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Entangling spin and charge degrees of freedom in semiconductor quantum dots
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TotalEnergies, Nano-INNOV, Bât. 861, 8, Boulevard Thomas Gobert, 91120 Palaiseau, France

(Received 25 August 2021; accepted 7 March 2022; published 24 March 2022)

In this theoretical manuscript I propose a scheme for entangling a single-electron-semiconductor spin qubit
with a single-electron-semiconductor charge qubit in a triangular triple-quantum-dot configuration. Two out of
three quantum dots are used to define a single-electron-semiconductor charge qubit. Furthermore, the spin qubit
is embedded in the Zeeman sublevels of the third quantum dot. Combining single-qubit gates with entangling
controlled-NOT gates allows one to construct a SWAP gate and therefore to use the semiconductor spin qubit as a
long-lived memory for the semiconductor charge qubit.
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I. INTRODUCTION

Since it was concluded that bits obeying the laws of quan-
tum mechanics offer advantages over bits obeying the laws
of classical physics, many systems have emerged as possi-
ble candidates for quantum-mechanical bits (qubits) [1–10].
Semiconductor materials like GaAs and Si, used to mass
produce electronic components for over half a century, also
show prospects for embedding a qubit. There are two common
ways in which a single-electron qubit can be embedded in a
semiconductor quantum dot, using the spin [2] or the charge
[8] degree of freedom of the electron.

Charge occupancy of a double quantum dot can be used
to define a single-electron-semiconductor charge qubit [8,11–
17]. Although the semiconductor charge qubit can be con-
trolled on fast timescales [13] (compared to many other
implementations of a qubit), it suffers from a relatively short
coherence time due to the interactions with its noisy, semi-
conductor environment [14]. Furthermore, the single-electron
spin qubit can be defined in Zeeman sublevels of the electron
spin [2]. And although the coherence times of single-electron
spin qubits (Loss-DiVincenzo qubit) have been gradually
increasing up to hundreds of microseconds [18–20], single-
spin-qubit operations are much slower compared to those of a
charge qubit [21,22].

Creating entanglement between disparate degrees of free-
dom [23–29] is a crucial ingredient in creating long-lived
memories [30], quantum repeater networks [31], and quan-
tum teleportation [32,33]. In this manuscript I present an
entangling scheme for a single-electron charge degree of
freedom with a single-electron spin degree of freedom. The
entanglement is achieved via a controlled-NOT (CNOT), giving
rise to a maximally entangled Bell state |�−〉 = (|0〉c|0〉s −
|1〉c|1〉s)/

√
2 of the spin s and charge c degrees of freedom.

Combining three entangling CNOT gates with single-qubit
Hadamard gates allows us to construct a SWAP gate [34].
Furthermore, a SWAP gate allows us to encode a general super-
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position of single-electron charge states of a double quantum
dot (DQD) into the spin degree of freedom of an electron
residing in a nearby quantum dot. This could allow coupling
between distant semiconductor charge qubits (mediated by
semiconductor spin qubits [27,35,36]) or allow for full-scale
quantum computation based on semiconductor charge qubits
with a spin qubit being used as a long-lived memory. This ap-
proach exploits the best properties of spin and charge qubits,
the long coherence times of spin qubits, and the fast control
of the charge qubit. By embedding the information about the
charge qubit into the spin degree of freedom, the state of the
charge qubit survives for up to a thousand charge coherence
times.

II. SETUP

The setup consists of two electrons in a triangular triple
quantum dot in an external magnetic field, with a micromag-
net embedded on top of one of the quantum dots Fig. 1. The
spin qubit is defined in Zeeman sublevels of the quantum dot
with the micromagnet on top |0〉s −→ |C,↑〉, |1〉s −→ |C,↓〉.
From now on I will refer to the spin-qubit quantum dot
as the central dot. Furthermore, the logical subspace of the
charge qubit is defined as the charge occupancy of the remain-
ing two dots, with the electron spin in the spin-down state
|0〉c −→ |L,↓〉 and |1〉c −→ |R,↓〉. From now on I will refer
to the charge-qubit quantum dots as the left and right dot.

I assume that the tunnel coupling between the dots can
be selectively controlled. The maximally entangled Bell state
|�−〉 = (|0〉c|0〉s − |1〉c|1〉s)/

√
2 of spin and charge degree of

freedom is achieved by initializing a |L,↓;C,↓〉, followed
by biasing the center quantum dot, see Fig. 2. Furthermore,
a single-spin Hadamard operation is applied, followed by
tunneling events between the L and the C dot and the C and
the R dot marked with tunnel hoppings TLC , TCR, respectively.

The central dot is biased for εC so that the states |L,↓〉,
|C,↓〉, and |R,↓〉 are at the same energy, EL,↓ = EC,↓ = ER,↓
Fig. 2. Furthermore, the transitions |L,↑〉 −→ |C,↑〉
and |C,↑〉 −→ |R,↑〉 are energetically not favored when
|EL,↑ − EC,↑| = |EC,↑ − ER,↑| � Ti j .
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FIG. 1. The setup comprises a triangular triple quantum dot in
an external magnetic field Bz loaded with two electrons. One of
the quantum dots has a micromagnet embedded on top BMM

z . The
tunnel barriers between the dots (depicted with black lines, with
their amplitudes denoted with TLC, TCR, TLR) need not be controlled
independently.

The shuttling time τ is chosen so that the initial elec-
tronic state |L,↓;C,↓〉 gets transferred to |C,↓; R,↓〉 with
unit probability. In order to calculate the shuttling time τ , I
constrain myself to the three-dimensional subspace in which
all electrons are in the spin-down state. The effective three-
dimensional Hamiltonian describing such a process is defined
[37–39]

H3D =
∑

i

(εi + Ei
z↓)ni↓ + V

∑
〈i j〉

nin j

+ (TLCc†
L↓cC↓ + TCRc†

C↓cR↓ + H.c.). (1)

Here, i, j = {L,C, R}, ni = c†
i↓ci↓, and c†

i↓ and ci↓ are the
electronic creation and annihilation operators. Furthermore,
Ei

z is the Zeeman energy of the ith dot and εi is the static
bias. In the remainder of this paper I assume for simplicity
that TLC = 0 or T and TCR = 0 or T .

After inserting the time-independent Hamiltonian into the
time-dependent Schrödinger equation, I obtain the following

FIG. 2. The energy diagram, the charge-qubit states
{|L,↓〉, |R,↓〉}, and the spin-qubit states {|C,↓〉, |C↑〉}.
The center quantum dot (spin-qubit quantum dot) is biased
εC = −(EL,R

z − EC
z )/2.

set of coupled equations for the probability amplitudes:

ȧLC = i
T

h̄
aLR, ȧCR = i

T

h̄
aLR, ȧLR = i

T

h̄
(aLC + aCR). (2)

After solving the system Eq. (2) for initial probability
amplitudes aLC (0) = 1, aCR(0) = 0, aLR(0) = 0, I obtain the
following occupation probabilities, with Pi j (t ) = |ai j (t )|2:

PLC = 1

4

[
1 + cos

(
T t

√
2

h̄

)]2

, PLR = 1

2
sin2

(
T t

√
2

h̄

)
,

PCR = 1

4

[
1 − cos

(
T t

√
2

h̄

)]2

. (3)

From Eq. (3) we see that the probability that the electron trans-
fers from |L,↓;C,↓〉 to |C,↓; R,↓〉 (PLC (t ) = 0, PCR(t ) = 1,
PLR(t ) = 0) is satisfied for t = π h̄/T

√
2, and I refer to this

time as τ in the remainder of the manuscript.
Now we will proceed to a derivation of the effective CNOT

gate between the spin and charge degrees of freedom. The
starting point in describing the system more quantitatively is
the Hubbard Hamiltonian in the second quantization, which is
given by

H0 =
∑

iσ

(εi + Ei
zσ )niσ + U

∑
i

ni↑ni↓ + V
∑
〈i j〉

nin j, (4)

where Ei
z is the Zeeman energy of the ith quantum dot, εi the

bias of the ith dot, and ni = ni↑ + ni↓ = c†
i↑ci↑ + c†

i↓ci↓. Much
like in Fig. 2, I set εL = εR = 0 and εC = −(EL,R

z − EC
z )/2.

The electrons can tunnel between the dots described by the
following Hamiltonian [37–39]:

Hi j = T
∑
〈i j〉σ

c†
iσ c jσ . (5)

In Eqs. (4) and (5), i, j = {|L〉, |C〉, |R〉}, σ = {|↓〉, |↑〉}.
Enabling only tunneling between left-to-center and center-to-
right dots we obtain the following Hamiltonian:

H̃ = H0 + T (c†
Lσ cCσ + c†

Cσ cRσ + H.c.). (6)

Given that U � V [40], we set V to zero in this toy derivation.
The ms = −1, ms = +1, and ms = 0 blocks are decoupled in
the absence of operations on the spin qubit. The time evolu-
tion operator takes the form U = exp (−iH̃t/h̄). In our study
the operator H̃ has a block-diagonal structure, leading to the
following formula:

U =

⎛
⎜⎜⎝

e−i t
h̄ H̃ms=−1 0 0

0 e−i t
h̄ H̃ms=1 0

0 0 e−i t
h̄ H̃ms=0

⎞
⎟⎟⎠. (7)

When εC = −(EL,R
z − EC

z )/2, |EC,↑ − ER,↑| � Ti j U � Ti j ,
the ms = +1 block of the time evolution operator is a diagonal
unit matrix Ums=+1 = diag(1, 1, 1, 1).
In the same parameter regime and when TLC = TCR = T , the
ms = −1 block of the time evolution operator is
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Ums=−1 =

⎛
⎜⎜⎜⎝

1
2 + 1

2 cos
(

T t
√

2
h̄

)
i√
2

sin
(

T t
√

2
h̄

) − 1
2 + 1

2 cos
(

T t
√

2
h̄

)
i√
2

sin
( Tt

√
2

h̄

)
cos

(
T t

√
2

h̄

)
i√
2

sin
(

T t
√

2
h̄

)
− 1

2 + 1
2 cos

(
T t

√
2

h̄

)
i√
2

sin
(

T t
√

2
h̄

)
1
2 + 1

2 cos
(

T t
√

2
h̄

)

⎞
⎟⎟⎟⎠, (8)

in the {|L,↓;C,↓〉, |L,↓; R,↓〉, |C,↓; R,↓〉} basis. When t =
τ = π h̄/T

√
2 this becomes

Ums=−1 =
⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠. (9)

The ms = 0 block has nine states in total (Table I), so
an analytical formula for the time evolution operator can-
not be obtained. When U � T the L↑C↓, L↑R↓, C↑R↓
(left column of the ms = 0 states in Table I) is decoupled
from the doubly occupied states (middle column of ms =
0 states in Table I), which is in turn decoupled from the
L↓C↑, L↓R↑, C↓R↑ states. This decoupling of single and
double occupied states can effectively be described by setting
the tunneling between those states to zero. The time evolution
operator of the blocks containing L↑C↓, L↑R↓, C↑R↓ and
L↓C↑, L↓R↑, C↓R↑ states cannot be straightforwardly ana-
lytically derived. However, setting εC = −(EL,R

z − EC
z )/2 and

expanding in a series in Ti j/|EC,↓ − ER,↓| leads to all states
being decoupled, and the following time evolution operator
Ũ = diag[exp (i(EL

z − EC
z )t/h̄), exp (i(EL

z − EC
z )t/h̄)] in the

relevant basis of {|L,↓;C↑〉, |C,↑; R,↓〉}. (I used only EL
z

from this point on because I assumed identical charge-qubit
quantum dots.)
At the optimal t = τ the time evolution operator becomes

U =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

−1 0 0 0

0 0 ei
√

2 π
T (EC

z −EL
z ) 0

0 0 0 ei
√

2 π
T (EC

z −EL
z )

⎞
⎟⎟⎟⎟⎟⎠

, (10)

in the relevant basis of {|L,↓;C,↓〉 |C,↓; R,↓〉,
|L,↓;C↑〉, |C,↑; R,↓〉}. This is the CNOT gate between
the spin and the charge qubit, multiplied by a single-qubit
operation on the spin qubit exp [i(φ ± π )σz/2], where

TABLE I. The scheme of couplings of the system. States of the
qubit are denoted in yellow. Couplings denoted by a canceled red
double arrow are suppressed due to |EC,↓ − ER,↓| � Ti j . Couplings
denoted by a canceled orange double arrow are suppressed due
to U � Ti j . Couplings denoted by a black arrow are resonant. ms

denotes the spin projection quantum number.

L ↑ C ↑ L ↓ C ↓ L ↑ C ↓ � L ↑ L ↓ � L ↓ C ↑

�

� � � � �

L ↑ R ↑ L ↓ R ↓ L ↑ R ↓ C ↑ C ↓ L ↓ R ↑

�

�

� � � �
C ↑ R ↑ C ↓ R ↓ C ↑ R ↓ � R ↑ R ↓ � C ↓ R ↑
ms = +1 ms = −1 ms = 0

φ = √
2 π

T (EC
z − EL

z ). Single-qubit gates alongside the CNOT

gate allow one to create any of the four Bell states [34].

III. FIDELITY OF OPERATIONS

I consider two electrons in a triple quantum dot, with the
lowest orbital energy state included, two Zeeman sublevels
in each dot, and states where both electrons are in |↑〉 state
excluded, yielding a total of 12 possible states. In contrast to
a derivation in the previous section, here all states are kept
in the simulation in order to test the validity of the applied
approximations in the derivation:

In Table II, I show the evolution of all possible states
belonging to the qubit subspace when the system is being
subjected to a tunneling event of a duration τ . In the limit of
tunneling smaller than Zeeman energy mismatch, the transi-
tions |L,↓;C↑〉 ←→ |C,↑; R,↓〉 are not occurring due to the
fact that the electron spin in the |C,↑〉 state cannot tunnel to
any other state due to the energy mismatch with the energy
of all other available |↑〉 states. Furthermore, the Coulomb
penalization for charging a quantum dot with two electrons
is much larger then the tunneling U ∼ meV � T , preventing
the |L,↓〉 ↔ |R,↓〉 transitions via the central dot.

From Table II we see that if the spin qubit is in the |1〉s

state, the state of the charge qubit is changed. Furthermore,
if the spin qubit is in the |0〉s state, the state of the charge
qubit remains unchanged. It should be noted that the spin qubit
acquired a local phase of a φ ± π in the spin-up state. Thus the
operation presented here is a two-qubit CNOT operation times
a single-spin-qubit φ ± π phase gate (to the spin-up state)
where the spin qubit acts as a control qubit and the charge
qubit acts as a target qubit. The phase of exp (iφ) is acquired
due to the fact that when the electron spin is in the |↑〉 state
there is an energy mismatch leading to an accumulation of
a local phase. The additional operation of exp (±iπ ) exists
because the system is cycled halfway through a cycle. This
local phase can be corrected with a single-qubit Z gate on the
spin qubit and is rigorously analytically defined towards the
end of the previous section.

TABLE II. The evolution of qubit states when the tunnel barriers
are being subjected to a shuttling event with a duration τ .

Initial state Final state

|1〉s|0〉c |L, ↓;C, ↓〉 |C,↓; R, ↓〉 ei(φ±π )|1〉s|1〉c

|1〉s|1〉c |C,↓; R,↓〉 |L, ↓;C,↓〉 ei(φ±π )|1〉s|0〉c

|0〉s|0〉c |L, ↓;C, ↑〉 |L, ↓;C,↑〉 |0〉s|0〉c

|0〉s|1〉c |C,↑; R,↓〉 |C,↑; R, ↓〉 |0〉s|1〉c
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The fidelity of a quantum operation can be calculated as
[41]

F = 1

n(n + 1)
[Tr(KK†) + |Tr(K)|2]. (11)

In the case of the CNOT gate, the dimensions of the Hilbert
subspace are n = 4 and

K = MCNOT Mq Us e−iH̃τ/h̄ M†
q . (12)

Here, MCNOT is the matrix representation of an ideal CNOT

gate, Mq is a projection operator that projects out the four-
dimensional qubit subspace from the 12-dimensional Hilbert
space of the Hamiltonian H̃ , and Us = exp [−i(φ ± π )σz/2]
is the correcting gate accounting from cycling the acquired
accumulated phase on the spin qubit.

Combining the CNOT and the phase Us operation with
single-qubit Hadamard gates allows us to construct a SWAP

gate [34] and therefore embeds a general superposition of
charge states into the spin degree of freedom. The SWAP gate
fidelity is calculated by inserting

KSWAP = MSWAPMqUse
−iH̃τ/h̄HsHcUse

−iH̃τ/h̄HsHc

× Use
−iH̃τ/h̄M†

q (13)

into Eq. (11), for n = 4. Here, M SWAP is the matrix repre-
sentation of an ideal SWAP gate, Mq is a projection operator
that projects out the four-dimensional qubit subspace from the
12-space of the Hamiltonian H̃ , and Hs and Hc are single-qubit
Hadamard gates of the spin and charge qubit, respectively.

In an actual physical setting, the single-spin Z gates are per-
formed by freely waiting for the spin to evolve in an external
magnetic field for a certain time, which we call the waiting
time tw, UZ = exp (iEC

z twσz/2h̄). As the tunneling changes,
a different local phase is acquired, requiring another value of
the Z rotation to correct it, consequently leading to a nontrivial
dependence on the fidelity on the waiting time and tunneling,
see Fig. 3. We see that both the CNOT and SWAP gate fidelities
reduce with increasing the tunneling, Fig. 3. When the tunnel-
ing is modified, this in turn changes the shuttling time τ . In
the limit of strong driving, the electron has enough energy to
overpower the Coulomb penalization and can tunnel through
the central quantum dot, although the central dot is occupied
with an |↑〉 electron. It should be noted that in our scheme the
fidelity of the SWAP gate is always lower than the fidelity of
the CNOT gate due to the fact that the SWAP gate is achieved as
a combination of three CNOT operations and is therefore more
susceptible to leakage to logical subspaces not comprising our
qubit states.

As the charge qubit is usually more susceptible to noise
than the spin qubit, a crucial requirement for a successful
implementation of a SWAP operation is that the state of the
charge qubit remains coherent throughout the duration of
the sequence of pulses conducted to achieve the SWAP gate
T ∗

2,c > 3τ + 2 max (THs , THc ). In typical gate-defined quantum
dots, the charge-qubit coherence time is T ∗

2,c ∼ 10 ns, the
spin-qubit coherence time is T ∗

2,s � 200 μs, and single-qubit
spin and charge Hadamard gate times as low as THs ∼ 1 ns
[42], THc ∼ 1 ns, while the parameter τ � 0.1 ns. However,
the charge-qubit coherence time of an isolated DQD charge

FIG. 3. CNOT ×Rs
π and SWAP gate fidelities as a function of

the tunneling T and waiting time tw . The parameters of the plot
are the Coulomb repulsion of a doubly occupied dot U = 3 meV,
the Coulomb repulsion of a separated electrons V = 0.1 meV, the
external magnetic field Bz = −1 T, and the magnetic field of the
micromagnet B = 0.2 T. A g factor corresponding to Si quantum
dots was utilized g = 2.

qubit was measured to be T ∗
2,c = 220 ns [11] with a full rota-

tion on the Bloch sphere being achieved for ∼50 ns, so these
systems represent a viable candidate for using the spin degree
of freedom of a long-lived memory of the charge state. In a
more recent study [43], charge qubits coupled to microwave
resonators achieve a coherence time of T2,c ∼ 50 ns with qubit
operation times of 5 ns, representing another viable system for
the realization of the scheme.

IV. CONCLUSION

To conclude, I have demonstrated an entangling scheme
for a spin and charge degree of freedom in semiconductor
quantum dots. The combination of CNOT gates allows us to
construct a SWAP gate and therefore use the spin degree of
freedom as a long-lived memory of the charge state. Further
research in this direction will focus on investigating the de-
coherence effects originating from charge noise and nuclear
spins.
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