2)

Adam:

t → t + 1,

mi → β1mi + (β1 − 1)gi,

vi → β2vi + (β2 − 1)g2
i ,

θi → θi − αmigi

(1 − βt
1)

√
vi/(1 − βt

2)
.

(B3)

APPENDIX C: EFFECTIVE α

In Table II we show the effective ranges of the learning
rate α, which is a hyperparameter proportional to a shift in
parameters, as shown in Appendix B. We define this effective
range as the values that bring the energy of a randomized �S

down to the optimum level, and show an example in Fig. 6. We
empirically determine this range for 100 PGD iterations for
different combinations of gradient-descent algorithms, atomic
systems, and methods A, B, and C. We display the end points
of the effective range along with the logarithmic distance
between them.
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TABLE II. The range of the effective learning rate α for 100 iterations for three gradient-descent algorithms: basic gradient descent
(common ai), RMSprop, and Adam (see Fig. 6 for an example of the tenth row). RMSprop used β = 0.99. Adam used β1 = 0.9, β2 = 0.99.
Method C used τc = 0.3 Ha−1.

Algorithm Gradient method �S Minimum effective α Maximum effective α log10 ( αmax
αmin

)

Basic gradient descent B Be 1.2 × 10−1 1.3 × 100 1.0
C Be 2.4 × 10−2 6.4 × 10−1 1.4
A Li2 4.8 × 10−3 2.0 × 10−1 1.6
B Ne 4.5 × 10−2 1.8 × 100 1.6

RMSprop B Be 5.5 × 10−2 1.0 × 100 1.3
C Be 2.0 × 10−2 1.0 × 10−1 1.7
A Li2 1.8 × 10−2 2.1 × 103 5.1
B Ne 5.6 × 10−2 1.5 × 100 1.4

Adam B Be 3.8 × 10−2 1.0 × 100 1.4
C Be 1.1 × 10−2 1.0 × 100 2.0
A Li2 1.6 × 10−1 7.0 × 102 3.6
B Ne 2.4 × 10−1 9.2 × 100 1.6

Compared to basic gradient descent, the adaptive
algorithms RMSprop and Adam have more consistent
end points for methods A, B, and C and for different
atomic systems, making the choice of α easier. We at-
tribute the more consistent end points to the division of
each gradient component by a trailing root mean square

of its prior values. This suppresses the large variations
of gradient magnitudes for different atomic systems. It
also suppresses large variations of ξ (R, τc) of Eq. (35)
used for method C, which has a factor of exp(�E τc),
with �E the difference between estimated and correct
energy.
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