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We present a general scheme for a family of linear-optical quantum control gates, including controlled-NOT and
controlled-SWAP gates for two or three qubits. Our approach utilizes polarization-path-entangled pairs of photons
and encodes qubits in mixed degrees of freedom with the control qubit specifically occupying the polarization
degree of freedom. By exploiting multiple degrees of freedom and initial state entanglement of the two photons,
the proposed control gates do not require any ancilla photons or measurement-induced nonlinearities. Since
our gates are purely linear and we implicitly use nonlinearities in a standard manner to create entanglement
via parametric nonlinear process, our work demonstrates that a need to have nonlinearities in the photonic
gates can be shifted to the state preparation stage; the cost of such shift is that the construction of a certain
class of single-qubit operations, such as Hadamard, needs to be probabilistic. In particular, we focus on a
deterministic linear-optical quantum Fredkin (controlled-SWAP) gate and perform a full characterization of the
gate performance with a high fidelity typically well above 99% under realistic conditions. The proposed control
gates rely on simple linear-optical elements and polarization-entangled photon pairs readily generated from
ubiquitous sources, making the gates experimentally feasible with current technologies.
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I. INTRODUCTION

Quantum computing [1] is a sought-after technique to re-
define computation and tackle problems unsolvable by the
best classical computers. Recently, Google claimed the quan-
tum supremacy [2], but the superconducting qubit processors
suffer from the loss of quantum coherence and the difficulty
of scalability while using expensive cryogenic implemen-
tation strongly coupling to the environment. On the other
hand, photonic technologies serve already relatively afford-
able solutions, and photonic qubits are well suited both for
low-decoherence applications and for carriers that transmit
quantum information.

Linear optics implementations [3–5] play a prominent role
in various quantum information processing schemes due to
the relative ease of manipulating quantum states of photons,
as compared to the trapped ions [6] or superconducting qubits
[7]. In 2001, Knill et al. [8] revolutionized the field by show-
ing that efficient quantum computing is possible using only
linear-optical components such as beam splitters and phase
shifters. Since then, several groups have proposed and demon-
strated various linear-optical quantum gates.

In recent years, quantum gates have been demonstrated in
a number of different photonic degrees of freedom (DoFs)
[9–12]. Among all these degrees of freedom, the spatial and
polarization DoFs appear frequently due to the relative ease
to encode and process quantum information. By exploiting
multiple DoFs and thereby increasing the capacity of the
quantum information carried, we will be able to sidestep some
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probabilistic multiphoton interactions. Deterministic quantum
information processors for systems with several degrees of
freedom of a single photon [13–15] have been demonstrated;
for example, upon entangling a spatial binary alternative of a
photon with its polarization by the use of free-space optics as-
sociated with single-photon interferometry, one can use single
photons to study arbitrary two-qubit states [16].

A set of quantum logical gates is said to be universal if any
unitary operation on n qubits may be implemented by a quan-
tum circuit involving only those gates [1]. Quantum control
gates are sufficient for universal quantum computing, since
controlled-NOT, controlled-SWAP, or any other entangling two-
qubit gate, along with single-qubit gates, are universal for
quantum computation [17,18]. In this paper, we propose a
general scheme for constructing a family of entanglement-
based control gates, and the three-qubit controlled-SWAP

(Fredkin) gate is a nontrivial example that illustrates the
essence of our proposal. The quantum Fredkin gate is a
computational circuit suitable for reversible computing: con-
ditioned on the state of the control qubit, the quantum states
of the two target qubits are swapped. The first design of the
quantum Fredkin gate [19] was realized with single-photon
optics by exploiting the Cross-Kerr nonlinearities, yet it is
difficult to achieve high nonlinearities [20]. Following the
Knill-Laflamme-Milburn (KLM) protocol [8], new types of
heralded probabilistic quantum Fredkin gates have been de-
signed [21,22]. However, the probability of success decreases
significantly as successive probabilistic gates are applied. Our
strategy is to encode quantum information in both the spatial
and polarization degrees of freedom of two polarization-
entangled photons. While our proposal is similar to a number
of schemes [23–25] demonstrating linear-optical CNOT gates
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FIG. 1. (a) The first logical qubit is encoded in the polarization
state of the photon. If the photon is horizontally polarized, the first
logical qubit is |0〉1; if it is vertically polarized, the first logical qubit
is |1〉1. (b) The second logical qubit is encoded in the spatial degree
of freedom of the photon (which can occupy either spatial mode a
or b). If it occupies spatial mode b, the second logical qubit is |0〉2;
otherwise, the second logical qubit is |1〉2

involving multiple degrees of freedom of a single photon, here
we report an implementation of a deterministic linear-optical
Fredkin gate for two-photon three-qubit quantum logic. The
experimental proposal does not require any ancilla photons
and is experimentally feasible with current technology, lead-
ing to a simple and efficient way to implement a linear-optical
controlled-SWAP gate.

II. THE CONTROLLED-NOT GATE

The general strategy for constructing linear-optical control
gates in our scheme is to encode quantum information by
accessing multiple degrees of freedom of a single photon or
photon pairs, with the control qubit encoded in the polariza-
tion state and target qubit(s) encoded in the path. One notable
example is the implementation of a linear-optical controlled-
NOT gate. In this case, we will encode two-qubit quantum
information utilizing the polarization and path of a single
photon, as shown in Fig. 1.

Without any loss of generality, the input state of the
controlled-NOT gate is given by

|ϕin〉 = (α|0〉1 + β|1〉1) ⊗ (γ |0〉2 + δ|1〉2), (1)

where the coefficients α, β, γ , δ are arbitrary complex num-
bers, satisfying the normalization condition |α|2 + |β|2 =
|γ |2 + |δ|2 = 1.

The schematic for the state-preparation stage is shown in
Fig. 2(a). Initially, the photon generated by a single-photon
source will occupy spatial mode b,

|ϕ〉 = αb̂†
H |vac〉 + βb̂†

V |vac〉 (2)

where b̂† is the bosonic creation operator in spatial mode b.
The label H or V indicates the polarization state of the photon,
and |vac〉 denotes the vacuum state.

 single
photon
source

FIG. 2. (a) Experimental setup of the state-preparation stage.
Initially, we have a single photon |Q1〉 = α|H〉 + β|V 〉 = α|0〉1 +
β|1〉1. Applying beam splitters on each output mode, we will be able
to encode the second logical qubit in dual rail. The dual-rail qubit
will be turned into state |Q2〉 = γ |0〉2 + δ|1〉2 by reconfiguring the
reflectivity and phase shifts of the beam-splitter coatings. (b) The
physical implementation of the proposed controlled-NOT gate. Note
that the calcite beam combiner is the same as the calcite beam
displacer, but rotated by 90 degrees to keep the symmetry of the
two arms. (c) A Mach-Zehnder interferometer with an inner phase
π performs an optical switching between two spatial modes, which
acts as the NOT gate on the target qubit.

The evolution of the initial state as it interferes on the beam
splitter can be modeled as

b̂†
σ

ÛBS→ δâ†
σ + γ b̂†

σ , (3)

where σ = H,V signals the polarization property of the
photon. The coefficients δ and γ are determined by the trans-
mission and reflection property of the beam splitter and can
therefore be adjusted arbitrarily. The quantum state after the
beam splitters is then

|ϕ〉 → α(δâ†
H + γ b̂†

H )|vac〉 + β(δâ†
V + γ b̂†

V )|vac〉. (4)

Therefore, the quantum state after the state preparation
stage is

|ϕin〉 = (αδâ†
H + αγ b̂†

H + βδâ†
V + βγ b̂†

V )|vac〉, (5)

which, by the definition of our logical qubits, corresponds to
the general input state

|ϕin〉 = αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉. (6)

Note that (6) is just the expanded version of the general input
state in (1).

The proposed controlled-NOT gate consists of two noncen-
trosymmetric calcite crystals and a NOT gate on the target
qubit, as shown in Fig. 2(b). The calcite beam displacer will
orient the photon into either the upper or lower arm based
on the polarization states of the photon, and the calcite beam
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combiner will recombine the two paths. If the control qubit is
in state |1〉1, which suggests the photon is vertically polarized,
a NOT operation will be applied on the target qubit. The NOT

gate on the target qubit consists of a Mach-Zehnder interfer-
ometer with an internal phase φ, as shown in Fig. 2(c). The
Mach-Zehnder interferometer is characterized by the follow-
ing mode transformation matrix:

Û = 1√
2

(
1 i
i 1

)(
eiφ 0
0 1

)
1√
2

(
1 −i
−i 1

)
, (7)

Û = ei φ

2

(
cos φ

2 − sin φ

2

sin φ

2 cos φ

2

)
. (8)

By substituting φ = π and ignoring the global phase, the
above matrix will become the Pauli X matrix and perform
an optical switching between two input spatial modes. Note
that the second 50:50 beam splitter is flipped with respect
to the first 50:50 beam splitter and their corresponding mode
transformation matrices are slightly different.

If the photon is vertically polarized, the quantum CNOT

gate will act nontrivially; in such case, the following two
transformations are naturally implemented:

â†
V → b̂†

V , b̂†
V → â†

V . (9)

After the quantum Fredkin gate, the superposition state in
(5) becomes

|ϕout〉 = (αδâ†
H + αγ b̂†

H + βδb̂†
V + βγ â†

V )|vac〉, (10)

which corresponds to the output state,

|ϕout〉 = αγ |00〉 + αδ|01〉 + βγ |11〉 + βδ|10〉. (11)

III. THE CONTROLLED-SWAP GATE

Another notable example in our proposal is the implemen-
tation of a linear-optical controlled-SWAP gate. In this case, we
have to encode three-qubit quantum information utilizing the
polarization and path of a photon pair, as shown in Fig. 3.

Without any loss of generality, the input state of the quan-
tum Fredkin gate is given by

|ϕ′
in〉 = (α|0〉1 + β|1〉1) ⊗ (γ |0〉2 + δ|1〉2)

⊗(μ|0〉3 + ν|1〉3), (12)

where the coefficients α, β, γ , δ, μ, ν are arbitrary complex
numbers, satisfying the normalization condition |α|2 + |β|2 =
|γ |2 + |δ|2 = |μ|2 + |ν|2 = 1.

At present, there exist a number of entangled photon
generation schemes including spontaneous parametric down-
conversion (SPDC) [26] in a noncentrosymmetric crystal and
spontaneous four-wave mixing (SFWM) in an optical fiber
[27]. The complete process of generating entangled photon
pairs |ϕ〉 = α|HH〉 + β|VV 〉 via frequency-degenerate type-I
SPDC pumped by a continuous wave laser in noncollinear
regimes is discussed in [26]. An alternative method utilizing
type-II SPDC from a round-trip configuration of a double-pass
polarization Sagnac interferometer is presented in [28].

The schematic for state-preparation stage is shown in
Fig. 4(a). Initially, the two photons will occupy spatial modes
b and c, and they are guaranteed to have the same polarization.

FIG. 3. (a) The first logical qubit is encoded in the polarization
state of the photon pair. If the photons are horizontally polar-
ized, the first logical qubit is |0〉1; if the photons are vertically
polarized, the first logical qubit is |1〉1. Here, we use two colors to
distinguish the two photons in our scheme. Note that they should be
ideally indistinguishable in all degrees of freedom except the rails.
(b) The second logical qubit is encoded in spatial degree of freedom
of the first photon (which can occupy either spatial mode a or b). If it
occupies spatial mode b, the second logical qubit is |0〉2; otherwise,
the second logical qubit is |1〉2. (c) Similarly, the third logical qubit
is encoded in the spatial degree of freedom of the second photon.

Therefore, the initial state is

|ϕ′〉 = αb̂†
H ĉ†

H |vac〉 + βb̂†
V ĉ†

V |vac〉, (13)

where b̂†and ĉ† are bosonic creation operators in spatial mode
b and c, respectively, and the label H or V indicates the
polarization state.

The evolution of the initial state as it interferes on beam
splitters 1 and 2 can be modeled as follows:

b̂†
σ

ÛBS1→ δâ†
σ + γ b̂†

σ , (14)

ĉ†
σ

ÛBS2→ νĉ†
σ + μd̂†

σ , (15)

where σ = H,V signals the polarization property of the pho-
ton. The quantum state after the beam splitters is then

|ϕ′〉 → α
(
δâ†

H + γ b̂†
H

)(
νĉ†

H + μd̂†
H

)|vac〉
+β

(
δâ†

V + γ b̂†
V

)(
νĉ†

V + μd̂†
V

)|vac〉. (16)

Therefore, the superposition state after the state-preparation
stage is

|ϕ′
in〉 = (αδνâ†

H ĉ†
H + αδμâ†

H d̂†
H )|vac〉

+ (αγ νb̂†
H ĉ†

H + αγμb̂†
H d̂†

H + βδνâ†
V ĉ†

V )|vac〉
+ (βδμâ†

V d̂†
V + βγ νb̂†

V ĉ†
V + βγμb̂†

V d̂†
V )|vac〉, (17)
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FIG. 4. (a) Experimental setup of the state-preparation stage.
Initially, we have an entangled photon pair |Q1〉 = α|HH〉 +
β|VV 〉 = α|0〉1 + β|1〉1. The second and third dual-rail qubits will
be turned into state |Q2〉 = γ |0〉2 + δ|1〉2 and |Q3〉 = μ|0〉3 + ν|1〉3,
respectively. (b) The physical implementation of the proposed
controlled-SWAP gate. The calcite beam displacer will orient the two
photons into either the upper or lower arm based on the polarization
states. Note that the two photons will always go through either the
upper or the lower arm together since they are guaranteed to have
the same polarization state. (c) The physical implementation of the
deterministic SWAP gate on the target qubits, which is composed of
four successive Mach-Zehnder interferometers with an inner phase
π . Note that all the beam splitters in the Mach-Zehnder interferome-
ter should be ideal 50:50 beam splitters.

which, by the definition of our logical qubits, corresponds to
the general input state

|ϕ′
in〉 = αγμ|000〉 + αγ ν|001〉 + αδμ|010〉 + αδν|011〉

+βγμ|100〉 + βγ ν|101〉 + βδμ|110〉 + βδν|111〉.
(18)

Note that (18) is just the expanded version of the general input
state in (12).

The proposed quantum Fredkin gate consists of two non-
centrosymmetric calcite crystals and a SWAP gate on the target
qubits. The physical implementation of the quantum Fredkin
gate is shown in Fig. 4(b). If the control qubit is in state |0〉1,
which suggests the two photons are horizontally polarized,
an identity matrix is applied on the second and third logical
qubits; otherwise, a SWAP operation

USWAP =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎦ (19)

will be applied on the second and third qubits. The square
bracket here denotes a state transformation matrix.

In our proposal, the deterministic swap gate on the target
qubits consists of four successive Mach-Zehnder interferome-
ters with an inner phase φ = π , as shown in Fig. 4(c). Besides
free space, the deterministic SWAP gate could also be readily
implemented on-chip [29] by exploiting the distinction of the
waveguide crossings.

If the two photons are both vertically polarized, the
quantum Fredkin gate will act nontrivially; in such case, a de-
terministic SWAP operation is performed so that the following
four transformations are naturally implemented:

â†
V → ĉ†

V , ĉ†
V → â†

V , b̂†
V → d̂†

V , d̂†
V → b̂†

V . (20)

After the quantum Fredkin gate, the superposition state in
(16) becomes

|ϕ′
out〉 = α(δâ†

H + γ b̂†
H )(νĉ†

H + μd̂†
H )|vac〉

+β(δĉ†
V + γ d̂†

V )(νâ†
V + μb̂†

V )|vac〉, (21)

which corresponds to the output state

|ϕ′
out〉 = αγμ|000〉 + αγ ν|001〉 + αδμ|010〉 + αδν|011〉

+βγμ|100〉 + βγ ν|110〉 + βδμ|101〉 + βδν|111〉.
(22)

To understand the overall effect of the proposed circuit
in Fig. 4(b), let us investigate, for example, the transforma-
tion obtained in the evolution of two input photons that are
horizontally polarized and occupy spatial modes b and d .
The input state in this case, by definition, is simply |000〉.
The photons will be transmitted together through the calcite
beam displacer and be deviated together by the calcite beam
combiner. Both the polarization states and the spatial modes
in which the two photons occupy are unchanged, so the output
state is still |000〉. On the other hand, if the two input photons
are vertically polarized and occupy spatial modes a and d ,
then the input state is |110〉. The two photons will be deviated
together by the beam displacer and enter the deterministic
SWAP gate. After the SWAP gate, the two photons will occupy
spatial modes b and c. Finally, the two photons will be trans-
mitted again through the beam combiner. The output state in
this case is |101〉.

The basis states for the gate are |000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, and |111〉, and they will span an eight-
dimensional Hilbert space. If we consider the first logical
qubit encoded in the polarization state as the control qubit and
the second and third logical qubits encoded in dual rail as the
target qubits in a controlled-SWAP (CSWAP) operation, with the
experimental proposal above, the classical controlled-SWAP

(CSWAP) transformations are naturally implemented,

UCSWAP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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The readout process is also simple, requiring only one po-
larizing beam splitter and eight non-photon-number-resolving
detectors such as the avalanche photodiode (APD) [30], which
offers low dark counts and reasonable quantum efficiency in
an easy and affordable way. The proposed quantum Fredkin
gate should be robust against photon loss because the photons
are encoded in dual rail rather than single rail: the loss of a
photon is easily noted by its absence. Even though the dual-
rail encoded qubits are generally susceptible to path-length
mismatch, different optical paths in our scheme are highly
symmetric. In the end, we only accept detection events where
precisely two photons appear on the same side of the polariz-
ing beam splitter (that is, photons of the same polarization).
In this section, we assume all the detectors are perfect, i.e.,
they have unit quantum efficiency and zero dark counts. In
the next section, we will discuss errors introduced by realistic
detectors.

IV. CHARACTERIZATION OF THE CONTROLLED-SWAP

GATE

A. Imperfections due to the calcite beam displacer

When the photons enter the first calcite beam displacer, the
deviation of mirror mounts θ and the polarization extinction
ratio of the calcite beam displacer r will deviate the real quan-
tum state from the perfect input state. Therefore, the mode
transformation matrix acting on the two creation operators due
to the imperfection is given by

ÛBD = Ûr1Ûθ =
⎛
⎝ 1√

1+r

√
r√

1+r
−√

r∗
√

1+r
1√
1+r

⎞
⎠(

cos θ sin θ

− sin θ cos θ

)
, (24)

ÛBD

(
χ̂

†
H

χ̂
†
V

)
= 1√

1 + r

×
(

cos θ − √
r sin θ sin θ + √

r cos θ

−√
r∗ cos θ − sin θ −√

r∗ sin θ + cos θ

)(
χ̂

†
H

χ̂
†
V

)
,

(25)

where χ = a, b, c, d . Assume that the input state is |ϕin〉 =
|000〉 = b̂†

H d̂†
H |vac〉; the fidelity is then given by

F1 = |〈ϕreal|ϕexpected〉|2 =
∣∣∣∣ 1

1 + r
(cos θ − √

r sin θ )2

∣∣∣∣
2

.

(26)
The imperfections due to the calcite beam displacer will

only affect the polarization state of the two photons since
the spatial information is preserved at this stage. Thus, for
input states |001〉, |010〉, |011〉, the fidelity calculated from the
above procedures is the same as F1. Similarly, the fidelity for
the input states |100〉, |101〉, |110〉, |111〉 is given by

F2 =
∣∣∣∣ 1

1 + r
(−√

r
∗

sin θ + cos θ )2

∣∣∣∣
2

= F1. (27)

Partial distinguishability of the interfering photons can be
modeled by assuming that at the input, the photon in the
upper path occupies a certain mode â1, while the lower path
photon is prepared in a combination of a matching mode ĉ1

and another orthogonal mode ĉ2, where the lower labels 1 and
2 denote different spectral information. Due to the imperfect

indistinguishability of the two photons, the real input state is

|ϕreal〉 = |011〉 = â†
H1(

√
V ĉ†

H1 + √
1 − V ĉ†

H2)|vac〉, (28)

where V denotes the visibility measuring the indistinguisha-
bility between photons. When measured, the second part√

1 − V ĉ†
H2|vac〉 is often lost. In this case, the fidelity is given

by

F ′
1 = F ′

2 =
∣∣∣∣

√
V

1 + r
(−√

r
∗

sin θ + cos θ )2

∣∣∣∣
2

. (29)

Therefore, the imperfection due to partial distinguishability
simply scales the fidelity by a factor of V .

B. The crosstalk of the SWAP gate

For the input state |100〉, |101〉, |110〉, |111〉, the two pho-
tons will also go through the swap gate consisting of four
successive Mach-Zehnder interferometers with internal phase
φ = π , which is characterized by the following mode trans-
formation matrix in (7). If the real phase difference between
the two arms of the Mach-Zehnder interferometer is φ = π −
φ, the unitary mode transformation matrix that corresponds
to the internal phase shifter becomes

Ûφ =
(

ei(π−φ) 0
0 1

)
. (30)

If the transmission rate of the beam splitter deviates
slightly from 50%, the unitary mode transformation matrix
that corresponds to the two 50:50 beam splitters becomes

ÛBS = 1√
ε2 + 2ε + 2

(
1 + ε i

i 1 + ε

)
, (31)

where ε is the imperfection of the transmission ratio. Then the
unitary transformation matrix for an imperfect Mach-Zehnder
interferometer becomes

ÛMZI = ÛBSÛφÛBS

=
(

ei(π−φ) (1+ε)2+1
ε2+2ε+2

i(1+ε)(1−ei(π−φ) )
ε2+2ε+2

i(1+ε)(ei(π−φ)−1)
ε2+2ε+2

(1+ε)2+ei(π−φ)

ε2+2ε+2

)
. (32)

For any one of the four Mach-Zehnder interferometers
(MZIs), it acts as the unitary mode transformation matrix
ÛMZI on two of the spatial modes and leaves the other two
unaffected. Here, for simplicity, we assume that all four MZIs
have the same phase mismatches and that all eight beam
splitters have the same parameter for imperfect transmission
rate. Thus, we could write out four four-level unitary matrices
that correspond to four MZIs and multiply them together to
get the overall mode transformation matrix. The fidelity of the
SWAP gate differs slightly for different input states, but all of
the input states have an overall fidelity slightly higher than the
lower bound:

FSWAP >

∣∣∣∣∣
(

i(1 + ε)(1 − ei(π−φ) )

2 + 2ε + ε2

)4
∣∣∣∣∣
2

. (33)

Note that the fidelity of all the input states is in the form of
x + ζy, where x corresponds to the probability of the case in
which the gate works as expected and ζy corresponds to the

032607-5



HONGYI MENG PHYSICAL REVIEW A 105, 032607 (2022)

FIG. 5. (a) The fidelity map of the deterministic SWAP gate that is
being inserted to perform a controlled-SWAP operation. From numer-
ical calculations, the SWAP gate will always have a high fidelity above
99% under realistic conditions (ε � 0.02, φ � π/36). (b) The
cross section of the fidelity map displaying the relationship between
the fidelity of the SWAP gate and the phase mismatch of the two
arms of the Mach-Zehnder interferometer, when the imperfect trans-
mission parameter is set to be ε = 0, 0.02. (c) The cross section of
the fidelity map displaying the relationship between the fidelity and
imperfect transmission parameter of the 50:50 beam splitter, when
the phase mismatch is set to be φ = 0, π/36.

probability of the case in which the gate experiences errors
on both photons and gives out the expected result by accident.
For example, if the input state is |ϕin〉 = |11〉 = â†ĉ†|vac〉, it is
most likely that the SWAP gate works as expected and switches
the photon in spatial modes a → c and c → a; however, both
photons may experience errors simultaneously so that the
locations of both photons remain the same, i.e., a → a and
c → c. In these two cases, both will give the correct output
state, but the probability of the latter case is almost negligible,
so we only take the first case into account. From (33), the
overall fidelity of the deterministic SWAP gate is shown in
Fig. 5.

C. Imperfections due to the calcite beam combiner

For the sake of simplicity, assume that the extinction ratio
of the second calcite beam displacer is also r; the unitary mode

transformation matrix of the second calcite beam displacer
should be ideally the inverse matrix to the first one rotated
by 90

◦
,

Ûr2 = 1√
1 + r

(
1

√
r∗

−√
r 1

)
. (34)

In this step, we do not consider the angle of deviation of the
mirror mounts for a second time because the calcite beam
displacer and combiner are usually assembled together with
the same orientation. By the definition of fidelity,

F3 = |〈ϕreal|ϕexpected〉|2 =
∣∣∣∣ 1

1 + r

∣∣∣∣
2

. (35)

D. Overall fidelity of the proposed quantum Fredkin gate

For the input states |000〉, |001〉, |010〉, |011〉, the two pho-
tons will only enter at the calcite beam displacer and exit at
the calcite beam combiner, so there may be three sources of
error: angle of deviation of the gate as a whole, the extinction
ratio of the calcite beam displacer, and the extinction ratio
of the calcite beam combiner which was assumed to be the
same as that of the calcite beam displacer. All of the sources
of error only affect the polarization state of the two photons
but not the spatial information, so the second and third logical
qubits will still be correct. The overall fidelity is determined
by multiplying the probability for each of the independent
events together,

F000 = F001 = F010 = F011 = F1F3

=
∣∣∣∣ 1

1 + r
(cos θ − √

r sin θ )2

∣∣∣∣
2∣∣∣∣ 1

1 + r

∣∣∣∣
2

. (36)

For the input states |100〉, |101〉, |110〉, |111〉, an additional
source of error is the crosstalk of the SWAP gate,

F100 = F101 = F110 = F111 = F1F3FSWAP

=
∣∣∣∣ 1

1 + r

(
cos θ − √

r sin θ
)2

∣∣∣∣
2

×
∣∣∣∣ 1

1 + r

∣∣∣∣
2

×
∣∣∣∣∣
(

i(1 + ε)(1 − ei(π−φ) )

2 + 2ε + ε2

)4
∣∣∣∣∣
2

. (37)

Based on (36) and (37), the lower bound of the overall
fidelity of the controlled-SWAP gate is shown in Fig. 6.

E. Errors introduced by realistic detectors

Following [31], we will model a real detector with two
parameters: a quantum efficiency η and a dark count rate λ.
We will assume that the dark counts follow a Poisson distri-
bution, so the probability of having d dark counts during the
measurement interval τ will be

D(d ) = e−λτ (λτ )d

d!
. (38)

We can then write the conditional probability of measuring k
photons when l photons are presented as

PD(k|l ) =
k∑

d=0

D(k − d )

(
l
d

)
ηd (1 − η)l−d . (39)
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FIG. 6. (a) The overall fidelity map of the proposed quantum
Fredkin gate. The fidelity for input states |100〉, |101〉, |110〉, |111〉 is
lower due to the insertion of the SWAP gate. Assuming a perfect input
state, the proposed controlled-SWAP gate will always have a high
fidelity above 98.6% under realistic conditions (φ = π/36, ε =
0.02, r � 1 × 10−3, θ � 5 × 10−3 rad). (b) The cross section of the
fidelity map showing the relationship between overall fidelity and the
extinction ratio of the calcite crystals, when the angle of deviation of
the mirror is set to be θ = 5 × 10−3 rad. (c) The cross section of
the fidelity map displaying the relationship between overall fidelity
and the angle of deviation of the kinematic mirror mounts, when the
extinction ratio of the calcite crystals is set to be r = 1 × 10−3.

The overall probability of success at detection stage is thus
given by

Psuc = PD(1|1)2PD(0|0)6

= e−6λτ [λτe−λτ (1 − η) + e−λτ η]2. (40)

For the avalanche photodiode, assume that η = 0.8, λτ =
10−7; then the probability of a successful readout for the
proposed controlled-SWAP gate is Psuc = 0.64.

F. Hong-Ou-Mandel interference

During the state-preparation stage in Fig. 4(a), we will not
encounter the two-photon Hong-Ou-Mandel interference [32]
since there is exactly one photon that is incident on each
beam splitter. The Hong-Ou-Mandel interference can only
take place inside the SWAP gate in Fig. 4(c). If the two photons
are incident on different input ports of a 50:50 beam splitter,
Hong-Ou-Mandel interference occurs, temporarily creating a
quantum NOON state with two photons occupying one of the
two spatial modes. However, when the two photons are inci-
dent again on the next 50:50 beam splitter with both of them
entering from one input port, the two photons will separate at
the two output ports.

Take the input state |φ1〉 = |010〉 = â†
H d̂†

H |vac〉 for ex-
ample: two-photon Hong-Ou-Mandel interference will only

occur at the last Mach-Zehnder interferometer. The quantum
state is transformed into |φ2〉 = (b̂†

H b̂†
H − ĉ†

H ĉ†
H )|vac〉 after the

first beam splitter and then |φ3〉 = b̂†
H ĉ†

H |vac〉 after the sec-
ond beam splitter. Therefore, the quantum NOON state will
only exist within the four Mach-Zehnder interferometers in
Fig. 4(c) and thus will not interfere with the readout process
of the proposed controlled-SWAP gate.

G. Limitations

Although the controlled-SWAP gate in our proposal is re-
source efficient and feasible to implement, it does have certain
limitations. In the next section, I will introduce the corre-
sponding single-qubit gates of the proposed Fredkin gate, and
we will see that the probabilistic nature of certain single-qubit
gates on the control qubit is slightly problematic, consider-
ing they are normally given for free with other linear-optical
quantum computing schemes.

Also, only a certain class of two-qubit and three-qubit
operations is allowed in our proposal. Fortunately, these are
the ones sufficient for the universal quantum computing when
assisted by arbitrary one-qubit gates [17,18,33,34].

V. CORRESPONDING SINGLE-QUBIT GATES

In our proposal, single-qubit gates on the target qubits are
simple since they are encoded in dual rails: phase shifters
and beam splitters between two spatial modes are sufficient
for arbitrary single-qubit operations. Single-qubit gates per-
formed on the control qubit are feasible, but some of them
require postselection and are thus probabilistic. This stems
from the fact that our generic qubit states are entangled and
unless the entanglement is generated at the state-preparation
stage, it needs to be manipulated using measurement-induced
nonlinearities as we only use linear-optical elements. On the
other hand, single-qubit operations performed on target qubits
can be achieved simply by means of linear interferometry.

First off, certain single-qubit gates such as the Pauli-Z gate
and Pauli-X gate are easily realized with half-wave plates or
phase shifters on the rails, as shown in Figs. 7(a) and 7(b).

In quantum circuits utilizing control gates, the control
qubits are often prepared in superposition states achieved by
using the Hadamard gate on a control qubit in the first place.
In our proposal, this can be achieved by means of state prepa-
ration: we may prepare the initial state as (|HH〉 + |VV 〉)/

√
2

via a nonlinear process. This is not a universal Hadamard gate
that can be inserted into the circuits, but it is useful for the
applications introduced in Sec. VI.

We then discuss possible ways for constructing a heralded
nondeterministic Hadamard gate on the control qubit. We first
map the general polarization-entangled state α|HH〉 + β|VV 〉
to a separable state (α|H〉 + β|V 〉) ⊗ |H〉 by applying a pho-
tonic controlled-NOT operation for polarization qubits. Then,
we rotate the first photon by an arbitrary angle with a half-
wave plate to obtain a new separable state (γ |H〉 + δ|V 〉) ⊗
|H〉. Finally, we apply another controlled-NOT operation for
the polarization qubits to transform the separable state to
a new entangled state γ |HH〉 + δ|VV 〉. This controlled-NOT

gate for polarization qubits is feasible but slightly difficult
to implement both in free space [35], with the use of an
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HWP

HWP
(OA=45°)

(OA=45°)

phase
shifter

FIG. 7. (a) Implementation of the Pauli-Z gate on the control
qubit. Note that the second calcite crystal is rotated by 90 degrees
with respect to the first one. (b) Implementation of the Pauli-X
gate on the control qubit. Note that the second calcite crystal in
this case will be at the same orientation as the first one. (c) In the
case of the Fredkin gate, a two-qubit SWAP gate should be inserted
between the two calcite crystals. In other cases, arbitrary one-qubit
and two-qubit gates on the target qubit(s) can be readily inserted
and implemented since the dual-rail qubit(s) are compatible with the
KLM protocol [8].

entangled ancillary pair of photons and postselection, and
on chip [9], with the integration of partially polarizing
beam splitters. Note that this probabilistic controlled-NOT

gate is different from the controlled-NOT gate in our
proposal since it does not involve multiple degrees of
freedom.

The controlled-NOT gate used in the above process can be
done much in the same way with some minor modifications
and a theoretical success probability of 1

4 [35] for our en-
coding scheme. Therefore, the Hadamard gate on the control
qubit will have a successive probability of 1

16 . Though it can be
improved to close to one with near-deterministic teleportation
[31], the sophisticated resources demanded would be incon-
sistent with the simple implementations of the other gates in
our proposal. Fortunately, the first Hadamard gate can always
be achieved by means of state preparation, and it may already
suffice in many applications where the most critical utilization
of a Hadamard gate is within the preparation of an initial
superposition state.

FIG. 8. (a) Schematic for the quantum swap test with the
proposed Hadamard and controlled-SWAP gate. (b) Schematic for
preparing generalized Greenberger-Horne-Zeilinger state involving
the polarization and spatial degrees of freedom of the two photons.

VI. FURTHER APPLICATIONS

When working with quantum information, the question
often arises of whether or not two states |ϕ1〉 and |ϕ2〉 are
equal. The quantum Fredkin gate in our proposal may be
readily used for a swap test [36], a procedure in quantum
computation that is used to check how much two quantum
states differ. The quantum circuit for the swap test is shown
in Fig. 8(a). The first Hadamard gate can be achieved by
means of state preparation since the desired output state is
(|HH〉 + |VV 〉)/

√
2; similarly, the second Hadamard gate can

be achieved by the method described in the previous sec-
tion with a success probability P = 1

16 . From [36], we can find
the probability of passing the swap test (finding the first qubit
in |0〉) to be

Pp = 1 + |〈ϕ1|ϕ2〉|2
2

. (41)

The probability of success for the swap test in our proposal
is thus

Ps = PPp = 1 + |〈ϕ1|ϕ2〉|2
32

. (42)

Let us examine the evolution of both the polarization
states and spatial rails of the two photons during the
swap test, respectively. Consider a simple example where
|ϕ1〉 = |ϕ2〉 = |0〉. The evolution through the circuit is

state−preparation−−−−−−−−−→ 1√
2

(b̂†
H d̂†

H + b̂†
V d̂†

V )|vac〉

CSWAP−−−−→ 1√
2

(b̂†
H d̂†

H + b̂†
V d̂†

V )|vac〉

H−→ b̂†
H d̂†

H |vac〉.
In this case, the probability of success for the swap test

is Ps = 1
16 , which is consistent with the theoretical prediction

from (42) since |〈ϕ1|ϕ2〉|2 = 1 for two identical states.
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Consider another example where |ϕ1〉 = |0〉, |ϕ2〉 = |1〉.
The evolution through the circuit is

state−preparation−−−−−−−−−→ 1√
2

(b̂†
H ĉ†

H + b̂†
V ĉ†

V )|vac〉

CSWAP−−−−→ 1√
2

(b̂†
H ĉ†

H + d̂†
V â†

V )|vac〉

H−→ 1

2
(b̂†

H ĉ†
H + b̂†

V ĉ†
V + d̂†

H â†
H − d̂†

V â†
V )|vac〉.

The probability of success in this case is Ps = 1
2 × 1

16 = 1
32 ,

which is consistent with the theoretical prediction from (42)
since |〈ϕ1|ϕ2〉|2 = 0 for two orthogonal states.

Another interesting aspect related to the Fredkin gate is
the possibility of creating hyperentangled states involving the

polarization states and spatial degrees of freedom of the two
photons, as shown in Fig. 8(b).

VII. CONCLUSION

In summary, we have proposed a general scheme for a fam-
ily of deterministic linear-optical control gates, which are of
high fidelity under realistic conditions, robust against photon
loss, resource efficient, and relatively simple to implement in
the laboratory. The proposed control gates, though requiring
special state preparations and limited by the probabilistic na-
ture of Hadamard gates on the control qubit, are indeed one
of the solutions to the important and longstanding problem of
how to achieve universal quantum computing using a resource
operating at room temperature and widely accessible for pho-
tonic systems.
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