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The effect of instantaneous spectral diffusion (ISD) on gate operations in rare-earth-ion-doped crystals is an
important question to answer for the future of rare-earth quantum computing. Here we present a microscopic
modeling that highlights the stochastic nature of the phenomenon and use it to investigate ISD errors on single-
qubit gate operations. Furthermore, we present a method to estimate the total error from many different error
sources by only studying subsystems containing one error source at a time. This allows us to estimate the total
ISD error from all nonqubit dopants in the vicinity of a qubit. We conclude that optical pumping techniques must
be used to empty the frequency regions around the qubit transitions from absorption (transmission windows) in
order to suppress the ISD errors. Despite using such windows, there remains a roughly 0.3% risk that a qubit has
an ISD error larger than the error from other sources. In those cases, the qubit can be discarded and its frequency
channel can be reused by another qubit. However, in most cases the ISD errors are significantly smaller than
other errors, thus opening up the possibility to perform noisy intermediate-scale quantum (NISQ) algorithms
despite ISD being present.

DOI: 10.1103/PhysRevA.105.032608

I. INTRODUCTION

Rare-earth-ion-doped crystals are versatile materials that
have been used in, e.g., quantum memories [1–12], conversion
between optical and microwave signals [13–15], and quantum
computing [16–27]. This has in large part been due to their
long lifetimes [28] and coherence times [29–31] and their
capacity to store large amounts of information.

In these systems, spectral diffusion, which causes shifts to
the transition frequencies of ions, can often be an unwanted
effect. In this work we study a form of spectral diffusion
called instantaneous spectral diffusion (ISD), where an inci-
dent light field alters the excitation of an ion, which in turn
shifts the optical transitions of other nearby ions [29,32–36].
A good overview of the history of ISD for rare-earth ions
can be found in, e.g., Ref. [37]. Since most experiments so
far have been performed on ensembles of rare-earth ions, the
theoretical investigations of ISD mostly describe the effect
on average [33,37–39], where it is observed as a dephasing
mechanism that depends on the degree of excitation. However,
for applications that rely on single ions, e.g., the future of
rare-earth quantum computing [21,40], ISD must be analyzed
on the microscopic scale of the individual ions.

This work consists of two main parts. First, Secs. II and III
show how one can simulate ISD and how ISD affects a
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gate operation in an idealized system and present the qubit
Bloch vector estimation based on independent error sources
(QBIES) method, which is used to estimate the total error
from many different error sources. This part is more gen-
eral, especially the QBIES method, which can be used to
investigate any system where errors from different sources are
mostly independent.

The second part, presented in Secs. IV and V, use the
QBIES method to study ISD in one possible implementation
of a rare-earth quantum computer. Specifically, we investigate
how ISD affects a single-qubit (SQ) NOT operation using the
pulses designed in Ref. [27]. Our intention is that the work
presented in this part can act as a foundation on how to study
the effects of ISD on a single-ion level even when considering
more complicated gate operations. Finally, to set the stage
for this part, we end the introduction by providing a brief
overview of the relevant parts of the envisioned rare-earth
quantum computer (for more information see Ref. [40]).

A Y2SiO5 crystal (or nanocrystal or thin film) is randomly
doped with 153Eu dopants at the percent level. Two ground
states of a single Eu ion can form a qubit, and gate operations
can be performed via an excited state. At high concentra-
tions qubits can be spaced at nanometer separation in three
dimensions, thus providing very high qubit densities. The
tight spacing also allows for strong dipole-dipole interactions
between many nearby qubits, which is very beneficial as it
provides a method to perform two-qubit or multiqubit gate
operations [18,19,41–43], and leads to high connectivity be-
tween qubits in rare-earth quantum computers [44].

The linewidth of the optical transitions are in the order of
1 kHz, and since the surroundings of each dopant are slightly
different, there is an inhomogeneous broadening causing dif-
ferent ions to absorb at different frequencies. This broadening
can be on the order of 100 GHz [28]. Thus, the laser used
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to control a qubit only interacts with a small subset of all
dopants. Despite this, there could still be several thousands
of nonqubit Eu ions within the focus size and bandwidth of
the laser. When those nonqubit ions are excited, dipole-dipole
interactions with the qubit ion can cause ISD, thus reducing
the fidelity of gate operations performed on the qubit. To
reduce this risk, optical pumping techniques [19,45–47] and
more complicated procedures [21] can be utilized. In Secs. IV
and V we evaluate the ISD error such nonqubit dopants cause
on a SQ gate operation.

Finally, the present work does not make any assumptions
on how the state of a single-ion qubit is read out. However, a
possible method is to use dedicated readout ions [21,23,40],
which are codoped with the qubit dopants but at a much lower
concentration.

II. MICROSCOPIC TREATMENT OF INSTANTANEOUS
SPECTRAL DIFFUSION

Instantaneous spectral diffusion can occur when a nonqubit
ion is excited and causes an unpredicted frequency shift �ν of
the optical transitions of the qubit, as seen in Fig. 1(a). This
frequency shift leads to additional errors on gate operations
performed on the qubit. The ISD can be simulated by con-
structing the Hamiltonian for the combined system as shown
in Fig. 1(b), where the excitation-dependent shift �ν occurs
as a permanent shift of the |ee〉 energy level.

To separate the errors due to ISD from other error sources
such as decay, decoherence, and internal crosstalk, we inves-
tigate here an idealized three-level � system where no decay
or decoherence exists and the pulses only drive the intended
transitions, i.e., the pulse driving |0〉 → |e〉 only drives that
transition, but does so for both the qubit and the nonqubit ion.
Single-qubit gate operations are performed using two two-
color optical pulses resonant with the transitions |0〉 → |e〉
and |1〉 → |e〉 (for more information see Appendices B and
C 1 and Ref. [27]). To focus our investigation on how ISD
scales and can be understood, we only examine the case where
a NOT operation is performed and all ions start in |0〉 + i|1〉.
This case was chosen since the NOT operation acts nontrivially
on the initial state, but other cases would have been equally
valid. If no ISD occurs in this idealized system, gate opera-
tions have no errors.

The simulations in this article numerically solve the
Lindblad master equation [48] (see Appendix A for more
information). The error of the qubit operation is calculated by
first reducing the density matrix of the full system ρfull, which
describes the qubit and all nonqubit ions, into the density
matrix ρ, which only describes the qubit [49]

ρ =
∑

s

〈I ⊗ s|ρfull|I ⊗ s〉, (1)

where I is the identity matrix operating on our qubit and the
sum goes over all states s of the nonqubit ions. The error of
the operation ε can then be calculated as

ε = 1 − 〈�|ρ|�〉, (2)

where � is the target state of our qubit after the NOT operation
has been applied, i.e., � = |0〉 − i|1〉. The additional SQ gate
error due to ISD with one nonqubit ion is shown in Fig. 2
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FIG. 1. (a) Energy-level structure for a qubit (blue) and a non-
qubit (green) ion, including the two-color pulses driving each of the
two ions. The ions can be different elements, but we assume that they
are the same. The optical transitions of the nonqubit ion are detuned
from the qubit by �. When either of the two ions is excited, the other
experiences a frequency shift �ν of its optical transitions. The fields
driving the qubit can also be the fields driving the nonqubit, but they
drive the transitions off-resonantly with a detuning of �. Therefore,
the coloring of the fields should mostly be used as a visual aid to
more easily identify which ion is driven on the various transitions.
(b) Equivalent two-qubit energy-level structure for the two ions. Note
that the shift �ν of the |ee〉 two-qubit state is a permanent energy
level shift in this description.

as a function of both the shift �ν and the detuning � of the
nonqubit ion.

The Bloch vector of the qubit a = (u, v,w) is defined as

u = ρ01 + ρ10, v = i(ρ01 − ρ10), w = ρ00 − ρ11, (3)

where ρ is the qubit density matrix obtained from Eq. (1).
How this Bloch vector is altered when ISD occurs can be
seen in Fig. 3. The qubit begins in a = (0, 1, 0) and the NOT

operation ought to rotate this into (0,−1, 0), which happens
when no ISD is present. However, when �ν �= 0 the nonqubit
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FIG. 2. Gate error due to ISD shown as a function of both the
shift �ν and detuning � of one ion interacting with the qubit.
Generally, there is an error if the nonqubit ion is excited and �ν is
non-negligible. When the detuning is larger than the gate bandwidth,
the additional error is low for most shifts. However, when �ν ≈ −�

large errors still occur, since in these cases the nonqubit ion is shifted
into resonance when the qubit is excited during the gate operation,
thus affecting the evolution of the qubit.

ion affects the operation in two different ways. First, the Bloch
vector changes direction and no longer solely has a v compo-
nent, i.e., the state vector is rotated. Second, the length of the
Bloch vector |a| is reduced as the qubit and the nonqubit ion
become entangled. This is an unwanted entanglement since
we do not keep track of the state and evolution of the nonqubit
ion. The shrinkage of the Bloch vector occurs when we trace
out the nonqubit system in order to examine only the qubit
system as described in Eq. (1). Note that in the case when a
qubit interacts with two nonqubit ions with opposite shifts,
i.e., �ν2 = −�ν1, the two rotations mostly cancel each other,
but the qubit still becomes entangled with the two nonqubit
ions so an additional error still occurs. The effects of ISD are
discussed further in Appendix C, where a theoretical approach
is used.

III. METHOD OF QUBIT BLOCH VECTOR ESTIMATION
BASED ON INDEPENDENT ERROR SOURCES

In general, a qubit Bloch vector can change in two ways:
a rotation away from the target Bloch vector and a reduction
in the length of the Bloch vector. If N different error sources
exist, then the QBIES method assumes that the rotations and
shrinkages for different error sources are independent and
estimates the qubit Bloch vector a as

a =
N∏

n=1

(|an|Rn) · a0, (4)

where a0 is the Bloch vector obtained when no error is present
and |an| and Rn are the length of the qubit Bloch vector and
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FIG. 3. A NOT operation is performed on a qubit initially in
|0〉 + i|1〉 (black arrow, positive ŷ) under the following circum-
stances: no ISD (green, negative ŷ), ISD with one nonqubit ion with
either �ν1 = 100 kHz (blue, positive ẑ) or �ν1 = −100 kHz (red,
negative ẑ), and ISD with two nonqubit ions with �ν1 = 100 kHz
and �ν2 = −100 kHz (yellow, negative ŷ with a magnitude less
than 1). The nonqubit ions are resonant with the qubit (� = 0 MHz).
The length of the qubit Bloch vector is reduced due to entanglement
with the nonqubit ions. This error persists even though two non-
qubit ions with opposite shifts interact simultaneously with the qubit
(yellow, negative ŷ with a magnitude less than 1).

the rotation matrix required to turn the target state into the
obtained Bloch vector, respectively, when the qubit is only
disturbed by error source number n.

Generally, rotation matrices do not commute, so the order
in which one applies them can matter. In this work the ro-
tations are applied starting with the ion causing the largest
rotation before moving onto smaller rotations. Rotations do
however commute if they rotate around the same axis, and in
the case of the ISD investigated here the rotation axes are often
quite similar. Furthermore, even for rotations around different
axes the error due to them not commuting is small as long as
the rotation angles are small.

In the case of ISD, N represents the number of nonqubit
ions interacting with the qubit. Consequentially, the nth error
source represents the ISD interaction between the qubit and
only the nth nonqubit ion. How the results of the QBIES
method compare to running the full simulation in this case
is discussed in Appendix D. Note that the full simulation of
one qubit interacting with N nonqubit ions requires a Hamil-
tonian containing LN+1 energy levels, where L is the number
of energy levels per ion, whereas the QBIES method can
be performed using N simulations of only L2 energy levels
since the effect of each nonqubit ion is treated separately. This
means that the QBIES method yields an exponential reduction
in the number of energy levels required in the simulations.

When studying ISD in Secs. IV and V, the QBIES method
relies on the assumptions that the ISD errors from different
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FIG. 4. (a) Energy-level structure for 153Eu :Y2SiO5 site 1 [50], including the two optical driving fields with strengths �0 (solid line) and
�1 (dashed line) and phases φ0 and φ1, respectively. (b) Relative oscillator strengths of the different transitions [47]. (c) The environment
surrounding each dopant is slightly different, which leads to inhomogeneities in the optical transitions of the dopants, as is indicated by the
inhomogeneous absorption profile seen in the figure. The width of the profile 
inh is concentration dependent [see Eq. (5)] and can be more
than 100 GHz broad [28]. Here we use ctotal = 1% as an example. (d) We assume that each qubit reserves a frequency bandwidth of 1 GHz and
label the qubits and their corresponding frequency channel as indicated in the figure. Qubit q has a frequency channel that goes from −335
to 665 MHz relative to the |0〉 → |e〉 transition frequency νq of the qubit. Frequency channel q contains only qubit q, but it can contain many
nonqubit ions and these ions are assumed to only interact with the gate pulses performed on qubit q, since pulses controlling other qubits are
assumed to be too far detuned. (e) By using spectral hole burning and optical pumping techniques, one can remove all nonqubit ions absorbing
in the frequency regions around the two optical transitions used in a qubit. Here such zero-absorption transmission windows with widths of
roughly 18 and 50 MHz, respectively, are shown as a function of the relative frequency ν − νq.

nonqubit ions are independent and that we can neglect any
interaction that might occur between different nonqubit ions.
It also relies on the assumption that we can separate the effects
of ISD from decay, decoherence, and internal crosstalk. These
assumptions are validated in Appendix D, where we conclude
that the QBIES method works really well in the vast majority
of cases, but when the errors become large this method of
estimating ISD becomes worse. If the errors are small, the
nonqubit ions have low probabilities to be excited or they
only interact weakly with the qubit. Therefore, in the vast
majority of cases, the ISD error from one nonqubit ion is
not significantly affected by the status of other nonqubit ions.
Conversely, if the errors are large there is a higher probability
that the nonqubit ions affect each other and the errors become
dependent. In such cases, one might be forced to simulate
the full system for the subset of interactions yielding a large
error before applying the QBIES method to the smaller errors.
However, for applications concerning quantum computing,
the cases with small errors are the most relevant ones.

IV. ESTIMATING THE EFFECT OF INSTANTANEOUS
SPECTRAL DIFFUSION

This section explains how to estimate the effect of ISD
on SQ gate operations due to dipole-dipole interactions with
all randomly doped ions in the vicinity of the qubit. The
interaction occurs since the static electric dipole moments of
the ground and excited states are different (see Appendix E),

which is generally considered as the main contribution to
ISD for non-Kramers dopants. In this work we examine
the specific case of 153Eu :Y2SiO5 site 1 (europium doped
into yttrium orthosilicate), whose properties can be found in
Figs. 4(a) and 4(b).

Instantaneous spectral diffusion is a stochastic phe-
nomenon as the ISD error of a specific qubit strongly depends
on the properties of the ions surrounding the qubit, e.g., their
detunings and their dipole-dipole interactions with the qubit,
as well as which ground states they initially reside in. There-
fore, there is no single answer to how large the ISD error is
for all qubits. Instead, we gather statistics to build a probabil-
ity distribution over the risk that a single qubit suffers from
ISD errors of different magnitudes. For each investigation we
make, this is achieved by performing 1000 simulations, where
in each case we first randomize the properties of the ions sur-
rounding a qubit and then estimate the ISD error they cause.
Note that in a real crystal there can be correlations between
the surroundings of different qubits if they are sufficiently
close to each other. However, due to the strong spatial de-
pendence of the dipole-dipole shift (�ν ∝ 1/|r|3) and the fact
that the different qubits have different transition frequencies,
we argue that the probability that a certain ISD error occurs
can be estimated using our method of studying independent
qubit surroundings. The details of how the properties of the
surrounding ions are randomized and how the ISD error is
evaluated can be found in Appendices F and G, but the general
idea is presented in the rest of this section.
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First, a fraction ctotal of the yttrium ions within a sphere
of 50 nm radius centered around the qubit are replaced with
Eu dopants, half of which are assumed to belong to site 1.
Note that the crystals themselves do not need to be this small;
instead this radius was picked because ions further away than
this had a negligible contribution to the total ISD error (see
Appendix I). After doping the regions, the dipole-dipole shifts
between any two ions can be calculated using Eq. (E1) in
Appendix E.

Second, each ion randomly obtains an optical transition
frequency according to a Lorentzian line shape of the in-
homogeneous absorption profile as shown in Fig. 4(c). The
full width at half maximum 
inh is assumed to grow linearly
depending on the total doping concentration


inh = 
0 + 
cctotal, (5)

where 
0 = 1.8 GHz is a concentration independent
linewidth, 
c = 1800 GHz [51,52], and ctotal specifies the total
atomic doping concentration between 0 and 1, where 1 would
be a fully doped stoichiometric crystal. Note that this linear
scaling is only valid for sufficiently low doping concentra-
tions, but all concentrations used in this work (ctotal � 5%)
fall into this regime.

Following this, the |0〉 → |e〉 transition frequency of the
qubit we investigate, from this point forward denoted by qubit
index 0, is set to be at the center of the inhomogeneous ab-
sorption profile. Furthermore, we assume that there exist other
qubits and number them symmetrically growing outward from
this central frequency as is shown in Fig. 4(d).

Instantaneous spectral diffusion can be minimized by using
spectral hole burning techniques [19,45–47] to optically pump
dopants between ground states so that the frequency regions
close to the two qubit transitions |0〉 → |e〉 and |1〉 → |e〉 be-
come free from absorption. Such semipermanent transmission
windows can be seen in Fig. 4(e), and the process to create
them is described further in Appendix H. In order to create
transmission windows for all qubits, each qubit must reserve
a frequency bandwidth of roughly 1 GHz, as indicated in
Fig. 4(d).

In our model, all ions inside the reserved frequency range
of a qubit only interact with the pulses controlling that qubit.
Therefore, only the ions inside the reserved frequency range of
qubit 0 directly interact with its pulses. However, other ions,
which may be far detuned in frequency but spatially close to
qubit 0, can still cause ISD if they are partly excited before
the gate operation on qubit 0 is performed. Such ions can be
excited when the qubits with indices 1 to Q perform G gate
operations, and in Sec. V the additional ISD error is studied
as Q and G vary.

Finally, two different cases are studied in regard to the
initial ground states of the ions. First, each ion is randomly
placed in one of the three ground states with equal probabili-
ties. Second, transmission windows are created for each qubit.
Thus, the probability of which ground state an ion initially
resides in depends on its detuning from its corresponding
qubit.

In summary, the ISD error of a single-ion qubit is estimated
in the following way.

(1) Create the qubit’s surroundings by randomly doping a
limited spatial region around the qubit (we doped spherical
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FIG. 5. The additional SQ gate error due to ISD caused by all
nonqubit ions inside the reserved frequency range of qubit 0 is esti-
mated by performing 1000 different simulations (horizontal axes) for
each investigation we perform. Each simulation starts with a single
qubit and estimates the ISD error by following steps 1–3 presented
in Sec. IV. The simulations are then ordered after the magnitude of
the ISD error obtained. In (a) no transmission windows are prepared,
i.e., the nonqubit ions are equally likely to start in any of the three
ground states. In (b) the transmission windows shown in Fig. 4(e)
are used, i.e., the probability that a nonqubit ion starts in a specific
ground state depends on its detuning from the qubit. The inset zooms
in on the simulations with the highest error. Several different doping
concentrations are investigated (shown in color, where the lowest
concentration is the lowest line). The black dotted lines show the
SQ gate error due to decay, decoherence, and internal crosstalk for a
NOT operation when no ISD is present.

regions with a radius of 50 nm and concentrations ranging
from ctotal = 0.01% to 5%).

(a) Assign a position and static dipole moment direction to
all ions, including the qubit.

(b) Randomly assign optical transition frequencies to
all ions and set the |0〉 → |e〉 transition frequency of
qubit 0 to the center of the inhomogeneous absorption
profile.

(c) Determine the initial ground state for each nonqubit ion
depending on whether transmission windows are used or not
(in this work qubit 0 starts in |0〉 + i|1〉).

(2) Determine what rotation and shrinkage of the qubit 0
Bloch vector each nonqubit ion causes due to ISD. Depending
on if a nonqubit ion is inside or outside the frequency channel
of qubit 0 [see Fig. 4(d)], different methods are used to deter-
mine these rotations and shrinkages (for more information see
Appendix G).
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FIG. 6. The ISD error as a function of the ordered simulation number (see the caption of Fig. 5 for more information). The total doping
concentration ctotal varies from 0.01% to 5% in (a)–(f). In all cases, two transmission windows [shown in Fig. 4(e)] are created for each qubit.
The blue solid lines (lowest lines) show the same results as Fig. 5(b), i.e., no gate operations were performed before the NOT operation on qubit
0 was attempted. The other colors indicate how many other qubits, with indices q = 1, . . . , Q, have undergone G NOT operations before the
NOT operation on qubit 0 was attempted (colored regions that are lower in the graphs have lower Q). The qubits with low indices are closest
to the center of the inhomogeneous absorption profile as shown in Fig. 4(d). In our simulations, G is either 1 (solid lines) or 10 (dashed lines)
and the colored regions span the interval between performing one and ten NOT operations on each additional qubit.

(3) Use the QBIES method described in Sec. III and Eq. (4)
to estimate ISD due to all nonqubit ions or only a subset of
them depending on what analysis is being made.

V. EFFECT OF INSTANTANEOUS SPECTRAL DIFFUSION
ON SINGLE-QUBIT GATE OPERATIONS

This section studies how a gate operation is affected by ISD
from nonqubit ions. The gate operations are performed using
the pulses described in Appendix B, which are optimized to
reduce the impact of ISD [27]. If other gate parameters are
used, the effect of ISD can be significantly worse compared to
what is presented here.

The first case we investigate is the dependence on doping
concentration when no transmission windows are created.
Furthermore, no ions are excited before the qubit operation
on qubit 0 is attempted. Thus, only ions within the reserved
frequency range of qubit 0 cause ISD. The results are shown
in Fig. 5(a). For all doping concentrations except the low-
est, the majority of the simulations result in an additional
ISD error that is at least of the same order of magnitude
as the SQ gate error obtained when only considering decay,
decoherence, and internal crosstalk. Initially, the error grows
rapidly with increasing concentration. However, above a crit-
ical concentration, about 0.5% for Eu:Y2SiO5, the increase
in error slows down since, instead of adding significantly
more dopants per frequency channel as the concentra-
tion increases, the width of the inhomogeneous absorption

profile mostly broadens [see Eq. (5)]. Finally, note that these
estimates of ISD are performed in the center of the inhomo-
geneous absorption profile and the effect is smaller in the
wings.

Figure 5(b) studies the same case except now transmis-
sion windows are used. Once more the concentration only
matters below a critical value. However, ISD is now heavily
suppressed due to the isolation of the qubit ion in frequency
space. Therefore, we conclude that the usage of transmission
windows is very important to limit the additional error due to
ISD.

Furthermore, in Fig. 5(b) only about 0.5% (or 0.3%) of all
simulations had qubits where the ISD errors were larger than
10% (or 100%) of the normal SQ gate error. However, these
estimates assume that all ions begin in one of their ground
states, and thus only ions within the reserved frequency range
of qubit 0 cause ISD. Therefore, this corresponds to the ex-
pected effect of ISD when running the first gate operation
on the first qubit in the quantum computer. When running
subsequent gate operations, even if those are on other qubits
and even if the operations run sequentially, the assumption
that all ions begin in one of their ground states is no longer
true. In Fig. 6 the ISD error on qubit 0 is studied when up
to ten NOT operations are performed on up to 50 different
qubits (i.e., 500 operations in total) before the NOT opera-
tion on qubit 0 is attempted. The general conclusions are
presented here and a more detailed analysis can be found in
Appendix J.
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FIG. 7. The ISD error as a function of the ordered simulation
number when using a doping concentration of 5% is shown for a few
different frequency widths of the qubit initialization pulses (shown in
color, where the smallest width is the lowest line). In the 0-kHz case
only the qubit ion is transferred by the initialization pulses. For the
solid lines no gate operations were performed on other qubits before
the NOT operation on qubit 0 was attempted. In contrast, the dashed
lines show the results when ten NOT operations were performed on
each of the qubits labeled 1–50 before attempting the NOT operation
on qubit 0.

In the worst case studied here, 5% doping concentration
and running ten gate operations on 50 additional qubits, the
additional error due to ISD in the vast majority of the simula-
tions is still below the SQ gate error obtained from the other
error sources of decay, decoherence, and internal crosstalk;
however, it does increase the gate error by roughly 30%
to 60%. Thus, quantum computing using randomly doped
rare-earth crystals is still feasible, despite all the numerous
nonqubit ions in the vicinity of the qubits. However, it is again
important to note that the gate operation pulses studied here
are designed to also minimize the risk of ISD occurring [27].
Hence, the ISD errors being lower than errors from all other
sources is heavily dependent on the limited frequency band-
width used by the gate operation pulses studied here and is not
a general conclusion.

For high doping concentrations, the ISD error increases by
roughly 4×10−7 for each gate operation that is performed on
another qubit before the gate operation on qubit 0 is attempted.
Hence, the error scales linearly with the total number of gate
operations. Furthermore, the error per gate can be reduced
by broadening the inhomogeneous absorption profile without
increasing the doping concentration, e.g., by codoping with
another rare-earth species [53]. Therefore, the ISD errors can
be reduced even further compared to the results shown in
Fig. 6.

We now turn to investigate how the initialization of the
qubit ions might affect the ISD error. After transmission win-
dows have been prepared, the qubit ion is in the |aux〉 ground
state and must be transferred to either |0〉 or |1〉. This is
done using resonant optical pulses, but in this process some
nonqubit ions can also be transferred, thus creating a small
ensemble peak of ions with absorption inside the transmission
windows. These ions would interact strongly with the gate
operation pulses and thus most probably be excited during
gate operations. However, they still need to spatially lie suffi-
ciently close to the qubit in order to cause any significant ISD.

The width of this peak, and thus how many such nonqubit ions
are transferred, depends on the frequency width of the pulses
used to perform the transfer. For more information about how
these initialization pulses are performed, see Appendix H.
Figure 7 shows how the ISD error changes as a function of the
frequency width of these pulses. As can be seen, the nonqubit
ions in the ensemble peak can cause a significant additional
error when compared to the 0-kHz case, where it is assumed
that only the qubit ion is transferred. Fortunately, there are
schemes to remove such nonqubit ions [21]. Furthermore, if
the ions are sufficiently spread out in frequency space, one
alternative is to use transfer pulses with narrow frequency
bandwidths such that only the qubit ion is transferred.

VI. CONCLUSION

In order to investigate how ISD affects gate operations on
single-ion qubits in rare-earth crystals, where the stochastic
behavior of the phenomenon is important, we have presented
a microscopic treatment of ISD by modeling the dipole-dipole
interactions between ions.

In order to avoid the exponential scaling of the system
size when examining ISD due to many nonqubit ions, we
introduced the QBIES method, which can be used to estimate
the total error from many error sources. The method is based
on simulations only including one error source at a time and
works best when the errors are independent and small.

Instantaneous spectral diffusion was then investigated un-
der various conditions. It was concluded that transmission
windows covering the two qubit transitions |0〉 → |e〉 and
|1〉 → |e〉 are necessary in order to suppress the ISD errors.
When using transmission windows, only about 0.3% of the
qubits have an additional error due to ISD that is larger than
the error from other sources. However, for the majority of the
qubits the ISD errors will be much lower. Thus, it is possible
to construct gate operations with SQ gate errors of roughly
3×10−4 to 5×10−4 even when the additional error due to
ISD is considered. Furthermore, the upper bound occurs only
for the highest doping concentrations when several hundred
gate operations have already been applied to other qubits in
the quantum computer. Additionally, we discussed a way to
further reduce the effect of ISD by reducing the number of
nonqubit ions per frequency channel, e.g., by codoping the
crystal with another dopant to broaden the inhomogeneous
absorption profile.

The effect of the qubit initialization pulses was also stud-
ied. It is important to either perform such pulses in a precise
way to reduce the number of nonqubit ions that are unin-
tentionally transferred into the transmission windows when
the qubit is initialized or alternatively clean up the nonqubit
ions after they have been transferred to prevent additional ISD
errors from such nonqubit ions.

In summary, the present investigation shows that it is possi-
ble to perform NISQ algorithms in randomly doped rare-earth
crystals. Still, to determine the exact effect of ISD in the
long-term usage of the quantum computer, a more detailed
analysis is required, but the present work provides a solid
foundation to build upon. Furthermore, even if some qubits,
due to the stochastic nature of the interaction, exhibit large
ISD errors, one can choose not to use those qubit ions and
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therefore free up their frequency channels to be used by other
qubit ions which have smaller ISD errors.
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APPENDIX A: INFORMATION ABOUT
THE SIMULATIONS

All simulations where the effect of ISD is analyzed were
performed by evolving the Lindblad master equation [48]
using MATLAB’s explicit Runge-Kutta ode45 function [54,55].
In all simulations the qubit starts in |0〉 + i|1〉 and a NOT

operation is attempted. When simulating the 153Eu :Y2SiO5

system described in Fig. 4 we also assume a zero magnetic
field in the sense that the hyperfine levels are doubly degen-
erate, i.e., |+1/2g〉 overlaps with |−1/2g〉 and are therefore
treated as one single level, |±1/2g〉. In most simulations stud-
ied here, decay, decoherence, and internal crosstalk effects
are not included as those error sources are assumed to be
independent of the ISD errors. One exception is when the SQ
gate error due to only these sources and not ISD is evaluated.
In that case the assumed optical lifetime and coherence time
are T1 = 1.9 ms and T2 = 2.6 ms, respectively [29]. Note that
these values were obtained using a 10-mT magnetic field, but
we do not include the small splitting this magnetic field inflicts
on the otherwise degenerate energy levels. Finally, decay and
decoherence processes between hyperfine states are always
assumed to be negligible as they occur on timescales much
longer than their optical counterparts [28,31,56,57].

The Hamiltonians consisted of LqubitLN
ion energy levels,

where Lqubit and Lion are the numbers of energy levels for the
qubit and nonqubit ions, respectively, and N is the number of
nonqubit ions that cause ISD to the qubit. We always used
Lqubit = 3 for the qubit except for a single simulation when
the SQ gate error due to decay, decoherence, and internal
crosstalk was investigated, where instead Lqubit = 6 was used.
The nonqubit ions used Lion = 3 in Sec. II where ISD was
investigated in an idealized system. The simulations under-
lying the results in Sec. V used Lion = 6 for ions inside the
reserved frequency range of qubit 0 and Lion = 2 for ions
outside. These simulations are described in Appendix G.

The relative and absolute tolerances for the ode45 MATLAB

function were varied based on requirements: Figures 2, 3,
and 9–12 used 10−10, whereas Figs. 14 and 15 used 3×10−14.
The global error of the simulation is estimated to be roughly
10 times the local tolerances when running one SQ gate op-
eration. The results of Figs. 5–7, 17, and 18 are based on
the simulations underlying the results shown in Figs. 14, 15,
and 16(b).
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FIG. 8. Rabi frequency envelope used for each of the two com-
ponents of the two-color pulse. The pulse parameters in Eq. (B1) are
tg = 1.68 μs and σ = 4.16 μs.

APPENDIX B: PULSE SHAPE OF THE SQ
GATE OPERATIONS

The SQ gate operations used in this work are performed us-
ing two two-color optical pulses resonant with the transitions
|0〉 → |e〉 and |1〉 → |e〉. The two driving fields have the same
cut Gaussian pulse shape �0(t ) = �1(t ) = �(t ),

�(t ) =
{

C1exp
(− (t−tg/2)2

2σ 2

) − C2 for 0 � t � tg
0 otherwise,

(B1)

where tg = 1.68 μs is the cutoff pulse duration, σ = 4.16 μs
is the standard deviation of the Gaussian, C1 is chosen so that a

0

0.1

0.2

0.3

0.4

0.5

IS
D

 e
rr

or

(a)

-1000 -500 0 500 1000

Shift  (kHz)

-1

-0.5

0

0.5

1

B
lo

ch
 v

ec
to

r

(b)

|a|
u
v
w

-10 0 10
0

0.5

1
10-3

FIG. 9. (a) The ISD error as a function of the shift �ν when the
qubit interacts with one resonant (� = 0) nonqubit ion (blue solid
line). The theoretical error based on Eq. (C1), where te = 1.40 μs
was optimized to give the best fit, is shown by the black dashed
line. The theory assumes that both ions are excited despite the shift
that occurs, i.e., it is only valid for small shifts, in this case |�ν|
less than roughly 100 kHz. The inset zooms in around �ν = 0 kHz.
(b) Length and components of the qubit Bloch vector a = (u, v, w)
for the same simulation as in (a).
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pulse area of π/
√

2 is achieved, and C2 enforces the shape to
start and end at zero. These parameter values are optimized
to achieve a low SQ gate error while also taking heed to
minimize the risk of ISD occurring, as is discussed in and
motivated by Ref. [27]. The pulse shape can be seen in Fig. 8.
Since two pulses are required to perform a gate operation [27],
the total gate duration is 2tg = 3.36 μs.

Using a different pulse shape or different pulse parameters
can affect the ISD errors. In Appendix C we discuss how
the ISD errors change as the pulse duration is altered. Fur-
thermore, changing the pulse also affects errors from decay,
decoherence, and internal crosstalk. Therefore, designing the
optimal pulse is a complex optimization problem that is not
analyzed further in this work.

APPENDIX C: ISD FROM AN IDEALIZED
THEORETICAL POINT OF VIEW

This Appendix studies the effect of ISD under the assump-
tion that all nonqubit ions are resonant with the qubit, i.e.,
� = 0 for all ions. This investigation is performed in order
to build intuition in regard to ISD. First, the ISD error from
one nonqubit ion as a function of the shift �ν is investigated
[see Fig. 9(a)].

In general, the transitions to the |ee〉 two-qubit state are
driven off-resonantly due to the shift [see Fig. 1(b)], resulting
in phase and population errors on such transfers. However,
when these errors are sufficiently low, i.e., the shift is much
less than the frequency bandwidth of the pulse, one can as-
sume that the pulses excite or deexcite both the qubit and the
nonqubit ions regardless of the shifts that occur. Under these
assumptions, the interaction only occurs as a phase evolution
on the shifted states, which in our case is the |ee〉 state. A
theoretical expression for the ISD error when N nonqubit ions
interact with the qubit under these assumptions is derived in
Appendix C 1. For the case of just one nonqubit ion, when
both it and the qubit start in |0〉 + i|1〉 and a NOT operation is
performed, the error can be written as

ε = 1
4 − 1

4 cos(2πte�ν), (C1)

where te is the duration during which the two ions evolve their
phase in the shifted |ee〉 two-qubit state, which is approxi-
mately equal to the pulse duration tg, but also depends on
the other gate parameters. The theoretical error is shown by
the black dashed line of Fig. 9(a), where te = 1.40 μs was
optimized to give the best fit.

As can be seen from the theoretical expression, a shorter
pulse, yielding a shorter te, decreases the error due to ISD for a
given shift since it spends less time in the |ee〉 state. However,
one must also consider that if the shorter pulse requires a
larger frequency bandwidth, then it might interact with more
nonqubit ions, and although each individual ion might give a
lower additional error, the combined effect of all nonqubit ions
might not. Furthermore, an increased frequency bandwidth in-
creases the risk of finding an ion that has a stronger interaction
and thus shifts the qubit transitions more.

A simple investigation can be made if we assume
that the shifts occur due to dipole-dipole interactions (see
Appendix E), that the frequency bandwidth is inversely pro-
portional to te, and that all frequency channels are equally

likely to be populated by a nonqubit ion. If te is decreased
by a factor of x, then the bandwidth is increased by that same
factor, as are the number of ions within the pulse bandwidth
that may disturb the qubit. Because the ions are assumed to
be randomly doped, the average distance from the closest
nonqubit ion to the qubit scales as |r| ∝ 1/x1/3. However,
since the strength of the dipole-dipole shift scales as 1/|r|3,
the shift �ν increases by a factor of x. Therefore, provided
the assumptions are valid, to first order te�ν, and thus the
additional error from the closest nonqubit ion, stays constant
even if the pulse duration is changed. However, if the number
of ions per frequency channel is not the same everywhere, then
this is no longer true. For example, if transmission windows
are used, then decreasing the pulse duration decreases the
error due to ISD as long as the pulse is not interacting with the
ions outside the transmission windows in a significant way.

Let us now study the ISD error as a function of two
nonqubit ions, both still resonant with the qubit and having
shifts of �ν1 and �ν2, respectively. The results can be seen
in Fig. 10. If each ion interacts with the qubit alone they
in general cause different rotations and length reductions of
the qubit Bloch vector [see Fig. 9(b)]. Interestingly, when the
shifts have opposite signs, the two rotations of the qubit Bloch
vector originating from the interaction with each of the two
ions partially cancel each other. If the shifts are completely
opposite, i.e., �ν1 = −�ν2, the two rotations more or less
cancel each other fully. However, in all cases the qubit still
becomes entangled with the two nonqubit ions. Therefore,
even in the case where the shifts are opposite, an error still
occurs. When the shifts have the same sign, the rotations from
the two ions are in the same direction, which gives an error
that is larger than the sum of the individual errors originating
from each ion interaction with the qubit alone. As can be
seen in Figs. 10(b) and 10(c), the theory predicts the correct
additional error due to ISD to within a few percent for these
relatively small shifts.

Theoretical error due to ISD for resonant
ions with small shifts

In this section we derive a theoretical expression of the
additional SQ gate error due to ISD under the assumptions
that the nonqubit ions are resonant with the qubit and that
the gate operation pulses always excite both the qubit and all
nonqubit ions regardless of the shifts that occur. This theoret-
ical expression is therefore only valid for resonant cases and
when the shifts are small compared to the frequency width
over which the pulses can reliably transfer the ion from the
ground to the excited state and vice versa. The derivation in
this section assumes that the gate operations are performed
using two two-color pulses [27,58], but it is possible to derive
similar expressions for other gate protocols.

When using two-color pulses, the qubit system has two
superpositions, called bright and dark, which are coupled and
uncoupled, respectively, to the excited state. These superposi-
tions are defined as [58]

|B〉 = 1√
2

(|0〉 + e−iφ |1〉), |D〉 = 1√
2

(|0〉 − e−iφ |1〉),

(C2)
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FIG. 10. The ISD error from two nonqubit ions, both resonant with the qubit (� = 0) but with varying shifts �ν1 and �ν2, based on
(a) simulations and (b) the theoretical expression derived in Appendix C 1, where the duration te = 1.40 μs is determined from the data of
Fig. 9. (c) Deviation between simulation and theory by dividing the ISD error obtained from the simulation by the error obtained from the
theory.

where φ = φ1 − φ0 is the relative phase between the two
Rabi frequencies of the two-color pulse [see Fig. 4(a)]. Both
colors of the second two-color pulse have additional phases
of φ0/1 = φ0/1 + π − θ . The two two-color pulses transfer
the bright state to the excited state and back again with an
additional phase of eiθ while leaving the dark state unaffected.
For a more detailed description see Ref. [27].

The theoretical expression is derived in the bright or dark
state basis and the core idea of the derivation is listed below.

(i) The two-color pulses work as intended for both the qubit
and the nonqubit ions, i.e., they transfer |B〉 → |e〉 and back
again without errors.

(ii) Each state, e.g., |BDD . . . DB〉, acquires an additional
phase of eiθ for each B component in the state after the opera-
tion is completed.

(iii) Each state, e.g., |BDD . . . DB〉, also acquires an addi-
tional phase due to ISD between the ions. This phase depends
on how much the state |eDD . . . De〉 is shifted due to ISD,
i.e., the initial state except all bright components have been
excited.

To begin the derivation we list the initial state

|�i〉 =
2N∑

s=1

ABs|Bs〉 + ADs|Ds〉, (C3)

where ABs and ADs are the coefficients for starting in states
|Bs〉 and |Ds〉, respectively, with the B and D denoting the
qubit state, and s is the state of all N nonqubit ions, which
can be any of the 2N combinations of them starting in B or D.
After the gate operation is performed the state is

|� f 〉 =
2N∑

s=1

ABse
iα(Bs)|Bs〉 + ADse

iα(Ds)|Ds〉, (C4)

where α(x) is the phase

α(x) = θnB(x) − 2πte
∑

i, j=B in x

�νi j, (C5)

where nB(x) is the number of B components in state x, te is
a duration which is proportional to the gate duration tg, and
�νi j is the shift between ions i and j, measured in hertz.

The sum goes over all combinations of ions i and j that are B
in state x, e.g., state x = |BDBBD〉 results in the combinations
(i, j) = (0, 2), (0,3), and (2,3).

In order to trace out the nonqubit ions we must first define
the density matrix of the full system ρfull and our qubit ρ:

ρfull = |� f 〉〈� f |, (C6)

ρ =
2N∑

s=1

〈I ⊗ s|ρfull|I ⊗ s〉. (C7)

Using the expression for |� f 〉 from Eq. (C4), we get

ρ =
2N∑

s=1

(ABse
iα(Bs)|B〉 + ADse

iα(Ds)|D〉)

× (A∗
Bse

−iα(Bs)〈B| + A∗
Dse

−iα(Ds)〈D|). (C8)

We can now transform back to the qubit system of |0〉
and |1〉 using Eq. (C2) and then calculate the Bloch vector
components

u = ρ01 + ρ10, v = i(ρ01 − ρ10), w = ρ00 − ρ11. (C9)

This results in

u =
2N∑

s=1

cos(φ)(|ABs|2 − |ADs|2) + 2 sin(φ)Im[ξ (s)],

v =
2N∑

s=1

− sin(φ)(|ABs|2 − |ADs|2) + 2 cos(φ)Im[ξ (s)],

w =
2N∑

s=1

2 Re[ξ (s)], (C10)

where

ξ (s) = ABsA
∗
Dse

iβ(s), (C11)

where β(s) = α(Bs) − α(Ds), which can be simplified to

β(s) = θ − 2πte
∑

j=B in s

�ν0 j, (C12)
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FIG. 11. The ISD error on a qubit due to interaction with two nonqubit ions. The shifts �ν1 and �ν2 are varied along the horizontal and
vertical axes of each graph, respectively. The different columns show the results for different detunings (�1 and �2) of the two nonqubit ions,
where a zero detuning means that the nonqubit ion is resonant with the qubit. The results are shown based on (a) simulations of the full system
including the qubit and the two nonqubit ions and (b) the QBIES method presented in Eq. (4), which is based on two separate simulations
using only the qubit and a single nonqubit ion in each simulation. (c) Deviation between the simulation and the QBIES method by dividing the
simulation results by the QBIES results.

where the summation now only looks at the interactions
between the qubit, with index 0, and the nonqubit ions in
state |B〉, e.g., state s = |DBBD〉 results in the combinations
(0, j) = (0, 2) and (0,3), i.e., β(s) does not include the in-
teraction between nonqubit ions. Recall that state s only
includes the states of the nonqubit ions, whose first index
is 1.

The expressions (C10) work for any number of nonqubit
ions N , any initial states ABs and ADs, and arbitrary gate opera-
tions φ and θ . For the case of one nonqubit ion interacting with
the qubit with a shift of �ν, when both ions start in |0〉 + i|1〉
and a NOT operation, with φ = π and θ = π , is performed, the
results simplify to

u = 0, v = − 1
2 − 1

2 cos(2πte�ν), w = 1
2 sin(2πte�ν).

(C13)

Since the initial state has v = 1 and a NOT operation is
performed, the target state is v = −1 and the error of the
operation can be calculated as ε = (1 + v)/2, i.e.,

ε = 1
4 − 1

4 cos(2πte�ν). (C14)

APPENDIX D: VALIDATING THE QBIES METHOD

This Appendix explores the validity of the QBIES method
presented in Eq. (4). To start, Fig. 11 shows a comparison
between running the full simulation and using the QBIES
method for a qubit interacting with two nonqubit ions. In
all cases shown, the true additional error due to ISD is at
most ±20% compared to the error obtained using the QBIES
method. Furthermore, this ratio approaches 1 when the errors
are low, i.e., when the detunings of the nonqubit ions are large
or when the shifts are small. This is good for the case of
rare-earth quantum computing, since in a real crystal there are
many more ions that are far detuned from the qubit or have
weak interactions due to the 1/|r|3 scaling of the dipole-dipole
shift (see Appendix E) and the fact that the number of ions at
a certain distance |r| scales as |r|2.

We now continue by investigating the following assump-
tions: (1) ISD errors can be separated from the other error
sources of internal crosstalk and decay or decoherence and
(2) ISD errors from different nonqubit ions interacting with
the qubit can be separated from each other and shifts between
different nonqubit ions can be neglected.
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FIG. 12. This figure validates the assumption that in the vast majority of cases the rotation and shrinkage of the qubit Bloch vector caused
by ISD from one nonqubit ion is independent of the rotations and shrinkages caused by internal crosstalk, decay and decoherence, and ISD from
other nonqubit ions. The graphs show the ratio between the total error obtained when either running the full simulation of the entire system or
using the QBIES method described in Eq. (4) in order to estimate the total error. The horizontal axes show the total SQ gate error obtained in
the full simulation. Six different investigations are performed: (a) separating the errors of ISD from errors of internal crosstalk, (b) separating
the errors of ISD from errors of decay and decoherence, and (c)–(f) separating the errors of ISD from N = 2, . . . , 5 different nonqubit ions
interacting with the qubit. In each investigation we simulate 1000 different cases, shown as half-transparent circles. In all investigations the
QBIES method yields very similar results in the vast majority of cases when compared to running the full simulation, i.e., most circles lies
close to 1 on the vertical axes. Furthermore, most deviations occur when the total SQ gate error is high.

These issues are investigated by first running full simula-
tions where everything is included at once and then comparing
those results to when one uses the QBIES method based on
running simplified systems where the different error sources
are separated. In these simulations a NOT operation is per-
formed on the qubit ion, which begins in |0〉 + i|1〉, and is
described by a partly idealized system with three energy levels
|0〉, |1〉, and |e〉. We let the qubit interact with N additional
nonqubit ions, which each have a 50% chance of being de-
scribed by the same three-level system as the qubit and also
interact with the gate pulses and a 50% chance of being de-
scribed by a simplified two-level system with only one ground
and one excited state and do not interact with the gate pulses
and instead have some initial population in the excited state.
The detunings of the nonqubit ions (only relevant if they are
interacting with the gate pulses) are randomized by a loga-
rithmic uniform distribution between 1 kHz and 100 MHz,
i.e., the randomized values are 10x Hz, where x is uniformly
distributed between 3 and 8. Similarly, the shifts between the
qubit and nonqubit ions, as well as between different nonqubit
ions, are randomized by a logarithmic uniform distribution
between 100 Hz and 10 MHz. The nonqubit ions that do
not interact with the gate pulses have an initial excited-state
population that is randomized by another logarithmic uniform
distribution, now between 10−9 and 10−4, where, e.g., 10−4

means that the ion starts in a mixed state with a 10−4 proba-
bility to be in the excited state. All these ranges are picked to
validate the assumptions over a large range of different values
and to make sure that each individual variable could affect the
results in a significant way while simultaneously resulting in

total errors that span a large range. In each investigation we
perform 1000 different simulations where all parameters are
randomized again.

First, the separation of ISD errors from errors due to inter-
nal crosstalk is investigated. Here the qubit only interacts with
one nonqubit ion, and the partly idealized systems have no
decay or decoherence. However, when running the simulation
of the full system the gate operation pulses are allowed to
drive all transitions, and the two ground states are separated by
a frequency drawn from the logarithmic uniform distribution
from 100 kHz to 100 MHz. Then a second simulation is per-
formed with exactly the same randomized values, but where
the gate operation pulses only drive the intended transitions.
This simulation gives the rotation and shrinkage of the qubit
Bloch vector due to errors of ISD only. A third simulation
is then performed where the gate operation pulses once more
interact with all transitions, but it only contains the qubit ion,
i.e., there is no ISD. This last simulation provides a Bloch
vector that only contains the errors due to internal crosstalk.
Equation (4) is now used to estimate the total error due to both
ISD and internal crosstalk where the rotation and shrinkage
are obtained from the second simulation listed above and a0

is the Bloch vector obtained from the third simulation listed
above. Finally, the total error obtained from the first full simu-
lation due to both internal crosstalk and ISD is compared with
the error estimated based on the last two simulations. This is
repeated 1000 times and the results are shown in Fig. 12(a).
As can be seen, the ratio of the error obtained from the full
simulation divided by the error obtained from the QBIES
method is roughly equal to 1 for the vast majority of cases.
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FIG. 13. (a) Unit cell of Y2SiO5 in the C2/c (base-centered) space group; see Table I for values of the parameters. The figure also indicates
the connection to the principal axes D1 and C2, which is more often denoted by b, and D2. (b) Layout of the eight basic Y2SiO5 molecules
that each unit cell contains constructed using the atom coordinates of Ref. [63] and the symmetries of the C2/c space group. Note that the
connections shown are only there to indicate which basic molecule the ions belong to. Two yttrium crystal sites exist with coordination numbers
of 6 and 7, which we label as sites 1 and 2, respectively. We assume that the static electric dipole moment difference |�μ| = 7.6×10−32

C m [64] points in the D1 direction for the site 1 yttrium ion belonging to the bottom left basic molecule. Since the basic molecules are oriented
differently, we indicate the direction of �μ by black arrows for all site 1 yttrium ions.

Furthermore, the deviations from this mostly occur when the
total SQ gate error is high.

A similar investigation is performed to validate the as-
sumption that ISD errors can be separated from errors due to
decay and decoherence. The procedure is similar to that listed
above, except instead of driving multiple transitions, decay
and decoherence may or may not be included. To validate the
assumption over a large range of errors, the excited-state life-
time T1 is randomized from a logarithmic uniform distribution
between 100 ns and 1 s. The results can be seen in Fig. 12(b).
Here the QBIES method works even better and the difference
between it and running the full simulation is negligible.

Finally, the assumption that ISD errors from N = 2, . . . , 5
nonqubit ions can be separated from each other is investigated.
There is no decay, decoherence, or internal crosstalk in any of
these investigations; the results can be seen in Figs. 12(c)–
12(f) and the conclusions are similar to those above.

In summary, it is possible to separate different error sources
such as internal crosstalk, decay, and decoherence and ISD
originating from different nonqubit ions in the vast majority
of cases, especially when the total SQ gate error is low.

APPENDIX E: DIPOLE-DIPOLE INTERACTIONS

The ISD considered in this article is modeled as a dipole-
dipole interaction occurring since the static electric dipole
moments of the ground and excited states μg and μe, respec-
tively, are different. Thus, when an ion is either excited or
deexcited, its charge distribution is modified and the resulting
electric field change affects nearby ions. The frequency shift
�ν on the optical transitions of such nearby ions due to this
interaction can be calculated as [59]

�ν = k

|r|3 [�μA · �μB − 3(�μA · r̂)(r̂ · �μB)],

k = [ε(0) + 2]2

9ε(0)

1

4πε0h
, (E1)

where r is the spatial vector pointing from ion B to ion A, r̂ is
the normalized spatial vector, and �μA (B) is the difference

μg − μe for ion A (B). The first term in the constant k is a local
field correction due to the crystal [60], where the dielectric
constant for DC fields, ε(0), is equal to 11 for the case of
yttrium orthosilicate (Y2SiO5) [61,62]. In addition, ε0 is the
vacuum permittivity and h is Planck’s constant. Implicit in this
equation is the reasonable assumption that the static dipole
moment difference remains the same regardless of the states
of other ions.

APPENDIX F: HOST CRYSTAL AND UNIT CELL

In order to understand how the positions and orientations
of dopants are obtained, this Appendix discusses the structure
of the host crystal, whose unit cell is described in Fig. 13(a)
and Table I, where the relation to the principal axes D1, b,
and D2 is also indicated. Each unit cell contains eight basic
molecules of Y2SiO5, as shown in Fig. 13(b). The Eu dopant
can replace either of the two Y ions in the basic molecule of
Y2SiO5, denoted by the numbers 1 and 2 in the figure. These
crystal sites differ in that the Y ions in 1 have six nearby
oxygen atoms, whereas ions in 2 have seven (coordination
numbers of 6 and 7, respectively). Note that these crystal sites
are the same as the sites normally referred to when discussing
spectral properties, e.g., optical transition wavelengths, hy-
perfine energy-level splittings, etc. However, there has not
been a clear demonstration of which crystal site (six or seven
nearby oxygen atoms) corresponds to which spectral site for
the high-temperature phase X2 crystal structure of Y2SiO5,

TABLE I. Unit cell parameters for the high-temperature phase
X2 crystal structure of Y2SiO5 [see Fig. 13(a)], written in the C2/c
(base-centered) space group [52,70]. Note that the parameters are
sometimes given in the I2/c (body-centered) space group instead.

Distances (nm) Angles

a = 1.44137 α = 90◦

b = 0.6719 β = 122.235◦

c = 1.040 γ = 90◦
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and the definition varies among Refs. [65–68]. We assume
here that the spectral site denoted by 1 with the properties
shown in Figs. 4(a) and 4(b) has a coordination number of 6.
This is assumed since spectral site 1 has larger crystal field
splittings [28], which indicates that it corresponds to coor-
dination number 6, where the distances between the dopant
and the nearby oxygen atoms are shorter, following the same
reasoning as in Ref. [69]. Note that even if this assumption
is wrong, the general results of Sec. V are still valid since
using the crystal site with coordination number 7 generates
very similar results.

The eight basic molecules in each unit cell are oriented in
four different ways, resulting from the crystal symmetries of
identity, inversion, mirror of b, and combination of inversion
and mirror of b. These orientations are indicated by the black
arrows of Fig. 13(b), which show the assumed direction of the
static electric dipole moment difference �μ used to calculated
the dipole-dipole shift from Eq. (E1). The magnitude |�μ| =
7.6×10−32 C m is known [64], but the direction in relation to
the basic molecule is not. We assume here that the direction
is along the D1 principal axis for the basic molecule shown
in the bottom left corner of Fig. 13(b). Note that this choice
is an arbitrary one. However, once more the general results of
Sec. V are still valid even if this assumed direction is wrong.

A qubit’s surroundings is created by first randomly re-
placing a fraction of the site 1 Y ions with 153Eu ions. In
experiments the total doping concentration ctotal of replacing
the Y ions in either site 1 or site 2 is often cited, but the exact
relative occupation of these two sites is unknown. There are
indications that the substitution favors the site with higher
coordination number [67,68], i.e., site 2 using our definition
of crystal sites. However, this might be more important for
dopants such as praseodymium or cerium, which are larger
than the yttrium ion they replace [66,67,71]. For europium,
whose size is more comparable to yttrium, the site occupation
may be more equal [28,71]. Regardless, since the exact rela-
tive occupation is still unknown, we assume here that they are
equal, i.e., half of the total number of dopants are at site 1 and
half are at site 2. To be consistent with the experimental con-
centration values often quoted in articles, the concentration
values used throughout this work refer to the total number of
153Eu ions in the crystal, but only half of those are assumed to
be at site 1 and those are the only ions that are used to evaluate
ISD. After all ions have been placed, their positions in space
are known, and the dipole-dipole shift between any two ions
can be calculated using Eq. (E1).

APPENDIX G: ESTIMATING ISD FROM NONQUBIT IONS

To use the QBIES method described in Eq. (4), the ro-
tation and shrinkage of the qubit 0 Bloch vector that each
nonqubit ion causes must first be determined. However, there
are millions of ions to investigate, and even though the fast
QBIES method is used it would take a prohibitively long
time to simulate everything if a new simulation is done for
each nonqubit ion. Fortunately, one can use interpolation to
heavily reduce the computational time. How this interpolation
is performed differs for nonqubit ions inside or outside the
reserved frequency range of qubit 0 and is explained further
in the following sections.

FIG. 14. Additional SQ gate error for a qubit due to ISD from
one nonqubit ion. The dipole-dipole shift �ν and the detuning �

of the nonqubit ion are varied on the horizontal and vertical axes,
respectively, and the three graphs show the situation for different
initial states of the nonqubit ion: |1/2g〉, |3/2g〉, and |5/2g〉, respec-
tively. In all cases the qubit starts in |0〉 + i|1〉 and a NOT operation is
attempted.

1. Nonqubit ions inside the reserved frequency range of qubit 0

In order calculate how ISD affects the SQ gate error in a
realistic case, the pulses intended to drive the |0〉 → |e〉 and
|1〉 → |e〉 transitions of the qubit are now allowed to drive
any of the nine optical transitions in the nonqubit ion, i.e.,
all six energy levels of the nonqubit ion are now included in
contrast to how it was treated in the idealized case studied
in Sec. II. Note, however, that the pulses still only drive
the intended transitions in the qubit to be able to separate
the errors due to internal crosstalk from ISD. The fact that
the nonqubit ion now has nine optical transitions complicates
how ISD depends on the dipole-dipole shift and detuning,
as can be seen in Fig. 14, where the ISD error is shown for
the case of one nonqubit ion. Here the nonqubit ion starts
in one of the three ground states |1/2g〉, |3/2g〉, or |5/2g〉,
has a detuning of � relative to the qubit, and interacts with
a dipole-dipole strength of �ν. As before, the qubit starts
in |0〉 + i|1〉 and a NOT operation is attempted. In each of
the three graphs six horizontal lines of high errors can be
seen. These correspond to detunings where the pulses driving
|0〉 → |e〉 or |1〉 → |e〉 in the qubit are also resonant with an
available transition in the nonqubit ion, i.e., a transition from
the starting ground state of the nonqubit ion to any of the three
excited states. The differences in thickness between these
lines come from differences in the relative oscillator strengths
of the transitions being driven and the intended transitions.
Furthermore, the six horizontal lines in the |3/2g〉 case are
shifted by −90 MHz compared to the lines in the |1/2g〉 case
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since the splitting between the two hyperfine levels is 90 MHz.
When the nonqubit ion is far detuned from the optical pulses,
the effect of ISD is low, except when the dipole-dipole shift
is such that it compensates for the detuning, which can be
seen in the diagonal lines showing high errors. In these cases
the error is large since the initially detuned nonqubit ion is
shifted into resonance through the dipole-dipole interaction
when the qubit ion is excited during the gate operation. The
combinations of dipole-dipole shifts and detunings that cause
a significant additional error due to ISD are in the vicinity of
these horizontal and diagonal lines.

For nonqubit ions inside the −335 to 665 MHz reserved
frequency range of qubit 0, we estimate the qubit 0 Bloch
vector using a bilinear interpolation of the data underlying
the results of Fig. 14. After the Bloch vector is determined,
the rotation and shrinkage compared to the targeted state can
easily be calculated. This interpolation is used for all nonqubit
ions within the reserved frequency range listed above except
for those few cases where the nonqubit ion had a dipole-dipole
shift magnitude larger than 100 MHz. Note that it is unlikely
that ions cause larger dipole-dipole shifts than ±100 MHz,
e.g., in several thousand different simulations where each sim-
ulation, depending on concentration, contains between 500
and 7000 ions within the reserved frequency range of qubit 0,
only 13 ions had a dipole-dipole shift magnitude larger than
100 MHz. For the ions with large shifts, new simulations with
their specific detunings and shifts were performed to obtain
the resulting Bloch vector of qubit 0.

The reserved frequency range from −335 to 665 MHz was
picked for two different reasons. First, it covers all the diag-
onal lines of high errors shown in Fig. 14 for dipole-dipole
shifts of ±100 MHz with roughly 25 MHz to spare, where
again it is relatively unlikely for an ion to cause a shift greater
than 100 MHz. Second, the total reserved frequency range
is 1 GHz, which is equal to the separation between different
qubits, thus making it easy to assign each nonqubit ion to the
corresponding qubit whose pulses can affect them, as is shown
in Fig. 4(d).

2. Nonqubit ions outside the reserved frequency range of qubit 0

Nonqubit ions outside the reserved frequency range of
qubit 0 are assumed to not interact with the pulses intended to
drive qubit 0. However, such ions can still cause ISD to qubit
0 if they are partly excited before the gate operation on qubit
0 is attempted. This section describes how the contribution of
ISD from such nonqubit ions is estimated.

First, we determine which qubit index each nonqubit ion
belongs to, e.g., an ion with a detuning of 2.4 GHz from
qubit 0 belong to qubit index 3 as shown in Fig. 4(d). Then
the detuning between the nonqubit ion and its corresponding
qubit is used to determine the probabilities of starting in
the three different ground states (for more information see
Appendix H).

Second, we estimate how large the fraction of the nonqubit
ion population is in the excited state after G gate opera-
tions have been performed on its corresponding qubit. This is
done using a linear interpolation based on simulations where
the nonqubit ions had detunings from −335 to 665 MHz.
We only keep the information of how large the fraction of the

population there is in total in any of the three excited states,
since this is the only factor which impacts the effect of ISD.
This total population in the excited states as a function of
detuning is shown in Fig. 15(a) for the cases when one or ten
gate operations were performed. These simulations included
the effects of decay, decoherence, and internal crosstalk to
also model the slight decay which occurs when performing
multiple gate operations.

Third, new simulations are performed to estimate the ISD
error on qubit 0 due to dipole-dipole interaction with non-
qubit ions that are initially partly excited but do not interact
with any pulses during the gate operation performed on qubit
0. In these simulations the effect of different dipole-dipole
shifts is studied as normal, but the amount of excitation of
the nonqubit ion, which now only has one ground and one
excited state, is also varied. To be able to isolate the ISD
errors, these simulations did not include decay, decoherence,
and internal crosstalk. The results from these simulations can
be seen in Fig. 15(b). As can be seen, the error is constant for
large magnitudes of the dipole-dipole shift. Simulations were
performed up to ±100 MHz and any nonqubit ion causing a
shift larger than this was assumed to affect the qubit Bloch
vector in the same way as an ion with a 100-MHz shift.

In summary, the detuning of the nonqubit ion from its
corresponding qubit gives a probability distribution to be in
the three ground states, which together with the detuning
determines how much of the population is excited after G gate
operations have been performed on the corresponding qubit
[see Fig. 15(a)]. The fraction of the population which is in
the excited states is then used to estimate the qubit 0 Bloch
vector due to ISD from the nonqubit ion through a linear
interpolation of the simulation data underlying the results
shown in Fig. 15(b). Finally, the rotation and shrinkage of the
qubit 0 Bloch vector when compared to the targeted state are
calculated.

APPENDIX H: CREATING TRANSMISSION WINDOWS

In this Appendix we describe the procedure to simulate
the creation of the transmission windows shown in Fig. 4(e)
using spectral hole burning techniques. First, one can calcu-
late the largest possible widths of such transmission windows
by iterating through all inhomogeneously broadened ions and
placing them in the ground state whose transitions to all ex-
cited states are as far away as possible from the frequencies
of the two-qubit transitions [27]. For site 1 153Eu :Y2SiO5

the empty regions surrounding the two optical transitions
|0〉 → |e〉 and |1〉 → |e〉 range from −9.0 to 9.1 MHz and
from −35.9 to 14.6 MHz, measured from the center of the
respective transitions. Based on this knowledge, we send in
frequency scanning pulses to empty these regions of any ab-
sorbing ions. However, since we assume that our pulses have
some widths and can also off-resonantly excite ions, we make
the frequency scanning regions roughly 1 MHz narrower com-
pared to the values listed above.

Performing such hole burning simulations using the Lind-
blad master equation would take a prohibitively long time
since it needs to keep track of several hundreds of thousands
of ions for several thousand incoming light pulses. Therefore,
these simulations are performed in a simplified way where
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FIG. 15. A nonqubit ion is assigned a corresponding qubit based on its detuning from qubit 0 as shown in Fig. 4(d). The nonqubit ion can
be off-resonantly excited by the pulses intended to perform G NOT operations on its corresponding qubit. (a) Total population in the excited
states as a function of the detuning of the nonqubit ion to its corresponding qubit, whose frequency of its |0〉 → |e〉 transition is νq. The
detuning of the nonqubit ion always lies in the range from −335 to 665 MHz, since it would otherwise be assigned to a different corresponding
qubit. The complex dependence on the detuning comes from the fact that the initial state of the nonqubit ions depends on their detuning due
to the creation of transmission windows surrounding the two qubit transitions in the same way as described in Sec. IV and Appendix H. Here
G = 1 and 10 for the blue (lower) and red (upper) curves, respectively. (b) A nonqubit ion causes an additional SQ gate error on qubit 0 due
to ISD if it is partly excited when the gate operation on qubit 0 is performed. This additional error is shown in the graph as a function of the
dipole-dipole shift �ν (horizontal axis) between the nonqubit ion and qubit 0 and as a function of the total excited-state population (vertical
axis) of the nonqubit ion before the gate operation on qubit 0 is attempted.

we do not keep track of any coherence and instead assume
a specific transfer efficiency for each pulse that is applied.
The simulations keep track of the population in all six energy
levels as a function of the detuning from the qubit, ranging
from −335 to 665 MHz. Any light pulses that are sent in
have a probability as a function of frequency to transfer the
population to an excited state as shown in Fig. 16(a). This
probability is calculated as

P1(ν) =
tanh

( ν−(νc− νscan
2 )

νslope

) − tanh
( ν−(νc+ νscan

2 )
νslope

)
2

,

P2(ν) = γ 2

(ν − νc)2 − γ 2
, P(ν) = εimax(P1(ν), P2(ν)),

(H1)

where ν is the frequency of the transition being examined
for a certain ion and ν = 0 MHz for the |0〉 → |e〉 transition
frequency of the qubit ion. Furthermore, νc and νscan are the
center and scanning frequencies of an incoming light pulse.
These determine the frequency region within which the trans-
fer is efficient, as can be seen in the inset of Fig. 16(a). Here
νslope determines the slope of the transfer probability outside
the νscan frequency range. In addition, P1(ν) models the trans-
fer distribution for frequencies close to the light frequency, but
in order to also model the off-resonant excitation, which might
occur for ions that are heavily detuned from the light pulses,
we assume a Lorentzian falloff which is specified in P2(ν)
where γ = 1/T2 and T2 = 2.6 ms. Finally, we assume that the
probability to transfer a specific ion on a specific transition i
is given by P(ν) where εi is the scaled transfer efficiency for
that specific transition, which is explained further in Table II.

All pulses used are defined in Table II, and the order in
which they are applied is described in Table III. The transmis-
sion windows are created in the following way. The frequency
regions surrounding the two-qubit transitions |0〉 → |e〉 and
|1〉 → |e〉 are emptied of almost all absorbing ions. This is

done in two steps, where the first also tries to empty ions
with frequencies close to the qubit |aux〉 → |3/2e〉 transition.
Since it is impossible to remove ions from all ground states
simultaneously, this first step only removes ions that are far
detuned from the qubit ion. The second step only cleans the
regions around the two qubit transitions, which is possible
for all ions, thus creating two transmission windows with
very little absorption. After these steps the qubit ion is in
the |aux〉 state and must be transferred back into |0〉. This
is done by first exciting on |aux〉 → |3/2e〉 and then deex-
citing on |0〉 → |3/2e〉. These initialization pulses can create
some residual absorption in the second transmission window
surrounding |1〉 → |e〉, and the last step therefore cleans this
second window.

After creating the transmission windows of qubit 0, the
residual absorption remaining in the windows depends on how
many other qubits have been prepared. We assume that the
qubits are separated by 1 GHz and number them as shown
in Fig. 4(d). If we prepare each qubit one after another, i.e.,
prepare qubit 0 first, then qubit 1, etc., the residual absorp-
tion in the transmission windows of the first qubit grows to
unacceptable levels. However, one can instead apply the hole
burning pulses in an interleaved way, i.e., the first burning
pulse in the sequence described in Table III is applied for all
qubits before moving onto the second burning pulse in the
sequence. If this interleaved burning is used, then the residual
absorption saturates at a negligible level after preparing a few
tens of qubits. In our final simulations we send in light pulses
to prepare transmission windows for 51 qubits, but only keep
the population distribution for the central qubit, i.e., qubit 0.
Since transmission windows are created for each qubit and we
use the same population distribution for all cases, the prob-
ability as a function of detuning is periodic with a period of
1 GHz. An example of this population distribution can be seen
in Fig. 16(b), where the frequency width of the initialization
pulses is νinit = 0 kHz. This population distribution is used to
determine the probabilities of a nonqubit ion starting in each

032608-16



MICROSCOPIC TREATMENT OF INSTANTANEOUS … PHYSICAL REVIEW A 105, 032608 (2022)

-50 0 50 100 150 200 250 300

Relative frequency  - c (MHz)

10-10

10-6

10-2

102

T
ra

ns
fe

r 
pr

ob
ab

ili
ty

 (
%

) 60%
(a)

(b)

-335 -150 0 150 300 450 665

Detuning  from q (MHz)

0

20

40

60

80

100

G
ro

un
d 

st
at

e 
pr

ob
ab

ili
ty

 (
%

)

|0 |1 |aux

-15 -10 -5 0 5 10 15
0

20

40

60

80

scan

FIG. 16. (a) Probability to transfer an ion from one ground state
to one excited state as a function of the relative frequency of that
transition ν when compared to the center frequency of the incoming
light pulse νc. Here we show the example of pulse 1 in Table II for the
|0〉 → |5/2e〉 transition. The probability is calculated using Eq. (H1).
The transfer is most efficient within a frequency range of νscan as
is show in the inset, which shows the same transfer probability but
in linear scale. The maximum transfer efficiency (here shown as
60%) depends on which transition is being driven, which is explained
further in Table II. (b) Probability to be in each of the three ground
states as a function of the detuning � from the |0〉 → |e〉 transition
frequency νq of qubit q. Here νinit = 0 kHz is used. These ground-
state population probabilities results in the transmission windows
seen in Fig. 4(e).

of the three ground states as a function of detuning from its
corresponding qubit ion.

APPENDIX I: ISD DEPENDENCE ON THE NUMBER
OF IONS CONTRIBUTING AND THEIR DISTANCES

FROM THE QUBIT

This section studies how large the ISD errors are if only the
N ions with the largest individual ISD errors are considered or
if only the ions that spatially lie within a radius rmax from the
qubit are considered. The results of these investigations can
be seen in Fig. 17. In general, more ions contribute to the total
error when the concentration is high or when the number of
previous gate operations is high. In contrast, the spatial radius
within which the ions that cause the largest fraction of the ISD
error lie is shorter when the concentration or the number of
previous gate operations is high. The results in Fig. 17 can be
used to estimate the qubit’s surroundings size and how many
ions need to be included in future simulations to give a good
estimate of the ISD error.

APPENDIX J: DETAILED ANALYSIS OF ISD ERROR

This Appendix provides a detailed analysis of Fig. 6. A few
things should be noted.

First, for low doping concentrations the ISD errors when
running G gate operations on 10 or 50 additional qubits are
roughly the same. This is because for low doping concen-
trations the inhomogeneous absorption profile is relatively
narrow [see Eq. (5)]. Therefore, qubits with large indices q
which are heavily detuned from the center of the inhomoge-
neous absorption profile [see Fig. 4(d)] do not have many ions
within their reserved frequency range. Fewer ions are thus
partly excited and hence no significant ISD error is added
due to running gate operations on those qubits. However, as
the concentration increases the number of ions belonging to
qubits with high q indices grows and thus the additional ISD
errors also grow.

Second, some curves showing the ISD error as a function
of the ordered simulation number have steeper slopes than
others, meaning that the ISD error can vary drastically de-
pending on the exact surroundings of the qubit. This occurs
when the total number of ions involved in causing ISD is
relatively low, e.g., when the doping concentration is low or
when Q is low. This is true even if G is large, since G does
not change how many ions contribute. However, when the

TABLE II. Specification of the pulses used to prepare the transmission windows. Each pulse scans a frequency region of νc ± νscan/2,
where νc is the center frequency which is given relative to the frequency of the |0〉 → |e〉 transition of the qubit and νscan is the total frequency
range. The qubit initialization pulses 4 and 5 are examined for a few different frequency widths: νinit = 100, 75, 50, 25, and 0 kHz. When
νinit = 0 kHz no initialization pulses (4 and 5) are used and only the qubit ion is transferred. Here νslope sets the slope of the transfer probability
distribution outside the νscan range, as shown in the inset of Fig. 16(a). Columns 5 and 6 specify what transfer efficiency the pulse has for a
specific transition. The efficiency of transferring population along another transition, εi, is scaled linearly with the ratio of the square root of the
relative oscillator strengths for the new transition relative the designed transition, where the maximum transfer efficiency is capped at 100%.
The hole burning pulse sequence is shown in Table III.

Pulse no. Name νc ± νscan/2 (MHz) νslope (kHz) Design transition Efficiency for transition (%)

1 window |0〉 0 ± 17/2 250 |0〉 → |5/2e〉 60
2 window |1〉 79.35 ± 49.3/2 250 |0〉 → |5/2e〉 60
3 clear |aux〉 −50.8 ± 1/2 250 |aux〉 → |3/2e〉 60
4 qubit excite −50.8 ± νinit/2 νinit/4 |aux〉 → |3/2e〉 99.9
5 qubit deexcite −260 ± 10νinit/2 10νinit/4 |0〉 → |3/2e〉 99.9
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TABLE III. Pulse sequence used to create transmission windows.
Information about the various pulses can be seen in Table II. If decay
is included, any population in the excited states after a pulse is com-
pleted is fully transferred to the ground states using branching ratios
that are equal to the relative oscillator strengths shown in Fig. 4(b).
If decay is not included, the population in the excited state remains
and can thus be transferred back to the ground state via subsequent
pulses. The sequence is applied in the following way: For each goal,
the first pulse is applied to all qubits; then if decay is included, any
excited-state population decays, before the second pulse is applied
to all qubits. This continues until all pulses have been applied and
is then repeated a certain number of times before moving onto the
next goal. After all five goals have been completed the transmission
windows for all qubits have been prepared.

Repetitions of Include
Goal Pulse no. each pulse decay

clear windows and |aux〉 1, 2, 3 20 true
clear windows 1, 2 500 true
excite qubit 4 1 false
deexcite qubit 5 1 false
clear second window 2 100 true

doping concentration is high and Q is large, all simulations
yield roughly the same additional error [see, e.g., the purple
data of Fig. 6(f)]. This is reasonable since in this case there
are many ions that can potentially cause ISD, thus averaging
out the statistical likelihood that a certain error occurs.

A third observation is made when studying the higher
concentrations where all qubits have roughly the same number
of ions within their reserved frequency range. The observation
is that the additional error due to ISD is increased by roughly
4×10−7 for each gate operation that is performed on another
qubit before the gate operation on qubit 0 is attempted, as can
be seen in Fig. 18. In other words, for high concentrations
the ISD error scales linearly with the total number of gate
operations performed before the gate operation on qubit 0 is
attempted.

This linear scaling is reasonable in our model since more
gate operations lead to more excitation, which in turn leads
to higher ISD errors. However, in a realistic situation the
ions would eventually decay from the excited state due to the
limited lifetime and therefore no longer cause an additional
ISD error. This is not fully included in our model where the
limited lifetimes and coherence times of the ions are only
included during the up to ten gate operations applied on their
corresponding qubits. In other words, it is as if the ten gate
operations on the up to 50 qubits are applied in parallel before
the gate operation on qubit 0 is attempted. In reality, such gate
operations would most likely have to be performed sequen-
tially to prevent unwanted dipole-dipole interactions between
different qubits.

Fortunately, one can estimate when the decay of ions
starts to affect the results shown in Fig. 6 based on the SQ
gate duration of 3.36 μs and the assumed optical lifetime of
1.9 ms [29]. With no downtime between gate operations, the
total duration to perform G gate operations on Q qubits is
GQ×3.36 μs. Figure 6 does not study ISD for more than ten
operations on 50 different qubits because the total duration
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FIG. 17. Percentage of the total ISD error that on average is
accounted for when (a) only the N ions with the largest ISD and
(b) only the ions within radius rmax contribute to the error. The
different doping concentrations are shown in different colors [the
lowest concentration is the highest region in (a) and lowest region
in (b)]. Solid (dashed) lines show the results when zero (ten) gate
operations were performed on each of the qubits labeled 1–50 before
attempting the NOT operation on qubit 0.

needed to apply those gates is 1.68 ms, which means that
already in this case the decay of ions would probably start
to affect the results.

At first glance one might therefore expect a saturation in
the fraction of excited nonqubit ions and thus a saturation in
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the ISD error due to previous gate operations. Unfortunately,
an ion might not return to its original ground state after de-
caying. In the worst case, an ion originally absorbing outside
the transmission windows could after being excited decay into
another ground state which has a transition frequency inside
the transmission windows, thus heavily increasing the risk that
the ion is excited once more. Despite this, it is reasonable to
assume that the linear growth of the ISD error slows down
somewhat when more gate operations are performed, since
there is still a chance that the excited ions decay back into
their original ground states. However, we note that more sim-
ulations are needed to correctly estimate the long-term ISD
error in a rare-earth quantum computer when running even
more gate operations.

A fourth and final observation can be made when one
considers that the inhomogeneous absorption profile can be

widened without increasing the doping concentration, e.g., by
codoping with another rare-earth species [53]. In this case
the number of ions within the reserved frequency range of
each qubit decreases, thus reducing the average ISD error that
occurs per gate operation. This reduction in ISD error can be
seen by studying the different concentrations in Fig. 6 since
decreasing the concentration below roughly 0.5% results in
fewer ions per reserved frequency range. For example, the
error shown by the red data, which shows between one and ten
gate operations being applied on only one qubit, decreases as
the concentration is lowered from the critical value of around
0.5%. When this reduced error per gate is combined with the
linear scaling discussed above and the potential saturation of
the ISD error due to the limited lifetime of the excited state,
it seems possible to reduce the ISD errors compared to the
results shown in Fig. 6.
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