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Hyperfine atomic states are among the most promising candidates for qubit encoding in quantum information
processing. In atomic systems, hyperfine transitions are typically driven through a two-photon Raman process
by a laser field which is amplitude modulated at the hyperfine qubit frequency. Here we introduce a method
for generating amplitude modulation by phase modulating a laser and reflecting it from a highly dispersive
optical element known as a chirped Bragg grating. This approach is passively stable, offers high efficiency, and
is compatible with high-power laser sources, enabling large Rabi frequencies and improved quantum coherence.
We benchmark this approach by globally driving an array of approximately 300 neutral 87Rb atomic qubits
trapped in optical tweezers and obtain Rabi frequencies of 2 MHz with photon-scattering error rates of less
than 2 × 10−4 per π pulse. This robust approach can be directly integrated with local addressing optics in both
neutral atom and trapped ion systems to facilitate high-fidelity single-qubit operations for quantum information
processing.
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I. INTRODUCTION

Trapped neutral atoms and atomic ions are among the
most pristine quantum systems for quantum science and en-
gineering. In such systems, quantum bits can be encoded
in pairs of atomic levels which are defined in hyperfine
ground-state manifolds or on narrow optical transitions from
a single ground state to a metastable excited state [1,2].
Hyperfine-encoded qubits are particularly attractive due to
their transition frequencies in the several gigahertz range,
which can be driven either directly with microwave fields
or by two-photon stimulated Raman transitions. While mi-
crowaves have been used for high-fidelity control [3,4],
Raman transitions offer substantially higher, megahertz-scale
Rabi frequencies [5,6] as well as the opportunity for local ad-
dressing of individual qubits separated by micrometer length
scales.

A variety of experimental approaches have been used to
drive stimulated Raman transitions of hyperfine qubits. The
conventional approach to Raman driving uses two phase-
locked lasers, with a frequency difference equal to the
hyperfine splitting [7,8]. Alternatively, mode-locked optical
frequency combs have been used in trapped ion systems,
wherein pairs of frequency components combine to drive Ra-
man transitions [9–12]. Another approach is based on phase
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modulation of a single laser to produce low-noise sidebands at
the hyperfine frequency [13–15]. This approach necessitates
additional interferometric filtering to suppress destructive in-
terference between sideband pairs, resulting in a loss of usable
optical power [13,15]. Other approaches based on spatially
separated lasers can be used for momentum transfer, but
Doppler sensitivity reduces coherence for qubit manipulations
[15]. Furthermore, each of these previously demonstrated ap-
proaches requires active stabilization due to interferometric
sensitivity.

In this paper we demonstrate a method for Raman driving
based on phase modulation followed by reflection from a
highly dispersive optical element. The dispersive element, a
chirped Bragg grating (CBG), changes the relative phases of
the phase-modulated sidebands, converting destructive inter-
ference to constructive interference and producing amplitude
modulation for driving Raman transitions. We show that the
dispersive approach offers high-efficiency conversion from
phase modulation to amplitude modulation, enables scaling
to high optical power, and is passively stable.

This paper is structured as follows. In Sec. II we review
how stimulated Raman transitions induced by a multifre-
quency laser field can be understood purely in terms of laser
amplitude modulation. In Sec. III we show how dispersive
optics can be used to efficiently convert phase modulation
to amplitude modulation for driving Raman transitions. In
Sec. IV we describe our Raman laser system in detail and in
Sec. V we experimentally benchmark its performance on an
array of approximately 300 neutral 87Rb atomic qubits trapped
in optical tweezers. These results demonstrate that this robust
approach to Raman driving enables scalable optical control
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of hyperfine qubits, with future opportunities to integrate into
local optical addressing systems in both neutral atom and
trapped ion platforms.

II. LASER AMPLITUDE MODULATION DRIVES
STIMULATED RAMAN TRANSITIONS

Stimulated Raman transitions are two-photon processes
which drive transitions between two atomic ground states |0〉
and |1〉 (split by a qubit frequency ωq) through an interme-
diate excited state |2〉. Conventionally, Raman transitions are
understood as being driven by a laser field containing two fre-
quency components separated by ωq, resulting in an effective
resonant coupling between the states |0〉 and |1〉 with Raman
Rabi frequency �eff = �∗

0�1/2�, where �0 (�1) describes
the laser coupling strength from |0〉 (|1〉) to |2〉 and � is the
laser detuning from the ground-excited transition frequency
(with � � ωq) [16]. More general laser fields containing
many frequency components, such as modulated lasers and
mode-locked lasers, drive Raman transitions through all pairs
of frequency components in the field which are separated
by ωq [9]. For example, a laser field containing many uni-
formly spaced frequency components according to �(t ) =
�0

∑
n aneinωqt results in a Raman Rabi frequency given by

[9]

�eff = |�0|2
2�

∑
n

a∗
nan+1. (1)

A useful interpretation of Eq. (1) is that the Raman Rabi
frequency is simply proportional to the amount of laser am-
plitude modulation at the qubit frequency ωq, as would be
measured on a photodetector. One can see this by directly
computing the laser intensity |�(t )|2, which contains oscillat-
ing terms at each frequency multiple of ωq; the term cos(ωqt )
in particular has the same coefficient

∑
n a∗

nan+1 which ap-
pears in Eq. (1).

This connection between Raman driving and laser ampli-
tude modulation can be further clarified by directly solving
the three-level system dynamics in the presence of a generic
time-dependent laser field �(t ) which couples both ground
states |0〉 and |1〉 to the excited state |2〉 [Fig. 1(a)]. This
system is described by the following Hamiltonian, given in
the rotating frame for the excited state |2〉:

H = h̄ωq |1〉 〈1| + h̄� |2〉 〈2|

− h̄�(t )

2
(|2〉 〈0| + |2〉 〈1|) + H.c. (2)

If the intermediate detuning � is large compared to ωq and
the amplitude and spectral width of �(t ), we can adiabatically
eliminate the excited state, resulting in an effective two-level
system (TLS) Hamiltonian for states |0〉 and |1〉,

HTLS = h̄ωq |1〉 〈1| − h̄�TLS(t )

2
|1〉 〈0| + H.c., (3)

with an effective coupling

�TLS(t ) = |�(t )|2
2�

(4)

and with the Stark shifts on states |0〉 and |1〉 neglected.
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FIG. 1. Amplitude modulation for driving Raman transitions.
(a) Stimulated Raman transitions in a �-type three-level system.
Adiabatic elimination of the excited state results in an effective
Raman coupling between ground states |0〉 and |1〉. (b) Level struc-
ture for 87Rb, showing Raman driving of the clock transition from
|0〉 = |F = 1, mF = 0〉 to |1〉 = |F = 2, mF = 0〉. This transition is
driven by a time-dependent σ+ polarized field �(t ), which is far
detuned by � from the excited state (but not far detuned relative to
the splitting between the 5P1/2 and 5P3/2 excited states). (c) Several
approaches for Raman driving, including the dispersive approach
presented here, operate by converting phase modulation to ampli-
tude modulation at the qubit frequency, which resonantly drives
the Raman transition. (d) Comparison of methods for converting
phase modulation to amplitude modulation. The dispersive approach
benefits both from having the highest coherence metric (see Ap-
pendix B) and from being passively stable since it does not rely on
interferometric filtering. (e) Weakly dispersive elements, such as a
conventional chirped Bragg mirror or a 10-m optical fiber, require
large modulation depth β to achieve efficient amplitude modulation,
according to Eq. (7). The highly dispersive volumetric CBG allows
a low β to be used. Here β � π marks the experimentally accessible
window of modulation depths.

We highlight here that the Hamiltonian from (3) describes
a two-level system with splitting ωq and time-dependent cou-
pling �TLS ∝ |�(t )|2. From this description, it is apparent
that the intensity of the laser field produces an effective field
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which couples the two qubit states; laser intensity modulation
at the qubit frequency therefore drives the qubit transition,
akin to resonant driving of a spin transition directly using
microwaves. Interestingly, we note that in real atoms [e.g.,
level structure for 87Rb as shown in Fig. 1(b)], the effective
field which is proportional to the laser intensity takes the
form of the fictitious magnetic field associated with vector
light shifts (see Appendix A and [17]). Specifically, an off-
resonant laser field acts as a fictitious magnetic field given
by Bfict ∝ Im[ε∗ × ε], where ε is the polarization vector of
the laser field [18,19]. Circularly polarized light, such as
with ε+ = x̂ + iŷ, induces an effective magnetic field oriented
along ẑ which couples π -polarized spin transitions, and ampli-
tude modulation of the laser field at the transition frequency
therefore produces a modulated effective magnetic field which
resonantly drives such spin transitions. This analysis, which
extends previous work focusing on vector light shifts in the
context of Zeeman transitions [17,20–24], also clarifies the
interplay between laser polarization and Raman transitions.
As an example, the above approach illustrates why linearly
polarized light along any propagation axis cannot be used
to drive Raman transitions since it produces no vector light
shifts, which can be equivalently evaluated through summa-
tions over dipole matrix elements.

III. EFFICIENT CONVERSION OF PHASE MODULATION
TO AMPLITUDE MODULATION WITH DISPERSIVE

OPTICS

While laser amplitude modulation is necessary for Ra-
man driving, the most experimentally accessible form of
high-frequency laser modulation is phase modulation using
electro-optics. Sinusoidal phase modulation produces fre-
quency sidebands according to the Jacobi-Anger expansion

�(t ) = �0eiβ sin ωt = �0

∞∑
n=−∞

Jn(β )einωt , (5)

where Jn are Bessel functions of the first kind, β is the modula-
tion depth, and ω is the modulation frequency. Since the laser
intensity is constant (|�(t )|2 = |�0|2), a phase-modulated
laser cannot drive hyperfine qubits. This can be seen also as
destructive interference between pairs of adjacent sidebands:∑∞

n=−∞ Jn(β )∗Jn+1(β ) = 0.
There are several methods for modifying the sideband

spectrum of a phase-modulated laser to produce amplitude
modulation [Figs. 1(c) and 1(d)]. These methods are primarily
interferometric in nature, since they act selectively on fre-
quency components with only gigahertz-scale separation [15].
For example, one approach is to use a Fabry-Pérot cavity to
filter out the carrier (n = 0) spectral component [5]. Another
method is to use a Mach-Zehnder interferometer to filter out
all odd-order sidebands or a Mach-Zehnder intensity modu-
lator in which the phase modulation occurs in one arm of an
interferometer [25]. These approaches are inherently ineffi-
cient, in that they discard some portion of the laser light by
filtering out components; further, they are all sensitive to path-
length fluctuations on wavelength scales. Some fiber-based
versions of these systems can be more robust, but they are lim-
ited to low optical power. Discarding optical power requires

detuning the laser system closer to the excited state to achieve
the same Rabi frequency, which correspondingly increases the
error rate associated with optical scattering [26]. To compare
these various approaches, we define a coherence metric C
which is proportional to the number of π pulses which can
be applied before a scattering error (see Appendix B). This
metric accounts for how much light is lost in the filtering
process as well as how the remaining frequency components
interfere and assumes that the detuning � is chosen to obtain
the same Rabi frequency for each approach. A high-level
comparison of approaches for converting phase modulation to
amplitude modulation is presented in Fig. 1(d), with details in
Appendix B.

Rather than filtering out specific spectral components from
the phase-modulation spectrum, we consider here an approach
to change the relative phases of these spectral components
using dispersive optics [27]. We consider in particular a dis-
persive element which has a nonzero group-delay dispersion
(GDD), defined as G = ∂2ϕ/∂ω2. This element imparts a
phase shift to frequency components which is quadratic in
their frequency; that is, it produces a modified electric field
of the form

�(t ) = �0

∞∑
n=−∞

Jn(β )einωqt eiαn2
, (6)

where α = Gω2
q/2 describes the phase curvature as a func-

tion of sideband index. The resulting Raman Rabi frequency
depends simply on the phase-modulation depth β and the
dispersion curvature α according to a Bessel function identity
(F5) [28]:

�eff ∝ |J1(2β sin α)|. (7)

The Rabi frequency is optimized when the Bessel function
J1 is maximized, which occurs when 2β sin α = 1.84. How-
ever, in practice, the electro-optic phase-modulation depth is
limited to β � π , requiring α � π/4 to achieve reasonable
efficiency; this corresponds to an enormous dispersion of G �
8.5 × 108 fs2. For comparison, dispersion in a typical optical
fiber is approximately 4 × 104 fs2/m [28,29]. Even ultrahigh-
dispersion chirped Bragg mirrors (mirrors with gradually
varying Bragg layer thickness) offer only up to 1300 fs2 from
a single reflection [30] [see Fig. 1(e) and Appendix C for
further discussion].

Recently, new optical elements based on volumetric Bragg
gratings have enabled a new level of frequency selectiv-
ity and dispersion control [31]. These crystals have a weak
modulation in their refractive index over a length scale of
approximately 1 cm; chirping of the index modulation wave-
length as a function of depth produces highly dispersive
properties [31]. We use a chirped volumetric Bragg grating
with G = 4 × 108 fs2 (OptiGrate, CBG-795-95, apodization
of 5 mm on both ends). Reflecting twice from the grat-
ing doubles the dispersive effect; this allows us to reach
optimal conversion to amplitude modulation with a readily
accessible phase-modulation depth β ∼ 1.3 rad. Moreover,
the dispersive element does not filter out optical power,
but instead produces favorable phase relationships between
sidebands, resulting in a high coherence metric [Fig. 1(d)]. Fi-
nally, the passive stability of the dispersive element simplifies
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FIG. 2. Raman laser system using a chirped Bragg grating. (a) Optical setup. The chirped Bragg grating and the first mirror afterward (in
the shaded gray region) are mounted on a single rotation mount. Spectral components separate after the first reflection from the CBG, but
recombine after the second reflection. A scanning Fabry-Pérot cavity measures the sideband spectrum and a fast photodetector measures the
amplitude modulation. (b) The amplitude modulation (measured as the amplitude of the 6.8-GHz peak of the fast photodetector signal on a
spectrum analyzer) depends on both the dispersion of the CBG and the phase-modulation depth (see the text). We observe the expected Bessel
function relation and can extract the dispersion coefficient. (c) As we scan the laser frequency across the CBG bandwidth, we see a high total
reflectivity of the CBG system, measured as the ratio of the power before and after the PBS in (a), across the approximately 50-GHz bandwidth.
The resulting fiber-coupled light should ideally show constant amplitude modulation across the whole bandwidth, but in practice we observe
variation with laser frequency due to nonuniform CBG dispersion over its bandwidth. While more uniform CBGs can be used, the current
device can be angle tuned to maximize amplitude modulation and is insensitive to frequency drifts which are less than 1 GHz. Independent
atomic measurements of Raman Rabi frequency and light shifts at the optimal modulation parameters gives a laser amplitude-modulation
efficiency of approximately 50%, consistent with expectations (Table I).

experimental implementation. Ultimately, the CBG serves as
an element which passively converts phase modulation to
amplitude modulation, so the effective Raman Rabi frequency
(phase, amplitude, and frequency) is directly inherited from
the microwave source of the phase modulator.

IV. RAMAN LASER SETUP

Our Raman laser system [shown in Fig. 2(a) and Ap-
pendix D] is sourced from a tapered amplifier system
which outputs up to 1.5 W of fiber-coupled optical power
at 795 nm (Toptica TA Pro, free-running at 377.2000 THz).
This light is phase modulated by a free-space resonant
electro-optic modulator (EOM) (Qubig, PM-Rb). The EOM
is driven by a 6.8-GHz microwave source, which consists
of a frequency-doubled local oscillator (Stanford Research
Systems, SG384) that is IQ modulated by an arbitrary wave-
form generator (Spectrum Instrumentation, DN2.662-04) to
achieve arbitrary frequency, phase, and amplitude control
of the phase-modulation signal. The laser is then reflected
twice from a CBG to convert phase modulation to ampli-
tude modulation, and the output is gated by an acousto-optic
modulator (AOM) and coupled into a single-mode fiber. The
phase-modulation depth β is measured by a pickoff onto a
scanning Fabry-Pérot cavity, and the amplitude modulation is
characterized on a fast photodetector [Fig. 2(a)].

The operational bandwidth of the CBG is 50 GHz; angle
tuning of the CBG around the 3◦ target angle of incidence al-
lows shifting of this bandwidth relative to the laser frequency.
While the CBG nominally has a uniform dispersion within its
bandwidth, we find that in practice the dispersion oscillates

within its finite bandwidth [Fig. 2(c)]; for this reason, it is
helpful to have fine control of the incident angle and to moni-
tor the resulting amplitude modulation while tuning the angle.

In order for the entire optical setup to remain aligned while
angle tuning the CBG, it is important to design the CBG
pathway such that the output spatial mode upon the second
reflection is independent of the tuning angle. Additionally, the
different spectral components of laser light penetrate different
depths within the CBG and therefore spatially separate. To
recombine these spatial components and ensure overall angle
insensitivity, we use a flat-mirror retroreflector to redirect
the spatial components back onto the CBG [Fig. 2(a)]. Fur-
thermore, we mount both the CBG and the pickoff mirror
which immediately follows on the same rotation stage (with
the center of the CBG at the rotation origin) such that the
retroreflection condition is met for all tuning angles. The
final retroreflection mirror is aligned once and fixed in place
prior to further angle tuning. This configuration ensures a
single, stable output spatial mode for the light exiting the CBG
system that is independent of the CBG angle and therefore
maintains subsequent alignment while the angle is tuned.

After optimizing the CBG angle to maximize amplitude
modulation (as measured on the fast photodiode), we exper-
imentally measure the dependence of amplitude modulation
on the phase-modulation depth to confirm the expected Bessel
function relationship from Eq. (7) and extract the dispersion
coefficient [Fig. 2(b)]. Finally, at a fixed modulation depth of
β ≈ 1.2 rad, we measure the amplitude modulation and total
reflectivity of the double-bounce CBG system as we scan the
laser frequency across the bandwidth of the CBG to assess
sensitivity to frequency drifts of the laser [Fig. 2(c)]; we

032618-4



DISPERSIVE OPTICAL SYSTEMS FOR SCALABLE RAMAN … PHYSICAL REVIEW A 105, 032618 (2022)

0 2500 5000 7500 10000
Number of  pulses

0.0

0.2

0.4

0.6

0.8

1.0

F
=

2 
po

pu
la

tio
n

( /2)x

( /2)x

(c)

t... 
20x30 Tweezer Array(a)

Global 
Raman 
beam

(b)

FIG. 3. Raman driving of 87Rb atoms in an optical tweezer array. (a) Sample fluorescence image of approximately 300 atoms individually
loaded into a 20 × 30 optical tweezer array. The Raman laser globally illuminates the array. (b) Rabi oscillations, averaged over each row
individually (top panel) and over the middle four rows (bottom panel). The measured Rabi frequency is 1.95 MHz. The decay is caused
primarily by inhomogeneous averaging across the system. (c) We use a CPMG pulse train to measure how many pulses we can apply before
scattering from the Raman laser causes T1-type decay. We compare two measurements in which the final π/2 pulse is applied along +x
(red, upper curve) or −x (blue, lower curve) and find that these curves converge with a 1/e fit of 7852(76) pulses. This measurement gives a
scattering-limited π -pulse fidelity of 0.999 873(1).

find that amplitude modulation is stable near optimal points
for laser frequency drifts of less than 1 GHz, and the total
reflectivity of the entire CBG system exceeds 80% across the
50-GHz bandwidth.

V. BENCHMARKING THE RAMAN LASER SYSTEM ON A
NEUTRAL ATOM ARRAY

We test our high-power Raman laser system on neutral
87Rb atoms which are loaded within an array of 600 optical
tweezers in two dimensions using the platform described in
Ref. [32] [Fig. 3(a)]. The optical tweezers, which are arranged
in a 100 × 200 μm2 rectangle, are linearly polarized and have
a wavelength of 810 nm. In each experimental cycle, atoms
are loaded and then imaged on an electron-multiplied CCD
camera to detect their positions within the array and their final
states are read out by a second image after pushing out atoms
in F = 2 by cycling photons on the D2 transition F = 2 →
F ′ = 3. During loading and imaging, the tweezers have a trap
depth of 14 MHz. During Raman driving, the trap depths are
lowered to 5 MHz and an 8.5-G magnetic field is applied [25].

The Raman laser illuminates the atom plane from the side
and is cylindrically focused onto the atoms, resulting in an
elliptical beam with waists of 40 and 560 μm on the minor
and major axes, respectively, with a total average optical
power of 150 mW on the atoms. The large vertical extent
enables homogeneity across the atoms without more advanced
beam-shaping techniques. The laser propagates parallel to
the magnetic field and is circularly polarized to drive
σ+ transitions. The laser frequency is 93 GHz blue detuned
of the 795-nm transition to the 5P1/2 excited state. By tuning
the EOM drive frequency, the Raman laser can resonantly
drive π -polarized spin transitions in the ground-state hyper-
fine manifold. We use Raman-assisted optical pumping to
prepare atoms in |0〉 = |F = 1, mF = 0〉 [25]. Subsequently,
the EOM drive frequency is tuned to the clock resonance and
atoms are coupled from |0〉 to |1〉 = |F = 2, mF = 0〉.

We globally drive the qubit array and measure Rabi os-
cillations across the array with frequency �eff = 1.95 MHz.
We analyze Rabi oscillations individually for each row of
the array [Fig. 3(b), top panel], as well as averaged over the
middle four rows [Fig. 3(b), bottom panel). We attribute the
decay of Rabi oscillations primarily to inhomogeneity across
the array and small (less than 1%) power fluctuations.

For Raman operation with hyperfine qubits, there is a
fundamental tradeoff between Raman Rabi frequency (pro-
portional to �2/2�) and incoherent scattering processes
(proportional to �2/4�2). For a given target Rabi frequency,
higher optical power enables working at a larger intermediate
detuning, increasing the ratio of Rabi frequency to scatter-
ing rate [proportional to the coherence metric tabulated in
Fig. 1(d)]. To evaluate this coherence limitation for our high-
power system, we apply a (π/2)x pulse followed by a train
of πy pulses [Fig. 3(c)]; this so-called Carr-Purcell-Meiboom-
Gill (CPMG) sequence [33] is robust to pulse miscalibrations
that limit our observed Rabi coherence time. By varying the
total number of πy pulses, we observe a T1-type decay from
scattering, with a characteristic 1/e scale of 7852 ± 76 pulses.
This decay constant sets a lower bound on our scattering-
limited π pulse fidelity of 0.999 873(1).

Having established the high Rabi frequency and large num-
ber of possible operations in our system, we now explore its
utility in preserving coherence across the array, for practical
use in quantum information processing protocols. We first
benchmark the hyperfine coherence in our optical tweezers
by measuring a Ramsey T ∗

2 = 1.17(1) ms [Fig. 4(a)], limited
by the finite atomic temperature (approximately 20 μK) and
small differential light shifts in the tweezers (approximately
4 kHz) [34]. By applying a train of π pulses, we dynami-
cally decouple the atomic qubits from noise sources such as
the tweezer differential light shifts and extend the coherence
time to T2 = 303(13) ms, showing second-timescale coher-
ence across hundreds of qubits [Fig. 4(b)]. The π pulses
are applied according to the XY16-256 pulse sequence (256
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FIG. 4. Idle coherence of atoms in optical tweezers. (a) Ramsey
measurement, taken with a 5-kHz detuning between pulses. The
atoms occupy several vibrational levels within the tweezers which
have different average differential light shifts on the qubit transition,
resulting in dephasing. (b) Dynamical decoupling sequence using
XY16-256, with a total of 256 π pulses. The final π/2 pulse is
applied about +x (red, upper curve) or −x (blue, lower curve). These
two curves converge with a fitted T2 = 303(13) ms.

total π pulses), which is robust against pulse imperfections
for generic initial superposition states [35]. The qubit coher-
ence after the variable-time pulse train is presently limited
by residual pulse imperfections, residual dephasing (e.g., fast
magnetic field noise or noise on tweezer light shifts), and the
approximately 0.5-s T1 time associated with off-resonant scat-
tering from the optical tweezers (see Appendix E). Coherence
can be further improved by applying more π pulses and by
using further-detuned optical tweezers (with trap depth held
constant, the tweezer differential light shifts decrease as 1/�

and the T1 exhibits a favorable �3 scaling [26,34]).
Since state-of-the-art Rydberg-based entangling operations

are submicrosecond timescale and Raman-based single-qubit
rotations are also submicrosecond timescale, the second-scale
quantum coherence will allow for a wide variety of deep
quantum circuits with hundreds of qubits. Moreover, together
with the demonstrated dynamical decoupling sequences, this
system should support approaches for quantum algorithms
involving dynamic reconfiguration of atom arrays in submil-
lisecond timescales to change the connectivity of Rydberg or
photonic cavity-mediated interactions while preserving coher-
ence [36–38].

VI. CONCLUSION

While several schemes have been used previously to drive
Raman transitions, the dispersive approach offers several ad-
vantages. First and foremost, the system is passively stable
and faithfully maps the microwave signal which drives the
EOM to the resulting amplitude modulation of the laser
field. In contrast, other schemes require active stabilization
of an interferometer, active locking of the repetition rate of a
mode-locked laser [9], or stabilization of the frequency offset
between two combs [11]. The dispersive approach is addition-
ally more efficient in its use of optical power compared with
other approaches using phase modulators. As compared with
mode-locked lasers, the experimental simplicity, stability, and
low cost make it an attractive alternative.

This dispersive approach can additionally be used for ap-
plications in which stimulated Raman transitions are used to
couple the atomic spin to motion, such as for Raman sideband
cooling or entangling gates in trapped ion systems, akin to the
approach taken with mode-locked lasers [9,39]. Finally, local
addressing optics could be used to outcouple the amplitude-
modulated laser onto individual atoms in the array. Devices
such as spatial light modulators, acousto-optic modulators,
and electro-optic modulator arrays can enable fast and parallel
control of arbitrary single-qubit rotations in large qubit ar-
rays. These operations can be integrated with multiqubit gates
based on Rydberg interactions to realize flexible quantum
circuits, potentially enabling fully programmable quantum
simulations and scalable quantum information processing [1].
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APPENDIX A: DRIVING HYPERFINE TRANSITIONS
WITH MODULATED VECTOR LIGHT SHIFTS

As outlined in the main text, a multifrequency laser field
may be used to drive Raman transitions between hyperfine
states if it exhibits amplitude modulation at the hyperfine
frequency ωhf. In this Appendix we clarify the interpretation
of this process through the lens of vector light shifts induced
by an off-resonant laser.
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We consider an off-resonant laser which couples alkali-
metal atoms on the D1 and D2 optical transitions from the
J = 1/2 ground state to the J ′ = 1/2 and J ′ = 3/2 excited
manifolds, respectively. The laser has polarization ε, field
amplitude E (t ), and frequency ω(t ) which is far off-resonance
from the D1 and D2 transitions (of frequency ωD1 and ωD2),
relative to the hyperfine structure in the excited states.

A traditional analysis of Raman transitions would consider
the frequency components of the laser field, encoded in the
time-dependent amplitude and frequency E (t ) and ω(t ), and
would calculate resonant contributions to hyperfine transitions
through pairs of components which are separated by ωhf [9].
Instead, we will consider the laser field to be slowly varying
relative to its large detuning from the excited states, as long as
its spectral bandwidth �ω is small compared to the detuning
from the D1 and D2 transitions.

In this regime, the excited states may be adiabatically
eliminated and the resulting Hamiltonian for the ground-state
manifold consists of a scalar light shift (which acts as the
identity within the hyperfine manifold, and which we will thus
ignore) and a vector light shift term [17,18,40]

Hvec = μBgJBfict · Ĵ, (A1)

where μB is the Bohr magneton, gJ is the Landé factor for the
5S1/2 levels, and the effective magnetic field is given by

Bfict ∝ |E (t )|2
(

1

ωD2 − ω(t )
− 1

ωD1 − ω(t )

)
Im[ε∗ × ε].

(A2)
Each term in these expressions offers useful insights into
Raman transitions. First, we note that this effective magnetic
field takes the same Hamiltonian form in Eq. (A1) as a real
magnetic field acting on the hyperfine qubit manifold. Just as
how a real magnetic field can be modulated using microwave
radiation to match a qubit resonance, transitions can be sim-
ilarly driven within the hyperfine manifold by modulation of
Bfict at the hyperfine frequency ωhf [17,41].

Second, maximizing the effective (Raman) coupling be-
tween hyperfine states is achieved by maximizing the mod-
ulation amplitude of the fictitious magnetic field in Eq. (A2).
Laser amplitude modulation, consisting of full-scale modula-
tion of |E |2, is the ideal approach, as described in the main
text. Laser phase modulation, which can be understood equiv-
alently as modulation of the frequency ω(t ), plays only a weak
role due to the small fractional dependence of Bfict on the laser
frequency.

Third, for large detuning from either the D1 or D2 tran-
sition, contributions from both states are significant. Tuning
the laser frequency ω(t ) in between the two transitions offers
constructive interference from both pathways; conversely, de-
tuning far from both states relative to their splitting leads to
destructive interference [10].

Finally, the effective magnetic field depends on the laser
polarization as Bfict ∝ Im[ε∗ × ε] [14]. While calculating the
effects of laser polarization on Raman transitions typically
relies on summation over transition matrix elements, the vec-
tor light shift interpretation offers a useful alternative. As a
first example, for σ±-polarized light propagating along the
quantization axis, ε± = x̂ ± iŷ, resulting in Bfict ∝ ẑ; modu-
lation of Bfict along the ẑ axis therefore drives π -polarized

spin transitions within the ground-state manifold. A second
example is linearly polarized light, which cannot drive Raman
transitions regardless of propagation axis since ε∗ × ε = 0 for
linearly polarized ε. Finally, we consider an example of a
circularly polarized laser propagating along x̂, orthogonally
to the quantization axis. For such a laser, with polarization
ε = ŷ ± iẑ, the effective field is oriented along ε∗ × ε ∝ x̂.
Just as with a real magnetic field of this orientation, the
Raman laser in this configuration couples σ± spin transitions
within the ground-state levels. These examples highlight that
interpreting Raman transitions as being driven by modulated
vector light shifts offers useful additional intuition beyond the
standard analysis of two-photon transitions.

APPENDIX B: METHODS FOR CONVERTING PHASE
MODULATION TO AMPLITUDE MODULATION

1. Definition of coherence metric

To evaluate the various methods for converting phase
modulation to amplitude modulation, we consider two main
parameters for each approach: (i) T , the fraction of optical
power that is transmitted through the conversion system, and
(ii) ηAM, the amplitude-modulation efficiency of the resulting
light. The amplitude-modulation efficiency is defined for a
field with normalized total power split into uniformly spaced
sidebands as �(t ) = ∑

n aneinωqt , where
∑

n |an|2 = 1. In this
context, the amplitude-modulation efficiency measures how
the components interfere to produce amplitude modulation:
ηAM = ∑

n a∗
nan+1. This efficiency is bounded above by 1

and characterizes the Raman Rabi frequency for a fixed total
amount of optical power in the system.

The Raman Rabi frequency scales according to �eff ∝
T ηAM/�, where � is the detuning from the intermediate
excited state. At the same time, the rate of optical scattering
depends on the average optical power on the atoms, according
to sc ∝ T/�2.

We combine these two parameters into a single metric
which best characterizes the coherence properties of each
approach. Specifically, we assume a fixed amount of available
optical power and we choose the laser detuning � such that
the resulting Raman Rabi frequency �eff is fixed. To achieve
this, we set � ∝ T ηAM. For this setting, the optical scatter-
ing scales as sc ∝ 1/T (ηAM)2. The ratio of Raman Rabi
frequency to scattering rate is therefore given by �eff/sc ∝
T (ηAM)2, which we define as the coherence metric C. The
comparison of approaches is summarized in Table I.

To calculate T and ηAM for each approach, we begin by
considering a phase-modulated laser, with (normalized) field:

�(t ) =
∞∑

n=−∞
Jn(β )einωt . (B1)

The total power is
∑

n |Jn(β )|2 = 1. As we evaluate T and
ηAM by considering the filtering of various sidebands, we find
that these values can be expressed as simple combinations
of Bessel functions through several Bessel function identities
(derived in Appendix F).
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TABLE I. Comparison of theoretical limits for several approaches for laser amplitude modulation. Here MZ denotes Mach-Zehnder. For
approaches based on conversion of phase modulation to amplitude modulation, an overall coherence metric C can be evaluated which is
proportional to the number of Rabi oscillations per scattering time, assuming the same total available laser power before filtering. Other
approaches, including mode-locked frequency comb lasers, may be compared based on their amplitude-modulation efficiency ηAM (AME),
which captures the effective coherence given an equal amount of power on the atoms. Mode-locked lasers achieve near-optimal ηAM → 1
through the presence of a large number of uniform sidebands, larger than that achievable with the dispersive optics approach (maximum
0.582). No transmission or coherence metric is presented for mode-locked lasers as there is no equivalent notion of how much power is
available or filtered in those methods.

Transmission AME Coherence metric Optimal phase modulation Maximum coherence
Method T (β ) ηAM(β ) C(β ) = T (ηAM)2 β∗ (rad) C(β∗)

Filter out carrier 1 − J0(β )2 2J0 (β )J2 (β )
1−J0 (β )2

[2J0 (β )J2 (β )]2

1−J0 (β )2 3.574 0.144

Filter with MZ interferometer 1
2 [1 + J0(2β )] J2 (2β )

1+J0 (2β )
[J2 (2β )]2

2[1+J0 (2β )] 1.664 0.174
MZ modulator (half transmission) 1

2 J1(β ) [J1(β )]2/2 1.841 0.169

MZ modulator (minimum transmission) [1 − J0(β )]/2 J2 (β )
1−J0 (β )

[J2 (β )]2

2[1−J0 (β )] 2.718 0.097

Dispersive element (coefficient α) 1 J1(2β sin α) [J1(2β sin α)]2 1.336 (α = 0.76 rad) 0.339

Two frequency components 1
2

N uniform sidebands N−1
N

N optimal sidebands cos( π

N+1 )

2. Filter out carrier component

In this approach, the phase-modulation frequency ω =
ωq/2, such that frequency components separated by 2ω con-
tribute to the Raman drive of the qubit. After filtering out the
carrier, the resulting optical power is

T = 1 − |J0(β )|2. (B2)

The amplitude-modulation efficiency is

ηAM =
∣∣∣∣∣
(∑

n

Jn(β )Jn+2(β )

)
− J0(β )[J−2(β ) + J2(β )]

∣∣∣∣∣
/

T

(B3)

= 2J0(β )J2(β )

1 − |J0(β )|2 . (B4)

The first expression sums up all pairs of frequency com-
ponents separated with �n = 2 and then subtracts the
contributions from n = 0 with n = ±2. The sum over all pairs
is identically 0, and due to evenness of Bessel functions,
J−2(β ) = J2(β ). Complex conjugation in the amplitude-
modulation efficiency is ignored since the Bessel functions are
real valued.

3. Filter with a Mach-Zehnder interferometer

Here we again consider phase modulation with frequency
ω = ωq/2. Passing the laser through a Mach-Zehnder interfer-
ometer with a properly chosen path-length difference between
arms can result in filtering of all even-index or all odd-index
components in the laser. The optical power after filtering out
all odd sidebands (a more favorable configuration) is

T =
∑

n even

Jn(β )2 = 1
2 [1 + J0(2β )] (B5)

due to a Bessel function identity (F13). The amplitude-
modulation efficiency in this configuration is also greatly
simplified due to a Bessel function (F20) identity

ηAM = 1

T

∑
n even

Jn(β )Jn+2(β ) = 1

T

(
1

2
J2(2β )

)
(B6)

= J2(2β )

1 + J0(2β )
. (B7)

4. Mach-Zehnder modulation

A Mach-Zehnder modulator is an interferometer in which
phase modulation occurs in one arm of the interferometer. If
the two pathways are balanced in power, the power transmit-
ted in one output mode is given by the relative phase between
the two paths:

I (φ) = sin2

(
φ

2

)
= 1

2
[1 − cos(φ)]. (B8)

To modulate the output intensity at the qubit frequency ωq,
the relative phase can be biased either to the half-transmission
point and then modulated at ωq, according to φ = π/2 +
β sin(ωqt ), or to the minimum transmission point and then
modulated at ωq/2, with φ = β sin(ωqt/2). These approaches
result in different electric-field components in the output light,
but to analyze the Raman performance, we need only analyze
the laser intensity.

We begin with the half-transmission configuration. In this
case, plugging φ = π/2 + β sin(ωqt ) into Eq. (B8), we obtain

I (t ) = 1
2 {1 + sin[β sin(ωqt )]}. (B9)

Using a version of the Jacobi-Anger expansion, the right-hand
side can be expanded as

I (t ) = 1
2

(
1 − i

∑
n odd

Jn(β )einωqt

)
. (B10)
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The average optical power is given by the time-independent
term

T = 1
2 . (B11)

This is as expected, since we modulate symmetrically around
the half-transmission point.

The amplitude-modulation efficiency is given by the coef-
ficient of the eiωqt term, normalized by T :

ηAM = 1

T

J1(β )

2
= J1(β ). (B12)

Turning instead to the minimum transmission case, we cal-
culate the time-dependent output intensity by plugging φ =
β sin(ωqt/2) into Eq. (B8):

I (t ) = 1

2

{
1 − cos

[
β sin

(
ωqt

2

)]}
. (B13)

Again using the Jacobi-Anger expansion, we obtain

I (t ) = 1
2

(
1 −

∑
n even

Jn(β )einωqt/2

)
. (B14)

We now read off the average optical power by setting all time-
dependent terms to zero:

T = 1
2 [1 − J0(β )]. (B15)

As with the half-transmission case, the amplitude-modulation
efficiency is the coefficient of the eiωqt term, here correspond-
ing to n = 2, normalized by T :

ηAM = 1

T

J2(β )

2
= J2(β )

1 − J0(β )
. (B16)

5. Dispersive elements

After reflecting from a dispersive element with uniform
dispersion (group-delay dispersion is independent of fre-
quency), the normalized field is described by

�(t ) =
∞∑

n=−∞
Jn(β )einωt eiαn2

. (B17)

The intensity is then given by

|�(t )|2 =
∞∑

k=−∞
eikωt

∞∑
n=−∞

Jn(β )Jn+k (β )eiα[(n+k)2−n2]. (B18)

Assuming the phase-modulation frequency is a subharmonic
of ωq, with ω = ωq/k, then we have the following amplitude-
modulation efficiency (of order k):

ηAM
k =

∣∣∣∣∣
∞∑

n=−∞
Jn(β )Jn+k (β )e2iαnk

∣∣∣∣∣. (B19)

Here we use the Bessel function identity (F5) to simplify

ηAM
k = |Jk[2β sin(αk)]|. (B20)

From this we can immediately evaluate the upper bound
on efficiency for any choice of β and dispersive parameter

α, because the result is simply bounded by the maximum
value of Jk (z). Moreover, we see that modulating directly at
ω = ωq (taking k = 1) is optimal, since J1(z) has a larger
maximum than any higher-order Bessel function, but we
also see that this configuration requires the largest dispersive
parameter α to achieve this maximum, due to the sin(αk)
coefficient within the Bessel function argument.

APPENDIX C: DISPERSIVE OPTICAL ELEMENTS

The group-delay dispersion of an optical element is
defined as

G = ∂2ϕ

∂ω2
, (C1)

where ϕ(ω) is the optical phase shift (in radians) accumulated
by a frequency component with angular frequency ω after the
action of the element. The GDD is typically measured in units
of fs2, although many optical elements such as fibers have
their dispersive properties described in terms of their group-
velocity dispersion (GVD), which is GDD per unit length
[typical units are (ps/nm)/km].

Normal materials have dispersion which acts over a broad
wavelength range, which plays an important role in ultrafast
optics with broadband lasers, where dispersion results in pulse
broadening. However, we are interested here in strong dis-
persion on the scale of approximately 10 GHz in the near
infrared. In particular, as described in the main text, we want
optical elements with group-delay dispersion of 8 × 108 fs2

to be able to optimally convert phase modulation to amplitude
modulation.

Typical optical fibers at 795 nm have GVD of −120
(ps/nm)/km, or 4 × 104 fs2/m, with attenuation 4 dB/km. To
achieve the target GDD, we would require a 20-km fiber, with
a resulting 80-dB laser attenuation. Some photonic crystal
fibers have been designed to have significantly larger GVD,
but with much higher attenuation.

In the ultrafast optics community, after sending short
pulses through a long fiber, they reverse the pulse broaden-
ing by reflecting the broadened pulse from a chirped Bragg
mirror. The highest available chirped Bragg mirrors offer
G ∼ 2000 fs2 per reflection. To achieve our target GDD would
require approximately 400 000 reflections from such a mirror.

The volumetric chirped Bragg grating that we use offers
the enormous G = 4 × 108 fs2 from a single pass. After re-
flecting twice from the CBG, we double the GDD to the
target level and conveniently also recombine spatial modes
of all spectral components in the laser. One caveat is that
the CBG has a narrow bandwidth of approximately 50 GHz,
which requires angle tuning to match to the bandwidth of
the phase-modulated laser. This could also limit reflectivity
at large phase-modulation depth due to high-order sidebands
being outside the bandwidth, but for β � π this does not pose
an issue. Another factor is that the CBG does not in fact
have uniform GDD over its bandwidth, which further requires
angle tuning to position the laser frequency at an optimal point
within the CBG bandwidth [Fig. 2(c)].
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FIG. 5. Annotated optical setup for the Raman laser system: TA, tapered amplifier; HWP, half waveplate; QWP, quarter waveplate; PBS,
polarizing beam splitter; EOM, electro-optic modulator; CBG, chirped Bragg grating; and AOM, acousto-optic modulator.

APPENDIX D: OPTICAL SETUP

An annotated image of the optical setup used in this work
is shown in Fig. 5. The Toptica TA Pro laser source at 795 nm
outputs up to 1.5 W of fiber-coupled light. Half and quarter
waveplates align the polarization to be vertical such that it is
reflected by a polarizing beam splitter (PBS) into the EOM.
A subsequent half waveplate aligns the polarization to be
primarily horizontal such that most of the light propagates
through the following PBS (with a small amount deflected up
and focused into a scanning Fabry-Pérot cavity).

The light transmitted through the PBS reflects from the
CBG at an approximately 3◦ angle from normal; a pickoff
mirror separates the reflection from the incoming beam. Both
the CBG and pickoff are mounted on the same rotation stage,
but they have a fixed relative orientation such that the light
is always reflected from the pickoff at a fixed angle upward.
For phase-modulated light, the distinct frequency components
penetrate different depths into the CBG and therefore spatially
separate; all components reflect from the pickoff mirror at
the same angle, however, and are all reflected back onto the
CBG by a flat retroreflection mirror. All frequency compo-
nents pass twice through a quarter waveplate to rotate their
polarization such that after recombining on the CBG, they
now reflect downward from the PBS. At this position, the laser
is now amplitude modulated. The total reflectivity measured
in Fig. 2(c) is the ratio of the output power (after the final PBS
reflection) to the input power (before the first entrance of the
PBS).

Finally, the laser is focused through an AOM for power sta-
bilization and fast pulsing. The zeroth-order AOM deflection
is aligned into a fiber-coupled fast photodetector for moni-
toring amplitude modulation. The first-order AOM deflection

is coupled into a polarization-maintaining optical fiber and
delivered to a separate optical table, where it is outcoupled
onto the atoms.

APPENDIX E: IDLE POPULATION DECAY AND ATOM
LOSS IN OPTICAL TWEEZERS

While qubit dephasing can be mitigated through dynamical
decoupling sequences, the ultimate limit to qubit coherence
is set by population decay due to scattering from the optical
tweezers as well as the finite atom lifetime in the tweezers. In
Fig. 6 we show additional data for these two effects, measur-
ing a qubit state population-decay lifetime of 0.45(1) s and a
background atom lifetime which is approximately 10 s.

APPENDIX F: BESSEL FUNCTION IDENTITIES

1. Destructive interference of pure phase modulation

The Bessel function identities that describe destructive in-
terference in Raman driving with a phase-modulated laser can
be easily derived from the Jacobi-Anger expansion

eiβ sin ωt =
∞∑

n=−∞
Jn(β )einωt . (F1)

Taking the magnitude squared of both sides, we find

1 =
∑
m,n

Jn(β )Jm(β )ei(m−n)ωt . (F2)
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FIG. 6. Population decay and atom loss. We initialize atoms
in either |0〉 = |F = 1, mF = 0〉 or |1〉 = |F = 2, mF = 0〉 (middle
blue and upper orange curves, respectively) and hold the atoms in
the optical tweezers for a variable time before pushing out the F = 2
population. During the hold time, the atomic spin can be flipped
due to Raman scattering events from the optical tweezer light [26].
The total atom loss probability, including both background loss and
loss from being in F = 2 at the time of the pushout pulse, is shown
as a function of hold time for the two initial states; these two curves
converge with a fitted 1/e time of 0.45(1) s. The tweezer depths are
ramped down to approximately 4 MHz during the hold time. We
additionally turn off the F = 2 pushout to measure the background
loss probability (gray, bottom curve), which is consistent with a 10-s
vacuum-limited lifetime.

Regrouping the sum in terms of indices n and k = m − n, we
obtain

1 =
∞∑

k=−∞
eikωt

[ ∞∑
n=−∞

Jn(β )Jn+k (β )

]
. (F3)

Since the left-hand side is time independent, the coefficients
of the time-dependent terms eikωt must vanish for any k = 0:

∞∑
n=−∞

Jn(β )Jn+k (β ) =
{

1, k = 0
0, k = 0.

(F4)

Since these sums represent amplitude modulation at frequency
kω, this tautologically says that pure phase modulation has no
amplitude modulation.

2. Quadratic phase shifts

Claim.

Jk (2z sin φ) = (−i)keikφ

∞∑
n=−∞

Jn(z)Jn+k (z)e2inφ. (F5)

Proof. We begin using the Jacobi-Anger expansion, treat-
ing β = 2z sin φ as the modulation depth:

ei(2z sin φ)(sin θ ) =
∞∑

n=−∞
Jn(2z sin φ)einθ . (F6)

Alternatively, instead of expanding the left-hand side using the
Jacobi-Anger expansion, we could also multiply the two sine
functions, recalling the trigonometric identity sin(x) sin(y) =

1
2 [cos(x − y) − cos(x + y)]. Plugging this in, we obtain

ei(2z sin φ)(sin θ ) = (eiz cos(φ−θ ) )(e−iz cos(φ+θ ) ). (F7)

We now apply the Jacobi-Anger expansion for both terms on
the right-hand side. Setting this expression equal to the right-
hand side of Eq. (F6), we obtain( ∞∑

n=−∞
inJn(z)ein(φ−θ )

)( ∞∑
m=−∞

imJm(−z)eim(φ+θ )

)

=
∞∑

k=−∞
Jk (2z sin φ)eikθ . (F8)

Expanding the left-hand side as a sum over indices n and m,
we obtain ∑

n,m

in+mJn(z)Jm(−z)ei(n+m)φei(m−n)θ

=
∞∑

k=−∞
Jk (2z sin φ)eikθ . (F9)

We will now rewrite the left-hand side with a change in index-
ing, using n and k′ ≡ m − n, and regroup terms to pull the k′
sum to be the outer sum:

∞∑
k′=−∞

eik′θ

[
ik′

eik′φ
∞∑

n=−∞
i2nJn(z)Jn+k′ (−z)e2inφ

]

=
∞∑

k=−∞
[Jk (2z sin φ)]eikθ . (F10)

Recalling that Jn+k (−z) = (−1)n+kJn+k (z) and using that
i2n = (−1)n, we simplify

∞∑
k′=−∞

eik′θ

[
(−i)k′

eik′φ
∞∑

n=−∞
Jn(z)Jn+k′ (z)e2inφ

]

=
∞∑

k=−∞
[Jk (2z sin φ)]eikθ . (F11)

On both sides of the equation, we have an outer sum over k (or
k′), with orthogonal functions eikθ . We therefore must require
that the coefficients are all equal for corresponding k = k′.
Rewriting the equality between coefficients, we obtain

Jk (2z sin φ) = (−i)keikφ

∞∑
n=−∞

Jn(z)Jn+k (z)e2inφ. (F12)

3. Even sidebands

We can now use (F12) to prove identities regarding a field
with only the even sidebands. We first consider the total power
in a beam with only the even-index sidebands.

Claim.

T ≡
∑

n even

Jn(β )2 = 1
2 [1 + J0(2β )]. (F13)

Proof. We find that the sum over even sidebands is quite
similar to a sum over all sidebands, but with a minus sign on
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the odd sidebands. To see this we write
∞∑

n=−∞
(−1)nJn(β )2 =

∑
n even

Jn(β )2 −
∑
n odd

Jn(β )2. (F14)

Recalling that the sum of the power in all sidebands must be
unity, we know that∑

n odd

Jn(β )2 = 1 −
∑

n even

Jn(β )2. (F15)

Plugging this into Eq. (F14), we have
∞∑

n=−∞
(−1)nJn(β )2 = −1 + 2

∑
n even

Jn(β )2 (F16)

= −1 + 2T . (F17)

The left-hand side now happens to be in a very similar form to
the right-hand side of Eq. (F12). In particular, we now write
(F12) with k = 0, φ = π/2, and z = β:

J0(2β ) =
∞∑

n=−∞
(−1)nJn(β )2. (F18)

Inserting this result into Eq. (F17), we solve for T :

T = 1
2 [1 + J0(2β )]. (F19)

Claim. Now we can apply a similar technique to prove
another identity related to the situation of even sidebands:∑

n even

Jn(β )Jn+2(β ) = 1
2 J2(2β ). (F20)

Proof. We begin by directly applying the quadratic disper-
sion identity (F12) with k = 2, φ = π/2, and z = β:

J2(2β ) =
∞∑

n=−∞
(−1)nJn(β )Jn+2(β ). (F21)

Again separating in terms of even and odd terms, we obtain

J2(2β ) =
∑

n even

Jn(β )Jn+2(β ) −
∑
n odd

Jn(β )Jn+2(β ). (F22)

Recalling that the sum over all pairs of sidebands is identically
0, we know that∑

n odd

Jn(β )Jn+2(β ) = −
∑

n even

Jn(β )Jn+2(β ). (F23)

We now plug this result in and find∑
n even

Jn(β )Jn+2(β ) = 1
2 J2(2β ). (F24)
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M. D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).

[20] J. Mlynek, W. Lange, H. Harde, and H. Burggraf, Phys. Rev. A
24, 1099 (1981).

[21] D. Suter, M. Rosatzin, and J. Mlynek, Phys. Rev. A 41, 1634
(1990).

[22] M. Tanigawa, Y. Fukuda, T. Hashi, T. Mishina, and M.
Kunitomo, J. Opt. Soc. Am. B 9, 313 (1992).

[23] I. H. Deutsch and P. S. Jessen, Phys. Rev. A 57,
1972 (1998).

[24] E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, Appl.
Phys. Lett. 105, 192406 (2014).

[25] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang,
S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and
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