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We propose a framework to variationally obtain detectable capacity bounds for quantum channels. The
proposal of this framework is motivated by the difficulty of estimating the von Neumann entropy of an unknown
quantum state. Instead of estimating the von Neumann entropy at the channel output, we propose to estimate
the state purity—which can be measured by a single measurement setting—followed by bounding the von
Neumann entropy from above and below. This procedure leads to new upper and lower bounds on various
communication rates of quantum channels for some fixed input states. Then, by utilizing the variational method
to find optimal input states we obtain lower bounds on (i) the quantum capacity of arbitrary channels, (ii)
the entanglement-assisted classical capacity of arbitrary channels, and (iii) the classical capacity of covariant
channels. Corresponding to these lower bounds, we also obtain upper bounds on (i) N-shot coherent information,
(ii) the entanglement-assisted classical capacity, and (iii) the N-shot Holevo capacity of arbitrary quantum
channels. All these bounds can be estimated by a single measurement setting without needing a full process
tomography or any further a priori knowledge, e.g., preferred basis of the channel.
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I. INTRODUCTION

Over the last two decades we have witnessed a rapid
growth of quantum technologies both in theory and in practice
[1]. This growth in the field of quantum metrology, quantum
computation, and quantum communication necessitates that
one accurately certify and benchmark the available quantum
resources [2]. However, as our system of interest grows in
size, it becomes exponentially difficult to characterize these
resources on a classical computer. For example, the complex-
ity of quantum state (channel/process) tomography, a task
to characterize a quantum state (channel), scales as d2 (d4),
where d is the dimension of the state (channel) under question.
Obtaining a classical description of these resources is required
when one wants to characterize some inherent property, e.g.,
the entanglement content of a quantum state or the capacity of
a quantum channel.

This problem has been previously addressed in the lit-
erature and some approaches to directly characterize the
quantities of interest without obtaining a classical description
of the system of interest have been proposed [3–5]. These ap-
proaches began with the direct characterization of properties
of quantum states [3,4]. Later on, this approach was extended
for direct estimation of properties of quantum channels, e.g.,
capacities or certain structural properties of quantum chan-
nels. To the best of our knowledge, the first work to propose
experimentally accessible bounds on the capacity of an un-
known quantum channel was Ref. [6], which lower bounded
the quantum capacity. This method was later experimentally
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implemented for amplitude damping, dephasing, depolariz-
ing, and Pauli channels [7]. In Ref. [8], a method for capacity
estimation and verification of qubit channels with arbitrary
correlated errors was proposed. This proposal also included
the experimental demonstration on a transmon qubit, which
exhibits a noisy quantum channel [9]. An experimentally ac-
cessible tight lower bound on the classical (Holevo) capacity
of discrete Weyl/generalized Pauli channels of arbitrary di-
mensions was proposed in Ref. [10]. Recently, a lower bound
on the classical capacity of arbitrary quantum channels was
proposed in Ref. [11] with the experimental demonstration
reported in Ref. [12].

Since these quantities of interest are entropic in nature,
one major challenge in the aforementioned works is to ac-
curately and reliably estimate the entropy of the quantum
states. Measuring quantum entropy is known to be a chal-
lenging problem [13,14]. In fact, this problem is known
to be as hard as estimating the actual quantum state [15].
In particular, the aforementioned bounds of quantum chan-
nel capacities [6,10,11] provide tight estimates of the actual
capacities if the basis of the channel input and the mea-
surement basis are exactly aligned with some specific basis.
For example, the classical capacity of a qubit dephasing
channel is 1 bit/channel use. The aforementioned accessi-
ble bounds [10,11] give 1 bit/channel use if at least one
of the three measurement bases (Pauli X , Y , or Z) is ex-
actly matched with the basis of dephasing. In a practical
scenario with no a priori knowledge on the channel struc-
ture, it is difficult to justify the alignment of input and the
measurement basis with the dephasing basis of the channel.
Thus, the estimated bound may turn out to be considerably
smaller than the actual value. Similar challenges arise in
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TABLE I. A comparison of this work with existing literature on
detectable bounds. Quantum capacity, entanglement-assisted classi-
cal capacity, and the classical capacity are denoted by Q, CEA, and C,
respectively. Coherent information and Holevo capacity are denoted
by Ic and χ , respectively. Superscripts ub and lb indicate an upper
and a lower bound on the corresponding capacities, respectively.

�������Work
Result

Q(·) CEA(·) C(·)
Qlb(·) Iub

c (·) Clb
EA(·) Cub

EA(·) Clb(·) χ ub(·)
[6]

√
✗ ✗ ✗ ✗ ✗

[8]
√

✗ ✗ ✗ ✗ ✗

[10] ✗ ✗ ✗ ✗
√

✗

[11] ✗ ✗ ✗ ✗
√

✗

This work
√ √ √ √ √ √

the estimation of quantum capacities of unknown quantum
channels [6,8].

In this work, we circumvent this difficulty in the entropy
estimation by estimating the purity of the output state of the
channel and then utilizing the bounds on the entropy of a
quantum state whose purity is known. We supplement this
strategy with a variational approach, i.e., we parametrize the
input state to the channel whose parameters are varied with
the help of a classical optimizer. This variational approach
has recently seen great success in several modern quantum
computing and communications tasks.

In terms of the required number of measurement setting,
purity estimation is an easier problem than the entropy esti-
mation in both gate-based quantum computers [16–18] and
photonic quantum systems [19–21]. In fact, purity can be
estimated by using only a single fixed measurement setting
on two copies of the arbitrary-dimensional quantum state.
Furthermore, we demonstrate in the numerical results that
our proposed approach not only provides simple to esti-
mate, basis-independent bounds on the capacities of quantum
channels but also these bounds coincide with the known
analytical capacities of several important quantum channels.
Additionally, this approach is general enough to provide de-
tectable bounds on multiple capacities including quantum
capacity, entanglement-assisted capacity, and classical capac-
ity of quantum channels. A comparison of our work with
existing works is summarized in Table I.

II. PURITY-BASED CAPACITY BOUNDS
FOR QUANTUM CHANNELS

By nature, communication capacities of quantum chan-
nels are information-theoretic quantities. Thus, estimating the
channel capacity requires estimating and optimizing some
entropic quantity at the channel output. In this work, our
proposed strategy for capacity estimation has two main com-
ponents. First, we recast the problem of entropy estimation
with purity estimation at the channel output. From the esti-
mated output purity we are able to bound the output entropy,
from above and below, by utilizing the known bounds on
the von Neumann entropy of a quantum state with known
purity [22–24]. By appropriately replacing these bounds in

the entropic expression for the communication rate, we ob-
tain upper and lower bounds on the rate of interest. Similar
approaches have been previously employed for entanglement
spectroscopy (see, e.g., Refs. [18,25]). Second, we utilize
the method of variation to optimize this expression. To this
end, we parametrize the input state of the channel and then
iteratively vary these parameters with the help of a classical
computer to optimize the entropic expression at the channel
output. At the end of this iterative process, we can lower
bound the quantum capacity and the entanglement-assisted
classical capacity of arbitrary channels and the classical ca-
pacity of covariant channels. Additionally, we can upper
bound the coherent information, the entanglement-assisted
classical capacity, and the Holevo capacity of arbitrary
channels.

A. Purity-based entropy bounds for quantum states

The state ρ of a quantum system is represented by a posi-
tive semidefinite matrix of unit trace, i.e., ρ � 0 and trρ = 1.
A quantum channel N is a trace-preserving completely pos-
itive map corresponding to physical operations on the set of
quantum states. The capacity of a quantum channel is the
maximum achievable rate of reliable communication over the
channel. This channel capacity can be defined depending on
the available resources and the nature of information that
we want to communicate. For example, the quantum capac-
ity Q(N ) is defined for quantum information; the classical
capacity C(N ) is defined for classical information; and the
entanglement-assisted classical capacity CEA(N ) is defined
for classical information when communicating parties have
access to an arbitrary amount of shared entanglement.

The von Neumann entropy S(ρ) of the quantum state ρ

can be represented as the Shannon entropy of its eigenvalue
distribution, i.e.,

S(ρ) = −trρ log2 ρ = −
∑

i

λi log2 λi,

where λi’s are the eigenvalues of ρ. Similarly, the purity T (ρ)
of the quantum state ρ can be defined as the sum of its squared
eigenvalues, i.e.,

T (ρ) = trρ2 =
∑

i

λ2
i ,

which is called the correlation figure for correlation matrices
[26] or the index of coincidence for classical probability dis-
tributions [23]. For T (ρ) = 1 (pure states) and T (ρ) = 1/d
(maximally mixed states), we have the relation

S(ρ) = − log2 T (ρ). (1)

In general, there is no one-to-one relation between the entropy
and the purity of quantum states, except for these two extreme
cases. However, we can bound the von Neumann entropy S(ρ)
when the purity T (ρ) is known [22–24].

Let ρ be an arbitrary d-dimensional quantum state with
1/d � T (ρ) � 1 and H±(ρ) be the quasiuniform Shannon
entropy function of ρ, defined as

H±(ρ) = −(κ± − 1)p± log2 p± − q± log2 q±, (2)
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where κ+ = �1/T (ρ)�, κ− = d , and

p± =
1 ±

√
1 − κ±[1−T (ρ)]

κ±−1

κ±
,

q± = 1 − (κ± − 1)p±. (3)

Then,

L(ρ) � S(ρ) � U (ρ), (4)

where L(ρ) = H+(ρ) and U (ρ) = H−(ρ). Note that for
T (ρ) = 1 (pure states), lower and upper bounds coincide with
S(ρ) = 0, while for T (ρ) = 1/d (maximally mixed states),
these two bounds coincide with S(ρ) = log2 d .

The main motivation for using the purity instead of the
entropy at the channel output is the ease of its experimental
estimation as compared to the entropy estimation. The purity
T (ρ) can be operationally seen as the expected value of the
SWAP operator W = ∑

jk | jk〉 〈k j| on the two copies of ρ, i.e.,

T (ρ) = tr(ρ ⊗ ρ)W . (5)

The spectrum of W consists of symmetric and antisymmetric
eigenspaces with eigenvalues 1 and −1, respectively. Hence,
the expectation in Eq. (5) can be obtained by implement-
ing a two-outcome projective measurement on the symmetric
and antisymmetric subspaces of the joint Hilbert space. One
example of such measurement for a qubit case is the Bell-
state measurement where the singlet lies in the antisymmetric
eigenspace of W and the remaining Bell states correspond
to the symmetric eigenspace. We remark that obtaining the
expectation of the SWAP operator requires a single but nonlocal
measurement setting. On the other hand, if we employ some
other technique of direct entropy estimation, for example,
quantum state tomography, it requires only local but expo-
nentially many (order of 22n) measurement settings for an
n-qubit state. In particular, the purity T (ρ) can be efficiently
estimated by using the well-known swap test on a gate-based
quantum computer [16–18] or by measuring the visibility of
the Hong-Ou-Mandel dip in the photonic systems [19–21].

The second main component of this work is to use a
method of variations for the capacity bounds. We input a
physically available but unknown quantum channel with a
parametrized quantum state with some randomly chosen pa-
rameter values. At the channel output, we measure the purity
of the output state, calculate the bounds for the communica-
tion rate, and input the obtained parameters to the classical
optimizer, which then generates a new set of parameters for
the input state in the next round. The classical optimizer at-
tempts to maximize the bounds on the communication rate of
the channel output by varying the parameters of the state. Per-
forming this optimization iteratively tightens the variational
capacity bounds for the given unknown quantum channel.
A pictorial representation and description of the proposed
method is provided in Fig. 1 and its caption, respectively.

B. Bounds on the quantum capacity

Now we are ready to transform the capacity expressions
of quantum channels to a variational bound framework. The
quantum capacity of a quantum channel N is defined as

FIG. 1. Variational estimation of capacity bounds. The exact
protocol for variational estimation of capacity bounds for Q(·) and
CEA(·) is as follows. (i) Alice and Bob begin with the maximally
entangled state on HR ⊗ HS , where the system qudit (S) is held by
Alice and the reference qudit (R) is held by Bob. (ii) They apply
local operations and classical communication (LOCC) according to
parameter values �θi to obtain |ψ (�θi )〉RS . (iii) Alice sends her qudit to
Bob through N , whereas Bob’s qudit undergoes no evolution I. (iv)
Upon receiving Alice’s qudit, Bob performs purity measurements
and bounds the marginal entropies of S and R, as well as the joint
entropy of RS by utilizing Eq. (4). (v) Then, he computes the bound
of interest by computing Eq. (10), (14), or (19). (vi) Bob feeds the
obtained value to the optimizer to obtain a new set of parameter �θi+1,
which he communicates to Alice. (vii) They calculate their parts of
the LOCC and perform the next iteration. Once some convergence
criterion is met, they output the estimated bounds on the capacity of
interest of N .

[27–31]

Q(N ) = lim
N→∞

QN (N )

N
, (6)

where

QN (N ) = max
ρ

Ic(ρ,N⊗N ) (7)

is the maximum coherent information over N channel uses of
N . The coherent information of a channel N is [32]

Ic(ρ,N ) = S[N (ρ)] − Se(ρ,N ), (8)

where Se(ρ,N ) = S[I ⊗ N (|ψρ〉 〈ψρ |)] is the entropy ex-
change, where |ψρ〉RS is any purification of the system qubit
ρS with a reference system R, and I is the identity channel
that acts on the reference part of the purification.

From the purification of ρ, we can rewrite the last
expression as

Ic(ρ,N ) = S(trR[I ⊗ N (|ψρ〉 〈ψρ |)])
− S[I ⊗ N (|ψρ〉 〈ψρ |)], (9)

where trR[·] denotes the partial trace with respect to the refer-
ence system R. Then, the maximum of coherent information
can be found by optimizing the pure states in d2-dimensional
Hilbert space, which is a more suitable form for the variational
circuits, instead of optimizing mixed states on d-dimensional
Hilbert space.

Finally, observing that both terms on the right of Eq. (9)
are entropies of quantum states, we can readily bound them by
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inserting the purity-based bounds discussed above. Then, we
can obtain variational lower and upper bounds on the coherent
information of arbitrary unknown quantum channels.

Specifically, let ρRS = I ⊗ N (|ψ〉) and ρS = trR(ρRS ).
Then,

I lb
c (ρ,N ) := L(ρS ) − U (ρRS ) � Ic(ρ,N )

� U (ρS ) − L(ρRS ) := Iub
c (ρ,N ). (10)

Maximizing all expressions in the last chain of inequalities
gives

Qlb
1 (N ) := max

|ψ〉RS
I lb
c (ρ,N ) � Q1(N )

� Qub
1 (N ) := max

|ψ〉RS
Iub
c (ρ,N ), (11)

where the d2-dimensional |ψ〉 is input to I ⊗ N . Note that
Qlb

1 (N ) and Qub
1 (N ) are the lower and upper VCBs to the

one-shot quantum capacity of N that can be estimated without
invoking the full process tomography of N . Since we have the
chain of inequalities Qlb

1 (N ) � Q1(N ) � Q(N ), Qlb
1 (N ) also

bounds the quantum capacity of N from below. Furthermore,
since N is completely arbitrary, we can also estimate the
N-shot coherent information (7) by substituting N with N⊗N .
Therefore, this method is also suitable for bounding the N-
shot coherent information of N for any finite N . Furthermore,
since the private information P(N ) of a channel N follows
P(N ) � Q1(N ), the lower bound we obtained above also
lower bounds P(N ).

C. Bounds on the entanglement-assisted classical capacity

The entanglement-assisted classical capacity (EACC) of a
quantum channel is the maximum rate of classical communi-
cation when the transmitter and the receiver have preshared
entanglement [33,34]. The EACC is known to be additive and
thus can be characterized by a single-letter formula, chan-
nel’s mutual information, without the need of regularization
[28,33,35]:

CEA(N ) = max
|ψ〉AA′

I (A; B)ρ, (12)

where

I (A; B)ρ = S(ρA) + S(ρB) − S(ρAB), (13)

where ρAB = I ⊗ N (|ψ〉AA′
), and ρA and ρB are the parts of

ρAB by tracing out the B and A, respectively. Similar to the
previous case, we readily bound the last expression as

I lb(A; B)ρ := L(ρA) + L(ρB) − U (ρAB) � I (A; B)ρ

� U (ρA) + U (ρB) − (ρAB)

:= Iub(A; B)ρ. (14)

Then, the maximization of all expressions in the chain of
inequalities gives

Clb
EA(N ) := max

|ψ〉AA′
I lb(A; B)ρ � CEA(N )

� Cub
EA(N ) := max

|ψ〉AA′
Iub(A; B)ρ. (15)

In a practical setting, the estimation method of EACC
between Alice and Bob is similar to that of the estimation
method for the quantum capacity as shown in Fig. 1. The
only difference between the two estimation techniques is the
entropy estimates and the evaluated expression at Bob’s end.
For the quantum capacity, Bob estimates the constituents and
then attempts to maximize Eq. (10) whereas for the EACC he
operates with Eq. (14).

D. Bounds on the classical capacity

The classical capacity of a quantum channel N is the max-
imum rate of reliable classical communication over arbitrarily
many uses of N . It is given by

C(N ) = lim
N→∞

χN (N )

N
, (16)

where

χN (N ) = max
pi,ρi

[∑
i

S[piNN (ρi )] −
∑

i

piS[NN (ρi )]

]
(17)

is the Holevo capacity of N over N channel uses. In Eq. (17),
ρi denotes the signal states sent over the channel with the
corresponding probability pi. Similar to the quantum capacity,
the classical capacity of an arbitrary channel is feared to be
uncomputable. However, χ1(N ) is known to be a reliable
lower bound on the classical capacity. It is well known that
the Holevo capacity is bounded from above as

χN (N ) � N log2 d − min
ρ

S[NN (ρ)], (18)

with equality for unital qubit and covariant channels of arbi-
trary dimensions [36]. Thus, following the same reasoning as
before, we have the bounds

χ lb
N (NN ) := N log2 d − min

ρ
U [NN (ρ)]

(a)
� χN (N )

� χub
N (NC ) := N log2 d − min

ρ
L[NN (ρ)], (19)

where the lower bound (a) is valid only for unital qubit and
qudit covariant channels [36].

III. NUMERICAL EXAMPLES

We exemplify the performance of our proposed bounds
with variational estimation for the amplitude damping
channel,

N (ρ) = A0ρA†
0 + A1ρA†

1, (20)

the depolarizing channel,

N (ρ) = (1 − p)ρ + p
I

2
, (21)

and the Pauli channel,

N (ρ) =
3∑

i=0

piσiρσ
†
i , (22)

where

A0 =
[

1 0
0

√
1 − γ

]
, A1 =

[
0

√
γ

0 0

]
, (23)
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and σ0, σ1, σ2, and σ3 are identity, Pauli X , Pauli Y , and
Pauli Z matrices, respectively. We set the probabilities {pi}i of
Pauli channels from the eigenvalues of 4 × 4 exponential cor-
relation and constant tridiagonal correlation matrices, which
are parametrized by a single parameter [26]. The exponential
correlation matrix that we use here is


(exp)(η) = 1

4

⎡
⎢⎢⎣

1 η η2 η3

η 1 η η2

η2 η 1 η

η3 η2 η 1

⎤
⎥⎥⎦, (24)

where η ∈ [0, 1]. The constant tridiagonal correlation
matrix is


(tri)(ξ ) = 1

4

⎡
⎢⎣

1 ξ 0 0
ξ 1 ξ 0
0 ξ 1 ξ

0 0 ξ 1

⎤
⎥⎦, (25)

where ξ ∈ [0, 0.5/ cos π
5 ]. The main motivation for using

eigenvalues of these correlation matrices for channel pa-
rameters is because of the majorization relation of obtained
eigenvalue vectors by varying the parameters η and ξ . By
varying these parameters, we can move smoothly from the
maximally noisy channel to the noiseless channel.

Figures 2(a)–2(c) show the proposed bounds along with the
actual values of the coherent information for amplitude damp-
ing, depolarizing, and Pauli (probabilities from exponential
correlation matrix) channels, respectively. These three exam-
ples show three distinct behaviors of the proposed bounds.
The upper and the lower bounds are saturated by the amplitude
damping channel and the depolarizing channel, respectively.
On the other hand, the Pauli channel whose parameters are
taken from the eigenvalues of the correlation matrix saturates
neither of the proposed bounds.

Figures 3(a)–3(d) show the proposed bounds and the
corresponding EACC values for the amplitude damping, de-
polarizing, Pauli (exponential correlation), and Pauli (constant
tridiagonal correlation) channels, as functions of the channel
parameters. Here, we behavior similar to that of coherent
information bounds. An interesting case emerges for the Pauli
channel with constant tridiagonal correlation matrix. In this
case, the EACC is saturated by the corresponding lower bound
for the small values of η and is almost saturated by the upper
bound for the higher values of η, whereas the difference be-
tween the two bounds remains constant.

A. Experiments on IBM QISKIT

We implement the proposed capacity estimation protocol
on the IBM’s Qiskit library and IBM quantum (IBMQ) de-
vices [37]. To this end, we simulate the channel of interest in
Qiskit [38], measure the purity at the channel output [17], and
iteratively update the channel input. The implemented circuits
for these experiments are shown in Figs. 4 and 5 for the am-
plitude damping and the depolarizing channel, respectively.

In the circuit for the amplitude damping channel, we
have θ = arccos(

√
1 − γ ), where γ is the amplitude damping

parameter from the main text. On the other hand, for the
depolarizing channel we have θ = arccos(1 − 2p)/2, where
p is the amplitude damping parameter. The purity of the joint

FIG. 2. Coherent information Q1(N ) and the corresponding
bounds for (a) amplitude damping, (b) depolarizing, and (c) Pauli
channels whose parameters are determined from the 4 × 4 exponen-
tial correlation matrix.

state is computed by first obtaining �cRS , the vector of normal-
ized counts at the output, and taking the dot product with
�bRS = [1, 1, 1,−1]⊗2 [17]. Similarly, the purity of system
(resp. reference) qubit alone can be obtained by calculating
�cS (respectively �cR) from �cRS and taking the dot product with
�bS (respectively �bR) = [1, 1, 1,−1].

We performed two types of experiments by implement-
ing these circuits in Qiskit. First, we performed noiseless
simulations on QASM simulator. Second, we performed ex-
periments on FakeMelbourne() simulator provided by
qiskit.test.mock module. This simulator mimics the be-
havior of ibmq_16_melbourne, which is a 16-qubit quantum
device offered by IBMQ experience.

We parametrized the state as [39]

|ψ〉RS = cos (θ1/2) cos (θ2/2) |00〉
+ cos (θ1/2) sin (θ2/2)eιφ2 |01〉
+ sin (θ1/2) cos (θ3/2)eιφ1 |10〉
+ sin (θ1/2) sin (θ3/2)eι(φ1+φ3 ) |11〉
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FIG. 3. Entanglement-assisted classical capacity CEA and the corresponding bounds for (a) amplitude damping, (b) depolarizing, (c) Pauli
(exponential correlation), and (d) Pauli (constant tridiagonal correlation) channels. Solid lines show the entanglement-assisted classical
capacity for the corresponding channels.

and utilized the “Powell” optimizer for varying and optimiz-
ing these parameters [40]. In both types of experiments, we
set the number of measurements n_shots = 8192 per iter-
ations and set maxfev = 100 in scipy.optimize module
per channel. The parameter maxfev specifies the maximum
number of allowed evaluations of the objective function. In
our case, this corresponds to ∼140–150 iterations of state

preparation, evolution, and then measurement. In these ex-
amples, we initialized our ansatz (26) to the parameters
[θ1, θ2, θ3, φ1, φ2, φ3] = [π/2, 0, π, 2, 1, 0.2], which served
as a somewhat arbitrary but good starting point for these
optimization runs. We left all other optimizer options to
their default values. The optimization terminated when ei-
ther the maximum number of iterations was achieved or the

FIG. 4. Quantum circuit for amplitude damping channel. Purity measurement requires two copies of the state IR ⊗ N S (ρRS ). We prepare
these two copies on wires 1–4, labeled as S1, R1, R2, and S2, respectively.
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FIG. 5. Quantum circuit for depolarizing channel. Purity measurement requires two copies of the state IR ⊗ N S (ρRS ). We prepare these
two copies on wires 4–7, labeled as S1, R1, R2, and S2, respectively.
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FIG. 6. Estimated lower and upper bounds on IBM QISKIT: (a) EACC bounds for the amplitude damping channel, (b) EACC bounds for
the depolarizing channel, (c) coherent information bounds for the amplitude damping channel, and (d) coherent information bounds for the
depolarizing channel. Solid lines show the proposed bounds for these cases. Dotted lines with empty markers (Nsim) and dashed lines with
solid markers (Nexp) show the estimated bounds on QASM and FakeMelbourne() simulators, respectively.
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FIG. 7. Optimization of capacity bounds. An instance of opti-
mization for capacity bounds is shown for (a) the quantum capacity
of the depolarizing channel with p = 0.2 and (b) the entanglement-
assisted classical capacity of the amplitude damping channel with
γ = 0.75. Solid lines show the proposed bounds. Blue circles and red
crosses respectively show the upper and lower bounds at a particular
iteration of the variational method with n = 8192 shots per measure-
ment. Dotted lines show the final value returned by the optimizer at
the end of all iterations. Dashed lines show the bounds estimated by
n = 105 shot measurement on the optimal solution returned by the
optimizer. Green lines with square markers show the exact capacity
values of these channels.

improvement in the objective function value was smaller than
the default tolerance of ftol = 0.0001. For each fixed chan-
nel, i.e., a fixed value of γ , η, ξ , or p, we obtained ten
estimates, whose means and standard deviations are reported
in Fig. 6. In these experiments, we performed iterations with
n_shots = 8192. However, once we obtained the optimal
state as a final result, we performed one more iteration with
n_shots = 100 000. This was done to reduce the statistical
error in the final estimate and obtain a better assessment of the
quality of the obtained result. The plots provided in Fig. 6 are
results of this final iteration.

From these results, we note that the obtained estimates on
the FakeMelbourne() simulator are considerably lower than

FIG. 8. Achievable rate of quantum information by states opti-
mal for the lower and upper bounds. For (a) the amplitude damping
channel, ρub achieves the coherent information. On the other hand,
both ρub and ρlb achieve the coherent information for (b) the depolar-
izing and (c) the Pauli (exponential correlation) channel.

the actual bounds for the channels we are trying to simulate.
This is not very surprising since the noisy device introduces
additional noise in the system, as well as in the reference
qubit. Thus, the channel we actually simulate is far noisier
than the channel we are attempting to simulate. Furthermore,
since the circuit for the depolarizing channel has larger width
(number of involved qubits) and depth (roughly, the largest
number of gates on a qubit from start to end), the amount of
noise that can affect the final results is larger for this case. For
this reason, the capacity estimates for the depolarizing channel
are worse than the corresponding estimates for the amplitude
damping channels.

Figures 7(a) and 7(b) show a single run of the varia-
tional capacity estimation method for the quantum capacity
of the depolarizing channel (p = 0.2) and the entanglement-
assisted classical capacity of the amplitude damping channel
(γ = 0.75), respectively. We can clearly see the effect of
statistical noise due to a modest number of shots (8192) per
measurement. Furthermore, we notice that these effects of sta-
tistical noise can be well compensated by performing one final
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FIG. 9. Achievable rate of the entanglement-assisted classical communication by states optimal for the lower and upper bounds. For (a) the
amplitude damping channel, ρub achieves the EACC. On the other hand, both ρub and ρlb achieve the capacity for (b) the depolarizing channel
and (c) the Pauli (exponential correlation) channel. For (d) the Pauli (constant tridiagonal correlation) channel, ρlb saturates the EACC, whereas
ρlb saturates it only for a small range of channel parameters.

measurement with n = 105 shots on the optimal state returned
by the optimizer. We remark that for this particular example,
we initialized our ansatz (26) with uniform random param-
eters to demonstrate the ability of the optimizer to converge
to a good solution despite a rough starting point. Finally,
note that some of the data points for the initial few iterations
are not shown in plots, e.g., first four data points for the
lower bound in Fig. 7(a). That is because we allow negative
values for the bounds during the optimization. This allowance
improves the feedback to the classical optimizer to produce
better parameter values in the next iterations. If we clip the
negative intermediate values to zero, the optimizer will not be
able to assess the effect of modifying each of the optimization
parameters.

B. Achievable rates by states optimal for bounds

It is natural to question the achievable communication rates
offered by the states optimal for the lower and the upper
bounds. Here, we provide numerical examples of achievable
communication rates by utilizing the states that optimize the
proposed bounds. We denote by ρlb and ρub the states optimal
for the lower and the upper bounds for some capacity C. With
a slight abuse of notation, we denote by C(ρlb) and C(ρub) the
achievable communication rates using these states.

In Figs. 8 and 9, we plot the achievable communication
rates by using the states optimizing the lower and upper
bounds. Surprisingly, the states optimized for the lower and
upper bounds mostly saturate the corresponding capacities.
Therefore, one can utilize these states to estimate the exact
capacities by estimating the entropy at the channel output
without needing the optimization. Also, this reassures that
one does not sacrifice much of the communication rate if

one decides to utilize these optimal states in the design of
communication protocols and error-correcting codes.

IV. CONCLUSIONS

We have developed a general variational framework for
estimating capacity bounds of quantum channels. The main
advantage of the proposed framework is the possibility of
obtaining sharp bounds on the aforementioned quantities
without any a priori knowledge, e.g., the channel struc-
ture or the preferred basis of dephasing of the quantum
channel. The proposed framework provides a measurement-
basis-independent technique aided by the variational approach
to estimate lower bounds on the quantum capacity, the
entanglement-assisted classical capacity, and the classical
capacity of quantum channels. Correspondingly, we ob-
tained upper bounds on the N-shot coherent information,
the entanglement-assisted classical capacity, and the N-shot
Holevo capacity of the quantum channels. The proposed
bounds are completely generic and are applicable to arbitrary
quantum channels, except for the classical capacity lower
bound, which is applicable only for the unital qubit and
qudit covariant quantum channels. Numerical examples, in-
cluding IBM QISKIT experiments, of these bounds for different
important classes of quantum channels demonstrate the effec-
tiveness of this framework for different capacity notions of
quantum channels.

The utility of the proposed framework is twofold. First,
this framework is useful because of the scenario that has been
discussed in detail throughout this paper, i.e., capacity estima-
tion for unknown but physically available quantum channels.
Second, this framework is also useful for capacity calculation
of large quantum channels where numerical calculations are
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not possible on a classical computer due to the large size of
involved matrices and to the optimization problem. This sec-
ond scenario is exactly the objective of the original proposal
of hybrid quantum-classical algorithms.

Since the proposed framework, like other variational algo-
rithms, utilizes heuristics-based methods for optimization, it
is susceptible to the challenges commonly encountered in this
class of algorithms. These challenges include difficulties in
ansatz selection; optimization problems, e.g., barren plateus,
local optima, and insufficient iterations; statistical errors; and
hardware noise in addition to what channel is being simu-
lated. General progress in quantum computing hardware and
in the domain of hybrid quantum-classical algorithms will
help overcome these challenges for the proposed framework
as well.
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