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Rotating and vibrating symmetric-top molecule RaOCH3 in fundamental P , T -violation searches
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We study the influence of the rotations and vibrations of the symmetric-top RaOCH3 molecule on its
effectiveness as a probe for the P , T -violating effects, such as the electron electric dipole moment and the
scalar-pseudoscalar electron-nucleon interaction. The corresponding enhancement parameters Eeff and Es are
computed for the ground and first excited rovibrational states with different values of the angular momentum
component K . For the lowest K doublet with v⊥ = 0 and K = 1 the values are Eeff = 47.647 GV/cm and
Es = 62.109 kHz. The results show larger deviation from the equilibrium values than in triatomic molecules.
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I. INTRODUCTION

The powerful strategy of searching new physics is the
study of the violation of fundamental discrete symmetries,
namely, spatial reflection (P), time reversal (T ), and charge
conjugation (C) [1]. While such violations are present in
the standard model [2,3] thanks to the complex phases
in the Cabibbo-Kobayashi-Maskawa [4,5] and Pontecorvo-
Maki-Nakagawa-Sakata [6,7] mixing matrices, some of the
corresponding effects, such as the electron electric dipole
moment (eEDM), are considerably suppressed [8–11]. This
makes a suitable background for possible manifestations of
the physics beyond the standard model.

An attractive feature of particle electric dipole moment
(EDM) searches is that they can be performed in experi-
ments with polar molecules [12,13]. The same experiments
allow us to put a limit on the P , T -odd scalar-pseudoscalar
nucleon-electron (Ne-SPS) interaction [9,14,15]. Recently it
was shown that such interaction can be induced by the nucleon
EDM and P , T -violating hadronic interactions [16,17]. The
measurement of the oscillations in time of this interaction
may be used for searches of axion dark matter [18,19]. The
sensitivities of molecular spectra to the effects of fundamental
symmetries violation cannot be measured directly and must
be obtained from ab initio molecular computations [20–22].
Other P , T -odd effects can be studied this way, such as the
electron-electron interaction mediated by axionlike particles
[23–26] and the magnetic quadrupole moment [27,28].

The current limits on the eEDM and Ne-SPS interaction
were obtained with the diatomic molecules ThO [29–35] and
HfF+ [36,37]. The experiment is based on the existence of
closely spaced opposite parity doublets in the spectrum of
these molecules. Let us elucidate shortly the nature of the
states of interest.

For a given absolute value of the projection of the elec-
tronic angular momentum on the molecular axis � there

*zakharova.annet@gmail.com

exist two states | + �〉 and | − �〉. Naively one may expect
that these states correspond to two degenerate energy levels,
however the interaction with the molecular rotation results
in their split known as �-doubling. For the P , T -symmetric
Hamiltonian the stationary states must have definite parity.
Because both P and T change the sign of � the stationary
states should be

|±〉 = 1√
2

(| + �〉 ± | − �〉). (1)

The external electric field E (usually assumed to be directed
along the laboratory z axis) breaks P symmetry and the effec-
tive Hamiltonian, restricted to the doublet, can be written as

ĤE =
(

�E
2 dzE

dzE −�E
2

)
, (2)

where dz = 〈�|d̂z|�〉 is the electric dipole moment. The
eigenstates then become the superpositions of the initial |±〉
states and their eigenvalues’ experiences are shifted, which
constitutes the well-known Stark effect. If the strength of
the electric field is sufficiently high, E � �E

dz
, the molecule

polarization reaches maximum. Then the molecular spectrum
becomes sensitive to the presence of the P , T -odd interac-
tions. It is manifested in the energy difference of the levels
with opposite values of the total angular momentum projec-
tion on the laboratory axis z, which we will denote as M:

E+M − E−M � P(2Eeffde + 2Esks), (3)

where de is the value of the eEDM and ks is a coupling
constant for the Ne-SPS interaction. Coefficient P reflects the
degree of polarization that may not reach 100%, e.g., for most
of the levels in the YbOH molecule the efficiency is less than
50% [38]. If one knows the enhancement parameters Eeff and
Es then one can extract the values de and ks from this energy
splitting.

The same principle can be applied to other closely spaced
parity doublets. Triatomic molecules with linear equilib-
rium configurations allow transverse molecular vibrations in
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two perpendicular planes characterized by two vibrational
quantum numbers vx and vy. The superposition of the two
vibrations can be also considered as a rotation of the bent
molecule around its axis. Thus, we can describe the bending
modes of such molecules with the vibrational quantum num-
ber v⊥ = vx + vy and the rovibrational angular momentum
lv = −v⊥,−v⊥ + 2, . . . v⊥. As in case of the � doublets,
states with opposite values of lv form opposite parity dou-
blets, and Coriolis interactions cause their splitting, known
as l-doubling. The magnitude of the l-doubling is typically
much less than the values of the �-doubling, therefore such
molecules require much smaller external fields for the full
polarization [39].

This makes triatomic molecules with heavy atoms, such as
RaOH and YbOH, a promising platform for P , T -odd interac-
tion searches. Another advantage of triatomic molecules is the
possibility of laser cooling of the same species that possess
parity doublets [40]. This was experimentally demonstrated
for monohydroxide molecules [41–43]. Radium containing
molecules also experiences an enhancement of the P , T -odd
effects associated with the large octupole deformation of the
nuclei [44,45].

More complex polyatomic molecules possess a richer rovi-
brational spectrum and allow new types of opposite parity
doublets. For example, the molecules of the symmetric-top
type such as RaOCH3 and YbOCH3 may possess a nonzero
value of the total angular momentum projection on the molec-
ular axis K even in the electronic ground states and without
transverse vibrations. These molecules also admit laser cool-
ing [46–49]. The corresponding parity doublets, known as
K doublets, have even smaller splittings than the l doublets
and, thus, require even smaller external fields for the full
polarization. The possibility to search for the Schiff moment
on the 225RaOCH+

3 ion was studied in [50]. The values of Eeff

for a number of the MOCH3 molecules (including RaOCH3)
were obtained for a fixed equilibrium configuration in [51].

The values of the enhancement parameters Eeff and Es

are usually computed for a fixed equilibrium configuration.
However, even in the ground state there is a quantum uncer-
tainty in displacements of the atoms from equilibrium. This is
aggravated in the rotational and excited vibrational states that
are planned to be used in the measurements. The question of
the influence of quantum vibrations on the sensitivity of the
molecule was studied for triatomic molecules in [52–55]. It
has not been addressed yet for symmetric-top-type molecules.

The aim of the present paper is to determine the sensitiv-
ities of RaOCH3, the molecule of the symmetric-top type, to
the presence of the eEDM and Ne-SPS interaction taking into
account the effects of the molecular rotation and vibration.

II. BORN-OPPENHEIMER APPROXIMATION

Because the vibrational frequencies of OCH3 are much
higher than Ra–OCH3 bond stretching and bending frequen-
cies, we will neglect the deformations of the ligand. We used
a geometry of the ligand similar to the one obtained in [50].
The dimensions are given in Table I.

We will employ the usual Born-Oppenheimer approxi-
mation, separating the total molecular wave function into a
product of the electronic part and the part describing the

TABLE I. The ligand geometry.

r(O–C) 2.600 a.u.

r(C–H) 2.053 a.u.

∠(O–C–H) 110.73◦

motion of nuclei (which we will call a nuclear wave function):

�total � �nuc(R, R̂, r̂, γ )ψelec({�ri}|R, θ, ϕ), (4)

where R, θ , and ϕ determine the geometry as shown in Fig. 1,
and R̂ and r̂ are the unit vectors in the direction of the Ra-
ligand c.m. axis and ligand ζ axis (directed from the C to the
O atom) correspondingly. The angle γ determines the orien-
tation of the CH3 radical around the ζ axis. ψelec is computed
for fixed molecular geometry (R, θ, ϕ).

The interaction of the electronic shell with the eEDM and
the nuclei through the Ne-SPS interaction can be described by
P , T -odd effective Hamiltonians:

Ĥ��PT = Ĥd + Ĥ (p)
s + Ĥ (n)

s , (5)

Ĥd = 2de

∑
i

(
0 0
0 σiEi

)
, (6)

Ĥ (p)
s = ik(p)

s

GF√
2

Nelec∑
j=1

Nnuc∑
I=1

ZIρI ( �r j )γ
0γ 5, (7)

Ĥ (n)
s = ik(n)

s

GF√
2

Nelec∑
j=1

Nnuc∑
I=1

NI nI ( �r j )γ
0γ 5, (8)

where superscripts (p) and (n) denote the proton and neutron
contributions correspondingly, GF is the Fermi constant, ZI

is the proton number, NI is the neutron number, ρI is the
charge density of the Ith nucleus normalized to unity, nI is the
neutron density normalized to unity, Ei is the inner molecular
electric field acting on the ith electron, and σ are the Pauli
matrices. As the open shell wave function [that determines the

FIG. 1. The RaOCH3 molecule.
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self-consistent field (SCF) value of the P , T -odd parameters]
is concentrated near the radium nucleus with the largest ZI

and NI numbers, we will assume that the contribution from
the other nuclei to Ĥ (p)

s and Ĥ (n)
s is small. We will also take the

neutron density to be equal to the proton density, nRa � ρRa.
In this approximation the proton and neutron contributions
combine into

Ĥ (p)
s + Ĥ (n)

s � Ĥs = iks
GF√

2

Nelec∑
j=1

ρRa( �r j )ZRaγ
0γ 5, (9)

where we introduced ks:

ks = k(p)
s + NRa

ZRa
k(n)

s . (10)

We use these definitions to be in accordance with the preced-
ing computations in [54–57], though one may expect isoscalar
∼ZI + NI and isotriplet ∼ZI − NI components in the Ne-SPS
interaction to be more natural. In principle measurements
with different elements or, for high precision, even different
isotopes of the same heavy element [58] may allow us to
determine the nature of the interaction.

The sensitivity of the electronic shell in the given molecu-
lar configuration to these P , T -odd effects can be described
by the parameters

Eeff (R, θ, ϕ) = 〈ψelec(R, θ, ϕ)|Ĥd |ψelec(R, θ, ϕ)〉
desgn(�)

, (11)

Es(R, θ, ϕ) = 〈ψelec(R, θ, ϕ)|Ĥs|ψelec(R, θ, ϕ)〉
kssgn(�)

. (12)

These parameters should be averaged over the rovibrational
nuclear wave function (4):

Eeff =
∫

dRdR̂dr̂dγ |�nuc(R, R̂, r̂, γ )|2Eeff (R, θ, ϕ), (13)

Es =
∫

dRdR̂dr̂dγ |�nuc(R, R̂, r̂, γ )|2Es(R, θ, ϕ). (14)

III. ELECTRONIC COMPUTATIONS

To calculate molecular orbitals by the Dirac-Hartree-Fock
SCF method, as well as the potential surface with the help of
the coupled cluster method with single and double excitations
(CCSD), we used the software package DIRAC19. For the
atoms composing the ligand, i.e., O, C, and H, we used the cc-
pVTZ basis. To cut the costs of computations with the heavy
radium atom we employed a ten-valence electron basis with
a generalized relativistic effective core potential (GRECP)
with spin-orbit interaction blocks [59–61], developed by the
Quantum Chemistry Laboratory of the Petersburg Nuclear
Physics Institute [62]. This basis was used by us earlier in
the computation of the Eeff and Es parameters for the RaOH
molecule [54].

To compute the matrix elements of the P , T -odd pa-
rameters on the molecular orbitals we used the MOLGEP

program, that corrects the behavior of the spinors obtained
using GRECP in the core region with the help of the method of
one-center restoration based on equivalent bases [21,63,64].

To obtain the values of the Eeff and Es parameters on
the CCSD level we applied the finite field method. In this

approach the Hamiltonian is perturbed by the property Ŵ
multiplied on a small parameter ε:

Ĥ (ε) ≡ Ĥ + εŴ . (15)

Then the energy of the stationary state |ψ〉 is shifted by the
expectation value of the property, multiplied by ε:

E (ε) = E + ε〈ψ |Ŵ |ψ〉 + O(ε2). (16)

This allows us to obtain the expectation values of the
properties from the CCSD energies, computed for different
perturbation parameters:

〈ψ |Ŵ |ψ〉 � E (+ε) − E (−ε)

2ε
. (17)

This technique could not be used straightforwardly within
the DIRAC software because it allows only Kramers-restricted
SCF computation with T -even Hamiltonians and due to our
use of the spinor-restoration procedure for property matrix
element computations. However DIRAC does not rely on T
symmetry in CCSD computations. To circumvent its restric-
tions, we developed a program that modifies the one-electron
integrals with the matrix elements of the P , T -odd properties.
The CCSD computations were then performed in DIRAC using
the modified integrals. Previously this technique was success-
fully tested in our YbOH computations [55].

IV. ROVIBRATIONAL WAVE FUNCTIONS

The nuclear wave function can be obtained as an eigenstate
of the nuclear Hamiltonian:

Ĥnuc�nuc = E�nuc. (18)

In the present paper we restrict ourselves to the harmonic
approximation in deviations from the equilibrium config-
uration. We will address the impact of anharmonicities
and nonadiabatic effects on the P , T -odd parameters for
symmetric-top-type molecules in future work.

We will denote the body-fixed frame of reference axes as
X , Y , and Z . The equilibrium configuration of the RaOCH3

molecule corresponds to θ = 0 and R = R0.
For the equilibrium configuration it is convenient to define

the body-fixed frame of reference so that X , Y , and Z coincide
with the ligand principal axes ξ , χ , and ζ correspondingly.
Then they are also the principal axes of the whole molecule
and the moment of inertia tensor is diagonalized:

I (eq)
tot =

⎛
⎝μR2

0 + Iξ 0 0
0 μR2

0 + Iξ 0
0 0 Iζ

⎞
⎠. (19)

For the nonequilibrium configuration we define the body-
fixed frame of reference so that the atom displacement will
not contribute to the overall translations and rotations. For this
the displacements �δk = �rk − �rk,eq, where �rk is the coordinate
of the kth atom in the body-fixed frame of reference, should
satisfy the Eckart conditions:∑

k

mk�δk = 0,
∑

k

mk�req × �δk = 0. (20)

As we keep the ligand rigid, the configuration of the molecule
is determined by the coordinate of the radium atom �rRa, the
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coordinate of the center of mass of the ligand �rOCH3, and
the Euler angles α, β, and γ describing the orientation of the
ligand. Namely, the ligand, which is at first oriented so that
its axes ξ , χ , and ζ coincide with the axes X , Y , and Z , is
rotated by γ around the Z axis, then by β around the Y axis,
and finally by α around the Z axis. The first Eckart condition
then takes the form

mRa�δRa + mOCH3�δOCH3 = 0. (21)

Defining �R = �rRa − �rOCH3 and �δR = �R − �Req we get

�δRa = μ

mRa

�δR, �δOCH3 = − μ

mOCH3

�δR, (22)

where μ = ( 1
mRa

+ 1
mOCH3

)
−1

is the reduced mass of the Ra-
ligand system.

The second Eckart condition implies

I �ω + μ �Req × d

dt
�δR = 0, (23)

where I is the ligand moment of inertia, and �ω is the angular
velocity of the ligand in the body-fixed frame of reference.

We would like to apply this condition to the internal ge-
ometry variables R, θ , and ϕ defined earlier and shown in
Fig. 1, and the orientation of the ligand α, β, and γ . Among
these variables we can treat δR = R − R0, θ , and β as small
parameters whereas the angles α, γ , and ϕ that specify the
direction of the perturbation can be large. Then we obtain
from the second Eckart condition

α = ϕ, γ = −ϕ, β = − μR2
0

Iξ + μR2
0

θ. (24)

Because α + γ = 0, the displacement of the hydrogen atoms
in the OCH3 ligand remains small despite possible large val-
ues of the rotation angles.

Let us introduce three normalized variables:

qR = √
μδR, qx =

√
Iθ cos ϕ, qy =

√
Iθ sin ϕ, (25)

where

I = μR2
0Iξ

μR2
0 + Iξ

. (26)

Neglecting the centrifugal and Coriolis effects, the rovibra-
tional Hamiltonian up to the second order in displacements
takes the form

Ĥnuc �1

2

[ �̂J · (
I (eq)
tot

)−1 �̂J] − 1

2

∑
k=R,x,y

∂2

∂q2
k

+ Veq + 1

2

∑
i, j=R,x,y

∂2V

∂qi∂q j

∣∣∣∣∣
qk=0

qiq j . (27)

As we will see, the adiabatic potential V (R, θ, ϕ) only
weakly changes with ϕ, and we can approximate it with the
ϕ-averaged potential V̄ (R, θ ). The symmetry of the molecule
means that V̄ (R, θ ) = V̄ (R,−θ ). All this means that at the
harmonic approximation

V (R, θ, ϕ) � Veq + ω2
‖

2
q2

R + ω2
⊥

2

(
q2

x + q2
y

)
, (28)

ω2
‖ = ∂2V̄

∂q2
R

∣∣∣∣∣
qk=0

, ω2
⊥ = ∂2V̄

∂q2
x

= ∂2V̄

∂q2
y

∣∣∣∣∣
qk=0

. (29)

Therefore, we obtained the Hamiltonian that is a sum of a
rigid rotor with a moment of inertia I (eq)

tot and three decoupled
harmonic oscillators. We can associate the vibrational quan-
tum numbers vR, vx, and vy with qR, qx, and qy oscillators
correspondingly. We will denote the total transverse vibra-
tional quantum number as v⊥ = vx + vy.

The nuclear wave function then can be written as

�nuc �� (0)
nuc ≡ ψJMK(αm, βm, γm )

× φvR (ω‖, qR)φvx (ω⊥, qx )φvy (ω⊥, qy). (30)

Here αm, βm, and γm denote the Euler angles responsi-
ble for the body-fixed frame orientation with respect to the
space-fixed frame. ψJMK is the wave function of the rigid
symmetric-top rotor with the definite square of the angular
momentum J (J + 1), its projection M on the space-fixed axis
z, and projection K on the body-fixed axis Z:

Ĵ2ψJMK = J (J + 1)ψJMK, (31)

ĴzψJMK = MψJMK, (32)

ĴZψJMK = KψJMK. (33)

The functions φv (ω, q) can be found to be the stationary
wave functions of the Harmonic oscillator:

φv (ω, q) = 1√
2vv!

( ω

�

) 1
4

exp
(

− ωq2

2

)
Hv

(√
ωq

)
. (34)

Thus, the rough approximation for the averaged value of
the property on a rovibrational state can be obtained with

〈Eeff,s〉 =
∫

dαmdβmdγmdqRdqxdqy|�nuc|2Eeff,s(R, θ, ϕ),

(35)
where Eeff,s denotes the values of parameters obtained for the
fixed molecular geometry.

V. IMPACT OF THE ϕ DEPENDENCE OF THE POTENTIAL

For the approximated nuclear wave function (30) only the
ϕ-averaged value Ēeff,s contributes. To take into account the
impact of the ϕ dependence we use the first-order perturbation
theory. First we note that the equilibrium configuration of the
RaOCH3 molecule is symmetric under the transformations

ϕ �→ −ϕ, ϕ �→ ϕ + 2π

3
. (36)

The same symmetry should be valid for the potential surface
and P , T -odd parameters Eeff,s. Therefore they can be decom-
posed into the Fourier series

V (R, θ, ϕ) =V̄ (R, θ ) + δV (1)(R, θ ) cos 3ϕ

+ δV (2)(R, θ ) cos 6ϕ + . . . , (37)

Eeff,s(R, θ, ϕ) = Ēeff,s(R, θ ) + δE (1)
eff,s(R, θ ) cos 3ϕ

+ δE (2)
eff,s(R, θ ) cos 6ϕ + . . . . (38)
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For the purposes of our paper we truncated these series at
cos 6ϕ terms. Then to obtain the coefficients we require the
values at ϕ = 0◦, 30◦, 60◦.

Let us treat the δV (R, θ, ϕ) = V (R, θ, ϕ) − V̄ (R, θ ) as a
small perturbation neglecting its dependence on R (by setting
R = R0). The wave function then can be represented as

�nuc =� (0)
nuc + ψJMK(αm, βm, γm )φvR (ω‖, qR)�1(q, ϕ), (39)

where q =
√

q2
x + q2

y and �1 is the perturbation of the trans-

verse vibration wave function. We decompose it into the
Fourier series

�1(q, ϕ) = �
(1)
1 (q) cos 3ϕ + �

(2)
1 (q) cos 6ϕ + . . . (40)

with the constant term dropping out by orthogonality with
�0(q) = φ0(ω⊥, qx )φ0(ω⊥, qy) in � (0)

nuc. The energy shift van-
ishes because �0 does not depend on ϕ:

δE =
∫ 2π

0
dϕ

∫ +∞

0
dq q[|�0(q)|2δV (1) cos 3ϕ

+ |�0(q)|2δV (2) cos 6ϕ] = 0. (41)

The components relevant for our computation satisfy the
equations[

− 1

2q

∂

∂q

(
q

∂

∂q

)
+ 9

2q2
+ ω2

⊥
2

q2 − ω⊥

]
�

(1)
1 (q)

= −δV (1)
(

R0,
q√
I

)
�0(q), (42)[

− 1

2q

∂

∂q

(
q

∂

∂q

)
+ 36

2q2
+ ω2

⊥
2

q2 − ω⊥

]
�

(2)
1 (q)

= −δV (2)
(

R0,
q√
I

)
�0(q). (43)

Interpolating δV (n) by a polynomial we solve the first equa-
tion in terms of the integrals of the rational functions of the
Bessel functions, whereas we solve the second one in terms
of the integrals of the rational functions of the Whittaker
functions. The integrals then are computed numerically.

The integration of cos 3nϕ products results in the following
correction to the P , T -odd parameters due to the potential ϕ

dependence:

δ(ϕ)Eeff,s =2π

∫ +∞

−∞
dqR

∫ +∞

0
dq q φ0(ω‖, qR)2

× �0(q)

[
�

(1)
1 (q)δE (1)

eff,s

( qR√
μ

,
q√
I

)

+ �
(2)
1 (q)δE (2)

eff,s

( qR√
μ

,
q√
I

)]
. (44)

VI. CENTRIFUGAL AND CORIOLIS EFFECTS

When the centrifugal and Coriolis effects are taken into
account the rovibrational kinetic energy for the RaOCH3

molecule takes the form

T = 1

2
( �� · Itot ��) + �zζ

z
xy(qxq̇y − qyq̇x )

+ �xζ
x
yR(qyq̇R − qRq̇y) + �yζ

y
Rx(qRq̇x − qxq̇R)

+ q̇2
R

2
+ q̇2

x + q̇2
y

2
(45)

where �� is the angular velocity of the body-fixed frame with
respect to the space-fixed frame. The Coriolis coefficients are

ζ z
xy = −ζ z

yx = Iξ
μR2

0 + Iξ
, (46)

ζ x
yR = −ζ x

Ry =
√

Iξ
μR2

0 + Iξ
, (47)

ζ
y
Rx = −ζ

y
xR =

√
Iξ

μR2
0 + Iξ

. (48)

The rovibrational Hamiltonian then takes the form [65]

Ĥ =1

2
( �̂J − �̂π ) · M( �̂J − �̂π ) − 1

8
Tr M

− 1

2

∑
k=R,x,y

∂2

∂q2
k

+ V (R, θ, ϕ) (49)

where �̂π is the vibrational angular momentum,

π̂x = ζ x
yR

(
− iqy

∂

∂qR
+ iqR

∂

∂qy

)
, (50)

π̂y = ζ x
Rx

(
− iqR

∂

∂qx
+ iqx

∂

∂qR

)
, (51)

π̂z = ζ z
xy

(
− iqx

∂

∂qy
+ iqy

∂

∂qx

)
, (52)

and

M−1 = Itot + C, [C]αβ = −
∑

i, j,k=R,x,y

ζ α
ikζ

β

jkqiq j . (53)

The total moment of inertia may be decomposed into the
series in the vibrational degrees of freedom:

Itot � I (eq)
tot + I (1)

tot + I (2)
tot (54)

where I (1)
tot is linear in qk and I (2)

tot is quadratic in qk . The tensor
M then can be represented as

M � (
I (eq)
tot

)−1 − (
I (eq)
tot

)−1
I (1)
tot

(
I (eq)
tot

)−1

+
[

− (
I (eq)
tot

)−1(
I (2)
tot + C

)(
I (eq)
tot

)−1

+ (
I (eq)
tot

)−1
I (1)
tot

(
I (eq)
tot

)−1
I (1)
tot

(
I (eq)
tot

)−1

]
. (55)

Because [I (eq)
tot ]XX = [I (eq)

tot ]YY � [I (eq)
tot ]ZZ = Iζ we are pri-

marily interested in the contribution to [M]ZZ . Neglecting
the contributions from other components also allows us to
preserve the factorization of �nuc into the product of the rota-
tional and vibrational wave functions because then only the ĴZ

component couples to the vibrational degrees of freedom. We
can replace ĴZ with its eigenvalue K . The neglected compo-
nents of M give the centrifugal distortions due to the rotations
of the molecule around axes X and Y , and couplings between
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the transverse vibrations qx and qy and the longitudinal mode
qR.

Then we obtain the following contribution from the first
two terms in (49) to the vibration Hamiltonian:

δrotĤ = ω⊥�(ω⊥)
(
q2

x + q2
y

) − K

Iζ
π̂z, (56)

with the K-dependent correction to ω⊥ taking the form

ω⊥�(ω⊥) = − 4K2 − 1

8I2
ζ

(Iξ − Iζ )μR2
0 + I2

ξ

Iξ
(
μR2

0 + Iξ
)

+
(
ζ z

xy

)2

I2
ζ

. (57)

This represents the centrifugal effect—the larger is K , the
smaller becomes the effective value of ω⊥ and, thus, the wider
becomes the ground state.

The second term introduces the mixing between qx and
qy modes due to the Coriolis force. However, the operator
π̂z = ζ z

xyl̂v , where l̂v = −i ∂
∂ϕ

. It commutes with the har-
monic Hamiltonian for qx and qy. Thus, these two operators
have a common basis with eigenvalues of lv = −v⊥,−v⊥ +
2, . . . , v⊥. The ground state vx = vy = 0 with the wave func-
tion �0(q) happens to be also an eigenfunction of π̂z with a
zero eigenvalue because it does not depend on ϕ. Thus, for
the vibrational ground state the effect of the Coriolis mixing
vanishes.

VII. EXCITED VIBRATIONAL STATES

A similar analysis can be performed for the states with
excited transverse modes v⊥ > 0. Because of the Coriolis
term the eigenstate should be an eigenfunction of l̂v . Because
of the importance of the anharmonicities for the higher excited
vibrational states we will restrict ourselves to v = 1. The wave
functions with lv = ±1 then take the form

�0,v⊥=1,lv=1(q, ϕ) = √
ω⊥πqeiϕ exp

(
− ω⊥q2

2

)
,

�0,v⊥=1,lv=−1(q, ϕ) = √
ω⊥πqeiϕ exp

(
− ω⊥q2

2

)
. (58)

Just like with the ground state we can take into account the
centrifugal effects using the correction (57) for ω2

⊥.
The wave functions �0,v⊥=1,lv=±1 contain only terms with

cos ϕ and sin ϕ. In the product δV (R, θ, ϕ)�0,v⊥=1,lv=±1 no
terms with cos 3ϕ and cos 6ϕ appear. Therefore, in the first-
order perturbation theory no such term will appear in the
correction to the wave function. Therefore no correction to
the P, T -odd parameters appears due to the ϕ dependence of
the potential.

One may note that within the first-order perturbation the-
ory in δV (R, θ, ϕ) the correction containing cos 3ϕ or cos 6ϕ

may only appear when lv = 3N , where N is some integer
number. In this case a sort of a resonance happens between
the ϕ dependence of the wave function and of the P, T -
odd parameter. The state sensitivity to the P , T -odd effects
may be somewhat enhanced or decreased thanks to their ϕ

dependence. However, for the lowest of such states v⊥ = 3,
lv = 3, we estimated that the correction to Eeff would be about

FIG. 2. The angular dependence of the adiabatic potential at the
equilibrium value R = 5.7 a.u. The azimuthal angle is ϕ, and the
radial coordinate is θ . The sector-dividing lines correspond to the
directions of the hydrogen atoms.

∼ δE (1)
eff (R0,θm )δV (1) (R0,θm )

ω⊥
≈ 10−3 GV

cm , where θm is the maximum of
the wave function �0,v⊥=3,lv=3. Hence, we will not study this
effect in more detail in the present paper.

VIII. RESULTS AND DISCUSSION

The computed potential surface has a minimum near R =
5.7 a.u. and θ = 0. The dependence on the angle ϕ depicted
in Fig. 2 becomes noticeable at large θ . The difference be-
tween the energies for ϕ = 0◦ and 60◦ for θ = 30◦ reaches
59.2 cm−1, which constitutes 3.6% of the absolute value of
V − Veq. Not surprisingly it becomes stronger for smaller
R, reaching 76.6 cm−1 (11% of the absolute value of V −
Veq) for R = 5.5 a.u. Nevertheless, the dependence on R be-
comes significant only for θ ≈ 30◦, and our approximation
for V (R, θ, ϕ) − V̄ (R, θ ) not depending on R is justified. The
term δV (2) contributes at most 10−6cm−1 to the potential and
can be neglected.

The harmonic approximation for the ϕ-averaged potential
surface gives

ω‖ = 345.17 cm−1, ω⊥ = 151.32 cm−1. (59)

FIG. 3. The angular dependence of the Eeff at R = 5.7 a.u.
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FIG. 4. The angular dependence of the Es at R = 5.7 a.u.

This may be compared with ωRa-O stretch = 390.78 cm−1

and ωRa-O-C bend = 164.96/168.68 cm−1 in [50] for the
225RaOCH+

3 ion.
The dependence of the P, T -odd parameters on the an-

gles θ and ϕ is shown in Figs. 3 and 4. The dependence on
ϕ is somewhat smaller for Eeff in comparison with Es. At
R = 5.7 a.u. and θ = 30◦ the difference between the values
for ϕ = 0◦ and 60◦ constitutes about 1% for Eeff and 3% for
Es. For smaller R the amplitudes of the oscillations in ϕ do not
grow; instead they become more frequent as seen in Figs. 5
and 6.

We present the results for P , T -odd parameters both for
the equilibrium configuration and for the rovibrational states
in Table II. For the lowest K doublet with v⊥ = 0 and K =
1 the values are Eeff = 47.647 GV/cm and Es = 62.109 kHz.
The results are close to the values obtained for other polar
molecules with the radium atom. This confirms the validity of
our computational approach.

One can see that the relative difference between the equi-
librium value and the value for the ground vibrational state
of the RaOCH3 molecule is larger than such difference for
the excited vibrational states of the triatomic molecules RaOH
and YbOH we studied earlier in [38,54,55]. The primary role
is played by the drop of sensitivity when the radium atom is
bending in the direction between the H atoms that leads to the

FIG. 5. The angular dependence of the Eeff at R = 5.5 a.u.

FIG. 6. The angular dependence of the Es at R = 5.5 a.u.

lowered value of the enhancement parameter averaged over φ

already for small θ . Because θ may be considered the radial
direction for the transverse vibrations qx and qy, already in the
ground vibrational state the maximum contribution is given
by θ � 5◦ and not by the equilibrium configuration. The fast
drop with θ plays the main role in the difference between the
equilibrium value and the value for the v = 0 state, with the
v = 1 state having almost the same enhancement parameter as
the ground state. The effect is stronger for the Es parameter.
The impact of the ϕ dependence of the potential V happens to
be insignificant, amounting only to 10−4 GV/cm for Eeff and
104 kHz for Es.

TABLE II. The P , T -odd parameters for the equilibrium config-
uration and for the rovibrational states.

v⊥ K Eeff (GV/cm) Es (kHz)

RaOCH3 Equilibrium 48.346 64.015
RaOCH3 v⊥ = 0 0 47.647 62.109

1 47.647 62.109
2 47.647 62.108
3 47.647 62.106
4 47.647 62.103

RaOCH3 v⊥ = 1 0 47.650 61.928
1 47.649 61.927
2 47.647 61.924
3 47.643 61.918
4 47.637 61.911

RaOCH3 [51] Equilibrium 54.2
RaOH [54] Equilibrium 48.866 64.788

v = 1 48.585 64.416
YbOH [55] Equilibrium 23.875 20.659

v = 1 23.576 20.548
RaF [56] 52.937 69.5
RaF [57] 58.11 68.0
YbF cGHF [57] 24.0 20.6
YbF cGKS [57] 19.6 16.9
ThO [66] 79.9 113.1
HfF+ [67] 22.5 20.1
HfF+ [68] 22.7 20.0
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The centrifugal correction to the ω⊥ given by (57) only
slightly changes the values of the P, T -odd parameters. As
expected, it has a stronger influence on the v⊥ = 1 state.

Because of the high computational costs we have not es-
timated the errors due to the basis selection and use of the
effective potential. In this paper we also did not consider
the anharmonicities of the potential that may impact the av-
eraging over the longitudinal vibrations. The CCSD energy
computations were done with convergence criterion �E �
10−12 a.u.. The finite field computation error then may be es-
timated as �Eeff ≈ 10−5 GV/cm and �Es ≈ 10−5 kHz. The
harmonic approximation error for the transverse vibrations is
�ω⊥/ω⊥ � 0.7%, which is less than the centrifugal correc-
tion for K > 2. This allows us to assume that our description
of the dependence of the parameters on v⊥ and K is at least
qualitatively right.

Our results stress the importance of the rovibrational ef-
fects for the computation of the symmetric-top molecule

sensitivity to the P , T -odd effects already within the har-
monic approximation and for the ground vibrational state.
We have taken into account the dependence of the potential
on the bending direction ϕ. We have also considered the
centrifugal and Coriolis effects associated with the rotation
of the molecule around the Z axis. The impact of both effects
happens to be very small. We will study the role of the an-
harmonicities and other couplings between the rotational and
vibrational degrees of freedom in future work.
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