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In a typical scenario of quantum remote sensing, a server at the remote site sends the sensing information to
the local site, so that the client there can make a diagnosis about the sensed field. In practice, the reliability of
the sensing information may be undermined by kinds of errors, e.g., the imperfections of measurement devices
or the attacks from a malicious eavesdropper. An alternative way to circumvent this problem is to encode the
sensing information into entangled states, of which the form can be inferred in a device-independent manner,
namely, self-testing. In this paper, we propose a protocol to make secure sensing of a parameter at the remote
side. Upon receiving the remote sensing data, the local client can figure out the parameter range by inspecting the
joint probabilities. In stark contrast, a malicious eavesdropper who is allowed to access all the remote data cannot
either acquire the information of the parameter or cheat the client by replacing returned data with fake ones. We
apply this protocol to a magnetic sensing scenario, and we show that the client can reliably estimate the strength
range of the magnetic field, which could be intimately related to various mineral resources. Consequently, the
client should not overslip any mineral resources by identifying the upper bound of magnetic strength. We also
show that our protocol is valid even if the entangled states are mildly noisy.

DOI: 10.1103/PhysRevA.105.032615

I. INTRODUCTION

Quantum information processing [1,2] provides quantum
advantages over its classical counterparts. In general, these ad-
vantages benefit from the quantum states, especially quantum
entangled states, which are the cornerstones to realize more
efficient computations [3,4], more secure cryptography [5–8],
and more precise sensing [9–14].

Quantum measurement performed on the quantum states
constitutes another indispensable ingredient to achieve these
advantages in practice; however, quantum measurement nor-
mally suffers from two insurmountable faults, i.e., the
imperfections of the measurement devices and the uncertainty
about the dimensions of the system. In order to dispose of
these two faults, “device-independent”(DI) protocols have
kindled intense research since they are free of assuming the
given dimension of each subsystem and exact quantum de-
scription of measurement devices [15]. In this case, we only
need to perform projective measurements (PMs) and analyze
the statistical probabilities. By testing the nonlocality with
the recorded probabilities, one can certify the quantum state
(up to local isometry), which is the so-called self-testing
and was first raised by Mayers and Yao [16]. Recently,
lots of theoretical and experimental efforts have been de-
voted to the self-testing of various entangled states [15–21].
Besides ensuring security in communication, the quantum
information community attempts to incorporate security into
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quantum sensing scenarios, utilizing various quantum states.
Recently, a delegated remote sensing method with built-in se-
curity has been proposed [22] and then experimentally verified
by an experiment [23].

When a quantum state is used for sensing a physical pa-
rameter, normally the quantum state is coupled to an external
field and the parameter is encoded into the state. To figure out
the parameter, one has to measure the quantum state to learn
its form. In this sense, by adapting self-testing to quantum
sensing, it is in principle feasible to transfer the DI character-
istics of the PMs into the estimation of a certain parameter in
the quantum state. The DI feature of self-testing confers the
quantum sensing ability to resist certain attacks and offers a
trusted conclusion about the estimated parameter.

In this paper, we apply the idea of self-testing to a remote
sensing scenario as diagramed in Fig. 1. Alice and Bob share
entangled photon pairs and encode a remote parameter into
the quantum states, and then implement self-testing of the
outcome state to figure out the range of the parameter. Due
to the DI characteristics of self-testing, the estimation of the
parameter is impervious to attacks on the remote side, which
helps Alice to make adequate decisions. As an example, our
protocol can be used for remote sensing of the magnetic field,
which should be generated by certain underground mineral
resources. In such a scenario, Alice diagnoses that there is no
mineral resource at Bob’s location if only she observes suffi-
ciently high nonlocality by combining the local measurement
results of both sides. Therefore, Alice should not overslip
any mineral resources, even an eavesdropper attack on the
remote side to steal and replace all the local results there.
Moreover, our protocol is robust to the imperfections of the
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FIG. 1. Diagram for the trusted remote sensing protocol. Ini-
tially, Alice (local client) and Bob (remote server) share a pair of
maximally entangled photons, which maximally violate certain Bell
inequalities. Bob is assigned to make remote sensing with his photon,
and his actions are limited to coupling the parameter with his photon,
and implementing PMs with a black-box-like device, and then he
sends these projection results to Alice via one-way classical com-
munication. Alice also makes PMs with a black-box-like device, and
then figures out the range of the sensed parameter via self-testing, by
inspecting the violation achieved by joint probabilities P(a, b|x, y)
[(x, y) denotes the measurement settings on Alice’s and Bob’s sides,
resulting in corresponding outcomes (a, b)]. A possible eavesdropper
named Eve may invade the remote side and access all the projection
results there. However, Eve cannot acquire any information of the
parameter since the parameter is encoded as a nonlocal phase. More-
over, Eve cannot cheat Alice by replacing these results with fake
ones, since Alice’s decision is based on a sufficiently high violation,
which cannot be faked with local operations.

shared entangled state, and the white noise merely reduces
the probability to reach a conclusive diagnosis, while not the
credibility of such a diagnosis.

We will first introduce self-testing in Sec. II A, describe our
protocol in detail in Sec. II B, and finally show the simulated
results in Sec. II C.

II. THEORY FRAMEWORK

A. Self-testing

In a self-testing scenario, Alice and Bob share some quan-
tum states ρ. They want to certify that these quantum states
are identical with a target state |ϕtar〉, while simply using a
black-box-like measurement device. Their actions are lim-
ited to choosing measurement settings (x, y) and observing
the corresponding outcomes (a, b), therefore the only avail-
able information for them is the conditional probabilities
P(a, b|x, y). In order to test the shared state, Alice and Bob
have to rely on a Bell operator B, the quantum bound of
which can only be attained by the target state. Therefore, if
P(a, b|x, y) achieves the maximal violation of the Bell in-
equality, Alice and Bob can certify that their shared states are
equal to |ϕtar〉 up to a local isometry [17,18].

Normally, P(a, b|x, y) may not achieve the maximal viola-
tion and the difference between |ϕtar〉 and ρ is characterized
by the extractability �(ρ → |ϕtar〉), which is defined as the

maximum fidelity taken over all possible quantum channels
(completely positive trace-preserving maps) of appropriate
input and output registers [24]. The robustness bound of self-
testing Qϕtar,B(β ) quantifies the lowest possible extractability
when acquiring a nonmaximal violation β of B. In other
words, if the observed expected value of B is β, the shared
state ρ satisfies [24]

�(ρ → |ϕtar〉) � Qϕtar,B(β ), (1)

where Qϕtar,B(β ) represents the lowest extractability from
|ϕtar〉, when one observes a violation β of the inequality B.
In Refs. [25,26], a self-testing protocol has been proposed for
all pure two-qubit states written as

|ϕ(θtar )〉 = cos(θtar )|HH〉 + sin(θtar )|VV 〉. (2)

It has proven that any state in the form of Eq. (2) maximally
violates the tilted Clauser-Horne-Shimony-Holt (CHSH) Bell
inequalities [27] written as

B[α(θtar )] = α(θtar )A0 + A0(B0 + B1)

+ A1(B0 − B1) � 2 + α(θtar ), (3)

where 0 � α(θtar ) � 2 and 0 � θtar � π/4. In this fam-
ily of inequalities, Ax (x ∈ {0, 1}) represents the two
binary-outcome measurements on Alice’s side, and By

(y ∈ {0, 1}) represents that on Bob’s side. The quantum
bound of B[α(θtar )] is calculated as βQ =

√
8 + 2α2(θtar )

with α(θtar ) = 2/
√

1 + 2tan2(2θtar ). The observables used to
achieve the quantum bound are

A0 = σ3, A1 = σ1,

B0 = cos(μ)σ3 + sin(μ)σ1, B1 = cos(μ)σ3 − sin(μ)σ1,

(4)

with tan(μ) = sin(2θtar ), and σ1, σ2, and σ3 are three Pauli
matrices. It is easy to see that, if θtar = π/4, Eq. (3) reduces
to the standard CHSH Bell inequality [28,29].

If P(a, b|x, y) achieves the quantum bound of B[α(θtar )],
it can be certified that ρ can be determinately extracted to
|ϕ(θtar )〉. If Alice and Bob observe a violation β below βQ,
they can still conclude that ρ should be different from |ϕ(θtar )〉
with a specific distance, which is decided by the self-testing
bound formalized in Refs. [19,21].

B. Protocol

By introducing self-testing into the remote sensing as
diagramed in Fig. 1, Alice and Bob can make a trusted
diagnosis since the initial maximally entangled state will
not be changed if the sensed magnetic field is sufficiently
weak, and thus the observed violation of the CHSH inequal-
ity can approach βQ. Observing a smaller violation could
result from a stronger magnetic field or, failing to observe
the maximal violation, in these cases, Alice makes the ex-
ploitation to ensure that no mineral is missed. The optical
realization of our protocol is given in Fig. 2. Alice prepares
a maximally entangled photon pair with a beta barium borate
crystal, then she sends one photon to Bob. Alice and Bob
can encode the strength of the magnetic field into the shared
entangled states, and thus the maximally entangled Bell states
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FIG. 2. Optical realization of the trusted remote sensing protocol. On Alice’s side (local site), the maximally entangled photon pairs are
generated by pumping a nonlinear crystal. One of the photons is sent to Bob (remote site) to sense the strength of the magnetic field, the
direction of which can be predetermined. The existence of an abnormal magnetic field may cause the photon pairs to evolve into partially
entangled states after Bob’s photons pass the sensor containing a Mach-Zehnder interferometer (MZI), which consists of two polarized beam
splitters (PBS), two magnetic-optical crystals (MOC), and a half-wave plate (HWP). PBS1 splits |H〉 and |V 〉 polarized components into two
arms of MZI. Being parallel with the abnormal magnetic field, MOC in the upper arm rotates |H〉 to cos(θ )|H〉 + sin(θ )|V 〉. On the lower arm,
MOC rotates |V 〉 to cos(θ )|V 〉 − sin(θ )|H〉, and then transforms to cos(θ )|H〉 − sin(θ )|V 〉 by following a HWP. On Alice’s side, HWP2 is set
as π/4. As a result, the photon pairs evolve to cosθ |HH〉 + sin(θ )|VV 〉 (cosθ |HV 〉 − sin(θ )|V H〉) when Bob’s photons exit MZI and enter
FC2 (FC3). Both Alice and Bob can perform PMs with their black-box-like devices. Finally, Alice needs to analyze statistical results to infer
the form of the outcome states and estimate the strength of the magnetic field. FC, fiber collimator; SMF, single mode fiber; BBO, beta barium
borate crystal.

|ϕ(π/4)〉 = 1√
2
(|HH〉 + |VV 〉) can be transformed to the par-

tially entangled pure two-qubit state |ϕ(θ )〉 = cos(θ )|HH〉 +
sin(θ )|VV 〉 or cos(θ )|HV 〉 − sin(θ )|V H〉 [|H〉 (|V 〉) is the
horizontal (vertical) polarized component of photons], which
is admissible according to Nielsen’s theorem [30]. The even-
tual states from Bob’s two outcomes are different; however,
they are equivalent states up to a local isometry. Finally, Alice
needs to choose the one achieving higher violation based on
measurement outcomes to make parameter estimation. With-
out loss of generality, suppose cos(θ )|HH〉 + sin(θ )|VV 〉 can
achieve a higher violation in the following discussions.

In our scheme, this state transformation is realized by cou-
pling the polarization of Bob’s photon with its momentum
through the sensed magnetic field. Denoting the strength of
the magnetic field, the Verdet constant, and the length of
the magnetic-optical crystals as B, V , and l , the Hamilto-
nian H = h̄kδ(t − t0)ÂP̂ couples the system and the meter
with strength k = V Bl/p0. Here, the photon momentum is
p0 = h̄2π/λ0 = h̄ω0/c, where λ0 (ω0) denotes the central
wavelength (frequency) of incident light. Â = |R〉〈R| − |L〉〈L|
is the system operator with |R〉 (|L〉) representing the right
(left) circularly polarized component of light, and P̂ is the
momentum operator of light. After the sensing, the rotating
angle θB in the outcome state |ϕ(θB)〉 is calculated as

θB = V Bl. (5)

Since the strength of the magnetic field at the Earth’s surface
is much lower than 1×10−2 T, θB is much smaller than π .

After collecting the photons passing the Mach-Zehnder in-
terferometer, Alice and Bob should carry out steps as follows.

(1) Alice and Bob perform PMs on |ϕ(θB)〉 according to the
input (x, y) of their black-box-like measurement devices. Bob
sends his measurement results, and Alice needs to make co-
incidence detection upon receiving Bob’s signal, meanwhile
classifying them into two groups based on the clicks from the
two outcome ports on Bob’s side. Then Alice calculates the
conditional probabilities P(a, b|x, y).

(2) Alice tests various (tilted) CHSH inequalities with the
conditional probabilities P(a, b|x, y). She analyzes these two
groups of statistics and chooses the one achieving higher
violation to implement self-testing. From the maximal viola-
tion of a certain B[α(θtar )] and the corresponding robustness
bound, Alice infers the lowest extractability Qϕtar,B(β ) of
|ϕ(θB)〉 from |ϕ(θtar )〉.

(3) From Qϕtar,B(β ), Alice can derive the possible forms
of |ϕ(θB)〉, and hence the value of θB. Utilizing Eq. (5), Alice
estimates the range of B from the possible values of θB.

Although the eventual states from Bob’s two ports are
different, it will not affect the result of self-testing if Alice can
distinguish the signal from FC2 or FC3, because two even-
tual states are equivalent up to a local isometry, and produce
the same statistics p(a, b|x, y) in the self-testing experiment.
Consider a worst-case scenario in which Eve replaces all
Bob’s results in order to conceal the fact that there is a
mineral resource at the sensed location. In this case, Eve
has to produce data nearly achieving βQ, which implies B is
approximately zero. However, his faked data cannot violate
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the CHSH inequality, which is guaranteed by the nonlocality
of the shared states. According to the strategy adopted by
Alice, she will make an exploration when she observes these
local correlations, and she will not be cheated by Eve. A faked
lower violation indeed leads to extra but useless efforts made
by Alice. However, Eve will not acquire significant benefits in
this way, since her target is to make Alice miss the mineral.
From Alice’s side, missing a mineral causes more serious
harm than making extra efforts. From this point of view, a
faked lower violation is not considered as a kind of valid
cheating.

C. Results

Considering the imperfections in the sensing processing,
we assume the outcome state is approximately a pure entan-
gled state, while mixed with a small amount of white noise
[31], and the density matrix is written as

ρη(θB) = η
I4

4
+ (1 − η)|ϕ(θB)〉〈ϕ(θB)|, (6)

where I4 represents the 4×4 identity, and η is the weight of
white noise in the mixed state. If and only if η is sufficiently
small, ρη(θB) can still attain a Bell violation β approaching
the quantum bound of B[α(θB)] [32].

For a perfectly pure outcome state which is supposed in
the form of |ϕ(θB)〉, which necessarily maximally violates
B[α(θB)], the value of θB can be uniquely determined to give
an exact estimation of B. However, when the white noises
are taken into account, the outcome states cannot attain the
quantum bound of any inequality. In this case, for the imple-
mentation of self-testing, one has to search for the maximal
violation βmax of a given B[α(θB)].

It has been proven in Ref. [27] that for any set of PMs
performed on the state |ϕ(θB)〉 the following inequality holds
for a given B[α(θtar )]:

Tr(B[α(θtar )]|ϕ(θB)〉〈ϕ(θB)|)

� α(θtar )cos(2θB) + 2
√

1 + sin2(2θB). (7)

In the sense that the white noise does not contribute to the
violation of B[α(θtar )], the total violation achieved by ρη(θB)
can be calculated as

β = Tr{B[α(θtar )]ρη(θB)} � (1 − η)[α(θtar )cos(2θB)

+ 2
√

1 + sin2(2θB)], (8)

which can be saturated when the observables are selected to
be those in Eq. (4), and the corresponding violation is denoted
as βmax.

In our protocol, β is maximized for a certain outcome
state ρη(θB), by setting l = 10 cm and V = 148.5 rad/T m.
Two paradigmatic values of B are selected as B = 0.0616 and
0.0012 T, and θB can be calculated from Eq. (5). By certifying
βmax of a certain B[α(θtar )], one can obtain Qϕtar,B(βmax) for a
noisy ρη(θB). As shown in Fig. 3, by drawing a point on the
robustness bound with the horizontal coordinate value equal
to βmax, Qϕtar,B(βmax) is identified as the vertical coordinate
value of this point.

A nonunity Qϕtar,B(βmax) implies that ρη(θB) should be
within a limited distance with |ϕ(θtar )〉, which restricts the
value of θB in a certain range. The outcome states can be
self-tested into either |ϕ(π/4)〉 with standard CHSH inequal-
ity B[α(π/4)] or |ϕ(θB)〉 with the tilted CHSH inequality
B[α(θB)]. As a result, θB can be jointly restricted by combin-
ing these two self-testing channels. For the two paradigmatic
values of B, the estimated results for two different levels of
white noise are investigated and given in Table I. As shown
in Table I, the actual value of B in the first column is exactly
within the estimated range by self-testing, which is given in
the last column. We can set criterion for the existence of a
mineral resource, and then Alice can adopt such a strategy that
if the upper bound of the estimated range is below the criterion
she diagnoses that there is no mineral there and abandons
this location; otherwise, she will make an exploration there.
In other words, the estimation of B is always larger than the
real value. As a result, no matter what value of the criterion is
preestablished, when Alice asserts that B is below the criteria,
the actual value must be further lower than the criteria; oth-
erwise, when the estimation surpasses the criteria, the actual
value may still be lower than the criteria. This overestimation
leads to extra efforts while not being cheated, since they never
mistake a larger B as a lower one. In practice, the criterion
can be determined from substantial experiences with nearly
unity confidence; that is, the existence probability of mineral
resources is nearly zero if the actual B is below the criterion.
Without loss of generality, we can suppose the criterion are
B � 0.05 T. When the actual value of B is 0.0616 T, as
shown in the top four rows in Table I, the estimated upper
bound is always larger than 0.05 T for the two levels of the
white noise and the two self-testing channels. Consequently,
Alice’s decision is to make an exploration there and she will
successfully discover the mineral resource. For a small value
of B equal to 0.0012 T and a low noise level with η = 0.001,
the estimated upper bound is 0.0392 and 0.0298 T for the
two self-testing channels, respectively. In this case, Alice will
abandon the exploration to avoid unnecessary efforts. When
the noise level increases to η = 0.005, the estimation range
exceeds 0.05 T for both self-testing channels, and Alice will
make an unavailing exploration.

Apparently, a more noisy outcome state necessarily de-
grades the violation of the Bell inequality used for self-testing.
Thereby, the tolerant degree of the noise is decided by the
tightness of the self-testing bound, in the sense that a tighter
bound will promise a higher Qϕref ,B(βmax), which leads to a
tighter upper bound of B and a lower probability of unavailing
explorations.

In our protocol, the remote field B changes the initial
state to an outcome state. The stronger the field is, the more
distinctly the state changes. The inferred outcome state can
be estimated by self-testing, and then we can figure out the
possible range of B. The tighter the robustness bound is, the
closer the upper bound to the real value of B. The robustness
bound for CHSH is intensively studied and optimized, and
thus states slightly differing from the maximally entangled
states can be well self-tested. The robustness bound for tilted
CHSH is relatively less robust; however, if the initial state
is distinctly changed, self-testing with the tilted CHSH in-
equality may provide better estimation since the outcome state
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FIG. 3. Extractabilities against βmax when using different Bell inequalities. Two values of sensed B are investigated, yielding two different
values of θB. The outcome state ρη(θB ) is self-tested with two inequalities, namely, B[α(θtar )] with θtar = π/4 and θB, of which the target states
are |ϕ(π/4)〉 and |ϕ(θB)〉, respectively. The four subgraphs give the extractabilities for different θB and α, as labeled at the top left of each.
The solid line in each subgraph is the robustness bound for corresponding B[α(θtar )]. Two different levels of noise, with η=0.005 and 0.001,
are studied and the results are labeled by the circle and square dots in each subgraph. The red dots represent the real fidelity between the noisy
state and the target states, while the blue dots on the robustness bound represent the lowest extractabilities from ρη(θB ) to the target state.

approaches the maximum violation of these tilted inequalities.
In Table I, the field is weak and the outcome state is only
slightly different from the initial Bell state. As a result, the
standard CHSH inequality offers a better estimation of the
parameter; that is, the upper bound of the estimated range is
closer to the real value of B.

In our protocol, Alice and Bob make coincidence detection
of the photon pairs, and eventually they can figure out the

parameter (strength of the field) through the statistical corre-
lations of their results.

III. DISCUSSION

Previous works on self-testing are normally devoted to
the DI characterization of entangled states, so they are im-
plemented as preparing states and making PMs, eventually

TABLE I. The estimated range of B from the self-testing results of the outcome states. The outcome state ρη(θB) is jointly decided by θB

and η, and can be self-tested to either |ϕ(θB)〉 or |ϕ(π/4)〉. The fidelity between ρη(θB ) and the target state is calculated and shown in the fifth
column. The maximal violation βmax of B[α(θtar )] achieved by ρη(θB ) is given in the sixth column, and the lowest extractability Qϕref ,B(βmax)
can thus be obtained from the robustness bound shown in Fig. 3. Since Qϕref ,B(βmax) is associated with the largest difference between θB and
θtar , the range of θB can be identified together with that of B, as shown in the last column.

B (T) θB(rad) η θtar (rad) Fidelity βmax Qϕref ,B(βmax) Estimated B (T)

0.0616 0.694 0.001 0.694 99.93% 2.8493 99.56% 0.0169–0.1063
0.0616 0.694 0.001 π/4 99.09% 2.8021 98.18% −0.0911–0.0911
0.0616 0.694 0.005 0.694 99.63% 2.8379 97.80% −0.0387–0.1619
0.0616 0.694 0.005 π/4 98.79% 2.7909 97.40% −0.1090–0.1090
0.0012 0.784 0.001 0.784 99.93% 2.8256 99.35% −0.0368–0.0392
0.0012 0.784 0.001 π/4 99.92% 2.8256 99.80% −0.0298–0.0298
0.0012 0.784 0.005 0.784 99.63% 2.8143 98.41% −0.0840–0.0863
0.0012 0.784 0.005 π/4 99.62% 2.8143 99.02% −0.0667–0.0667
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acquiring the fidelity of the tested state to the target state. In
the current protocol, additional remote sensing is introduced
and hence the initial probe state may evolve to a different one,
and then by self-testing the outcome state we try to figure out
the coupling parameter rather than the fidelity. Therefore, we
aim to sense a parameter encoded during the dynamic of
states, while self-testing aims to know the form of an invari-
able tested state. Moreover, due to the remote sensing scenario
we consider, Alice and Bob can only make one-way classical
communication and transmit the projection results from Bob
to Alice unidirectionally.

Different from the secure communication problem, which
can be well solved by quantum key distribution, our proto-
col resists the attacks on the remote side. In our protocol,
the attacker named Eve can monitor all the results of Bob’s
projection, or even invade Bob’s storage to replace Bob’s
data in order to cheat Alice. Consequently, Bob cannot adopt
the method to directly measure the parameter and send the
value encoded with the key, since Eve can know the value
and replace it with a fake one. Alternatively, our protocol
recurs to nonlocality of the shared probe states, because Eve
cannot fake the nonlocality with local operations. For the same
reason, we do not require authentication in our protocol, since
Bob’s knowledge is limited to the projection results while not
the value of the parameter. In this case, even Eve is allowed
to replace all the projection results that Bob sends to Alice, or
Alice can only receive faked data from Eve; Eve still cannot
mimic the maximal nonlocality.

In this paper, we show that the DI features in quantum
information processing not only offer advantages in the mea-
surement of quantum systems, but also can be applied to the

estimation of physical quantities in a remote sensing scenario.
Our protocol is partially DI; that is, the initial preparation
and encoding process must be trusted, while the projective
measurements are implemented in a DI way. When the studied
quantity can be exactly encoded into the outcome quantum
states from sensors, its value can be restricted within a spe-
cial range by self-testing the outcome states into a certain
target state. By implementing our trusted remote sensing,
the upper bound of the quantity can be reliably determined,
which is not affected by the errors in performing PMs, or
even impervious to any possible disturbance from a mali-
cious eavesdropper. When the quantity is the strength of a
magnetic field created by some mineral resources, a reliable
estimation about the maximal strength guarantees that no
real mineral can be overslipped. We also study the robust-
ness of our protocol to state imperfections, and the simulated
results indicate that more imperfections merely lead to a
looser upper bound of the estimation, while not reducing
the credibility of the diagnosis about the absence of mineral
resources.
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[17] I. Šupić and J. Bowles, Self-testing of quantum systems: A
review, Quantum 5, 424 (2021)

[18] G. Chen, W.-H. Zhang, P. Yin, C.-F. Li, and G.-C. Guo, Device-
independent characterization of entanglement based on bell
nonlocality, Fundam. Res. 1, 1 (2021).

[19] W.-H. Zhang, G. Chen, P. Yin, X.-X. Peng, X.-M. Hu, Z.-B.
Hou, Z.-Y. Zhou, S. Yu, X.-J. Ye, Z.-Q. Zhou, X.-Y. Xu, J.-S.
Tang, J.-S. Xu, Y.-J. Han, B.-H. Liu, C.-F. Li, and G.-C. Guo,
Experimental demonstration of robust self-testing for bipartite
entangled states, npj Quantum Inf. 5, 4 (2019).

[20] W.-H. Zhang, G. Chen, X.-X. Peng, X.-J. Ye, P. Yin, X.-Y. Xu,
J.-S. Xu, C.-F. Li, and G.-C. Guo, Experimental Realization
of Robust Self-Testing of Bell State Measurements, Phys. Rev.
Lett. 122, 090402 (2019).

[21] W.-H. Zhang, G. Chen, X.-X. Peng, X.-J. Ye, P. Yin, Y. Xiao,
Z.-B. Hou, Z.-D. Cheng, Y.-C. Wu, J.-S. Xu, C.-F. Li, and
G.-C. Guo, Experimentally Robust Self-Testing for Bipartite
and Tripartite Entangled States, Phys. Rev. Lett. 121, 240402
(2018).

[22] Y. Takeuchi, Y. Matsuzaki, K. Miyanishi, T. Sugiyama, and
W. J. Munro, Quantum remote sensing with asymmetric infor-
mation gain, Phys. Rev. A 99, 022325 (2019).

[23] P. Yin et al., Experimental Demonstration of Secure
Quantum Remote Sensing, Phys. Rev. Appl. 14, 014065
(2020).

[24] J. Kaniewski, Analytic and Nearly Optimal Self-Testing
Bounds for the Clauser-Horne-Shimony-Holt and Mermin In-
equalities, Phys. Rev. Lett. 117, 070402 (2016).

[25] T. H. Yang and M. Navascués, Robust self-testing of un-
known quantum systems into any entangled two-qubit states,
Phys. Rev. A 87, 050102(R) (2013).

[26] C. Bamps and S. Pironio, Sum-of-squares decompositions for
a family of Clauser-Horne-Shimony-Holt-like inequalities and
their application to self-testing, Phys. Rev. A 91, 052111
(2015).

[27] A. Acín, S. Massar, and S. Pironio, Randomness Versus Nonlo-
cality and Entanglement, Phys. Rev. Lett. 108, 100402 (2012).

[28] J. S. Bell, On the Einstein-Podolsky-Rosen paradox,
Phys. Phys. Fiz. 1, 195 (1964).

[29] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories,
Phys. Rev. Lett. 23, 880 (1969).

[30] M. A. Nielsen, Conditions for a Class of Entanglement Trans-
formations, Phys. Rev. Lett. 83, 436 (1999).

[31] F. Nosrati, A. Castellini, G. Compagno, and R. Lo Franco,
Robust entanglement preparation against noise by controlling
spatial indistinguishability, npj Quantum Inf. 6, 39 (2020).

[32] M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín,
Noise Robustness of the Nonlocality of Entangled Quantum
States, Phys. Rev. Lett. 99, 040403 (2007).

032615-7

https://doi.org/10.22331/q-2021-04-06-424
https://doi.org/10.1038/s41534-018-0120-0
https://doi.org/10.1103/PhysRevLett.122.090402
https://doi.org/10.1103/PhysRevLett.121.240402
https://doi.org/10.1103/PhysRevA.99.022325
https://doi.org/10.1103/PhysRevApplied.14.014065
https://doi.org/10.1103/PhysRevLett.117.070402
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevA.91.052111
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1038/s41534-020-0271-7
https://doi.org/10.1103/PhysRevLett.99.040403

