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Measuring kinetic parameters using quantum plasmonic sensing
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The measurement of parameters that describe kinetic processes is important in the study of molecular
interactions. It enables a deeper understanding of the physical mechanisms underlying how different biological
entities interact with each other, such as viruses with cells, vaccines with antibodies, or new drugs with specific
diseases. In this work, we study theoretically the use of quantum sensing techniques for measuring the kinetic
parameters of molecular interactions. The sensor we consider is a plasmonic resonance sensor—a label-free
photonic sensor that is one of the most widely used in research and industry. The first type of interaction
we study is the antigen BSA interacting with antibody IgG1, which provides a large sensor response. The
second type is the enzyme carbonic anhydrase interacting with the tumor growth inhibitor benzenesulfonamide,
which produces a small sensor response. For both types of interaction we consider the use of two-mode Fock
states, squeezed vacuum states, and squeezed displaced states. We find that these quantum states offer an
enhancement in the measurement precision of kinetic parameters when compared to that obtained with classical
light. The results may help in the design of more precise quantum-based sensors for studying kinetics in the life
sciences.
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I. INTRODUCTION

Measuring parameters used in kinetic models of molec-
ular interactions provides important information about how
pathogens, such as viruses and bacteria, interact with cells
and other biological entities [1]. Plasmonic sensors have long
been used to measure kinetic parameters in this context due
to their higher sensitivity compared to conventional sensors
[2–8]. Another main benefit of using plasmonic sensors is that
the gold surface used in a given sensor allows for a straight-
forward immobilization of different types of molecules by
appropriate functionalization [9]. This enables a controlled
setting in which to investigate the binding and unbinding
(release) of a specific type of molecule, or biological entity,
to another in a label-free manner [10]. Despite the successful
performance of plasmonic sensors for measuring kinetics in a
wide range of scenarios [8], the precision in the estimation of
kinetic parameters is reaching a fundamental classical limit,
given by the shot noise of the classical light source used in the
sensors [11,12]. This is particularly the case for binding and
unbinding processes that elicit a small response in the sensor’s
signal, for instance, between a virus and an inhibitor drug [13].

Fortunately, quantum techniques have been developed re-
cently for plasmonic sensors using quantum light sources
and measurements that enable a significant reduction of noise
below the shot-noise limit leading to a better precision in the
estimation of a parameter being sensed [14]. So far, these
quantum techniques have been applied to the measurement

of static parameters, such as the concentration of a substance
via a measurement of the induced change in the refractive in-
dex surrounding a plasmonic sensor. Theoretical studies have
looked at the use of different types of quantum states of light
and measurements for the precise estimation of the refractive
index change [15,16]. Related experiments have used quan-
tum states to demonstrate an enhancement in the precision of
the estimation of bovine serum albumin (BSA) concentration;
using single photons [17–19] and squeezed states [20–22].
However, it is currently unclear as to whether the enhance-
ment in the precision of estimating a static parameter, such
as the concentration, translates to a parameter that defines the
dynamics of a physical process.

In this work we study theoretically the measurement of
the interaction kinetics of two physical processes using a
plasmonic resonance sensor and quantum states of light. The
first process we study is the antigen BSA interacting with
the antibody rabbit anti-cow albumin IgG1 (anti-BSA). This
interaction is well documented in the work of Kausaite et al.
[23]. It was chosen as it provides a large sensor response
and thus acts as a basic starting point for the study of
quantum techniques for measuring kinetic parameters. The
second process we study is carbonic anhydrase interacting
with benzenesulfonamide, which is well studied in the work
of Lahiri et al. [24]. Carbonic anhydrase is an enzyme used for
maintaining pH balance in blood, and it also facilitates the re-
moval or transport of carbon dioxide from cells via red blood
cells. Benzenesulfonamide can be used as an inhibitor of the
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enzyme and acts as an efficient tumor growth inhibitor [25].
This second process was chosen as it produces a small
sensor response and therefore gives information about the
performance of quantum techniques for measuring kinetic
parameters in pathogen-inhibitor interactions relevant to drug
development [9,13].

The kinetic parameters in both processes studied are ob-
tained by measuring the intensity in one mode (which includes
the sensor) or intensity difference of two modes (one with
the sensor and the other as a reference) over time. The cor-
responding temporal measurement signal forms what is called
a sensorgram and allows the kinetic parameters to be extracted
via a nonlinear fit. A key requirement of this dynamical sens-
ing method is that the sensorgram varies on a timescale much
longer than the timescale of probing with quantum states of
light. This allows many probe states to be sent into the sensor
to build up the required statistics at each point in time. In both
processes studied, due to the kinetic parameter values, the
sensorgram changes slowly, on the order of seconds, while the
assumption is that, for example, 1000 probe quantum states
can be prepared and sent into the sensor per second. This is a
reasonable assumption given current experimental capabilities
[17–22].

For both types of interaction studied we consider various
quantum states: two-mode Fock states, two-mode squeezed
vacuum states and two-mode squeezed displaced states, all
used in a recent study of static parameters [15,16]. Our re-
sults show that the enhancement in the estimation precision
offered by these quantum states translates well from static to
kinetic parameters under certain conditions. In particular, we
compare the estimation precision of the association and dis-
sociation binding constants of the interactions using classical
and quantum states.

It is important to point out that in the classical case that
we use as a benchmark in our study, i.e., a two-mode coherent
state, the estimation precision is set by the shot noise, which is
inversely proportional to the square root of the intensity [14].
Therefore one could simply increase the intensity per probe
state, i.e., mean photon number in the modes, and thereby
decrease the noise to obtain a better precision. The key point
here is that for a fixed mean photon number per state and fixed
number of states per second, it is known in the static case that
there are quantum states that always outperform the two-mode
classical coherent state in terms of providing a better preci-
sion. Thus, one is able to obtain the same estimation precision
as the classical state using a quantum state with a reduced
intensity. This is of the utmost importance when the biological
sample is photosensitive [26], or the sensor is operating near
its intensity limit in providing a linear response [11,27]. It is
in this setting where a static quantum plasmonic sensor would
provide a practical advantage and in our work we show that
this is also the case for a dynamic quantum plasmonic sensor.
Our work may therefore potentially aid the future design of
plasmonic sensors using quantum techniques for more precise
kinetic research where the above factors play a role.

The work is organized as follows: In Sec. II we intro-
duce the physical model we consider for plasmonic sensing,
where we provide details of the sensor setup, its signal
response to a dynamically changing environment, as well
as the various quantum states and measurements we study.

In Sec. III we then discuss the general model for interac-
tion kinetics used and show how the kinetic parameters can
be measured, for a given interaction, from the plasmonic
sensor’s signal. We also outline the simulation method we
use to model noise in the signal for the different quan-
tum states and measurements, thereby simulating a potential
experiment. In Secs. IV and V we present our results for
the two molecular interaction processes studied. In Sec. IV
a large response in the sensor signal is studied and in
Sec. V a small response is studied. In Sec. VI we summarize
our findings.

II. SENSING MODEL

A. SPR setup and resonance dip

In Fig. 1(a) we show the setup we consider for measuring
interaction kinetics, known as the Kretschmann configuration
[28,29]. Here light in a signal mode is incident on a prism
and interacts with a thin metal layer (metal film) on top of
the prism. With the correct coupling conditions the light in
the signal mode excites conduction electrons on the upper
surface of the metal. This creates a surface electromagnetic
wave—a surface plasmon polariton (SPP)—that is confined
to the upper metal surface. The result of this SPP excitation is
represented as a drop in the intensity of the reflected light in
the signal mode, which is a phenomenon known as surface
plasmon resonance (SPR). For the setup to act as a sensor
based on SPR, i.e., a plasmonic sensor, a metal with free elec-
trons in the conduction band is needed. In our case, we have
chosen gold as it is regularly used in plasmonic experiments
due to its overall stability [5].

A dielectric material whose refractive index, na = √
εa

(where εa is the permittivity), is to be sensed is placed on top
of the gold. The “material” in our case is a mix of receptors
immobilized on the gold surface and ligands that bind to them
introduced in an analyte via a flow cell. The optimal coupling
of light to an SPP on the gold surface occurs for a fixed value
of the receptor-ligand permittivity, εa, together with a polar-
ization of light in the plane of incidence and a specific angle
of incidence, θin. Under these conditions the reflected light in
the signal mode is reduced. The reflected light can also be
thought of as the light that is “transmitted” through the sensor
by considering the sensor as a device with one input and one
output. Thus, for optimal coupling the transmittance, T , of the
signal mode through the plasmonic sensor is reduced. In the
ideal case, the transmittance reduces to zero, corresponding
to a complete conversion of light to an SPP. When εa varies,
as a result of changes in how many ligands are binding or un-
binding to receptors on the surface, the transmittance changes,
as shown in the inset of Fig. 1(a). Thus, the receptor-ligand
interaction process can be monitored indirectly by measuring
the transmitted light in the signal mode with a photodetector
that measures the intensity.

In order to ensure the highest sensitivity to changes in εa,
the incident angle θin is set such that for an analyte with no
ligands (known as the buffer solution) the transmittance T is at
the midpoint of the resonance curve (inflection point), shown
as a black dot on the right-hand side of the inset of Fig. 1(a).
The analyte flows over the metal surface at a constant rate
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FIG. 1. Measuring interaction kinetics using a quantum plasmonic sensor. (a) Surface plasmon resonance sensor with flow cell for bringing
an analyte into and out of the sensing region above a gold surface (metal film). Inset shows how the transmittance, T , of the sensor changes as
the refractive index na (or permittivity εa = n2

a) above the gold surface varies due to the presence of the analyte and a surface plasmon polariton
(SPP). (b) Sensor signal, known as a sensorgram, during the kinetics as the flow cell is injected with the analyte. The first phase is association
as the ligands in the analyte bind to the receptors immobilized on the gold surface. Mass transport effects due to diffusion are neglected in the
model. The second phase is steady state when the binding and unbinding rates are equal. The final phase is dissociation as a buffer solution
is injected into the flow cell to remove the ligands. (c) The surface plasmon resonance sensor can be placed in a two-mode setup in order to
exploit quantum sensing techniques. Here it plays the role of a beamsplitter with time-varying transmittance, T (t ). Loss on mode a (b) due to
experimental imperfections can be modelled as an additional beamsplitter with transmittance ηa (ηb)

and εa remains constant, leading to a constant T , as shown
in the first stage of Fig. 1(b). When ligands are added to the
injected analyte the value of εa increases due to binding of
ligands to the receptors as the analyte flows over the surface.
This is a dynamic process where the ligands are continuously
adsorbed, associated, or immobilized onto the receptors and
again desorbed or dissociated from them. The transmittance
T therefore increases (see inset of Fig. 1(a)) and gains a time
dependence. This is shown as the association stage for T in
Fig. 1(b). During this stage, ligands and receptors bind and
unbind (are released). A steady state is eventually reached
as the analyte with ligands continues to flow at a constant
rate. Finally, pure analyte is then “pumped” through the cell,
where the ligands are removed from the analyte so that only
the buffer solution (pure analyte) flows across the surface.
The ligands bound to the receptors gradually unbind and are
“washed” away from the surface so that it is unlikely any
further binding takes place, causing εa to reduce and T to
decrease. This is shown as the dissociation stage for T in
Fig. 1(b). The complete curve for T (t ) as a function of time is
known as a sensorgram and from it the kinetic parameters can
be extracted. Further details about the kinetics and the method
of parameter extraction will be given in the next section. Here
we briefly provide details on the general operation of the
sensor in terms of a changing εa.

The above type of plasmonic sensing is called intensity
interrogation, and it is complementary to another type of sens-
ing called angular interrogation [2,3], which is also widely
used, where for a given εa the input angle θin is varied and
the angle causing a minimum in the transmittance T is used
to infer the value of εa. Both types of interrogation offer a
similar sensitivity and performance [14]. We have chosen to
focus on intensity interrogation as it is more amenable for
incorporating quantum sensing techniques and analyzing their
performance.

Formally, the transmittance of the light in the signal mode
can be found using a three-layer model for the sensor and
is expressed mathematically as T = |rspp|2, where rspp is the

reflection coefficient given by [30]

rspp = ei2k2d r23 + r12

ei2k2d r23r12 + 1
, (1)

where

ruv =
(

ku

εu
− kv

εv

)/(
ku

εu
+ kv

εv

)
. (2)

In the above, d is the thickness of the metal film, ki =√
εi(ω/c)[1 − (ε1/εi ) sin2 θin]1/2 is the normal-to-surface

component of the wave vector in the ith layer, ω is the an-
gular frequency of the light in the signal mode and εi is the
respective permittivity, where ε1 = εp, ε2 = εm, and ε3 = εa

for the layers.

B. Quantum states considered

Typically in the Kretschmann configuration, as described
above, the source of light is a laser. This source of classical
light is well represented as a coherent state in the quantum for-
malism [31,32]. Thus, when comparing the different sources
of light for measuring the kinetics we use the coherent state as
the classical benchmark. This leads to the classical shot-noise
limit (SNL), which is a fundamental limit for the precision of
the sensor due to noise stemming from the statistical nature of
the laser light [14,31]. In Fig. 1(a) the plasmonic sensor uses a
single mode for sensing; however, in recent years the use of a
second mode as a reference has been considered for removing
common excess noise in order to reach the fundamental SNL
for classical light [11,12,33]. This more general two-mode
setting is shown in Fig. 1(c) and modeled using beamsplit-
ters, with a signal mode a and a reference mode b. Here
the plasmonic sensor is represented by a beamsplitter with
transmittance coefficient T . For realistic modeling, losses in
mode a (b) are represented by an additional beamsplitter, with
transmittance coefficient ηa (ηb). Finally, a differential mea-
surement is made in order to estimate the transmittance T set
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by the sensor’s response. More details about this measurement
are given in the next subsection.

The input state in the classical case is a coherent state of
light in each mode, a two-mode coherent (TMC) state, which
is represented as

|TMC〉 = |α〉a |β〉b = D̂a(α)D̂b(β ) |0〉a |0〉b , (3)

where D̂a(α) = eαâ†−α∗â is the displacement operator for
mode a, with displacement parameter α ∈ C, and â† and â
as creation and annihilation operators for mode a, which obey
the bosonic commutation relation [â, â†] = 1 [31]. A similar
expression can be written for the displacement operator of
mode b. The displacement in Eq. (3) creates a coherent state
|α〉 in mode a with mean photon number 〈N̂a〉 = 〈â†â〉 = |α|2
and similarly a coherent state |β〉 in mode b with 〈N̂b〉 = |β|2.
In what follows, in order to put the different quantum states
on an equal footing with the classical TMC state we set |α|2
and |β|2 to match the mean photon number in the signal and
reference modes. In the case of states with an equal number
of photons in either mode (balanced case), we have simply
|α|2 = |β|2 = N , where N is the mean number of photons in
either input mode.

In this two mode setting, it is possible to take advantage
of quantum states of light that have intermode correlations
in order to reduce the measurement noise below the SNL. A
recent study has considered various two-mode quantum states
for plasmonic sensing of a static quantity [15,16]. Here we
select the best performing of the quantum states from that
work and go beyond it by studying their ability to reduce
the measurement noise below the SNL of a dynamic quantity
and thereby provide a more precise measurement of kinetic
parameters.

The first quantum state we consider is the two-mode Fock
(TMF) state, which is expressed as

|TMF〉 = |N〉a |N〉b = (â†)N

√
N!

(b̂†)N

√
N!

|0〉a |0〉b . (4)

The TMF state has N photons in each mode and thus a mean
photon number of 〈N̂a〉 = N and 〈N̂b〉 = N in modes a and
b, respectively. The generation of N-photon Fock states has
been studied experimentally using linear optics [34], atoms in
cavities [35–38], artificial quantum emitters [39], and super-
conducting quantum circuits [40,41]. Theoretical schemes for
generation have also been proposed and include linear optics
[42,43], atoms in cavities [44], and artificial emitters [45–47].

The second quantum state we consider is the two-mode
squeezed vacuum (TMSV) state, which is expressed as

|TMSV〉 = Ŝab(χ ) |0〉a |0〉b , (5)

where Ŝab(χ ) = eχ∗âb̂−χ â†b̂†
is a squeezing operation applied

to the vacuum state. The squeezing parameter χ = reiθs ,
where r represents the amount of squeezing and θs is a phase.
The mean photon number in the modes is given by 〈N̂a〉 =
〈N̂b〉 = sinh2 r = N , with the value of N set by the squeezing
parameter r. The TMSV state has been used in many ex-
periments to date [48] and can be generated optically using
spontaneous parametric downconversion [49–51]. Although
more experimentally accessible than the Fock state for a given
mean photon number N , for practical reasons the number of

photons in each of the two modes is usually limited to small
values of N .

For reaching higher N , the third quantum state we consider
is the two-mode squeezed displaced (TMSD) state, which is
expressed as

|TMSD〉 = Ŝab(χ ) |α〉a |0〉b . (6)

The mean photon number in each mode is 〈N̂a〉 = sinh2 r +
|α|2 cosh2 r and 〈N̂b〉 = sinh2 r + |α|2 sinh2 r, which are de-
pendent on the squeezing parameter r and the initial value
of the coherent state mean photon number |α|2. We set |α|2
and r such that 〈N̂a〉 = N , which then gives 〈N̂b〉 = N − |α|2.
The TMSD state has been studied in several works [52–54]
and can be generated via a four-wave mixing process [55–57],
where intensities of up to several tens of μW (effectively very
high N) have been achieved at the expense of reducing the
photon-number correlation between the two modes in exper-
iments for quantum sensing [58,59]. We use cosh2 r = 4.5
as a practical value in our study for the squeezing [21] and
set |α|2 of the coherent state appropriately in order to satisfy
〈N̂a〉 = N . Note that the energy constraint of N photons in the
signal mode is imposed on all the cases we consider in this
work. This leads to a fair comparison among the uses of the
different probe states.

C. Parameter estimation

In order to estimate the kinetic parameters from the tem-
poral signal T (t ) shown in Fig. 1(b), i.e., the sensorgram,
the transmittance T must be estimated at a given time. The
sensitivity of the measurement of T from a measurement 〈M̂〉
of some observable M̂ is given by

SM =
∣∣∣∣d〈M̂〉

dT

∣∣∣∣. (7)

It can be understood as the extent to which the measurement
expectation value 〈M̂〉 changes for a given change in the
transmittance T . The precision in the estimation of T for a
single-shot measurement 〈M̂〉 is then

	T = 	M/SM , (8)

where 	M = (〈M̂2〉 − 〈M̂〉2)1/2 is the uncertainty (precision)
of the measurement. For a sample consisting of a set of ν

measurements, which leads to an estimate T̄ using the mean as
an estimator, the estimation precision of T̄ becomes 	T/

√
ν,

which simply expresses that the estimation of T̄ becomes
more precise as the sample size increases.

Theoretically, 	M and SM depend on the quantum state
used, the type of measurement and the sensor setup [15]. With
these things all fixed, the estimation precision 	T can then be
calculated from Eq. (8).

The type of measurement we consider in this study is an
intensity-difference measurement between modes a (signal)
and b (reference), defined mathematically as 〈M̂〉 = 〈â†â〉 −
〈b̂†b̂〉 from which the sensitivity can be obtained. To calculate
	T we require 	M, which can be found using the following
explicit formula:

	M = [
	n2

a + 	n2
b − 2(〈n̂an̂b〉 − 〈n̂a〉〈n̂b〉)

]1/2
. (9)
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For both 〈M̂〉 and 	M the expectation value is taken with
respect to the final state on which the measurement is per-
formed. We then have that the TMC, TMF, and TMSV states
all give 〈M̂〉 = (ηaT − ηb)N , where N is the mean photon
number in each of the input modes a and b [15,16]. For
the TMSD state we have 〈M̂〉 = ηaT N − ηb(N − |α|2), which
is equivalent to the expectation value of the other states in
the limit cosh2 r � 1, i.e., large squeezing. The expressions
for 	M for all the states used in this study are given in
Appendix A.

In order to extract out the kinetic parameters of a given
receptor-ligand interaction, the transmittance T (t ) must be
measured over time. This can be obtained from the time de-
pendence of the intensity-difference measurement, 〈M̂〉, as it
is linearly related to T for a set of system parameters N , ηa

and ηb (and |α|2 for the TMSD state). From the sensorgram
signal T (t ) a nonlinear fit is then required (the details of
which are given in Sec. III). Due to the nonzero estimation
precision 	T at a given instance of time when a measurement
is performed, as a result of the uncertainty 	M, the measured
sensorgram will have some associated noise and a nonlinear
fit must be done that takes into account this noise. As it is
not straightforward to model how the noise in the sensorgram
at each instance of time or measurement translates into noise
in the kinetic parameters in an analytical way, in this work
we estimate the kinetic parameters and find their estimation
precision by performing a Monte Carlo numerical simulation.
In this simulation of a potential experiment, we start with an
ideal sensorgram with a fixed temporal profile T (t ) and at
each instance of time we consider fluctuations in T according
to 	T for a given quantum state.

To make the scenario more relevant to an experiment, we
consider that at each instance of time (e.g., every second)
ν measurements are made. The assumption here is that the
measurements would be performed on a timescale much faster
than the change in T . Thus, the fluctuations in T that would
be measured, i.e., the means T̄ , are according to 	T/

√
ν. For

a given state of light, a simulated sensorgram then follows
the ideal T (t ) but with noise applied at each instance of time
according to the state, as shown in Fig. 2(a) for the classical
TMC state.

It is important to point out that the noise 	T of a state
like the TMF state is not Gaussian (it is binomial), however,
for each instance of time we consider Gaussian noise for the
mean of a set of ν measurements with standard deviation given
by 	T/

√
ν, where 	T is the noise for the particular state.

This approach is justified as we are using the sample mean as
an estimator. Each instance of time in the sensorgram corre-
sponds to fluctuations of the sample mean (where a sample
is made up of ν measured values in a set) which follows a
Gaussian distribution regardless of the underlying probability
distribution for a state according to the central limit theorem
[60].

A single simulated noisy sensorgram, such as that shown in
Fig. 2(a), will, however, give only a single value for a kinetic
parameter k from a nonlinear fit. In order to find an estimation
of the mean of a parameter and its precision we require more
than one sensorgram. We therefore simulate m sensorgrams,
and from these we obtain a sample mean of k̄ for a given
kinetic parameter. We then repeat this sampling p times in

FIG. 2. Example sensorgrams with noise (shot noise) using the
classical TMC state. (a) The mean transmittance T sensorgram.
(b) The measurement outcome 〈M̂〉 sensorgram. In both sensorgrams
the ideal mean value is shown as a solid blue line, and the simulated
sensorgram with noise is shown as a solid light blue line (T̄ for
transmittance and M̄ for the intensity difference). The upper and
lower dashed orange lines give the total noise added to the ideal
sensorgram, which for (a) is 	T/

√
ν and for (b) is 	M/

√
ν. In both

plots the parameters used are N = 10, ηa = ηb = 1, and ν = 1000.
The specific sensor details, such as operating wavelength and angle,
as well as the kinetic parameters that cause the variation in T shown
are taken from the study introduced in Sec. IV, where more details
are provided.

order to build up a distribution of k̄, which has a mean and
standard deviation that are stable as p increases. The mean of
the k̄ of this distribution is then the estimation and the standard
deviation 	k̄ is the estimation precision. Practically what this
means is that we have the estimation precision of the kinetic
parameter k for a single set of m sensorgrams, each of which
consists of ν measurements at each instance of time. In this
sense, the parameter m plays the role of a set in the same way
ν does for a set of measurements at an instance of time in
the sensorgram and the estimation precision 	k̄ is expected
to scale as 1/

√
νm for arbitrary ν and m. We study if this is

indeed the case.
The parameters ν and m are separated explicitly in this

work as this gives the ability to improve the estimation pre-
cision for a fixed ν by increasing the number of sensorgrams
in a set, i.e., m. An upper bound on the value of ν is set by
the temporal profile of the sensorgram, where it is assumed
that one can measure a set of ν probe states over a small finite
duration around a given instance in time, for which T remains

032619-5



MPOFU, LEE, MAGUIRE, KRUGER, AND TAME PHYSICAL REVIEW A 105, 032619 (2022)

roughly constant due to the slowly varying temporal profile of
the sensorgram. The assumption applies to most cases where
the change of T is slow compared to the time window of a
given detector. When the assumption is not valid, one could
also think about doing a smaller number of measurements per
instance of time by reducing ν. In this case, the signal-to-noise
ratio per instance of time is decreased due to the reduced
sample size ν, and so m can be used to improve the resulting
estimation precision by including more sensorgrams in a set.
In the case of a fixed m value, e.g., m = 1, the estimation
precision of the kinetic parameters has only a ν dependence.

It is also important to note that it may be desirable from an
experimental point of view for the m independent sensorgrams
to all be taken from a single sensorgram “run.” This is because
performing m identical experiments can be challenging due
to the variation in the preparation of the analyte, resetting
the sensor and temperature fluctuations among other factors.
While these things would add additional noise to the precision
and we do not consider them here, we simply point out that the
m sensorgrams could be taken from a single sensorgram by
sampling m sets of ν measurements at each instance of time
if the measurements are performed fast enough. The equiva-
lence between m independent sensorgrams and m samplings
at a given instance of time for a single sensorgram is valid
as the sensorgram can be considered as an ergodic process
[61,62]. In this case, at a fixed point in time, t0, we have
that T (t0 + 	t ) is a wide-sense stationary process over the
interval 	t as 	t → 0. This is because the noise in the mean
transmittance obtained from a set of ν measurements at any
point in time from t0 to t0 + 	t is Gaussian regardless of
the underlying noise model for each of the ν measurements.
Such behavior could be checked in an experiment using the
augmented Dickey-Fuller test statistic [63].

Finally, instead of extracting the kinetic parameters from
the sensorgram for T with noise 	T we use the sensorgram
obtained directly from the measurement 〈M̂〉 and associated
noise 	M because, as mentioned already, both are linearly
related to their T counterparts, i.e., 〈M̂〉 = ηaNT − ηbN and
	M = ηaN	T . In other words, one can extract the kinetic
parameters either from the pair (T,	T ) or from the pair
(〈M̂〉,	M ). We have chosen the latter for convenience and
in Fig. 2(b) we show the corresponding sensorgram for this
pair, which can be compared with the sensorgram for the pair
(T,	T ) shown in Fig. 2(a).

D. The three sensing scenarios

The general sensing model considered so far and shown in
Fig. 1(c) is a “standard two-mode sensing” scenario where we
set the loss in either mode to be the same, i.e., ηa = ηb = 1
in the ideal case when we disregard loss in the system, or
in a realistic case when including some loss in both modes,
e.g., ηa = ηb = 0.8. Reaching this value of loss is certainly
challenging in an experiment, but not out of reach—the loss in
an experiment would be mainly due to the intrinsic detector ef-
ficiency of commonly used detectors in quantum experiments
(∼0.6) [17–19], but it is also a result of the overall transmis-
sion drop for light passing through the prism due to the optical
density of the prism’s material. If a small enough prism is
used (or a plasmonic waveguide is substituted instead;- see

Refs. [18,19]) and state-of-the-art detectors employed [64],
then η = 0.8 is a realistic loss value that can be attained in
experiments.

From Refs. [14,16] we also know that by varying the values
of the losses in the different modes, namely, ηb = ηaT , we
can gain a further reduction in the photon-number differential
noise in the measurement for some of the states. This can be
considered to be a form of optimization of our sensing model.
This second scenario, which we call “optimized two-mode
sensing” is also included in our study.

Finally, we go one more step further and reduce the two-
mode sensing model to a single-mode model by removing
the reference mode b and return to the conventional model
for plasmonic sensing. We can effectively achieve this by
maximizing the loss in mode b, i.e., setting ηb = 0 such that
there will be no transmittance in that mode and the intensity-
difference measurement is simply an intensity measurement.
We call this third scenario “single-mode sensing.”

III. INTERACTION KINETICS

Interaction kinetics refers to the dynamic binding and
unbinding processes of ligands to receptors [8], which are
divided into three main phases: association, steady state,
and dissociation, as shown in Fig. 1(b). The association
phase refers to the binding of ligands to receptors to form
receptor-ligand complexes, and the steady-state phase is
where equilibrium is reached as the number of ligands binding
equals the number which are unbinding. Finally, the dissoci-
ation phase is the breaking of bonds between the ligands and
receptors. In Appendix B we provide details of the model we
use for the interaction kinetics [8] and how it is linked to the
transmittance, T , of the sensor. Below is a brief summary of
the model.

The link between the concentration of the receptor-ligand
complex [C] and the transmittance of the sensor T is given
by the refractive index, εa, of the region above the gold sur-
face, whose change is induced by the sequence of analytes
being passed over the flow cell: (1) buffer and ligands (as-
sociation and steady state) for 0 � t < τ and (2) buffer only
(dissociation) for t � τ . The refractive index change can be
understood as a change in the dipole moments of the immo-
bilized receptors as they are converted into complexes and
then unconverted [8]. For a fixed incidence angle of light, an
increase in the complex concentration [C] therefore increases
the value of the refractive index, εa, and thus T , as shown in
the inset of Fig. 1(a). In the ideal case, when there is a linear
relation between [C] and T we can write [8]

T (t ) =
{

T∞(1 − e−kst ) 0 � t < τ

Tτ e−kd (t−τ ) t � τ ,
(10)

where T∞ is a constant determined by the initial concentration
of the ligands and receptors, the thickness of the receptor
and ligand layers above the gold surface, and the affinity
kA = ka

kd
. We then have the constant Tτ = T∞(1 − e−ksτ ). In

the above, the kinetic parameter ks = ka[L0] + kd represents
the observable rate for the association phase, ka is the associ-
ation constant measured in M−1s−1 (per molarity per second),
kd is the dissociation constant measured in s−1 and [L0] is the
initial ligand concentration. Equation (10) is the theoretical
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model for the sensor’s response, which is the sensorgram that
would be measured in an ideal experiment (no noise). From
the measured sensorgram a nonlinear fit is then performed,
e.g., using the Gauss-Newton method, with respect to the
theoretical model in order to extract out the association and
dissociation kinetic parameters. From the fit, kd and ks are
obtained and with a knowledge of the initial ligand concen-
tration [L0], the parameter ka can be found from the relation
ka = (ks − kd )/[L0].

While other methods for extracting the kinetic parameters
are possible, we have chosen this method as it is one of
the most direct [8]. When considering a realistic sensorgram
that is measured in an experiment with noise, the extracted
kinetic parameters from the fit will have the noise imparted to
them and the estimate obtained will have an estimation error
(estimation precision). This is the central question we seek to
answer in this work: How does the noise from different quan-
tum states affect the noise of the extracted kinetic parameters?

IV. LARGE SENSORGRAM DEVIATION

We start by studying the interaction of the antigen BSA
interacting with the antibody rabbit anti-cow albumin IgG1
(anti-BSA), which is well documented in the work of Kausaite
et al. [23]. It has been chosen as it provides a large sensor
response, or deviation, due to the large change in the refrac-
tive index during the interaction dynamics. It acts as a basic
starting point for our study of quantum states being used to
improve the precision in the estimation of kinetic parameters.

A. Transmittance sensorgram

In the experiment reported by Kausaite et al., BSA proteins
are immobilized on a gold surface using a self-assembled
monolayer and act as the receptors. The real-time SPR curve
is measured for the BSA interacting with anti-BSA in an
analyte using an Autolab ESPRIT commercial SPR sen-
sor developed by ECO Chemie [65]. From the sensorgram
obtained they extracted out the following kinetic param-
eters: ka = 9.36 × 103 M−1s−1, kd = 7.85 × 10−3 s−1, and
L0 = 274 × 10−9 M. However, in the experiment angular in-
terrogation was used and therefore the sensorgram obtained
was angle dependent. Our model for comparing quantum
states is based on intensity interrogation, which is equivalent
to angular interrogation in terms of sensitivity performance
[11], but a transformation is required to go from the angular
sensorgram measured in the experiment to the corresponding
intensity (transmittance) sensorgram that would be measured
and we can use to compare the different quantum states.

In order to perform the transformation we need to know
what the value of T∞ (and therefore Tτ ) in Eq. (10) would be
in the experiment. With a knowledge of this parameter, as well
as the extracted kinetic parameters stated above we then have
the equivalent transmittance sensorgram that we can use in our
simulations. To obtain the value of T∞, we use the angular sen-
sorgram from the experiment, which is shown in Fig. 3(a), to
find the time dependence of the refractive index, na(t ), above
the gold surface. Using this and the other physical parameters
from the experiment we reconstruct a time-dependent model
T (t ) for the transmittance with the correct T∞ value. The

FIG. 3. Sensorgrams from the experiment by Kausaite et al. [23],
which investigates BSA interacting with the antibody rabbit anti-cow
albumin IgG1 (anti-BSA). (a) Angular sensorgram, 	θ (t ), where
the full sensorgram is θ (t ) = θ (0) + 	θ (t ) and θ (0) = 71.0966◦.
(b) Reconstructed transmittance sensorgram, T (t ) (solid line) and
linearized reconstructed transmittance sensorgram, TL (t ) (dashed
line). For both transmittance sensorgrams, θin = 70.1200◦ has been
set. (c) Comparison of the nonlinear response of T (t ) (solid line) and
linear response TL (t ) (dashed line).

details of the physical parameters and the procedure are given
in Appendix C.

With the full time dependence of na(t ) known from the
angular sensorgram, we use it in Eq. (1) to obtain T (t ) =
|rspp(t )|2, which is shown in Fig. 3(b) as a solid line. In this
plot we have set θin = 70.1200◦, which corresponds to an
angle close to the inflection point for the transmittance curve,
as shown as a dot in the inset of Fig. 1(a).

A final step in the reconstruction of the transmittance
sensorgram is to check that T (t ) has a linear response to
changes in na. The angular dependence follows closely a
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FIG. 4. Standard two-mode sensing using different quantum states (no loss, ηa = ηb = 1). Panels (a), (b), and (c) show the estimation
values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error bars represent the TMSV,
TMSD, TMC, and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the different
quantum states for m = 10. From top to bottom the lines correspond to TMF, TMSD, and TMSV, respectively. The dotted lines are a guide
representing the enhancement expected from the ratio RM at the midpoint of the sensorgram for the respective state.

linear response to changes in na and if the response of T (t )
is not linear, then our model for T (t ) will not be consistent
with the angular model, and it will lead to different kinetic
parameters being extracted from the fits. In Fig. 3(c) we show
the response of T to changes in na as the solid line and a linear
model,

TL(t ) = T (0) + [T (τ ) − T (0)][
n2

a(τ ) − n2
a(0)

] [
n2

a(t ) − n2
a(0)

]
, (11)

as a dashed line. One can see that the response of the trans-
mittance T is slightly nonlinear. The solution to this problem
is to calibrate the sensor by sending in an analyte with a range
of known refractive indicies and measuring the transmittance
response. As the response of T to na is monotonic [see
Fig. 3(c)], it means that for a given value of T there is a cor-
responding value for the linear calibrated TL. The correction
factor is therefore transmittance dependent, C(T ) = TL/T ,
and its form is known after calibration. We then have that
TL = C(T )T . The linearized sensorgram is shown in Fig. 3(b)
as a dashed line and this is the sensorgram we use for compar-
ing the different quantum states, as it will give approximately
the same kinetic parameters as the θ (t ) sensorgram in the ideal
case when there is no noise. The T (t ) and TL(t ) sensorgrams
are very similar to each other, which is due to the small
nonlinear response that nonetheless needs to be accounted for.

The kinetic parameters obtained from the ideal
TL(t ) sensorgram shown as the dashed line in
Fig. 3(b) are ks = 0.0105 s−1, kd = 7.771 × 10−3 s−1,
and ka = 10.029 × 103 M−1s−1, where we have used
L0 = 274 × 10−9 M to extract ka from the parameters ks and
kd using the formula ks = kaL0 + kd . These parameters are
slightly different in value to those extracted from the angular
sensorgram in the experiment due to a small residual nonlinear
response of the corresponding transmittance sensorgram after

the linearization. However, we use these values as the
ideal values in our study as they correspond to the ideal
transmittance sensorgram that we have obtained as our
model. We now consider using the classical TMC state, and
compare the estimate and precision of the kinetic parameters
obtained with it to those obtained using the different quantum
states. To do this we simulate the measurement process
and noise according to the Monte Carlo simulation method
described in Sec. II C.

B. Standard two-mode sensing

In this first scenario, we consider the general sensing model
shown in Fig. 1(c), where we set the loss in either mode to be
the same. To start with, we take the ideal case of no loss, i.e.,
ηa = ηb = 1. In Figs. 4(a)–4(c) we show the estimation value
(mean as a point) and estimation precision (standard deviation
as an error bar) for the kinetic parameters ka, ks, and kd for
increasing sample size ν. For this example, we have used
N = 10 for the photon number and m = 10 for the number
of sensorgrams in a set. The number of sets of sensorgrams
simulated is p = 1500, which is chosen as it provides a stable
distribution of the extracted kinetic parameters from the fits.
We use this value of p for all the simulations in this work.

One can see in Figs. 4(a)–4(c) that the TMF state provides
the best estimation of the kinetic parameters for any ν, fol-
lowed by the TMC state, then the TMSD state and finally
the TMSV state. The estimation precision shown for each
state physically corresponds to that of a fixed set of m = 10
sensorgrams, each of which has ν states probed at a given
instance of time, with a step size between instances of time
of 10 s, as described in more detail in Sec. II C. In the present
scenario, the sensorgram is 2200 s in duration, and so there are
220 points in total, each point having ν probe states measured.
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FIG. 5. Photon number dependence in standard two-mode sensing using different quantum states (no loss, ηa = ηb = 1). Panels (a), (b), and
(c) show the estimation values and precisions for the kinetic parameters ka, ks, and kd as N increases for m = 10 and ν = 100. For each value
of N the error bars represent the TMSV, TMSD, TMC, and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding
enhancement ratio for the different quantum states. From top to bottom the lines correspond to TMF, TMSD, and TMSV, respectively. The
dotted lines for each state are a guide representing the enhancement expected from the ratio RM at the midpoint of the sensorgram for the
respective state.

The step size for the points was chosen so that there was a fine
enough mesh for the fit to return the exact values in the ideal
case when there is no noise.

We quantify the improvement in the estimation precision
by considering the ratio, Rk , of a quantum state’s measurement
precision for parameter k, given by 	kQ, to that of the TMC
state with matching mean photon number in each mode, 	kC ,
i.e., Rk = 	kC/	kQ. We call this the enhancement ratio. The
enhancement is shown in Figs. 4(d)–4(f) for ka, ks, and kd as
ν increases. The TMC state has no enhancement and the ratio
value is 1 naturally.

In Figs. 4(d)–4(f) the dotted lines for each state are a guide
that represents the enhancement expected from the ratio of
RM = 	MC/	MQ at the midpoint value of the sensorgram (at
T = 0.451), as shown in Fig. 3(b). The ratio RM is related to
the well-known noise reduction factor (NRF) used to quantify
how well quantum states reduce measurement noise by the
relation RM = 1/

√
NRF [14,69–72]. The enhancements Rk

are clearly roughly in line with that expected from RM at the
midpoint value of T . It is interesting that the enhancement
of the estimation precision for the kinetic parameters can be
found from assessing only RM (or the NRF) for the midpoint
value of the sensorgram. This clearly shows that the enhance-
ment in the estimation precision of a parameter extracted from
a static transmittance, as studied in Ref. [15], carries over
to parameters extracted from a dynamic transmittance, with
the enhancement approximated well by the midpoint enhance-
ment of the dynamic transmittance. In Appendix E we show
how the enhancement RM changes about the midpoint of the
sensorgram for each of the states. The general trend is that
T values below (above) the midpoint give a lower (higher)
enhancement. The overall effect over the range of T in a

sensorgram appears to be an averaging of the enhancement
about the midpoint, which gives approximately the enhance-
ment Rk for the kinetic parameters.

In Appendix D we consider the effect that changing m (the
number of sensorgrams in a set) has on the enhancement. By
setting m = 50, a similar behavior to that shown in Fig. 4 for
m = 10 can be seen for the estimation precision of all the
states, with the TMF state providing the best estimation in
the kinetic parameters for any ν, followed by the TMC state,
then the TMSD state and finally the TMSV state. We call the
ratio of the enhancement ratio for m = 50 and m′ = 10, i.e.,
Rk,50/Rk,10, for ka, ks, and kd , the “m-enhancement” ratio. It is
expected to be

√
m/m′ = 2.236 due to the 1/

√
m dependence

of the estimation precision, 	k, for a fixed ν. As can be seen in
Appendix D, the m-enhancement ratios for the different states
are roughly in line with the expected value 2.236 when going
from m = 10 to m = 50 sensorgrams in a set.

In addition to checking how well quantum states of a fixed
photon number (N = 10) enhance the estimation precision
as ν changes, we also study the dependence of the photon
number for a fixed ν. In this case, we set ν = 100 and vary
N from 10 to 10 000, as shown in Figs. 5(a), 5(b), and 5(c) for
ka, ks, and kd , respectively. One can see that as N increases the
TMF state provides the best estimation in the kinetic parame-
ters for any N , followed by the TMC state, then the TMSD
state and finally the TMSV state. Interestingly, the TMSV
state has a photon number dependence, which is a known
behavior in the static case [14,15]. The estimation precision
becomes worse as N increases and the accuracy (deviation of
the estimation value from the ideal value) of the estimation
also does not improve. This can be seen more clearly in the
enhancement plots in Figs. 5(d), 5(e), and 5(f) and anticipated
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FIG. 6. Standard two-mode sensing using the TMF and TMC quantum states (loss, ηa = ηb = 0.8). Panels (a), (b), and (c) show
the estimation values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error
bars represent the TMC and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio
for the TMF state for m = 10. Panels (g), (h), and (i) show the estimation values and precisions for the kinetic parameters ka, ks,
and kd as N increases for m = 10 and ν = 100. For each value of N the error bars represent the TMC and TMF states, going from
left to right. Panels (j), (k), and (l) show the corresponding enhancement ratio for the TMF state. In panels (d), (e), (f), (j), (k), and
(l) the dotted lines are a guide representing the enhancement expected from the ratio RM at the midpoint of the sensorgram for the
TMF state.

from the form of RM = 	MTMC/	MT MSV using the relations
for the 	M’s given in Appendix A. In this standard two-mode
sensing scenario, the TMF state is clearly the state that offers
the best estimation precision and unbiased estimation value,
providing an enhancement over the classical TMC state. In
Appendix E we show how the enhancement RM changes about
the midpoint of the sensorgram for each of the states as N
increases. As before, the general trend is that T values below
(above) the midpoint give a lower (higher) enhancement. The
overall effect on the kinetic enhancement Rk is an averaging
of the RM enhancement about the midpoint.

Having confirmed the performance of the different quan-
tum states as ν, m, and N vary, we now turn our attention to the
impact of loss on the signal and reference modes, representing
a more practical assessment in a potential experimental set-
ting. As the TMF state outperforms the other states in the case
of no loss, we focus on it and compare it with the classical
TMC state. In Figs. 6(a)–6(c) we show the estimation value
and estimation precision for the kinetic parameters ka, ks,
and kd for increasing set size ν, with ηa = ηb = 0.8. For this
example, we have used N = 10 for the photon number and
m = 10. One can see that even in the presence of moderate
loss the TMF state clearly provides the best estimation in the
kinetic parameters for any ν.

The enhancement is shown in Figs. 6(d)–6(f) for ka,
ks, and kd as ν increases. As before, the dotted lines are
a guide that represent the enhancement expected from the
ratio RM at the midpoint of the sensorgram. The enhance-
ments are again roughly in line with that expected from
the midpoint value and independent of ν. In Appendix E
we show how the enhancement changes about the mid-
point of the sensorgram for each of the states when there
is loss.

In Figs. 6(g)–6(i) we show the dependence of the estima-
tion values and precisions on the photon number for a fixed ν.
In this case, we set ν = 100 and vary N from 10 to 10 000. As
N increases the TMF state again provides the best estimation

in the kinetic parameters for any N . In Figs. 6(j)–6(l) we show
the corresponding enhancement behavior.

C. Optimized two-mode sensing

In a second scenario, we follow Refs. [14,16] and set
ηb = ηaT in order to gain a further reduction in the overall
noise in the measurement for some of the states. This is a form
of optimization for the sensing model and helps the TMSD
and TMSV states in particular in the static case. However, in
the dynamic case, in order to set ηb = ηaT in the reference
mode we must know T at each instance of time. This is not
practical from an experimental point of view, and therefore
we choose T to be fixed in the reference mode at the mid-
point value Tmid = 0.4507, i.e., ηb = ηaTmid, while T varies
in the signal mode. This is motivated by the observation in
the previous section that the overall enhancement is approxi-
mately the value found at the midpoint of the sensorgram. The
question we seek to answer here is whether the enhancement
in the estimation precision of a parameter extracted from a
static transmittance carries over to parameters extracted from
a dynamic transmittance when an optimization is performed.

In Figs. 7(a)–7(c) we show the estimation value and es-
timation precision for the kinetic parameters ka, ks, and kd

for increasing ν, with N = 10 and m = 10. As before, one
can see that the TMF state provides the best estimation in
the kinetic parameters for any ν. However, different to the
standard two-mode sensing scenario, the TMSV and TMSD
states now both outperform the classical TMC state. This
optimized scenario clearly helps the TMSV and TMSD states,
where the choice of ηb = ηaT reduces the respective 	M,
as given in Appendix A. The corresponding enhancement is
shown in Figs. 7(d)–7(f) for ka, ks, and kd as ν increases. The
enhancements are all similar and roughly in line with that ex-
pected from the midpoint value (dotted line) and independent
of ν. The TMF state midpoint enhancement is the same as
the TMSV state and thus its dotted line cannot be seen in the
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FIG. 7. Optimized two-mode sensing using different quantum states (no loss, ηa = 1 and ηb = ηaTmid). Panels (a), (b), and (c) show the
estimation values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error bars represent
the TMSV, TMSD, TMC, and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the
different quantum states for m = 10. From top to bottom the lines correspond to TMF, TMSD, and TMSV, respectively. Panels (g), (h), and (i)
show the estimation values and precisions for the kinetic parameters ka, ks, and kd as N increases for m = 10 and ν = 100. For each value of
N the error bars represent the TMSV, TMSD, TMC, and TMF states, going from left to right. Panels (j), (k), and (l) show the corresponding
enhancement ratio for the different quantum states. From top to bottom the lines correspond to TMF, TMSD, and TMSV, respectively. In
panels (d), (e), (f), (j), (k), and (l) the dotted lines are a guide representing the enhancement expected from the ratio RM at the midpoint of the
sensorgram for the respective state.

plots. In Appendix E we show how the enhancement changes
about the midpoint of the sensorgram for each of the states.
Unlike the standard two-mode scenario, the enhancement for
T values around the midpoint is roughly constant for the TMF
and TMSD states. On the other hand, the enhancement for
the TMSV state deviates slightly from the expected midpoint
enhancement. This can be explained from the pronounced
decrease in the enhancement on either side of the midpoint,
as seen in Appendix E.

The dependence of the estimation value and precision on
the photon number for a fixed ν is shown in Fig. 7(g), 7(h),
and 7(i) for ka, ks, and kd , respectively. In this case, we set
ν = 100 and vary N from 10 to 10 000. One can see that
similar to the standard case, as N increases the TMF state pro-
vides the best estimation in the kinetic parameters for any N .
However, different to the standard case the TMSD state now
performs better than the classical TMC state for any N . The
TMSV state also performs better than the TMC state for low
photon number (�10), although for larger N the optimized
scenario does not provide an advantage—a behavior known
from the static case [14,16]. In Appendix E we show how the
enhancement changes about the midpoint of the sensorgram
for each of the states as N increases. The enhancement for T
values around the midpoint is roughly constant for the TMF
and TMSD states, but for the TMSV state it reduces sharply
on either side. This is what causes the enhancement of the
kinetic parameters to not match up with the expected midpoint
value in Figs. 7(j), 7(k), and 7(l). The TMF state midpoint
enhancement is the same as the TMSV state and thus its
dotted line cannot be seen in the plots. We now investigate the
impact of loss in this optimized scenario. As the TMF state
outperforms the other states, we focus on it and compare it
with the TMC state. In Figs. 8(a)–8(c) we show the estimation
value and estimation precision for the kinetic parameters ka,
ks, and kd for increasing ν, with ηa = 0.8 and ηb = 0.8Tmid.
We have used N = 10 for the photon number and m = 10. As

in the standard two-mode sensing scenario, one can see that
even in the presence of moderate loss the TMF state provides
the best estimation in the kinetic parameters for any ν. The
enhancement is shown in Figs. 8(d)–8(f) for ka, ks, and kd as ν

increases. The enhancements are roughly in line with that ex-
pected from the midpoint value (dotted line) and independent
of ν. In Appendix E we show how the enhancement changes
about the midpoint of the sensorgram for each of the states
when there is loss.

In Figs. 8(g)–8(i) we show the dependence of the estima-
tion value and precision on the photon number for a fixed ν.
We have set ν = 100 and varied N from 10 to 10 000. As N
increases the TMF state again provides the best estimation in
the kinetic parameters for any N . In Figs. 8(j)–8(l) we show
the corresponding enhancement behavior.

D. Single-mode sensing

In a final scenario, we reduce the two-mode sensing model
to a single-mode model by effectively removing the refer-
ence mode b by setting ηb = 0. This means that there will
be no transmittance in that mode and the intensity-difference
measurement, 〈M̂〉, becomes an intensity measurement of the
signal mode. This scenario may be more feasible in an experi-
ment. Indeed, several experiments have already demonstrated
a single-mode scenario for quantum plasmonic sensing with
N = 1 Fock states [17–19]. In the case of a parameter ex-
tracted from a static transmittance, the Fock state is known
to be the optimal state [14,16,73] and therefore we focus on
using it for the case here involving parameters estimated from
a dynamic transmittance.

In Figs. 9(a)–9(c) we show the estimation value and es-
timation precision for the kinetic parameters ka, ks, and kd

for increasing ν, with N = 10 and m = 10. One can see that
the Fock state (TMF state with ηb = 0) provides the best
estimation in the kinetic parameters for any ν when compared
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FIG. 8. Optimized two-mode sensing using the TMF and TMC quantum states (loss, ηa = 0.8 and ηb = ηaTmid). Panels (a), (b), and
(c) show the estimation values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error
bars represent the TMC and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the
TMF state for m = 10. Panels (g), (h), and (i) show the estimation values and precisions for the kinetic parameters ka, ks, and kd as N increases
for m = 10 and ν = 100. For each value of N the error bars represent the TMC and TMF states, going from left to right. Panels (j), (k), and (l)
show the corresponding enhancement ratio for the TMF state. In panels (d), (e), (f), (j), (k), and (l) the dotted lines are a guide representing the
enhancement expected from the ratio RM at the midpoint of the sensorgram for the TMF state.

to a coherent state in the signal mode with matched mean
photon number (TMC state with ηb = 0). The corresponding
enhancement is shown in Figs. 9(d)–9(f) for ka, ks, and kd as
ν increases. The enhancements are all similar and roughly in
line with that expected from the midpoint value RM (dotted
line) and independent of ν. In Appendix E we have not in-
cluded the behavior of the enhancement around the midpoint
in this scenario, as the Fock state enhancement in the single-
mode scenario is the same as that of the TMF state in the
optimized two-mode scenario for any value of T [16].

The dependence of the estimation value and precision on
the photon number for a fixed ν is shown in Figs. 9(g), 9(h),
and 9(i) for ka, ks, and kd , respectively. In this case, we set
ν = 100 and vary N from 10 to 10 000. One can see that
as N increases the Fock state provides the best estimation in

the kinetic parameters for any N . Again, in Appendix E, we
have not included the behavior of the enhancement around
the midpoint due to its equivalence to that of the optimized
two-mode scenario.

In Figs. 10(a)–10(c) we consider loss in the signal mode
and show the estimation value and estimation precision for
the kinetic parameters ka, ks, and kd for increasing ν, with
ηa = 0.8 and ηb = 0. We have used N = 10 for the photon
number and m = 10. As before, one can see that even in the
presence of moderate loss the Fock state provides the best
estimation in the kinetic parameters for any ν. The enhance-
ment is shown in Figs. 10(d)–10(f) for ka, ks, and kd as ν

increases. The enhancements are roughly in line with that ex-
pected from the midpoint value (dotted line) and independent
of ν.

FIG. 9. Single-mode sensing using Fock (TMF) and coherent (TMC) states (no loss, ηa = 1 and ηb = 0). Panels (a), (b), and (c) show the
estimation values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error bars represent
the coherent and Fock states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the Fock state for
m = 10. Panels (g), (h), and (i) show the estimation values and precisions for the kinetic parameters ka, ks, and kd as N increases for m = 10
and ν = 100. For each value of N the error bars represent the coherent and Fock states, going from left to right. Panels (j), (k), and (l) show
the corresponding enhancement ratio for the Fock state. In panels (d), (e), (f), (j), (k), and (l) the dotted lines are a guide representing the
enhancement expected from the ratio RM at the midpoint of the sensorgram for the Fock state.
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FIG. 10. Single-mode sensing using Fock (TMF) and coherent (TMC) states (loss, ηa = 0.8 and ηb = 0). Panels (a), (b), and (c) show the
estimation values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 10. For each value of ν the error bars represent
the coherent and Fock states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the Fock state for
m = 10. Panels (g), (h), and (i) show the estimation values and precisions for the kinetic parameters ka, ks, and kd as N increases for m = 10
and ν = 100. For each value of N the error bars represent the coherent and Fock states, going from left to right. Panels (j), (k), and (l) show
the corresponding enhancement ratio for the Fock state. In panels (d), (e), (f), (j), (k), and (l) the dotted lines are a guide representing the
enhancement expected from the ratio RM at the midpoint of the sensorgram for the Fock state.

In Figs. 10(g)–10(i) we show the dependence of the photon
number for a fixed ν. We have set ν = 100 and varied N from
10 to 10 000. As N increases the Fock state again provides
the best estimation in the kinetic parameters for any N . In
Figs. 10(j)–10(l) we show the corresponding enhancement
behavior.

It is interesting to note that in static quantum plasmonic
sensing with a single mode, the Fock state provides an en-
hancement in the estimation precision for any value of ηa (see
Refs. [14,16]). In this case, the enhancement tends to unity
as ηa goes to zero. While our dynamic results are limited
to the case of ηa = 1 and ηa = 0.8, we have shown that the
enhancement carries over well from the static to the dynamic
case and that it is mainly determined by the enhancement
around the midpoint value. It is therefore likely that the static
enhancement carries over to the dynamic case for any value of
ηa. Further work in this direction would be needed to confirm
such behavior.

V. SMALL SENSORGRAM DEVIATION

We now study a second interaction, that of carbonic
anhydrase (CA) interacting with the inhibitor benzenesul-
fonamide, which is well documented in the work of Lahiri
et al. [24]. This second interaction process was chosen as
it produces a small sensor response, or deviation, due to the
small change in the refractive index during the interaction dy-
namics. It therefore gives information about the performance
of quantum techniques for measuring kinetic parameters in
pathogen-inhibitor interactions relevant to drug development.
In this case, usually a much larger pathogen is immobilized
as the receptor and the smaller inhibitor molecule is added as
the ligand in the analyte [9,13]. Due to the small size of the
ligand molecule, the resulting refractive index change is much
smaller.

A. Transmittance sensorgram

In the experiment reported by Lahiri et al. [24], the CA
is immobilized on a gold surface using a self-assembled

monolayer following a similar method to that used in
Kausaite et al. [23], in the previous section. The real-
time SPR curve is measured for the CA interacting with
benzenesulfonamide in an analyte using a BIAcore 1000 com-
mercial SPR sensor developed by BIAcore [74]. From the
sensorgram obtained they extracted the following kinetic pa-
rameters, ka = 3.8 × 10−3 M−1 s−1, kd = 15 × 10−3 s−1, and
L0 = 2.1 M. However, as before, in the experiment angular
interrogation is used and therefore the sensorgram obtained
is angle dependent. A transformation is required to go from
the angular sensorgram to the corresponding transmittance
sensorgram that can be used to compare the different quantum
states.

We follow the method outlined in the previous section in
order to obtain the transmittance sensorgram. The angular
sensorgram 	θ (t ) is shown in Fig. 11(a) and has the following
parameters: A∞ = 0.0291 and τ = 300 (see Appendix C for
details). We use this model to find the sensorgram for intensity
interrogation, T (t ). At t = 0, we set n2

a(0) to be equal to that
of the buffer solution used in the experiment, which for PBS
is 1.3385 [67]. Setting the frequency ω corresponding to the
wavelength of the laser used (λ = 760 nm), with np = 1.523
[24] and using εm = −20.913 + i1.2923 [68], we obtain from
Eq. (C2) in Appendix C the angle θ (0) = 66.796◦. With the
time dependence of na(t ) known from Eq. (C3), we then
use it in Eq. (1) to obtain T (t ) = |rspp(t )|2, which is shown
in Fig. 11(b). In this plot we have set θin = 66.21◦, which
corresponds to an angle below θ (0) where we are operating
close to the inflection point for the transmittance curve, as
shown in the inset of Fig. 1(a). We have set the thickness of
the gold as d = 38 nm, as used in the experiment [24].

Due to the small change in the transmittance T dur-
ing the interaction, the response of the sensor can be
assumed to be linear. Thus, the reconstructed transmit-
tance sensorgram does not require any calibration. The
kinetic parameters obtained from the ideal T (t ) sen-
sorgram shown in Fig. 11(b) are ks = 22.98 × 10−3 s−1,
kd = 15 × 10−3 s−1, and ka = 3.8 × 10−3 M−1 s−1, where
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FIG. 11. Sensorgrams from the experiment by Lahiri et al. [24]
which investigates CA interacting with benzenesulfonamide. (a) An-
gular sensorgram, 	θ (t ), where the full sensorgram is θ (t ) = θ (0) +
	θ (t ) with θ (0) = 66.796◦. (b) Reconstructed transmittance sensor-
gram, T (t ), with θin = 66.21◦ set.

we have used L0 = 2.1 M to extract out ka from the param-
eters ks and kd , as before. Due to the linear transmittance
response of the sensor, these parameters match exactly those
obtained from the angular sensorgram.

We now consider using the classical state (TMC state) and
compare the estimate and precision of the kinetic parameters
obtained with it to those obtained using the quantum states. As
in the previous section, we simulate the measurement process
and noise according to the Monte Carlo simulation method
described in Sec. II C. For conciseness we focus on only one
of the kinetic parameters, the association constant ka. This ki-
netic parameter depends on the other two parameters ks and kd

extracted from the fits using the relation ka = (ks − kd )/[L0],
and it therefore gives an idea of the overall enhancement in the
estimation of the kinetic parameters. However, the estimation
precisions of the individual parameters ks and kd were checked
and found to individually follow the same behavior as ka. In
addition, for the low photon number of N = 10, the value of
the set size ν for each instance of time in the sensorgram had
to be increased considerably as the noise in the measurement
signal was too large otherwise (low signal-to-noise ratio) and
a fit could not be obtained. We have chosen to fix ν = 105,
as values above this are challenging to reach in an experiment
[17]. Here we focus on the dependence of the estimation value
and its precision as the photon number increases. We have
also chosen to focus on the comparison between the TMC and
TMF states, as it is clear that the TMSV and TMSD states
improve on the TMC state only in the two-mode optimized

FIG. 12. Photon number dependence in standard two-mode sens-
ing using TMC and TMF states for a small sensorgram deviation.
Panels (a) and (c) show the estimation values and precisions for
the kinetic parameter ka as N increases for m = 10 and ν = 105,
where (a) corresponds to no loss (ηa = ηb = 1) and (c) corresponds
to loss (ηa = ηb = 0.8). For each value of N the error bars represent
the TMC and TMF states, going from left to right. Panels (b) and
(d) show the corresponding enhancement ratio for the TMF state,
where (b) corresponds to no loss (ηa = ηb = 1) and (d) corresponds
to loss (ηa = ηb = 0.8). The dotted lines are a guide representing
the enhancement expected from the ratio RM at the midpoint of the
sensorgram for the TMF state.

scenario, and in this case the enhancement in precision is
similar to that of the TMF state in both the static case [14,16]
and dynamic case for large deviation (see previous section).

B. Standard two-mode sensing

In this first scenario, as before, we consider the general
sensing model shown in Fig. 1(c), where we set the loss in
either mode to be the same. To start, we take the ideal case of
ηa = ηb = 1. In Fig. 12(a) we show the estimation value and
estimation precision for the kinetic parameter ka as we vary N
from 10 to 10 000. As before, the estimation precision shown
for each state physically corresponds to that of a fixed set of
m = 10 sensorgrams, each of which has ν states probed at a
given instance of time, with a step size between instances of
time of 5 s, as described in more detail in Sec. II C. In the
present scenario, the sensorgram is 1000 s in duration, and so
there are 200 points in total, each point having ν probe states
measured. The step size for the points was chosen so that there
was a fine enough mesh for the fit to return the exact values in
the ideal case when there is no noise.

In Fig. 12(a) one can see that as N increases the TMF
state provides the best estimation in the kinetic parameters for
any N . The enhancement plot is shown in Fig. 12(b). In this
standard two-mode sensing scenario, the TMF state is clearly
the state that offers the best estimation precision. In Fig. 12(c)
we show the estimation value and estimation precision for
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FIG. 13. Photon number dependence in optimized two-mode
sensing using TMC and TMF states for a small sensorgram deviation.
Panels (a) and (c) show the estimation values and precisions for the
kinetic parameter ka as N increases for m = 10 and ν = 105, where
(a) corresponds to no loss (ηa = 1 and ηb = Tmid) and (c) corresponds
to loss (ηa = 0.8 and ηb = 0.8Tmid). For each value of N the error
bars represent the TMC and TMF states, going from left to right.
Panels (b) and (d) show the corresponding enhancement ratio for the
TMF state, where (b) corresponds to no loss (ηa = 1 and ηb = Tmid)
and (d) corresponds to loss (ηa = 0.8 and ηb = 0.8Tmid). The dotted
lines are a guide representing the enhancement expected from the
ratio RM at the midpoint of the sensorgram for the TMF state.

the kinetic parameter ka for increasing photon number N ,
with ηa = ηb = 0.8. One can see that even in the presence of
moderate loss the TMF state provides the best estimation in
the kinetic parameters.

C. Optimized two-mode sensing

In this second scenario, we set ηb = ηaTmid, with Tmid =
0.4824. In Fig. 13(a) we show the estimation value and es-
timation precision for the kinetic parameter ka as we vary N
from 10 to 10 000 for the ideal case of ηa = 1 and ηb = Tmid.
One can see that as N increases the TMF state provides
the best estimation in the kinetic parameters for any N . The
enhancement plot is shown in Fig. 13(b). In this optimized
two-mode sensing scenario, the TMF state is clearly the state
that offers the best estimation precision. In Fig. 13(c) we show
the estimation value and estimation precision for the kinetic
parameter ka for increasing photon number N , with ηa = 0.8
and ηb = 0.8Tmid. One can see that even in the presence of
moderate loss the TMF state again provides the best estima-
tion in the kinetic parameters.

D. Single-mode sensing

In the final scenario, we reduce the two-mode sensing
model to a single-mode model by effectively removing the
reference mode b by setting ηb = 0. As mentioned before,
this means that there is no transmittance in that mode and

FIG. 14. Photon number dependence in single-mode sensing us-
ing coherent (TMC) and Fock (TMF) states for a small sensorgram
deviation. Panels (a) and (c) show the estimation values and preci-
sions for the kinetic parameter ka as N increases for m = 10 and
ν = 105, where (a) corresponds to no loss (ηa = 1 and ηb = 0) and
(c) corresponds to loss (ηa = 0.8 and ηb = 0). For each value of N
the error bars represent the coherent and Fock states, going from left
to right. Panels (b) and (d) show the corresponding enhancement
ratio for the Fock state, where (b) corresponds to no loss (ηa = 1
and ηb = 0) and (d) corresponds to loss (ηa = 0.8 and ηb = 0). The
dotted lines are a guide representing the enhancement expected from
ratio RM at the midpoint of the sensorgram for the Fock state.

the intensity difference measurement effectively becomes an
intensity measurement of the signal mode. In Fig. 14(a) we
show the estimation value and estimation precision for the
kinetic parameter ka as we vary N from 10 to 10 000 for
the ideal case of ηa = 1 and ηb = 0. One can see that as
N increases the TMF state provides the best estimation in
the kinetic parameters for any N . The enhancement plot is
shown in Fig. 14(b). In this single-mode sensing scenario, the
TMF state is again the state that offers the best estimation
precision. In Fig. 14(c) we show the estimation value and
estimation precision for the kinetic parameter ka for increasing
photon number N , with ηa = 0.8 and ηb = 0. Thus, even in
the presence of moderate loss the TMF state provides the best
estimation in the kinetic parameters.

E. Threshold intensity

In the case of a small sensorgram deviation it was pointed
out that due to the signal-to-noise ratio a large value of ν is
needed to be able to make a fit and extract out the kinetic
parameters for the classical TMC state and TMF state, re-
gardless of the sensing scenario. This is interesting because
it implies that for a fixed mean photon number N in the probe
mode, a relatively high intensity (high probe state rate or
large ν) is needed for studying interactions that result in a
small sensorgram deviation. If the biosystems (receptors and
ligands) being studied are fragile to such a high intensity it
would potentially add extra noise to the measurements and
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make them less precise [75–77], an effect recently observed
for 3 μm polystyrene beads [26]. The sensor itself may also
impart additional noise or nonlinear behavior at a high inten-
sity [11,27].

Regardless of the size of the sensorgram deviation, in the
case where the additional noise mentioned above is intro-
duced, it is favourable to operate at a lower intensity. Let
It = Nrt be a threshold intensity above which the biosystem or
sensor does not function correctly and assume a fixed interac-
tion region of the sensor that a state probes (spatial area of the
signal mode profile). Here rt is the threshold rate of states used
for probing, each state having mean photon number N in the
signal mode. Assuming a sensorgram represents an ergodic
process over at most 1s, this means that at the threshold we
have mν � rt , i.e., for a fixed m, rt sets an upper bound on ν.
At the threshold, to improve the signal-to-noise ratio one can
increase N , as in general the ratio scales as (Nν)1/2 for all the
states considered (see Appendix A). However, rt will need to
decrease and therefore ν decreases, with the ratio remaining
unchanged. The parameters N and ν are interchangeable in
this sense and conversely one can also try to improve the
signal-to-noise ratio by increasing ν via increasing rt at the
expense of decreasing N . A higher signal-to-noise ratio would
lead to an enhancement in the estimation precision of the
kinetic parameters, but it appears that this is not possible at
the threshold intensity by changing only N or ν.

In this work we have shown that for a given N , a quantum
state, e.g., the TMF state, can offer the same estimation preci-
sion as the classical TMC state at a higher N (for a fixed ν).
We have also shown that for a given ν, a quantum state can
offer the same precision as the classical TMC state at a higher
ν (for a fixed N). Thus, in general the precision of the classical
state can be obtained with a quantum state using a lower
intensity. This means that one can achieve a better precision
than the classical TMC state at the threshold intensity—the
point at which the maximum precision is achieved for any
state.

VI. SUMMARY AND OUTLOOK

In this work we studied theoretically the measurement
of the kinetic parameters of two interaction processes using
a plasmonic resonance sensor and quantum states of light.
The first interaction studied was BSA interacting with IgG1
(anti-BSA), which was chosen as it produces a large sensor
response. The second interaction studied was carbonic anhy-
drase interacting with benzenesulfonamide, which was chosen
as it produces a small sensor response and therefore gives
information about the performance of quantum techniques for
measuring kinetic parameters of interactions relevant to drug
development.

We started by introducing the physical model for plas-
monic sensing and provided details of the sensor setup, its
response to a dynamically changing environment, the general
model for interaction kinetics, and the various quantum states
and measurements. For the interaction processes we consid-
ered the classical TMC state and various quantum states:
the TMF, TMSV, and TMSD states. We also described the
simulation method we used to model noise in the sensor’s
measurement signal for these states.

Our results show that the enhancement in the estimation
precision offered by quantum states translates well from static
to kinetic parameters, such as the association and dissociation
binding constants of the interactions. In the case of a large
sensorgram deviation, a wide range of ν, m, and N values
could be considered and an enhancement was shown for the
various quantum states in three main scenarios: standard, op-
timized, and single-mode. On the other hand, in the case of a
small sensorgram deviation, a large value of ν was needed to
be able to make a fit and extract out the kinetic parameters
for the classical TMC state and TMF state. This led to a
discussion about intensity and additional intensity-based noise
due to the fragility of biosystems and the sensor itself. It was
mentioned that the classical precision in kinetic parameters
can be obtained with a quantum state using a lower intensity
and that therefore one can achieve a better precision than the
classical TMC state at the threshold intensity—the point at
which the maximum precision is achieved for any state before
additional noise is introduced.

While the enhancement in the precision found using quan-
tum states is small at around 1–3 times that of the classical
case, even such a small improvement in the estimation pre-
cision could make a big difference in accurately determining
the kinetic parameters when operating close to the intensity
and noise limits of a sensor.

The insights and analysis provided in this study may
help in designing quantum plasmonic sensors that enable
more precise kinetics research. Future work might look at
extending the analysis given here to angular interrogation
and other interesting kinetic interactions in pharmaceutical
research.
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APPENDIX A: MEASUREMENT NOISE OF
THE QUANTUM STATES

In this Appendix we give the formulas for the noise in the
measurement of the different quantum states in the standard
two-mode scenario, i.e., 	M. For the TMC state we have [14]

	MTMC = (ηaT Na + ηbNb)1/2, (A1)

where Na = Nb = N in the symmetric (balanced) case for the
enhancement calculation, RM = 	MC/	MQ, i.e., when the
classical TMC state (C = TMC) is compared with a quan-
tum state Q with equal number of photons in the signal and
reference modes (Q = T MF and T MSV ). For the TMF and
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TMSV states we have [15]

	MTMF = N1/2[ηaT (1 − ηaT ) + ηb(1 − ηb)]1/2, (A2)

	MTMSV = N1/2[(T ηa − ηb)2N + ηb + T ηa(1 − 2ηb)]1/2.

(A3)

For the TMSD state we have

	MTMSD = {
2T 2η2

aG(G − 1)|α|2 + T 2η2
a(G − 1)2

+ T ηa[G|α|2 + (G − 1)] + 2η2
b(G − 1)2|α|2

+ η2
b(G − 1)2 + ηb[(G − 1)|α|2 + (G − 1)]

− 4T ηaηbG(G − 1)|α|2 − 2T ηaηbG(G − 1)
}1/2

.

(A4)

In the above we have used G = cosh2 r. The formula can be
put in terms of N using the relation N = G|α|2 + (G − 1) and
is obtained using the relation

	M = [〈M̂2〉 − 〈M̂〉2]1/2

= [
	N2

a + 	N2
b − 2(〈N̂aN̂b〉 − 〈N̂a〉〈N̂b〉)

]1/2
. (A5)

The expectation values of Eq. (A5) can be calculated in the
Heisenberg picture, where the initial state before squeezing,
|α〉a |0〉b, is used together with the evolution of the operators
as [14,16]

â =
√

GT ηaâ +
√

(G − 1)T ηab̂†

+√
1 − T ĉ +

√
T (1 − ηa)d̂, (A6)

b̂ =
√

Gηbb̂ +
√

(G − 1)ηbâ† +
√

1 − ηbê. (A7)

The operators ĉ, d̂ , and ê represent noise operators for modes
that are initially in the vacuum state. One finds the following
terms:

	N2
a = T 2η2

a(G − 1)[(G − 1) + 2G|α|2] + T ηa[(G − 1)

+ G|α2|], (A8)

	N2
b = (G − 1)2η2

b(2|α|2 + 1) + (G − 1)ηb(|α|2 + 1),

(A9)

〈N̂aN̂b〉 = T ηaηb[G(G − 1)(|α|4 + 2|α|2)

+ G(G − 1)(|α|2 + 1) + (G − 1)2(|α|2 + 1)],

(A10)

〈N̂a〉 = T ηa(G|α|2 + (G − 1)), (A11)

〈N̂b〉 = ηb(G − 1)(|α|2 + 1). (A12)

In the limit of |α|2 � 1 we have from Eq. (A4),

	MTMSD = |α|[T ηaG + ηb(G − 1) + 2(G − 1)

× (
G(T ηa − ηb)2 − η2

b

)]1/2
, (A13)

which leads to the formula in Refs. [15,16] for
	M2

TMSD/	M2
TMC when Na and Nb in 	MTMC [see Eq. (A1)]

are set to match the initial values for the TMSD state.

In the optimized two-mode scenario we then set ηb =
ηaTmid in Eqs. (A1), (A2), (A3), and (A4). In the single-mode
scenario we set ηb = 0.

APPENDIX B: INTERACTION KINETICS

In order to model the dynamics of a given interaction, the
receptor-ligand complex concentration [C] at any time in the
system should be found. The increasing rate of [C] at an
instance of time in the system is ka[L][R]. Where [L] and
[R] are the individual ligand and receptor concentrations at
that time in units of M (molarity, or moles per liter: mol/l),
respectively, and ka is the association constant measured in
M−1 s−1 (per molarity per second), which is determined by
collision rates involved in the interactions between ligand and
receptor molecules. At t = 0, the ligand concentration can be
taken as [L0] and the receptor concentration as [R0]. As the
concentration of the receptor-ligand complex increases, the
concentration of the individual ligand and receptor molecules
decreases. At t � 0, we have the concentration of ligands
[L] = [L0] − [C] and the concentration of receptors [R] =
[R0] − [C]. One can also look at backward reactions, where
the decreasing rate of the complex concentration is kd [C],
where kd is the dissociation constant measured in s−1. At equi-
librium, the increasing rate and decreasing rate of the complex
should be the same, i.e., ka[L] [R] = kd [C]. From this equal-
ity, one can obtain the dissociation equilibrium constant of the
ligand-receptor interaction given by KD = kd

ka
= [L] [R]

[C] , which
is in units of M. The reciprocal of KD, given by KA = 1/KD, is
called the affinity of the ligand-receptor interaction, with units
of M−1.

In the association phase, consider the initial concentrations
of the two “reactants” are [L0] and [R0] for ligands and re-
ceptors, respectively, above the gold surface in the flow cell
of the plasmonic sensor shown in Fig. 1(a). The complex
concentration then changes with time before the reactions
reach equilibrium. The evolution of [C] is given by

d[C]

dt
= ka[R][L] − kd [C]

= ka([R0] − [C])([L0] − [C]) − kd [C]. (B1)

The reaction of the ligand-receptor is therefore a second-
order process. However, one can solve the equation as a
pseudo-first-order approximation. This is valid when supply-
ing the ligand concentration to the flow cell in great excess
to the receptor concentration, which implies that [L0] � [R0].
Hence the amount of ligand used in the binding interactions
is negligible compared to the initial ligand concentration, i.e.,
[L0] − [C] ≈ [L0]. From this, we then have from Eq. (B1)

d[C]

dt
= ka([R0] − [C])[L0] − kd [C]. (B2)

The solution to this first-order equation for an initial complex
concentration of [C0] = 0 is given as

[C] = [L0][R0]

[L0] + kd/ka
(1 − e(ka[L0]+kd )t ). (B3)

It is clear that the complex concentration increases exponen-
tially with time and for t � 0 reaches a steady-state value.
This is the steady-state phase of the interaction kinetics.
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We now consider the dissociation phase. At time t = τ ,
the complex concentration in the chamber has increased to
[Cτ ]. At this point the flow cell is then washed by a buffer
solution, e.g., water in an elution process, which means that
once a ligand unbinds from a receptor the possibility of it
binding to the same or another receptor is negligible. The
possibility of another ligand binding to the receptor is also
negligible as the background ligand concentration in the flow
cell is effectively zero. With the initial conditions of [Cτ ] and
[L0] ≈ 0 in Eq. (B1), the solution is given by

d[C]

dt
= −kd [C]. (B4)

From this solution we see the complex concentration de-
creases exponentially with time from the start of the elution
process at t = τ .

The concentration of the complex [C] and the transmittance
of the sensor T are linked by the refractive index, na = √

εa,
of the region above the gold surface, whose change is induced
by the sequence of analytes being passed over the flow cell:
(1) buffer and ligands (association and steady state) and (2)
buffer only (dissociation). The refractive index change can
be understood as a change in the dipole moments of the im-
mobilized receptors as they are converted into complexes and
then unconverted [8]. For a fixed incidence angle of light, an
increase in the complex concentration [C] therefore increases
the value of εa and thus T , as shown in the inset of Fig. 1(a).
In the ideal case, when there is a linear relation between [C]
and T we can write [8]

T (t ) =
{

T∞(1 − e−kst ) 0 � t < τ

Tτ e−kd (t−τ ) t � τ ,
(B5)

where T∞ is a constant determined by the initial concentration
of the ligands and receptors, the thickness of the receptor
and ligand layers above the gold surface, and the affinity kA.
We then have the constant Tτ = T∞(1 − e−ksτ ). In the above,
the constant ks = ka[L0] + kd represents the observable rate
for the association phase. Equation (B5) is the theoretical
model for the sensor’s response, which is the sensorgram that
would be measured in an ideal experiment (no noise). From
the measured sensorgram a nonlinear fit is then performed,
e.g., Gauss-Newton, with respect to the theoretical model in
order to extract out the association and dissociation kinetic
parameters. From the fit, kd and ks are obtained and with a
knowledge of the initial ligand concentration [L0], ka can be
found from the relation ka = (ks − kd )/[L0]. All simulations
and fittings were done using Mathematica.

APPENDIX C: EXTRACTION OF T SENSORGRAM

We start with the expression θ (t ) = θ (0) + 	θ (t ), where
θ (t ) is the resonance angle in degrees at a given time (the an-
gle causing |rspp|2 in Eq. (1) to reach its minimum) and 	θ (t )
is a shift in that angle due to a change in the refractive index
above the gold surface. The angular sensorgram is similar to
that for the transmittance sensorgram given in Eq. (B5), and
we have [8]

	θ (t ) =
{

A∞(1 − e−kst ) 0 � t < τ,

Aτ e−kd (t−τ ) t � τ .
(C1)

The value of τ is 1100 in the experiment, and A∞ is measured
to be 800 × 10−3 degrees. With these values and the values of
ka, kd , and L0 stated above we have a complete model of the
sensorgram for angular interrogation, as shown in Fig. 3(a).
We now use this model to find the sensorgram for intensity
interrogation, T (t ).

When the field in the signal mode is on resonance with the
surface plasmon on the surface of the gold, causing |rspp|2 to
reach its minimum, the following resonance condition holds
for the component of the wave vector parallel to the surface,
ε2

pk0 sin θin = k0[(ε′
mεa)/(ε′

m + εa)]1/2 [66], where k0 = ω/c
and ε′

m = Re[εm]. On the left is the wave vector for the field in
the prism and on the right is the wave vector of the SPP. For a
time-varying εa = √

na, we have that the angle θin satisfying
the resonance condition gains a time dependence, giving θ (t ),
where we have dropped the subscript in for convenience. We
can therefore rewrite the resonance condition as

θ (t ) = sin−1

( √
n2

a(t )n2
m

np

√
n2

a(t ) + n2
m

)
, (C2)

where n2
m = ε′

m. Rearranging the above equation gives

na(t ) =
(

n2
pn2

msin2θ (t )

nm
2 − n2

psin2θ (t )

)1/2

. (C3)

Thus, a knowledge of θ (t ) = θ (0) + 	θ (t ) provides the time
dependence of the analyte refractive index. The final parame-
ter to obtain is θ (0), as only the time dependence of 	θ (t ) is
known from the measured sensorgram. At t = 0, we set n2

a(0)
to be equal to that of the buffer solution used in the exper-
iment, which for phosphate buffer solution (PBS) is 1.3385
[67]. Setting the frequency ω corresponding to the wavelength
of the laser used (λ = 670 nm), with np = 1.5107 [65] and
using εm = −14.358 + i1.0440 [68], we obtain from Eq. (C2)
the angle θ (0) = 71.0966◦. With the full time dependence of
na(t ) now known from Eq. (C3), we can use it in Eq. (1) to
obtain T (t ) = |rspp(t )|2, which is shown in Fig. 3(b) as a solid
line. In this plot we have set θin = 70.1200 degrees, which
corresponds to an angle below θ (0) where we are operating
close to the inflection point for the transmittance curve, as
shown in the inset of Fig. 1(a). We have set the thickness of
the gold as d = 50 nm, as used in the experiment [23].

APPENDIX D: ENHANCEMENT IN THE
PRECISION DEPENDENCE ON M

In Figs. 4(a)–4(f) we showed the estimation value and
precision for the kinetic parameters for m = 10 sensorgrams
in a set. In Figs. 15(a)–15(c) we show the estimation value and
precision for m = 50 sensorgrams in a set. A similar behavior
can be seen for all the states, with the TMF state providing the
best estimation in the kinetic parameters for any ν, followed
by the TMC state, then the TMSD state and finally the TMSV
state. The enhancement also behaves similarly to the case of
m = 10, as shown in Figs. 15(d)–15(f).

In Fig. 16 we show the ratio of the enhancement ratios for
m = 50 and m = 10, i.e., Rk,50/Rk,10, for ka, ks, and kd as ν

increases. As mentioned in the main text, we call this the “m-
enhancement” ratio. The dotted lines are a guide that represent
the enhancement RM,m expected from the ratio of 	M at any
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FIG. 15. Standard two-mode sensing using different quantum states (no loss, ηa = ηb = 1). Panels (a), (b), and (c) show the estimation
values and precisions for the kinetic parameters ka, ks, and kd as ν increases for m = 50. For each value of ν the error bars represent the TMSV,
TMSD, TMC, and TMF states, going from left to right. Panels (d), (e), and (f) show the corresponding enhancement ratio for the different
quantum states for m = 50. From top to bottom the lines correspond to TMF, TMSD, and TMSV, respectively. The dotted lines are a guide
representing the enhancement expected from the ratio RM at the midpoint of the sensorgram for the respective state.

point of the sensorgram. The ratio of the enhancement ratios
is expected to be

√
50/10 = 2.236. This is due to the 1/

√
m

dependence of the estimation precision, 	k, for a fixed ν. The
m-enhancement ratio for the TMC is now also shown as it is
expected to be roughly

√
50/10 when going from m = 10 to

m = 50 sensorgrams in a set.

APPENDIX E: ENHANCEMENT IN THE PRECISION
AROUND THE SENSORGRAM MID-POINT

1. Standard two-mode scenario

Here we show how the enhancement RM changes about
the midpoint of the sensorgram for each of the states in the
standard two-mode scenario. In Figs. 17(a)–17(d) we show
the case of no loss (ηa = ηb = 1) as the photon number N
increases. The general trend is that T values below (above)
the midpoint give a lower (higher) enhancement. The over-
all effect on the estimation precision of kinetic parameter

k is an averaging of the enhancement, leading to Rk . In
Figs. 17(e)–17(h) we show the case of loss (ηa = ηb = 0.8)
as N increases. The general trend for T follows the lossless
case, although the enhancements are reduced—most notably
for the TMF state. In the case of no loss and loss there is no
dependence on the photon number except for the TMSV state.
The plots are obtained using Eqs. (A1), (A2), (A3), and (A4)
from Appendix A.

2. Optimized two-mode scenario

Here we show how the enhancement RM changes about
the midpoint of the sensorgram for each of the states in
the optimized two-mode scenario. In Figs. 18(a)–18(d) we
show the case of no loss (ηa = 1 and ηb = Tmid) as the
photon number N increases. Unlike the standard two-mode
scenario, the enhancements for T values around the mid-
point are roughly constant. In Figs. 18(e)–18(h) we show the
case of loss (ηa = 0.8 and ηb = 0.8Tmid) as N increases. The

FIG. 16. The influence of m in standard two-mode sensing using different quantum states (no loss, ηa = ηb = 1). (a) m-enhancement ratio
for ka. From top to bottom (for first data point) the lines correspond to TMC, TMSD, TMSV, and TMF, respectively. (b) m-enhancement
ratio for ks. From top to bottom (for first data point) the lines correspond to TMC, TMSV, TMSD, and TMF, respectively. (c) m-enhancement
ratio for kd . From top to bottom (for first data point) the lines correspond to TMSD, TMF, TMC, and TMSV, respectively. The dotted line
corresponds to the expected ratio

√
50/10 = 2.236 at any point of the sensorgram.
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FIG. 17. Enhancement RM about the midpoint T value for the standard two-mode scenario. (a–d) No loss (ηa = ηb = 1). (e–h) Loss
(ηa = ηb = 0.8). In all panels the parameters are ν = 100 and m = 10. From top to bottom the lines correspond to TMF, TMSD, and TMSV,
respectively. The white region corresponds to the maximum variation of T for the sensorgram.

general trend for T follows the lossless case, although the
enhancements are slightly reduced. In the case of no loss and
loss there is no dependence on the photon number except
for the TMSV state. Unlike the standard two-mode scenario
all states are affected similarly by the loss. The impact of

the sharp downwards trend of the enhancement on either
side of the midpoint for the TMSV state is responsible for
overall TMSV state enhancement drop from that expected
at the midpoint in the main text, as seen in Figs. 7(j), 7(k),
and 7(l).

FIG. 18. Enhancement RM about the midpoint T value for the optimized two-mode scenario. (a–d) No loss (ηa = 1 and ηb = ηaTmid). (e–h)
Loss (ηa = 0.8 and ηb = 0.8Tmid). In all panels the parameters are ν = 100 and m = 10. From top to bottom the lines correspond to TMF,
TMSD, and TMSV, respectively. The white region corresponds to the maximum variation of T for the sensorgram.
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