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We apply the inverse geometric optimization technique to generate an optimal and robust stimulated Raman
exact passage (STIREP) considering the loss of the upper state as a characterization parameter. Control field
temporal shapes that are optimal with respect to pulse area, energy, and duration are found to form a simple
sequence with a combination of intuitively (near the beginning and the end) and counterintuitively ordered pulse
pairs. The resulting dynamics produces a loss which is about a third of that of the nonrobust optimal STIREP.
Alternative optimal solutions featuring lower losses, larger pulse areas, and fully counterintuitive pulse sequences
are derived.
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I. INTRODUCTION

Control of the population evolution of three-level lambda
(�) systems has led to many applications, particularly in
quantum control, due to its ubiquitous nature in the study
of quantum processes [1–6]. Such � configurations are most
relevant when the two quantum levels of interest, typically
two stable ground states, are difficult, impossible, or imprac-
tical to couple while there is a third, more energetic level
accessible from both others. We can transfer population be-
tween the two ground states, referred in short as � transfer,
using pump and Stokes controls connected to the initial and
target states, respectively, which produce Rabi oscillations
when they fully overlap [7]. However, this places significant
transient population on the excited lossy state, which leads
to an incomplete population transfer to the target state. A
way to overcome this difficulty was found in the technique
known as stimulated Raman adiabatic passage (STIRAP) [5]:
a sequence of counterintuitive pulses (Stokes pulse switched
on before pump pulse with both pulses of the same duration)
induces an adiabatic transfer with small transient population
on the excited state when the pulse areas are large enough.
Additionally, adiabaticity offers robustness, in particular, with
respect to any specific design of the pulses.

Adiabatic passage requires, in principle, infinite pulse ar-
eas to perform complete population transfers and to maintain
the excited state completely depopulated along the dynamics,
as would be desirable. Alternative protocols with realistic
physical conditions have been recently investigated. One can
mention acceleration of the transfer by parallel adiabatic pas-
sage [8], but still featuring a large transient population in
the excited state, shortcut to adiabaticity by counterdiabatic
driving [9–13], and inverse engineering, where the controls
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are derived from a given dynamics [14–17]. In the latter, the
controls are determined from a prescribed dynamics chosen
to achieve an exact transfer. This is referred to as stimulated
Raman exact passage as opposed to the adiabatic, i.e., approx-
imate, passage [18]. The formulation allows one to generate
infinitely many exact solutions and one can select among
them those with specific features such as robustness [15,19–
24] or stability in the case of nonlinear dynamics [18,25].
Disadvantageously, this method is strongly dependent on the
protocol used for the prescription, both in dynamical behavior
and in the consequent field characteristics such as pulse area,
energy, duration, and robustness.

A method combining inverse engineering and optimiza-
tion, where the controls are derived from a trajectory that
is optimal with respect to a given cost, has been proposed.
Robust inverse optimization (RIO) incorporates robustness
as additional constraints. It has been demonstrated for a
two-level system using a variational procedure based on a
geometric representation of the dynamics, producing ultimate
solutions that featured exactness, robustness, and absolute
optimality (for instance with respect to pulse area, energy, and
duration of the controls) [26].

In this work, we apply the RIO technique to derive resonant
control pulses in a � system featuring exact, robust, and opti-
mal transfers, taking into account a given admissible total loss.
These result from an optimization via the resolution of the
Euler-Lagrange equations with the constraints of robustness
up to third order (considered in terms of a common scaling
inhomogeneity factor for both fields). We find numerically
the optimal and robust family of solutions, each of them cor-
responding to a given loss. These numerical solutions lead to
control fields of remarkably simple temporal shapes featuring,
when a low loss is considered, a combination of intuitively
and counterintuitively ordered pairs. Their area is only about
twice as large as the optimal unconstrained (i.e., nonrobust) �

transfer [27,28].
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A simple guide to the results of this paper can be pictured
as follows: (i) The resonant � system, Eq. (1), is parametrized
in terms of angular variables, Eq. (11), and we solve the
Euler-Lagrange equations (20) for these, with pulse area being
the cost function to optimize. (ii) The solutions of the explicit
equation (24), which depend on a geometrical parameter ˙̃φi
are systematically derived with their corresponding pulse ar-
eas in Figs. 1(a) and 1(b) and result in the trajectories shown in
Figs. 1(c) and 1(d) for representative values of the parameter
˙̃φi. (iii) The robustness of these trajectories is found in Fig. 2
compared with the optimal nonrobust solution [27,28]. (iv)
Energy optimization leads to temporal pulse shapes and their
respective population dynamics, shown in Fig. 3 for selected
values of the parameter ˙̃φi. (v) The selected robust and optimal
pulse shapes are entirely characterized in Table I.

In Sec. II we present the model for a resonant three-level
system considering a lossy intermediate state; we propose
a geometric (angular) parametrization of state, propagator,
and loss while declaring the corresponding boundary condi-
tions appropriate for the � transfer. Section III contains the
parametrization of the fields and definition of the cost func-
tions to optimize, pulse area and energy; the fundamentals of
robustness and its manipulation are also discussed. Section IV
gathers the geometric constraints to be enforced, dealing
with both boundary conditions and robustness, and introduces
the corresponding Euler-Lagrange equation for the trajectory.
Section V presents the results on the robust area-optimization,
the optimal trajectories and its defining parameters and char-
acteristics, irrespective of any specific time parametrization
(thus a geometric trajectory in contrast with a temporal dy-
namics). Section VI shows the Euler-Lagrange equations for
the optimization of the state evolution with respect to the
generalized pulse energy, leading to a time parametrization
that also minimizes the duration of the transfer. The temporal
shape of the coupling fields, the population dynamics, and the
corresponding losses are all discussed in Section VII, where
also the numerical details of the results are gathered. Finally,
conclusions are presented.

Appendices are included with details for the obtainment
of the deviation integrals and the numerical resolution of
the trajectory equation. Some useful geometrical relations for
symmetric trajectories and the time-evolution of the angles are
also presented as Appendices.

II. THE MODEL

We consider a three-level system driven by two resonant
fields of Rabi frequencies �P(t ) and �S (t ) for which the
Hamiltonian, on the bare states basis {|1〉, |2〉, |3〉} and under
the rotating wave approximation is

H� (t ) = h̄

2

⎡⎣ 0 �P 0
�P −i� �S

0 �S 0

⎤⎦, (1)

and the state of the system is denoted by |ψ� (t )〉, solution to
the time-dependent Schrödinger equation (TDSE) describing
the dynamics from the initial to the final times ti and t f ,
accounting for dissipation losses of state |2〉. We have con-
sidered, as is standard, that the upper state is lossy through the
dissipation rate �.

When the dissipation rate is much smaller than the peak
Rabi frequency (typically at least ten times smaller), the total
loss of the system during the interaction time T = t f − ti is
well approximated by

Ploss ≈ �

∫ t f

ti

dt P2(t ), (2)

where P2 = |〈2|ψ�=0〉|2 is the population in the excited state
in absence of dissipation. We will thus consider the dynamics
with the lossless Hamiltonian (with � = 0) and the expected
loss will be taken into account via (2).

Prescribing the desired transfer to be |ψ (ti)〉 ≡ |ψi〉 =
|1〉 → |ψ (t f )〉 ≡ |ψ f 〉 = |ψT 〉 = ±|3〉, while hoping to main-
tain a small excited-state population (to minimize the loss), we
can parametrize the state of the system, solution of the TDSE
for the lossless Hamiltonian, |ψ�=0〉 ≡ |ψ〉, as

|ψ (t )〉 =
⎡⎣cos φ cos θ

i sin φ

cos φ sin θ

⎤⎦, (3)

whose time-dependent angular parametrization must satisfy
the boundary conditions:

φi = 0 ← φ(t ) → φ f = 0, (4a)

θi = 0 ← θ (t ) → θ f = θ±
f = ±π/2. (4b)

The arrows to the right and left indicate the limits when t → t f

and t → ti, respectively. The sign ± indicates the two possible
options for the terminal θ . The phase of the target state |ψT 〉 is
irrelevant for the transfer of population and can be interpreted
and controlled as a constant carrier-envelope phase difference
between the control fields. Vector (3) and

|ψ+(t )〉 =
⎡⎣i cos η sin φ cos θ − i sin η sin θ

cos η cos φ

i cos η sin φ sin θ + i sin η cos θ

⎤⎦, (5a)

|ψ−(t )〉 =
⎡⎣− sin η sin φ cos θ − cos η sin θ

i sin η cos φ

− sin η sin φ sin θ + cos η cos θ

⎤⎦, (5b)

form a complete dynamical basis and constitute the propaga-
tor of the system,

U (t, ti ) = [|ψ〉 |ψ+〉 |ψ−〉], (6)

where η(ti ) ≡ ηi = 0 is required by definition. This
parametrization for the propagator can also be obtained
from the Lewis-Riesenfeld invariant, as in Ref. [15].

The TDSE for the propagator, H�=0 = ih̄U̇U †, due particu-
larly to the lack of coupling 〈1|H�=0|3〉, imposes the condition

θ̇ = −η̇ sin φ (7)

on the parametrization of the propagator. From Eqs. (3) and
(5), and by integrating it, we obtain∫ t f

ti

dt η̇ sin φ = −θ±
f = ∓π

2
, (8)

which translates the terminal condition θ (t f ) ≡ θ f , Eq. (4b),
into a constraint on the time dependence of η̇ and φ.
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It can be noted that the transient population of the excited
state in this representation is given exactly by

P2 = |〈2|ψ〉|2 = sin2 φ, (9)

and the total time area of the population on the excited state
can be written as

A2 =
∫ t f

ti

dt sin2 φ ≈ Ploss

�
. (10)

This area A2 represents thus the loss of the problem normal-
ized by �. We can see that the presence of the dissipation
rate � 	= 0 on the upper state induces necessarily a loss to
accomplish a � transfer. This is true for any pump and Stokes
configuration and shaping, since no loss (A2 = 0) would re-
quire constant φ(t ) = 0 (for � 	= 0), hence constant θ (t ) = 0
[θ̇ (t ) = 0 from Eq. (7)], and thus no transfer.

As a general strategy to deal with a dissipation rate �,
leading to a population loss Ploss, we will solve for the lossless
dynamics while striving for low A2.

III. INVERSE ENGINEERING AND ROBUSTNESS

The parametrization of the TDSE allows one to define the
inverse engineering problem: The controls in the Hamiltonian
(1), with � = 0, are expressed in terms of the angles, from the
parametrization of the propagator defined by (3) and (5) as

�P/2 = η̇ cos φ sin θ − φ̇ cos θ, (11a)

�S/2 = −η̇ cos φ cos θ − φ̇ sin θ. (11b)

It can be noticed that the values of the time derivatives at the
initial and final time, η̇i, f and φ̇i, f , give the value of the control
fields evaluated at the boundaries, i.e., using (4),

�i
P = −2φ̇i, �i

S = −2η̇i, (12a)

�
f
P = ±2η̇ f , �

f
S = ∓2φ̇ f . (12b)

We define the generalized pulse area (referred simply as pulse
area from here on) to be

At ≡
∫ t f

ti

dt
√

�2
P + �2

S

= 2
∫ t f

ti

dt
√

φ̇2 + η̇2 cos2 φ, (13a)

which can be rewritten as an integral in terms of η if we
assume that φ(t ) can be expressed as a function of η(t ), i.e.,

A = 2
∫ η f

ηi

dη sgn η̇

√( ˙̃φ
)2 + cos2 φ̃, (13b)

where φ̃(η) ≡ φ[η(t )], ˙̃φ ≡ ∂ηφ̃, and ∂η is the partial deriva-
tive operator with respect to η. Once the sign of η̇ is fixed,
Eq. (13b) will not depend on time but only on the trajectory
φ̃(η). Equation (8) has a similar property. The dynamic behav-
ior of η can be considered to be monotonic or not, requiring
to segment the integral in the latter case and to consider a
piecewise function φ̃(η).

The issue of robustness can be dealt with by adding per-
turbation terms to the Hamiltonian, representing errors or
imperfections of the practical implementation. We consider an

error originated by pulse inhomogeneities, taken as identical
for both pulses, modeled by the modified Hamiltonian Hε =
H�=0 + V = (1 + ε)H�=0, which translates into a deviation
on the desired state dynamics and generalized pulse area. We
denote by |ψε (t )〉 the state of the complete dynamics includ-
ing the error, solution of the TDSE ih̄∂t |ψε (t )〉 = Hε |ψε (t )〉.
The single-shot shaped pulse method [19,20] allows one to
define trajectories, in the dynamical variables space, resistant
to errors. It can be formulated by a perturbative expansion
of |ψε (t f )〉 with respect to ε, 〈ψT |ψε (t f )〉 = 1 − O1 − O2 −
O3 − · · · , where On denotes the error term of order n: On ≡
O(εn), and |ψT 〉 is the target state.

In practice, we search to attain the optimal solution in terms
of certain cost parameter. For instance, we can define the cost
to be the required pulse area to reach the target state, and
strive to minimize it, or we can define the cost to be a specific
measure of robustness (e.g., the maximum range of ε for
which the target state is reached with under 10−4 deviation),
and maximize it. Here, we consider both optimization and
robustness, which technically corresponds to searching the
optimal solution with respect to a cost (pulse area, energy,
or duration) under the constraint of robustness.

When we consider both optimization and robustness with
respect to the generalized pulse area A (or identically to both
pulse amplitudes for a given time of interaction), Eqs. (8) and
(13) show that one can consider the problem in the parameter
space formed by the angles (η, φ̃), without invoking a spe-
cific time parametrization; thus providing a purely geometric
representation of the problem.

In fact, it is known that, in the absence of robustness
constraints, minimizing the pulse area (13) is equivalent to
minimizing the pulse energy,

E = h̄
∫ t f

ti

dt
(
�2

P + �2
S

)
= 4h̄

∫ t f

ti

dt
(
φ̇2 + η̇2 cos2 φ

)
, (14)

and to minimize the time for a given bound of the pulse am-
plitudes [27] (equivalently, to minimize the pulse amplitudes
for a certain pulse duration). We will show that this property
still applies for our constrained problem.

A robust optimal transfer of population corresponds to a
special trajectory φ̃opt(η) that, satisfying the boundary condi-
tions (4), minimizes the generalized pulse area (13b) while
attaining robustness up to a certain order. The construction
of the actual time-dependent pulses �P and �S from (11)
necessitates the use of a specific temporal parametrization
η(t ), which may be chosen at will (it is inconsequential)
for the optimization solely with respect to the pulse area.
On the other hand, optimization with respect to the pulse
energy, corresponding to the minimization of Eq. (14), defines
a specific temporal parametrization ηE (t ) for the same optimal
trajectory φ̃opt(η), which also minimizes the pulse duration for
a fixed maximum of the pulse amplitudes.

IV. ROBUST OPTIMAL POPULATION TRANSFER

For the task of population transfer to a target state |ψT 〉, the
final global phase is not a priori fixed and, since it is irrelevant,
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its robustness is not cared for. The figure of merit up to the
third order of robustness reads

F = |〈ψT |ψε (t f )〉|2 = 1 − Õ2 − Õ3, (15)

where the first order is nil (real part of a purely imaginary
number which, in this case, is anyway zero), and the second
and third orders are

Õ2 =
∣∣∣∣ ∫ t f

ti

dt n(t )

∣∣∣∣2

+
∣∣∣∣ ∫ t f

ti

dt p(t )

∣∣∣∣2

, (16a)

Õ3 = 2i

[ ∫ t f

ti

dt n(t )
∫ t f

ti

dt
∫ t

ti

dt ′ r(t )p(t ′)

−
∫ t f

ti

dt p(t )
∫ t f

ti

dt
∫ t

ti

dt ′ r(t )n(t ′)
]
, (16b)

with

n = 〈ψ |V |ψ+〉
h̄

= −η̇ sin η sin φ cos φ − φ̇ cos η, (17a)

p = 〈ψ |V |ψ−〉
h̄

= i(η̇ cos η sin φ cos φ − φ̇ sin η), (17b)

r = 〈ψ+|V |ψ−〉
h̄

= −η̇ cos2 φ. (17c)

ε was used merely to keep track of the orders of the expan-
sion. It has been omitted in the above expressions. We note
from (16) that the only perturbation we need to be concerned
about up to third order is Õ2, (16a), since (16b) shows that
the third-order deviation is null for any trajectory φ̃(η) that
nullifies the second order [i.e., the areas under n(t ) and p(t )].
Some properties used to obtain Eqs. (16) are presented in
Appendix A.

A. Lagrangian formulation of the optimization

The problem of optimal nullification up to the third order
can be formulated as a classical optimization problem: Find-
ing the trajectory φ̃(η) that minimizes the pulse area (13b),
which is the action (in the language of Lagrangian mechanics)
and integral of a Lagrangian L,

A = 2
∫ η f

ηi

dη sgn η̇

√( ˙̃φ
)2 + cos2 φ̃

≡
∫ η f

ηi

dηL
(
η̇, φ̃, ˙̃φ

)
, (18)

under the constraints θ±
f = ±π/2, from (8), and Õ2 = 0,

rewritten for convenience as

ξ0 =
∫ η f

ηi

dη |sgn η̇| sin φ̃

≡
∫ η f

ηi

dη ϕ0(φ̃) = −θ±
f = ∓π

2
, (19a)

ξ1 =
∫ η f

ηi

dη |sgn η̇|( ˙̃φ cos η + sin η sin φ̃ cos φ̃
)

≡
∫ η f

ηi

dη ϕ1
(
η, φ̃, ˙̃φ

) = 0, (19b)

ξ2 =
∫ η f

ηi

dη |sgn η̇|( ˙̃φ sin η − cos η sin φ̃ cos φ̃
)

≡
∫ η f

ηi

dη ϕ2
(
η, φ̃, ˙̃φ

) = 0, (19c)

while satisfying the boundary conditions, for which the initial
state is characterized by the angles (θi = 0, φi = 0, ηi = 0)
and the target (final) state by (θ±

f = ±π/2, φ f = 0, η f ). The
factor |sgn η̇| was added only as a reminder that we are dealing
with a piecewise function φ̃(η), where the interval of inte-
gration must be split each time η̇ has a sign change. A way
to detect such change of sign can be achieved geometrically
during the determination of the trajectory φ̃(η) from the initial
condition (starting with a given sign of η̇). The change of sign
can occur at a point η0 only when | ˙̃φ(η0)| → ∞. We will see
that this does not happen in our problem, and that a monotonic
η(t ) can be considered.

In this representation it is thus relevant to consider the
trajectories φ̃(η), constrained by the conditions (19), in the
parameter space (η, φ̃).

B. Derivation of the trajectory ˜φ(η)

We consider the representation of the trajectory φ̃(η).
Robust optimal control can be attained by solving the Euler-
Lagrange equations and using the Lagrange multiplier method
to account for the constraints. The task of complete population
transfer, for the lossless system, is part of the constraints to
be imposed, which is equivalent to enforcing the boundary
conditions. In this context, complete population transfer refers
to satisfying the boundary conditions (4), leaving the loss to
be estimated a posteriori via (2).

The optimal trajectory φ̃(η) is a solution of

grad A +
2∑

j=0

λ j grad ξ j = 0, (20)

where λ j ( j = 0, 1, 2) is the Lagrangian multiplier associated
with each one of the three constraints, and the gradients,

grad A = ∂L
∂φ̃

− d

dη

(
∂L
∂ ˙̃φ

)
, (21a)

grad ξ j = ∂ϕ j

∂φ̃
− d

dη

(
∂ϕ j

∂ ˙̃φ

)
, (21b)

are defined according to the Euler-Lagrange equations.
We proceed to obtain the differential equation for the tra-

jectory φ̃(η) from

∂L
∂φ̃

− d

dη

(
∂L
∂ ˙̃φ

)
+

2∑
j=0

λ j

[
∂ϕ j

∂φ̃
− d

dη

(
∂ϕ j

∂ ˙̃φ

)]
= 0, (22)

which leads, after simplification by 2 cos2 φ̃, to

− sgn η̇

¨̃φ + [
2
( ˙̃φ

)2 + cos2 φ̃
]

tan φ̃[( ˙̃φ
)2 + cos2 φ̃

]3/2

+ |sgn η̇|(λ0 sec φ̃ + λ1 sin η − λ2 cos η
) = 0.

(23)
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Note that we have redefined λ0/2 as λ0 without loss of gener-
ality.

Solving (23) means finding a trajectory φ̃(η) with λ j as
free parameters to be set to satisfy the constraints (18). We
can solve this numerically by assuming monotonic behavior
for η(t ), i.e.,

∓
¨̃φ± + [

2
( ˙̃φ±)2 + cos2 φ̃±]

tan φ̃±[( ˙̃φ±)2 + cos2 φ̃±]3/2

+ λ0 sec φ̃± + λ1 sin η − λ2 cos η = 0, (24)

where we have used φ̃± ≡ φ̃sgn η̇=±1.

V. ROBUST AREA-OPTIMAL TRAJECTORY ˜φ(η)

We determine the solution for the robust area-optimal
trajectory via the numerical implementation of (24) into an
ordinary differential equations solver [see system (B1) in
Appendix B] and use its solution, in terms of the parameters( ˙̃φi, λ0, λ1, λ2

)
, for a subsequent nonlinear equations solver

that seeks to satisfy the four trajectory constraints by search-
ing in that four-parameter space. It turns out that for each
value of ˙̃φi there is a trajectory solution to the Euler-Lagrange
equations satisfying the imposed constraints. The parameters
solution of this system are presented in Fig. 1(a) for values of
0 � ˙̃φi � 16.

The corresponding generalized pulse areas and the value
of φ̃ at the summit of the respective trajectories (related to the
normalized loss A2) are shown in Fig. 1(b).

The maximum and minimum generalized pulse areas on
the plot, Fig. 1(b), are, respectively, Amax = 5.7498π and
Amin = 3.4608π , while the corresponding minimum and
maximum values of φ (inversely related to the area) are
φmin = 0.2566 and φmax = 0.5893, respectively. If to extend
the plot to a large value, much beyond the point were sig-
nificative change occurs on the trajectory, e.g., ˙̃φi = 250, we
would obtain A = 3.4603π and φ̃max = 0.5975.

The trajectories represented by each set of points cor-
responding to a single value of ˙̃φi are the extrema of the
optimization problem, candidates to be an optimal solution.
The optimum trajectory is obtained among all these solu-
tions for the one corresponding to the minimum generalized
pulse area: Amin ≈ 3.4603π , associated with | ˙̃φi| → ∞ and
to a normalized loss A2 ≈ 0.1291. However, we highlight that
all the other extremal solutions, featuring larger pulse areas,
represent physical optimal and robust solutions, but with cor-
responding lower normalized losses.

We notice that these solutions, defined by Fig. 1(a) and
extensible to ˙̃φi → ∞, are symmetrically mirrored (with iden-
tical pulse areas) for ˙̃φi � 0, with a sign change in the λ j (and

φmax), thus the sign-changed alternative solution at ˙̃φi = 0 was
omitted for clarity. These alternative trajectories, namely, with
sign-changed φ̃ and θ̃ , produce sign-changed pumps and final
states, �P and |ψ f 〉, and do not differ in any other way; hence,

we limit our analysis to ˙̃φi � 0.
Although it is far from being actually adiabatic (much

lower areas compared with usual adiabatic requirements), the

FIG. 1. Area-optimal solutions vs ˙̃φi regarding (a) λ j and (b) the
pulse area and maximum value of φ̃. Trajectories φ̃(η) and θ̃ (η),
for selected extrema of the area minimization problem, are shown in
panels (c) and (d). Respective pump and Stokes fields, dynamically
scaled by 2η̇, are shown in panel (e) vs η. The parameters defining
the highlighted extrema are summarized in Table I. The line style
in the legend applies to all plots irrespective of the line color. The
thin vertical gray lines are located at the η f corresponding to each
trajectory. Thin horizontal gray lines mark a zero.

behavior of this family of solutions is reminiscent of adia-
batic solutions in terms of correlation between pulse area and
normalized loss: the higher the invested pulse area, the lower
the maximum of the transient excited-state population and the
corresponding normalized loss (see Fig. 4).

It is worthy of mention that Eq. (24) was solved [i.e., the
system (B1) was integrated] without demanding the symmetry
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of the trajectory, see Appendix C. Each trajectory was com-
puted from η = 0 to a large ηmax (typically ηmax = 3π ). Then,
the solutions were obtained by taking φ f to be a point where
the trajectory crossed the φ = 0 line boundary (thus truncating
there the trajectory).

Having left the symmetry (or lack of it) of the trajectories
to be decided by the solution of the dynamical system and
satisfaction of the constraints, we obtained symmetric (of even
parity) trajectories with η f matching (one of) the expected
values (C3) naturally, as can be seen in Figs. 1(c)–1(e).

The values of η f are lower for higher maximum state
populations, but the resultant areas are lower; trajectories and
pulses are then shorter (in η), leading, presumably, to the
optimal time: the fastest way to go from ηi ≡ 0 to η f , which
would naturally be faster for lower values of η f .

We notice that all solutions for ˙̃φi � 5.5 were obtained by
choosing φ f as the first zero-crossing, while for ˙̃φi > 5.5 we
had to truncate at the third one.

Other families of solutions, families of extrema of the
optimization problem, were found for larger boundaries
of the integration (ηmax > 3π ) and for second- and third-
zero–crossings, some of them even displaying asymmetric
trajectories. However, all of them presented larger areas to the
family in Fig. 1, thus they are irrelevant to the problem of
optimization. For example, the asymmetric trajectories cor-
responding to the second-zero–crossing family of solutions
present areas of 5.715π � A � 5.750π . Meanwhile, the next
immediate family of trajectories (third-zero–crossing) exhibit
about three times the area and value of η f , in the vicinity of
˙̃φi = 0, of the optimal family.

The extremum trajectories φ̃(η) in Fig. 1(c) display a dou-
ble peak structure, although it is only slight for the largest-area
extremum ˙̃φi = 0. The well between the persistent positive
peaks becomes a negative peak (though of much smaller mag-
nitude) for the optimal trajectory. By comparison between
the trajectories shown with the largest ˙̃φi it is clear that the
system’s geometric evolution is optimal at infinity, but values
on the order of the tens already describe it well.

The evolution of the mixing angle θ̃ (η) behaves as a
symmetrical two-step process, two identical consecutive evo-
lutions 0 → π/4 → π/2; however, it cannot be regarded as
twice a robust half-transfer, since, although we can take the
extrema whose half-point is nil as its endpoint, φhalf

f = φm =
0, this half-transfer is not robust [since it does not satisfy (19)
for ηhalf

f = ηm].
Having treated the dynamics as a geometric trajectory

φ̃(η), we are left only with the dynamically scaled fields

�̃P(η) ≡ �P/(2η̇) = cos φ̃ sin θ̃ − ˙̃φ cos θ̃ , (25a)

�̃S (η) ≡ �S/(2η̇) = − cos φ̃ cos θ̃ − ˙̃φ sin θ̃ , (25b)

to picture the control fields in terms of η. These equa-
tions show that the initial and final values of these
parametrized ratios are

�̃i
P = − ˙̃φi, �̃

f
P = sgn θ f , (26a)

�̃i
S = −1, �̃

f
S = −sgn θ f

˙̃φ f . (26b)

The absolute value of the dynamically scaled control fields
�̃P and �̃S is shown in Fig. 1(e), evidencing the boundary
Eqs. (26). Although the actual time-dependent control fields
will be described only after a time-parametrization of η(t )
is decided, we can already note that the couplings present
a marked counterintuitive ordering. This is obvious for the
largest-area extrema, but it is still mostly true for the optimum
with the exception of the spikes near the boundaries of the
trajectory.

The ideal robust optimum solution would demand infinite
scaled amplitudes at one of the boundaries for each field,
but this does not require the actual pulses to have infinite
magnitudes at any point in time. The fields as functions of
time may be made indeed finite with a proper choice of the
time parametrization, i.e., of η(t ).

The quantities (�̃P, �̃S ) are sufficient to solve the TDSE
parametrized in terms of η, with H̃ε (η) ≡ Hε (t )/η̇,

ih̄∂η

∣∣ψ̃ε (η)
〉 = H̃ε (η)

∣∣ψ̃ε (η)
〉
, (27)

which can be reparametrized back to time, to observe popula-
tions actual temporal-dynamics, by simply providing the time
dependence of η(t ).

The nonrobust optimal exact � transfer has been derived in
Ref. [27] and their corresponding analytical pulse shapes for
pulse-energy optimization were given in Ref. [28], producing
the coupling fields:

�P =
√

3π

T
cos

[
π (t − ti )

2T

]
, (28a)

�S =
√

3π

T
sin

[
π (t − ti )

2T

]
, (28b)

where T is the pulse duration. These coupling fields of gen-
eralized area

√
3π are the equivalent of the π -pulse Rabi

solution, the diabatic solution by excellence, for the three-
level � system. It exhibits the minimum area and energy
necessary to perform the complete population transfer |1〉 →
|3〉, while the pulse duration fixes the cap on the field am-
plitudes (equivalently we may fix the pulse amplitudes and
extract the minimum time). Hence, it is the ideal benchmark
to test the gained robustness of our optimal robust solution;
just as the π pulse would be used to compare with population-
inversion schemes in a two-level system [19,26]. This optimal
solution, as it differentiates from our robust optimal results in
the fact that it does not satisfy the robustness constraints, will
be referred to as the unconstrained optimal, or simply optimal,
solution. Therefore, another use of this basis for comparison
is to use it to understand what is the minimum energy required
to gain or acquire a certain order of robustness.

Solving the TDSE by taking into account the pulse area
scaling error up to ±20%, we obtain the robustness profile
of the population transfer fidelity and base 10 logarithm of
the infidelity, presented in Figs. 2(a) and 2(b), respectively.
The profile is slightly broader for larger-area extrema, but all
extrema are much more robust than the unconstrained pulse
area-optimal solution (28). Particularly, the fidelity profile for
the optimal extrema is symmetric around the unperturbed
condition, while the extrema with larger areas present an
advantageous slanted profile towards the positive area-scaling
deviations (ε > 0).
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FIG. 2. (a) Fidelity and (b) logarithm base 10 of the infidelity for
the selected extrema highlighted in Fig. 1 with numeric data summa-
rized in Table I and for the � transfer optimized with no constraints
of robustness, with respect to the pulse area scaling error ε. The thin
horizontal gray line denotes the ultrahigh-fidelity benchmark of 10−4

infidelity.

The symmetry of the optimal solutions is a remarkable
feature which is certainly not shared with adiabatic processes
(or any other scheme for that matter). For the robustness pro-
file, an increase in energy (equivalently, area) in the adiabatic
regime is indeed not equivalent to a decrease. This is shown
in Ref. [15], where the robustness profile is determined for
an exact � transfer: the slanting of it is evident for larger
areas where adiabaticity starts to prevail. Understanding adi-
abaticity as the general behavior or tendency of the evolution
approaching the dynamics at the adiabatic limit. We can note
that the optimal with no constraints of robustness displays
a strictly symmetrical robustness profile, which is a shared
characteristic with our robust optimal solution.

The effect of investing about one time more the area of
the optimal pulse (ARobOpt ≈ 2Aopt) is remarkable: almost
13 times gain in the width of the robustness between ε = 0
and the closest point where infidelity goes above 10−4, i.e.,
�εRobOpt ≈ 0.051 while �εopt ≈ 0.004. It is worth noting that
the unconstrained optimal pulses are intuitively ordered while
our robust optimal pulses feature an overall counterintuitive
ordering. As observed in Fig. 1(e), the largest-area robust
extrema (for ˙̃φi = 0) presents the most simple and clearly
counterintuitively ordered pulse pair. Meanwhile, the actual
minimal-area extrema (global optimum) corresponding to
˙̃φi → ∞ exhibits counterintuitive behavior at most instances
of the “dynamics” (actually, geometric evolution along η), i.e.,
except near the beginning and the end of the evolution.

VI. ROBUST ENERGY-OPTIMAL DYNAMICS η(t )

The time dependence of the area-optimal geometrical tra-
jectory is free to be chosen. However, it is most interesting
to consider optimality with respect to the pulse energy, which
would also satisfy optimality with respect to time for a certain
maximum amplitude, as shown below. We can do this with the
Euler-Lagrange equations with constraints, as we have done
for the area optimization, but using the energy definition

E = h̄
∫ t f

ti

dt
(
�2

P + �2
S

) = 4h̄
∫ t f

ti

dt
(
φ̇2 + η̇2 cos2 φ

)
≡

∫ t f

ti

dt LE (φ, η̇, φ̇), (29)

as the cost to be minimized. In this case, the time representa-
tion of the constraints (19) writes:

ξt0 =
∫ t f

ti

dt η̇ sin φ ≡
∫ t f

ti

dt ϕt0(φ, η̇)

= −θ±
f = ∓π

2
, (30a)

ξt1 =
∫ t f

ti

dt
(
φ̇ cos η + η̇ sin η sin φ cos φ

)
≡

∫ t f

ti

dt ϕt1
(
η, φ, η̇, φ̇

) = 0, (30b)

ξt2 =
∫ t f

ti

dt
(
φ̇ sin η − η̇ cos η sin φ cos φ

)
≡

∫ t f

ti

dt ϕt2
(
η, φ, η̇, φ̇

) = 0, (30c)

which are satisfied, regardless of the time dependence of η, by
the trajectories φ̃(η) from (23) with their appropriate choices
of the λ j .

The dynamics {θ (t ), η(t ), φ(t )} can be formulated as the
solution of the optimal problem, as the evolution satisfying
the Euler-Lagrange equations

grad E + μ0 grad ψt0 + μ1 grad ψt1 + μ2 grad ψt2 = 0,

(31)
where the μ j ( j = 0, 1, 2) are the Lagrangian multipliers as-
sociated with the constraints, and the gradients are

grad E =
[

∂LE
∂η

− d
dt

(
∂LE
∂η̇

)
∂LE
∂φ

− d
dt

(
∂LE
∂φ̇

)], (32a)

grad ξt j =
[

∂ϕt j

∂η
− d

dt

( ∂ϕt j

∂η̇

)
∂ϕt j

∂φ
− d

dt

( ∂ϕt j

∂φ̇

)]. (32b)

The Euler-Lagrange equations lead to

0 = − d

dt

(
∂LE
∂η̇

)
+

2∑
j=0

μ j

[
∂ϕt j

∂η
− d

dt

(
∂ϕt j

∂η̇

)]
, (33a)

0 = ∂LE
∂φ

− d

dt

(
∂LE

∂φ̇

)
+

2∑
i=0

μi

[
∂ϕt j

∂φ
− d

dt

(
∂ϕt j

∂φ̇

)]
,

(33b)

which are, for cos φ 	= 0,
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η̈ = φ̇

4

[
8η̇ tan φ − 1

h̄

(
μ0

2
sec φ + μ1 sin η − μ2 cos η

)]
, (34a)

φ̈ = − η̇

4
cos2 φ

[
4η̇ tan φ − 1

h̄

(
μ0

2
sec φ + μ1 sin η − μ2 cos η

)]
. (34b)

We can combine these by performing η̇ cos2 φ (34a) + φ̇

(34b) to obtain a relation not encumbered by the Lagrange
multipliers:

d

dt

(
φ̇2 + η̇2 cos2 φ

) = d

dt

{
η̇2

[( ˙̃φ
)2 + cos2 φ̃

]}
= 1

4h̄

dLE
dt

= 0. (35)

This relation exhibits a constant of motion, which demon-
strates that the energy-optimal dynamics is that whose energy
presents a constant argument of integration LE = h̄L2 = h̄�2,
where � is a constant Rabi frequency, i.e.,

2|η̇|
√( ˙̃φ

)2 + cos2 φ̃ =
√

�2
P + �2

S = � = const., (36)

thus, the partial pulse area is given by

Ã(t ) =
∫ t

ti

dt L =
∫ t

ti

dt � = � (t − ti ). (37)

Furthermore, for a given Rabi frequency �, the optimal time
is then

Topt = Ã(t f )/� = A/�. (38)

Using φ̇ = η̇ ˙̃φ, φ̈ = η̇2 ¨̃φ + η̈ ˙̃φ, (36), and (34a), (34b) read

0 = −sgn η̇

¨̃φ + [
2
( ˙̃φ

)2 + cos2 φ̃
]

tan φ̃[( ˙̃φ
)2 + cos2 φ̃

]3/2

+ 1

2h̄�

(
μ0 sec φ̃ + μ1 sin η − μ2 cos η

)
, (39)

where μ0 has been redefined as μ0/2 → μ0. The latter is
exactly (23) for μ j = 2λ j h̄�, i.e., gives the same trajectory
as for the pulse-area optimization.

Equation (37) can be rewritten as

Ã[η(t )] = 2
∫ η(t )

ηi

dη sgn η̇

√( ˙̃φ
)2 + cos2 φ̃

= � (t − ti ), (40)

for a trajectory φ̃(η), where the left-hand side is the partial
generalized pulse area, see Eq. (13b), i.e., � = A/(t f − ti ).
As a consequence, the energy-optimal dynamics for the trajec-
tory (23) is also its time-optimal solution for a given constant
Rabi frequency � = �0, i.e., (t f − ti )|opt = A/�0.

Enforcing (36) and (23) guarantees the resultant dynamics
to be globally area-, energy-, and time-optimal.

VII. DISCUSSION

Fields and populations dynamics are shown in Fig. 3. The
double-dot–dashed lines represent the optimal solution for the

problem of population transfer without constraints of robust-
ness, the fields are the intuitively ordered cosine-sine pulses
in Eq. (28). For the unconstrained optimization the transient
population of the excited state is much larger than for the ro-
bust extrema. It can be observed that, while the unconstrained
solution transfers most of the population from |1〉 to |2〉 and
|3〉, with predominance of the excited state, in the first half of
the process, the robust optimal solution transfers only about
40% of the population from the initial state to a superposition
of the others (with much lower transient population on the
excited state), proceeds to deplete the excited state into the
target state, and only then executes the last part of the transfer
like the first part. In this manner, while the unconstrained op-
timal transiently populates the excited state along the transfer,
the robust optimal solution only does this in two temporally
separated stages of 40% of the process duration and maintains
it depopulated 20% of the time. At the middle of the process
we obtain maximal superposition of the ground states and no
population on the excited state, showing that the robust opti-
mal full transfer appears as a two consecutive unconstrained
(nonrobust) half transfers (as already noticed in the preceding
section).

The pulses corresponding to the extrema of the robust op-
timization go from a counterintuitively ordered pair of fields
to what could be described as a train of nonvanishing pulse
pairs with intuitive-counterintuitive-intuitive orderings. One
can remark that composite-pulse STIRAP exhibits precisely
the opposite ordering [29]. From the intermediate extremum
it can be seen that the optimum is achieved by raising the
bounded boundary of the field towards its maximum � and
lowering the other boundary towards zero. All field pairs are
complementary to each other and exhibit, as a whole, symme-
try around half of the duration.

Now that we have the time dependence of the angles, we
can calculate the loss term A2, we show its dependence with
the generalized pulse area in Fig. 4. The minimum energy
for the produced losses, calculated elsewhere with no ro-
bustness constraints, is between 1.92π � A � 2π or 5.43 �
ET/(π2h̄) � 27 with mostly overlapping pulses.

TABLE I. Identifying parameters of the highlighted extrema.

�opt
˙̃φi = 0 ˙̃φi = 0.4 ˙̃φi = 16 ˙̃φi = 250

A2/T 0.3750 0.0371 0.0596 0.1256 0.1291
A/π 1.7321 5.7498 4.1904 3.4615 3.4603
ET

π 2 h̄
3 33.0599 17.5597 11.9819 11.9739

�εuhf 0.4% 6.4% 5.6% 5.1% 5.1%
λ0 0.193 079 091 4 0.140 13 −0.524 03 −0.565 96
λ1 0 −0.083 822 402 9 −0.047 47 0.867 93 0.938 53
λ2 0 0.010 250 499 0 0.229 84 1.058 36 1.082 83
η f /π 2.9225 2.1297 1.5627 1.5454
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FIG. 3. Fields and populations vs time [(a) and (b)] for uncon-
strained optimum � transfer and [(c)–(f)] for selected robust optima.
Numerical parameters details are summarized in Table I. The line
style in the legend applies to all plots irrespective of the line color.
The dynamics for ˙̃φi = 16 and ˙̃φi = 250 are almost indistinguishable
at the scale of the figure.

The fact that, in addition to the robust optimal solution, we
have obtained a family of solutions which perform the desired
task robustly and for fairly low areas (compared with adiabatic
procedures with A > 10π ) suggests the following practical
strategy: These solutions could be used as options that become
more or less preferable depending on the constraints of the

FIG. 4. Loss-proportional term A2 vs generalized pulse area for
robust optimal family of solutions. To compare with A2 = (3/8)T =
0.3750T at A = √

3π ≈ 1.7321π and E = 3π 2 h̄/T for the optimal
� transfer with no constraints of robustness. Numerical details have
been gathered in Table I.

implementation, e.g., when a A2 = 0.1291T is an acceptable
cost, the actual robust optimal solution may be used; however,
when that is too high to be acceptable, a larger-area optimum
may be chosen, effectively lowering the associated loss term
as low as A2 = 0.0371T . Recalling Fig. 2, we can highlight
that for roughly the same robustness profile we can choose
among the extrema solutions, varying in area and loss param-
eter, according with the physical limitations of a particular
practical implementation and the loss that can be considered
acceptable.

The corresponding loss parameters and pulse areas, to-
gether with pulse energy and the values of the Lagrange
multipliers, for the selected extrema in Figs. 3 and 4 are
presented in Table I. The shown precision of the Lagrange
multipliers is the minimum necessary to produce the selected
results with their displayed precision (while guaranteeing
Õ2 < 10−4). It can be noted that the largest area extrema
requires the most precision on the multipliers, this is only due
to the rapid dependence of the areas for small ˙̃φi.

The existence of a continuous family of optima of solutions
that are robust, controlled mathematically by the quantity
˙̃φi but interpreted physically as the consequent loss, as
extracted from Figs. 1 and 4, is a remarkable result of the
applied method of inverse optimization with robustness as
constraints. For the chosen family of robust optimal solutions,
we have control of the loss parameter A2 via the pulse area
(equivalently, energy) and, like for adiabatic protocols, the
relation is inversely proportional: Lower loss requires higher
energies, although, unlike the adiabatic behavior, there are
lower and upper bounds to them.

We can use the relation (2) to estimate the upper bound
on the time duration or lower bound on the pulse ampli-
tude of the robust optimal pulses (absolute optimum and
largest-area extrema) with respect to the dissipation param-
eter � (inverse of relaxation time) considering an admissible
loss below the ultrahigh-fidelity benchmark Ploss � 10−4, i.e.,
T � 7.7 × 10−4�−1 and (consequently) � � 1.4 × 104�, for
A = 3.4603π , else T � 27.0 × 10−4�−1, � � 0.7 × 104�,
for A = 5.7498π .

VIII. CONCLUSIONS

We have demonstrated a method to obtain robust quantum
transfers while optimizing area, energy, and time. We have
presented the optimal resonant � transfer with robustness up
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to the third order in terms of field inhomogeneities. The re-
sultant pulse shapes are smooth and very energy economical,
far below the requirements of STIRAP, while also exhibiting
a robust behavior comparable to robust STIREP and STIRAP
[15] but with 2π–3π lower areas. Losses remain below the
ultrahigh-fidelity benchmark of 10−4 for pulse durations in
the order of �−1 × 10−4, e.g., for the relaxation time of the
excited state 1D2 of a praseodymium ion in a Pr3+:Y2SiO5

crystal, which is �−1 = T1 ≈ 164 μs [30,31], the largest pulse
duration and smallest amplitude necessary to avoid dissipation
losses with the robust absolute optimum fields are 0.13 μs and
85.4 MHz, respectively.

The method could be extended to the search of robust-
ness with respect to detuning and for field inhomogeneities
unequal between the fields, and to consider higher orders of
robustness.

The protocol to produce the pulses can be summarized as
follows, focusing on the representative values in Table I:

(1) The values of λ0, λ1, λ2, η f , and the pulse area A for

the chosen representative values of ˙̃φi allow the user to choose
between the members of the robust candidates for optimal
pulses and for a given admissible loss of the problem.

(2) Once ˙̃φi is chosen, taking the other properties sum-
marized in Table I as deciding factors, the values of λn, η f ,

and pulse area are also taken and φ̃(η), ˙̃φ(η), and θ̃ (η) are
calculated by

(a) introducing the λn in (B1), which can then be solved
using a standard method for solving ordinary differential
equations;

(b) solving the system for the chosen ˙̃φi, with φ̃i =
ηi = 0 as additional initial conditions and “integrating” up
to η f .
(3) η̇(t ) is then obtained in units of 1/T from (36) by

choosing the maximum pulse amplitude to be � = A/T .
(4) φ̃(η), ˙̃φ(η), θ̃ (η), and η̇(t ) are finally introduced in (25)

to obtain the pump and Stokes pulses �P(t ) and �S (t ) in units
of 1/T .
Other values than those of Table I can be used with Fig. 1(a)
and η f given by (C3) where η f ∈ [0, 2π ) for ˙̃φi > 0.5798 and

η f ∈ [2π, 4π ) for 0 � ˙̃φi � 0.5798.
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APPENDIX A: PROPERTY OF ITERATED INTEGRALS

Double iterated integrals may be simplified as follows:∫ t f

ti

dt
∫ t

ti

dt ′ [a(t )b(t ′) + a(t ′)b(t )]

=
∫ t f

ti

dt a(t )
∫ t f

ti

dt b(t ), (A1)

from∫ t f

ti

du(t ) v(t ) +
∫ t f

ti

dv(t ) u(t ) = [u(t )v(t )]t f
ti , (A2)

where

u(t ) =
∫ t

ti

dt ′ a(t ′), du = dt a(t ), (A3a)

v(t ) =
∫ t

ti

dt ′ b(t ′), dv = dt b(t ). (A3b)

For the triple iterated integrals, we have∫ t f

ti

dt a(t )
∫ t

ti

dt ′ b(t ′)
∫ t ′

ti

dt ′′ c(t ′′)

=
∫ t f

ti

du(t )
∫ t

ti

dt ′ b(t ′)w(t ′)

=
∫ t f

ti

du(t ) x(t ) = [u(t )x(t )]t f
ti −

∫ t f

ti

dx(t ) u(t )

=
∫ t f

ti

dt ′ a(t ′)
∫ t f

ti

dt ′ b(t ′)w(t ′) −
∫ t f

ti

dt u(t )b(t )w(t ),

(A4)

with

2w(t ) =
∫ t

ti

dt ′ c(t ′), dw = dt c(t ), (A5a)

x(t ) =
∫ t

ti

dt ′ b(t ′)w(t ′), dx = dt b(t )w(t ). (A5b)

APPENDIX B: NUMERICAL IMPLEMENTATION

For a given set
( ˙̃φ±

i , λ0, λ1, λ2
)
, the differential equa-

tion (24) is solved numerically from η = ηi = 0 to η = 3π

(a large enough bound for the low pulse areas we are looking
for). A search in this parameter space is then launched in order
to find a certain set such that φ̃ = 0 is satisfied at some point
η > 0 which we then denote with the coordinate (η f , φ f ),
while the constraints (19) are also fulfilled.

The implementation for the numerical resolution, via a
solver using the Runge-Kutta method, is then

ẏ1 = ˙̃φ± = y2, (B1a)

ẏ2 = ¨̃φ± = −(
2y2

2 + cos2 φ̃±)
tan φ̃± ± (λ0 sec φ̃±

+λ1 sin η − λ2 cos η)
(
y2

2 + cos2 φ̃±)3/2 = 0. (B1b)

The numerical solutions show that the derived optimal fam-
ily of trajectories is actually symmetric, implying that the
assumptions in Appendix C are valid and that Eqs. (C3) are
satisfied.

APPENDIX C: SYMMETRIC TRAJECTORY

In this Appendix we consider a symmetric solution via the
standard forward evolution of (24) and its backward coun-
terpart, i.e., we consider the trajectory evolving from η = 0
to η = η f and its reversal starting from the endpoint of the
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trajectory and ending at the starting point. The backward-

propagating equation is obtained making φ̃±(η)
η=η f −u−−−−→

φ̂±(u), where φ̂±(u) is the backward-propagating trajectory
and u is the counterpart of η (i.e., identical to η but time-
reversed). Consequently, ˙̂φ± = − ˙̃φ± and ¨̂φ± = ¨̃φ±. Then,

∓
¨̂φ± + [

2
( ˙̂φ±)2 + cos2 φ̂±]

tan φ̂±[( ˙̂φ±)2 + cos2 φ̂±]3/2 + λ0 sec φ̂±

+ λ1 sin(η f − u) − λ2 cos(η f − u) = 0. (C1)

The symmetric solution is implemented demanding symmetry
about the axis η(t = ti + T/2) = ηm = η f /2, where T is the
pulse duration, implying φ̂±(u) = φ̃±(η) (i.e., the equality of
the counterpropagating trajectories), which leads to

0 = λ1(1 + cos η f ) + λ2 sin η f , (C2a)

0 = λ1 sin η f + λ2(1 − cos η f ). (C2b)

From Eqs. (C2), we have λ1,2 	= 0 when the determinant of
the right-hand side matrix form is zero, i.e., (1 + cos η f )(1 −
cos η f ) − sin2 η f = 0, which is always satisfied. We can alter-
natively express the cosine and sine as

cos η f = λ2
2 − λ2

1

λ2
1 + λ2

2

, sin η f = − 2λ1λ2

λ2
1 + λ2

2

. (C3)

Equation (C3) gives η f with modulus 2π , hence η f is known
once we know in which interval η f n ∈ [2nπ, 2(n + 1)π ), with
n = 0,±1,±2, . . . (where the sign is fixed by the sign of η̇),
it is located. For the obtained cosine and sine in Eq. (C3), the
backward-propagating equation (C1) becomes identical to the
forward-propagating one (24) (albeit in terms of u).

We may refer to the controls (11) to note that the pulses are
mirror images of each other, �P(t ) = �S (t f − t + ti ), when
we apply the time-reversal symmetry:

θ → π

2
− θ̂ , φ → φ̂, φ̇ → − ˙̂φ, η̇ → − ˙̂η. (C4)

APPENDIX D: DYNAMICS OF THE ANGLES

The dynamics of the angles and their derivatives is pre-
sented in Fig. 5. The description of the trajectories φ̃(η)
and θ̃ (η) can be recalled to discuss their corresponding time-

FIG. 5. Dynamics of the angular parametrization (φ, η, θ ) for the
selected optima from Fig. 1. Numerical parameters are summarized
on Table I. Thin gray lines mark the zero. The process duration
T , equal to the pulse duration, is taken to be common among the
extrema by letting the pulse amplitudes be given by � = A/T for
each corresponding area.

dependent evolutions, although it is worth noting that the
process duration T for all solutions was made equal only after
proper choice of the generalized pulse amplitude �. Unlike
for the geometrical trajectory, the time-dependent functions
are all finite. The evolution of η is almost a straight line
of slope 3/T for the maximum-area extrema; however, the
optimum is obtained when η approaches a slightly oscillating
line with zero derivative at the boundaries. All the presented
dynamics display a certain parity with respect to t = T/2:
all functions are mirrored or anti-mirrored (sign-changed)
around that point, except θ and η. θ and η are odd functions
only when also regarded about their value when evaluated at
that point, i.e., the functions f (t ) = θ (t − T/2) − θ (T/2) and
g(t ) = η(t − T/2) − η(T/2) are odd. The only function that
is not null-valued at neither of its boundaries is φ̇, giving the
pump and Stokes fields their respective nonzero boundary.
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