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We discuss an approach to determine averages of the work, dissipated heat, and variation of internal
energy of an open quantum system driven by an external classical field. These quantities are measured by
coupling the quantum system to a quantum detector at different times. This approach allows us to preserve
the full quantum features of the evolution. From the measured phase, we are able to obtain a quasichar-
acteristic function and a quasiprobability density function for the corresponding observables. Despite the
fact that these quasiprobability density functions are not the results of direct measurements, they reproduce
the expected value of the physical quantities. Analogously to the Wigner function, the negative regions of
these quasiprobability density functions are directly related to pure quantum processes which are not inter-
pretable in classical terms. We use this feature to show that in the limit of fast dissipation, the quantum
features vanish and interpret this as the emergence of the classical limit of the energy exchange process.
Our analysis explains and confirms the behavior observed in recent experiments performed on IBMQ devices
[P. Solinas et al., Phys. Rev. A 103, L060202 (2021)]. The possibility to discriminate between classical
and quantum features makes the proposed approach an excellent tool to determine if, and in which con-
ditions, quantum effects can be exploited to increase the efficiency in an energy exchange process at the
quantum level.
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I. INTRODUCTION

The concepts of work and heat are keystones of classical
physics. They describe how a physical system exchanges en-
ergy with an external field and dissipates energy because of
the interaction with an environment.

The recent development of quantum technologies has
brought an unprecedented precision in controlling quantum
systems, allowing us to envision quantum devices with novel
capabilities to store and manipulate energy. Therefore, it has
become of the utmost importance to understand how the clas-
sical concepts of work and heat are translated and changed in
the quantum regimes.

This apparently simple research plan has found several
roadblocks which arise from the fundamental aspects of quan-
tum mechanics. These can be exposed in the simplest possible
situation of a closed quantum system subject to an external
driving field. In this case, the work done on the system is equal
to the variation of the internal energy of the system. However,
we need information about both the initial and final energy.
Since work and heat are related to a process, it is impossible to
introduce a physically relevant Hermitian operator as it would
be nonlocal in time [1–3].

A straightforward solution to avoid this problem is to mea-
sure the energy of the system at the beginning and at the end
of the evolution. This approach, often called two measurement
protocol (TMP ) [4,5], has the advantage to be direct and to
have a clear interpretation [6], but it has several disadvantages

as well. First, it induces the wave-function collapse and, con-
sequently, changes the system energy. Therefore, it could be
tricky to separate the contribution to the work related to the
external field (that we are interested in) from the one due to
the (unwanted) perturbation induced by the detector. Second,
it changes the dynamics of the quantum system and, in gen-
eral, modifies the expected average work done on the system
because of the destruction of the interference contributions to
the dynamics [7–10]. Thus, if we want to answer the question
of how much energy we need to run a quantum device, the
TMP is unable to give us the correct answer.

Being forced to abandon the procedure generally used to
define the measurement of a physical observable, i.e., intro-
ducing a corresponding Hermitian operator, the clearest and
direct approach to the problem is to include the detector in
the dynamics, and specify how it interacts with the system
and how we obtain the desired information. This allows us to
clearly identify what its effects are on the dynamics, which are
the physical observables measured in the laboratory, and how
we can extract the desired information from the experimental
measurements.

With this in mind, in this paper, we focus on the approach
suggested in Refs. [8–10]. The key idea is that by coupling
the system and the detector with a specific protocol, the in-
formation about the work, heat, and internal energy can be
stored in the phase of a quantum detector. This was recently
implemented on the IBMQ devices [11] to experimentally
measure the average work, heat, and internal energy in a
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driven quantum system and to observe the reaching of the
classical regimes of the quantum energy exchanges [12].

Despite the correct interpretation of the experimental data
in Ref. [12], a full theoretical framework is still missing
since the analysis in the presence of decoherence phe-
nomena has not been developed yet. To fill this gap, we
extend the results of Refs. [8–10] to the case of open
quantum dynamics by introducing the interaction with the
environment.

From the measurement of the phase of the detector, we can
calculate a. quasicharacteristic generating function (QCGF)
and quasiprobability density function (QPDF) of the work,
heat, and internal energy. As the prefix “quasi” points out,
these probabilities are not obtained by direct experimental
measurement and, indeed, the QPDF is, in general, not pos-
itively defined [10,13]. Still, as we show, in this way we
can obtain the answer to our initial question determining the
expected average work and heat that are naturally expected
with no perturbation.

Interestingly, the QCGF and QPDF carry important and
detailed information about energy exchanges. In a direct anal-
ogy to the Wigner function [14], the negative regions of the
derived QPDF are associated with the violation of the Leggett-
Garg inequalities and are the signature of a pure quantum
phenomenon [10].

To complement and clarify this point, we calculate of the
full QPDF of work, heat, and internal energy in the presence
of an environment modeled as a quantum channel. We are
able to show how, in the limit of fast dissipation, the negative
regions of the QPDFs disappear. Interpreting this as the van-
ishing of pure quantum features of the process, we conclude
that the environment tends to make the evolution classical.
In other words, the protocol can also be used to observe the
emergence of the classical limit in the energy exchanges of a
quantum system.

The discussed approach is particularly interesting for
the experimental implementation and determination of the
dissipated heat. In fact, the alternative theoretical pro-
posal [4] was based on the extension of the TMP and
requires the direct projective measurement of the environ-
mental degrees of freedom. Since the environment gener-
ally has a large number of degrees of freedom and we
do not have access to them, this proposal is not useful
in practice.

An alternative proposal suggests to measure the quanta
emitted by the system [15]. Although closer to realistic im-
plementation [15–21], these methods are indissolubly tied to
a specific physical implementation. On the contrary, being
based on the system degrees of freedom, the proposed ap-
proach can be implemented in any physical quantum system.
This practical advantage could have important experimental
implications.

The paper has the following structure. In Sec. II, we recall
what is a reasonable way to define the average work done
on a closed system by an external time-dependent drive. In
Sec. III, we summarize the main ideas and formalism of
Refs. [9,10,13]. We develop this approach to calculate the
QPDFs for an open system in Sec. IV and discuss the main
properties in Sec. V. Section VI provides an example and
Sec. VII contains the conclusions.

II. NATURAL DEFINITION OF WORK

Let us consider a quantum system subject to a classical
time-dependent drive. The Hamiltonian is denoted by HS (t )
and we suppose that the desired evolution occurs for 0 �
t � T. The Hamiltonian eigenstates and eigenvalues are |nt 〉
and εnt , respectively. Let us focus on the closed-system case
with no dissipation and suppose that the system is initially
described by the density operator ρ0. The average initial in-
ternal energy is 〈εi〉 = ∑

n0
ρ0

n0n0
εn0 , where ρ0

n0n0
= 〈n0|ρ0|n0〉

and |n0〉 is the eigenstate with energy εn0 .
The final density operator is ρT = Uρ0U † and the final

average energy is 〈εT〉 = Tr[HTρT],

〈εT〉 =
∑

mT,n0

|UmTn0 |2ρ0
n0n0

εmT

+
∑

mT,n0 �=k0

UmTn0ρ
0
n0k0

U †
k0mT

εmT
, (1)

with obvious notations for the matrix elements. The work
done on the system is naturally defined as the difference of
the system energies, i.e., 〈W 〉 = 〈εT〉 − 〈ε0〉 [8,9],

〈W 〉 =
∑

mT,n0

|UmTn0 |2ρ0
n0n0

(
εmT

− εn0

)

+
∑

mT,n0 �=k0

UmTn0ρ
0
n0k0

U †
k0mT

εmT
. (2)

Notice that this is the work done by the drive with no influence
or perturbation of any measurement apparatus and, in this
sense, it is the work done only by the drive on the system.

To point out the destructive effect of the measurement, we
compare this result with the one predicted in the TMP [4,5]
in which all the moments of the work can be obtained with
simple probabilistic arguments [6]. The average work reads

〈W 〉 =
∑

n0

ρ0
n0n0

∑
m

|Umn|2
(
εmT

− εn0

)
, (3)

where |UmTn0 |2 is the probability to have the transition |n0〉 →
|m0〉 because of the dynamics induced by the operator U .

Equations (2) and (3) differ for the contribution of the
initial off-diagonal elements of the density matrix ρ0

n0k0
. These

are not present in Eq. (3) because they are destroyed in the
TMP by the initial measurement of the energy. However, if
we expect the work with no perturbation to be the one in
Eq. (2), these contributions are fundamental and give rise, in
Feynmann’s words [7], to the quantum interference effects.

It can be shown that the alternative approach which ex-
ploits a quantum detector, presented in Refs. [9,10], correctly
predicts the average in Eq. (2) and, in this sense, it preserves
all the information about the dynamics and the initial coher-
ence without the perturbation of the measurement.

As a side note, we want to stress that the results in Eq. (2),
i.e., the one predicted with the approach discussed below,
coincides with the one we would obtain with the weak-value
measurements approach [22]. In the latter, the weak coupling
between the system and the detector allows us to measure the
average value of the desired observable with no disturbance
on the system dynamics.
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III. PHYSICAL SYSTEM AND DETECTOR

To have a self-consistent discussion, we briefly recall the
proposal to obtain the QPDF of work, heat, and internal en-
ergy [9,10].

We consider the quantum system described by the Hamil-
tonian HS (t ) coupled with a quantum detector. We denote with
HD = ∑

λ λ|λ〉〈λ| and HSD = f (χ, t )HS (t ) ⊗ HD the detector
and system-detector coupling Hamiltonian, respectively, and
|λ〉 is the eigenstate of the detector Hamiltonian. The function
f (χ, t ) determines the times and the strength χ of the system-
detector coupling.

The main idea of the approach discussed in Refs. [9,10] is
to couple the system and the detector at certain times to store
the information about the energy in the detector phase.

To clarify this point, we first discuss the way to determine
the variation of internal energy �U . Since �U is a state
function, we need to know only the initial and the final en-
ergy. This is done by coupling the system and the detector
only at the beginning (t = 0) and at the end of the evolu-
tion (t = T) and letting the system evolve “freely” (with no
detector interaction, but under the time-dependent drive) for
0 < t < T. Formally, this corresponds to choosing f (χ, t ) =
χ [δ(T − t ) − δ(t )], which generates the system-detector evo-
lution [9,10],

Uχ,�U = Uχ,T US U−χ,0, (4)

where U−χ,0 = exp [−iχHS (0) ⊗ HD] and Uχ,T =
exp [iχHS (T) ⊗ HD]. The phase accumulated in the
detector can be measured and represents the QCGF of
�U denoted by Gχ,�U . The derivatives of Gχ,�U with
respect to the coupling χ are the quasimoments of �U , i.e.,
〈�U n〉 = (−i)ndnGχ,�U /dχn|χ=0 [23,24]. In Refs. [9,10], it
was shown that for a closed system, this procedure can be
used to obtain the average value expected from Eq. (2).

To measure the statistics of the dissipated heat and work,
we use the same ideas with a slightly more complex imple-
mentation. In fact, the heat and work are not state functions
and depend on the path swept by the system during the evolu-
tion. This implies that we must repeatedly measure the system
during the evolution to keep track of the dissipated heat.

With simple arguments, it can be shown that the work
done on the quantum system is associated with the variation
of HS (t ) in time, while the dissipated heat is associated with
the change of the density matrix due to dissipative dynamics
[8]. Since work and heat are associated to different physical
processes, we exploit this fact by separating in time the two
processes in order to be able to distinguish them.

We discretize the evolution in N + 1 steps such that ts =
s�t and �t � T (with s integer and 0 � s � N). Since the
system Hamiltonian changes over time T, under this condi-
tion, in every time interval, the system Hamiltonian can be
considered constant. From the energetic point of view, no
work is done on the system and only the dissipative dynam-
ics takes place. Therefore, all the variation in energy of the
system in this time interval can be interpreted as dissipated
heat due to the interaction with the environment. Assuming
that the system-detector coupling time is much smaller than
�t , the information about this energy change can be stored in
the detector with the same coupling scheme of Eq. (4).

More specifically, for any �t , the total Hamiltonian at
time ts is Hs = Hs

S + HSE + HE with Us = e−i�tHs
. For small

enough �t , we can write Us ≈ e−i�tHSE e−i�tHE e−i�tHs
S . In the

Born approximation, we assume that the environment is large
enough, i.e., with so many degrees of freedom, that it is not
affected by the interaction with the system. This corresponds
to assuming that the environment has no internal dynamics
and the exp(−i�tHE ) term in Us has no effect.

Within each small time interval �t , the Hamiltonian Hs
S

can be considered constant. At the beginning and at the end of
each interval, we instantaneously couple the system and the
detector, i.e., on a timescale over which the system does not
evolve. In analogy with (4) and since [Hs

S , Hs
S ⊗ HD] = 0, the

evolution operator for each interval reads

Us
χ/2 = e−i χ

2 Hs
S⊗HD e−i�tHSE ei χ

2 Hs
S⊗HD e−i�tHs

S . (5)

Notice that the unitary dynamics and the dissipative dynamics
are factorized and, with this scheme, we are able to measure
the energy variation of the system due to the dissipation, i.e.,
the heat.

Each Us
χ is defined so that we keep track of the heat Qs

dissipated in the time interval (s − 1)�t � t � s�t . Because
of the form of the system-detector coupling Hamiltonian,
the information on the dissipated heat along the evolution is
stored in the phase accumulated between eigenstates |λ〉 of the
detector Hamiltonian.

Notice the sign in the exponents that takes into account the
fact that an emission (absorption) by the environment, i.e., de-
creasing (increasing) of the environment energy, corresponds
to an absorption (emission) process of the system, i.e., increas-
ing (decreasing) of the system energy (see Appendix A).

In order to account for the work done, we must use another
scheme and add another system-detector coupling at the be-
ginning and end of the evolution [9]. Putting things together,
the total evolution operator reads

Uχ/2 = ei χ

2 HN
S ⊗HD�N

s=0U
s
χ/2e−i χ

2 H0
S ⊗	z . (6)

In the case of unitary evolution, Hs = Hs
S and we immediately

recover the closed-system result for the variation of the inter-
nal energy.

IV. QUASICHARACTERISTIC GENERATING FUNCTIONS
AND QUASIPROBABILITY DISTRIBUTIONS IN OPEN

QUANTUM SYSTEM

As discussed above, the physical observable in the present
approach is the detector phase. To obtain this, we must cal-
culate the system-environment dynamics, trace out the system
degrees of freedom, and extract the phase accumulated in the
detector states. This is associated with the quasicharacteristic
generating function Gχ,F = 〈λ|ρD(t )|−λ〉/〈λ|ρ0

D|−λ〉 and its
Fourier transform gives us the quasiprobability distribution
function P(F) = ∫

dχGχ,FeiχF [9,10].
We use the prefix “quasi” to stress that both Gχ,F and

P(F) are not obtained by an experimental measurement but
are obtained by the measured phases. Their interest lies in the
fact that they allow us to obtain the desired average values of
the observables (2) and, at the same time, preserve the full
quantum features of the process.
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As we will see below, this could be used as a tool to
distinguish the classical from the quantum nature of an energy
exchange process and to reveal the emergence of the classical
limit when the system is coupled to an environment.

A. Heat quasiprobability density distribution

To describe the effect of the environment, we use the
operator sum representation [25,26]. This is an effective
phenomenological way to describe the dissipative dynamics
induced by the exp(−i�tHSE ) operator that greatly simplifies
the calculation.

For any time ts, we define k operator elements {Mk,s}
such that the dissipative evolution of the system density
operator at any time interval �t is given by ρS (ts+1) =∑

k Mk,sρS (ts)(Mk,s)†.
We suppose that the system and detector are initially de-

scribed by the factorized density operator ρ0 = ρS ⊗ ρD =∑
i0, j0,λ,λ′ ρi0 j0ρλλ′ |i0, λ〉〈 j0, λ′|, where ρi0 j0 and ρλλ′ are the

system and detector density matrix elements, respectively.
Since we want to study energy exchanges, the eigenbasis of
Hs

S is the privileged basis to decompose the evolution. We
denote the time-dependent eigenstates as with {|is〉}, {| js〉},
{|ns〉}, and {|ms〉}. The full evolution generated by Eq. (5)
reads (see Appendix B)

ρ0 →
∑

ρλλ′ei χ

2 [λ(εi0 −εn0 )−λ′(ε j0 −εm0 )]

× Mk,0
n0i0

U 0
i0i0ρi0 j0 (U 0)†

j0 j0
(Mk,0)†

j0m0
|n0, λ〉〈m0, λ

′|. (7)

The contribution Mk,0
n0i0

U 0
i0i0 = AP1

n0l gives the probability am-
plitude for the system to undergo the transition path P1 : i0 →
n0. This is associated with the dissipated energy εn0 − εi0
taken into account in the exponential factor. Analogously, the
path P2 : j0 → m0 is transversed with probability amplitude
(U 0)†

j0 j0
(Mk,0)†

j0m0
= (AP2

rm0
)† and it is associated with the dis-

sipated energy εm0 − ε j0 .
Generalizing this result to the dynamics discretized in N

steps and denoting with ns−1 = i0 and ms−1 = j0, we have
(Appendix B)

ρN =
∑
P1,P2

ρλλ′ei χ

2 [λqP1 −λ′qP2 ]

×AP1
nN i0

ρi0 j0

(
AP2

j0mN

)†|nN , λ〉〈mN , λ′|, (8)

where we have collected the probability amplitude of path
P1 : i0 → n0 → i1 → · · · → nN and path P2 : j0 → m0 →
j1 → · · · → mN and the corresponding dissipated heat qP1 =∑

s(εis − εns ) and qP2 = ∑
s(ε js − εms ), respectively.

Following Refs. [9,10], to extract the accumulated phase in
the detector, we trace out the system degrees of freedom and
take Gχ,F = 〈λ|ρD(t )|−λ〉/〈λ|ρ0

D|−λ〉. We obtain

Gχ,F =
∑
P1,P2

ei χ

2 λ(qP1 +qP2 )AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
. (9)

The quasiprobability density function of the dissipated heat
is obtained by taking the Fourier transform,

P(Q) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
δ

[
Q − λ

2

(
qP1 + qP2

)]
, (10)

where, in the paths P1 and P2, the last point is fixed to jN = iN
because of the trace over the system degrees of freedom.

From Eq. (10), it might seem that half-integer energy
exchanges can be present in the heat quasiprobability dis-
tribution. However, as shown in Appendix C, the structure
of the amplitude-damping operators M0,s and M1,s gen-
erates only integer energy peaks. This is consistent both
with the physical assumption that the environment has
many degrees of freedom and the experimental results
in Ref. [12].

B. Internal energy quasiprobability density distribution

The same approach can be used to calculate the internal
energy density probability distribution where the system-
detector coupling is turned on only at the beginning and at
the end of the evolution. The calculation is similar to the
one for the heat, but with no intermediate coupling and no
intermediate phase factor accumulated. Therefore, only the
initial and the final phase factors remain in Eq. (8), i.e.,
λεi0 − λ′ε j0 and λεiN − λ′ε jN , respectively. The final density
operator reads

ρN =
∑
P1,P2

ρλλ′ei χ

2 [λ(εi0 −εnN )−λ′ ∑
l (ε j0 −εmN )]

×AP1
nN i0

ρi0 j0

(
AP2

j0mN

)†|nN , λ〉〈mN , λ′|. (11)

Passing to the QCGF and then to the QPDF, we obtain

P(�U ) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†

× δ

[
�U − λ

(
εnN − εi0 + ε j0

2

)]
. (12)

This result generalizes the one in Refs. [10] for an open
system evolution.

If we consider a two-level system with an energy gap ε,
i.e., εs = ±ε/2, for εi0 = −ε j0 and εnN = ±ε/2, in Eq. (12)
we have the exchanges of half-energy quantum. These are
related to the interference effect between the two paths P1

and P2. They are present only if the system is initially in a
superposition of eigenstates of the energy so that the initial
energy value is not well defined. It can be shown that these
are associated to a negative quasiprobability region and to the
violation of Leggett-Garg inequalities [9,10,27–29]. There-
fore, we consider the half-quantum energy exchanges and the
corresponding negative probability regions as pure quantum
features.

C. Work quasiprobability density distribution

The last step we need is the derivation of the work
quasiprobability density distribution that can be obtained from
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the heat distribution with a small change in the protocol
[9,10].

The same dynamical evolutions in Eqs. (5) and (6) can be
rewritten highlighting the sequence of Hamiltonian changes
alternated to the dissipative evolution,

Utot = · · · ei χ

2 H2
S ⊗HD e−i χ

2 H1
S ⊗HDU1ei χ

2 H1
S ⊗HD ei χ

2 H0
S ⊗HDU0, (13)

where the operator Uk = exp(−i�tHs) includes the full open
dynamics with constant a Hamiltonian Hs

S .
The coupling sequence exp(i χ

2 H1
S ⊗ HD) exp(i χ

2 H0
S ⊗ HD)

stores in the detector the information about the work due to
the change H0

S → H1
S . However, if we look at the product

exp(−i χ

2 H1
S ⊗ HD)U1 exp(i χ

2 H1
S ⊗ HD), we recognize that

the sequence that stores the information about the heat, i.e.,
the variation of energy due to the dissipative dynamics when
the Hamiltonian is constant. We conclude that the same
system-detector schemes allow us to obtain information about
the work done.

Alternatively, we can start from Eq. (8) and rewrite the sum
in the exponent isolating the energies at the beginning as

λqP1 − λ′qP2 =
∑

s

[
λ
(
εis − εns

) − λ′(ε js − εms

)]

=
′∑
s

[
λ
(
εis+1 − εns

) − λ′(ε js+1 − εms

)]
−(

λεi0 − λ′ε j0

)
. (14)

The energy differences εis+1 − εns and ε js+1 − εms are ex-
actly the work done when the Hamiltonian changes from
Hs

S to Hs+1
S . The last term λεi0 − λ′ε j0 is obtained from the

first coupling exp(i χ

2 H0
S ⊗ HD) and must be subtracted. This

means that the first detector-system coupling must be canceled
if we want the work statistics. Analogously, we also find that
the final coupling exp(i χ

2 HN
S ⊗ HD) must be avoided [9,10].

From these examples, we arrive at the conclusion that
the only difference between the protocols to measure the
heat and the work done is in the first and the last system-
detector coupling. With these observations, we can write the
quasiprobability density function for the work as

P(W ) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
δ

[
W − λ

2

(∑
s

(
εis+1 − εns

) +
′∑
l

(
ε js+1 − εms

))]

=
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
δ

[
W − λ

2
(qP1 + qP2 − 2εnN + εi0 + ε j0 )

]
, (15)

where, in the last equation, we have used the direct relation
between the three distributions. Indeed, notice that the contri-
bution 2εnN − εi0 − ε j0 comes from neglecting the first and the
last system-detector coupling and from tracing out the system
degrees of freedom.

V. PROPERTIES OF THE QUASIPROBABILITY DENSITY
DISTRIBUTIONS

A. Averages and energy conservation

We recall that the present method is built to reproduce the
correct average value of the energetic observables. Despite the
possibility of building quasiprobability density distributions,
the interpretation of higher moments can be difficult. There-
fore, we focus exclusively on the average values which have a
clear and precise meaning.

If we write the generic form of the probability density
distributions as

P(F) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
δ
(
F − fP1,P2

)
, (16)

where fP1,P2 are the discrete possible values that the variable
F can take associated to the paths P1 and P2, its average value

〈F〉 =
∫

dFFP(F) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†(
fP1,P2

)
. (17)

Factorizing the probability amplitude contributions, by di-
rect calculation we obtain (with λ = 1)

〈�U 〉 + 〈Q〉 − 〈W 〉 = 0. (18)

This is the condition for the conservation of energy. Notice
that the energy is conserved not only on average, but along
every path of the evolution, i.e., every term in the summation
vanishes.

B. Limit of closed evolution

It is interesting to calculate the above quasiprobability dis-
tribution functions in two important limiting cases of closed
evolution and fast dissipation.

To simplify the discussion, we consider a two-level system
that undergoes a relaxation process from the excited to the
ground state. This is the prototypical dissipative process if we
are interested in energy exchanges. As above, we take εs =
±ε/2.

We make two further assumptions. First, the environment
induces relaxation but cannot excite the system. This oc-
curs when the temperature of the environment is smaller
than the system energy gap (divided by the Boltzmann con-
stant). Second, the dissipative processes are described as an
amplitude-damping channel [25,26]. These assumptions al-
low us to explicitly write the dissipative operators Mk (see
Appendix D).

If there is no dissipation, we have that the dissipative oper-
ators Mk,s = 1; for example, Mk,0

i0n0
= δi0n0 . In Eq. (7), we have
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that i0 = n0 and j0 = m0, the two system-detector couplings
cancels out, and no phase is accumulated. This holds for any
step of the evolution and implies that qP1 = qP2 = 0. Thus, the
heat distribution reads

P(Q) =
∑
P1,P2

AP1
nN i0

ρi0 j0

(
AP2

j0nN

)†
δ(Q) (19)

and, as expected, it is centered around zero, meaning that there
is no dissipated heat. At the same time, since qP1 = qP2 = 0,
from Eqs. (12) and (15) we have that P(�U ) = P(W ), as
it should be. As discussed above, P(�U ) includes the ex-
changes of the half quanta of energy that are related to the
quantum feature of the process. Therefore, in the absence
of environmental dissipation, these quantum features are pre-
served.

We can make a comparison between the predicted average
work and the expected one in Eq. (2). In the closed evolution
limit, the probability amplitudes become a sequence of unitary

evolution; we have (see Appendix B) AP1
nN i0

= (�N
s=0U

l
isns−1

) =
US (T). Separating the diagonal and off-diagonal contributions
of the density operator, we have [10,13]

P(W ) =
∑
nN ,i0

∣∣UnN i0

∣∣2
ρi0i0δ

[
W − λ

(
εnN − εi0

)]

+
∑

nN ,i0 �= j0

UnN i0ρi0 j0U
†
j0nN

δ

[
W − λ

(
εnN − εi0 + ε j0

2

)]
.

(20)

Calculating the average work 〈W 〉 = ∫
dWWP(W ) and tak-

ing into account that in the second sum εi0 + ε j0 = 0 because
of the constraint i0 �= j0, we obtain Eq. (2).

A direct comparison with the prediction of TMP in Eq. (3)
highlights that the difference lies in the quantum contributions
in the second sum in Eq. (20), which is related to the quantum
interference terms.

In this sense, the QPDFs contain more information. The
obtained averages coincide when the system is measured ini-
tially or start from an energy eigenstate, but differ in the case
where the system is initially in a superposition of energy
eigenstates. In this latter case, the TMP fails to predict the
correct work done [Eq. (2)], while the discussed approach
allows us to preserve the information about the full quantum
feature of the exchanged energy.

C. Limit of fast dissipation; emergence of the classical limit

On the other side of the system-environment coupling
strength, the limit of fast dissipation is particularly interesting.
This physically corresponds to the case in which the relaxation
times are much smaller than the evolution times so that the
system quickly relaxes to the instantaneous ground state of
the Hamiltonian.

We consider the prototype case of a two-level system. This
restriction on the dimension of the system allows us to fully
solve the dissipative dynamics since the dissipative opera-
tors Mk,s are well known [25,26] (see Appendix D). Despite
this simplification, the main features of the energy exchange
processes and the quasiprobability distribution functions are

preserved. In addition, this case has been recently experimen-
tally implemented in Ref. [12].

We denote the time-dependent ground and excited states of
Hs with |gs〉 and |es〉, respectively, where s is a time index,
and the corresponding energies with εgs and εes .

In the fast dissipation limit, i.e., p = 1, the effect of the
interaction of the environment is to make the evolution clas-
sical. This corresponds in our case to the destruction of the
interference effects that are typically associated to the quan-
tum features [9,10,12].

This classical limit is conveniently analyzed by studying
the behavior of P(�U ). It can be shown that (see Appendix D)
in this case, it reads (assuming εgN = εg0 )

P(�U ) = ρg0g0δ(�U ) + ρe0e0δ
[
�U − (

εe0 − εgN

)]
. (21)

Notice that since ρg0g0 > 0 and ρe0e0 > 0, this is a probability
distribution function since it is a positive-definite function.

In addition, it can be interpreted in terms of classical tra-
jectories and it would be the same that one would obtain by
the TMP. With probability ρg0g0 , the system starts and ends in
the ground state. This process is associated with no variation
of internal energy. i.e., �U = 0. With probability ρe0e0 , the
system starts from the excited state and it ends in the ground
state. This process is associated with the energy variation that
is εe0 − εgN .

This interpretation in terms of classical trajectories is only
possible if there are no coherences [9,10]. The half-energy
exchanges as well as the negative probability regions that are
present in the general expression (12) vanish in the presence
of fast dissipation. Since all these features are associated to
a quantum process and the violation of the Leggett-Garg in-
equality, we deduce that the presence of the environment has
made the evolution classical. In other words, the absence of
negative probability regions and half-energy exchanges is the
signature of the emergence of the classical limit due to the
presence of the environment.

D. The QPDFs contain the TMP distributions

The use of a quantum detector allows one to preserve the
information about the quantum evolution and, in particular,
the interference effects occurring when the system starts from
a coherent superposition of energy eigenstates. These eventu-
ally give the additional contributions the average as in Eq. (2)
which are not present in the TMP averages [Eq. (3)].

Analogously, the QPDFs contain all the information about
the dynamics of the system and the initial state that is lost in
the TMP due to the initial measurement. It is worthwhile to
discuss this point to highlight the possible use of the QPDF
approach.

Let us first consider the limit of no dissipation discussed in
Sec. V B. The TMP distribution reads [1,30]

PT MP(W ) =
∑
nN ,i0

|UnN i0 |2ρi0i0δ
[
W − λ

(
εnN − εi0

)]
. (22)

This is exactly what we obtain from the QPDF (20) if we set to
zero the off-diagonal density matrix elements ρlr . Therefore,
the present approach of building the QPDF is able to predict
the correct distribution that we would obtain with the TMP: it
is sufficient to discard the contributions due to the ρlr terms
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or, equivalently, the fractional quantum energy exchanges of
|�ε| = ε/2.

An analogous discussion can be done for the case of
an open system. Starting, for example, with Eq. (12), we
can separate the contribution related to the diagonal ρll

and off-diagonal ρlr density matrix elements. Still, the two
distributions coincide if we consider only the diagonal
contributions. This confirms that even in the presence of dis-
sipation, the QPDF contains all the information that can be
extracted by the TMP. Thus, in this sense, the QPDF is more
general than the TMP.

VI. EXAMPLE: MEASURING THE DISSIPATED HEAT

The protocol discussed here can be seen as a tool to mea-
sure the (quasi)probability distributions and the averages of
the work, internal energy and dissipated heat of a quantum
system.

In particular, the dissipated heat has proven difficult to
measure because (i) it depends on the system trajectory during
the evolution and (ii) most measurement protocols assume that
the environmental degrees of freedom can be measured [4,15–
21]. On the contrary, we have shown that by using a quantum
detector, we can solve both problems by sequentially coupling
the system and the detector during the evolution. The accuracy
of the measurement depends on the possibility to repeat the
coupling as fast as we can during the evolution. Therefore, it
is worth discussing this point in detail with a specific example.

To be able to identify the dissipated heat from the work
done, we consider a quantum system not subject to an external
drive. In this case, 〈�U 〉 = −〈Q〉, where 〈�U 〉 = Tr[Hsρ f ] −
Tr[Hsρ0]. Here, Hs = εZ/2, Z is the Pauli matrix, and ρ f

and ρ0 are the density operators at the end and beginning of
the evolution, respectively. This allows us to calculate 〈Q〉
both numerically and analytically, giving us a benchmark to
quantitatively estimate the accuracy of the protocol.

We consider a two-level system initialized in the state
|ψ0〉 = cos θ/2 |0〉 + sin θ/2 |1〉 with θ = 2π/3. As above,
the system relaxes to the ground state with a rate � and no
excitation is possible, i.e., we consider a cold environment.

The evolution time Tf is taken such that �Tf = 1 so the
effects of relaxation are not negligible and the dissipated heat
can be measured with the detector. We assume we are able
to control the system-detector coupling with frequency γ �
�. By increasing γ , it is possible to store more information
about the dissipated heat in the detector, which is eventually
measured.

The numerical simulations describing this process are
shown in Fig. 1. The blue dots represent the expected dis-
sipated heat. The dynamics is determined by the operator
elements as in Sec. V C and Appendix D.

The red squares represent the measured heat with the dis-
cussed protocol as a function of γ /�, i.e., the number of times
the system and detector are coupled during the evolution. As
expected, the precision increases with the number of times the
system and the detector are coupled because we are sampling
the dissipation process with higher precision. When we reach
103 system-detector couplings during the relaxation process,
the measured average dissipated heat coincides with the one
expected from the analytical and numerical simulations.

Q

γ/Γ

FIG. 1. Average dissipated heat as a function of the system-
detector coupling frequency γ and relaxation frequency �. The
blues dots represent the theoretical average dissipated heat and the
red squares represent the average dissipated heat measured with a
quantum detector.

To put this number in the correct perspective, the deco-
herence time of a transmon qubit a decade ago was already
100 μs with qubit control of about ns [31]. This corresponds
to 105 manipulations and system-detector coupling within the
decoherence time and, therefore, well above our estimate to
obtain an accurate measurement of the dissipated heat.

VII. CONCLUSIONS

We have discussed an alternative approach to determine
the averages of work, heat, and internal energy variation in
a quantum system driven by an external field and interacting
with an environment. The use of a quantum detector allows us
to preserve the quantum feature of the evolution and to obtain
the expected averages of the physical observables. This infor-
mation can be retrieved from the phase accumulated by the
detector. Three different system-detector coupling schemes
give us the average of the work done, the dissipated heat, and
the internal energy variation of the system.

Furthermore, we have built the quasiprobability dis-
tribution functions. They contain much more information
than the more common direct measurement, e.g., the two-
measurement protocol. As in the Wigner quasiprobability
function [14], this additional information is manifest in the
presence of negative regions that are the signature of a quan-
tum process. In fact, these are directly related to the violation
of the Leggett-Garg inequalities [9,10,27–29].

We have calculated the full QPDFs for an open system
interacting with a dissipative amplitude damping channel and
shown that they allow us to track all the energy exchanges in
the process. We have shown that the QPDFs correctly describe
the physical process and the extracted physical quantities sat-
isfy energy conservation.

Interestingly, we have shown that in the limit of fast dissi-
pation, the quantum features vanish, leading to the expected
probability distribution obtained by direct measurement. This
result can be interpreted as the emergence of the classical limit
of the process induced by the external environment.

The approach with the QPDFs has several advantages with
respect to the TMP. First, it reproduces the expected average
value of the physical observables [see Eq. (2)]. Second, it
preserves more information than the TMP. In fact, the latter
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distributions can be obtained by the QPDFs simply discarding
the off-diagonal density matrix element contributions [see, for
example, Eq. (12), Eq. (15), and Sec. V D]. Third, it has a
great practical and experimental advantage (as shown recently
[12]) since only the system degrees of freedom are involved
in the process. For the measurement of the heat, two main
approaches have been pursued. The first one imagines the
direct projective measurement of all the degrees of freedom of
the environment to reproduce the environment density matrix
[1,4,5,32]. Since this is an impossible task, this approach
is nothing but a theoretical interest. The second suggests to
measure the energy quanta emitted by the system [15]. The
main limitation in this case is that it works only for very
specific systems [16–21] where only a channel is involved in
the dissipative process. On the contrary, the present approach
allows us to determine the dissipated heat by only manipu-
lating the system-detector coupling, leading to a protocol that
does not depend on the physical platform used as a quantum
system. This is clearly illustrated by a recent experimental
implantation in an all-purpose quantum computer [12].

All these features make the discussed approach a privileged
tool to study the energy exchange process at the quantum
level. As the Wigner quasiprobability function has allowed us
to arrive at a deeper understanding of quantum phenomena,
the QPDFs could allow us to identify the situations in which
the quantum effects play a key role in the energy exchange.
This would be the first step toward a more complete under-
standing of the energy exchange processes at the quantum
level. In fact, it is not yet clear if exploiting pure quantum
effects can lead to an advantage in the energy exchange.
This is a prerequisite to envision and build energy-efficient
quantum devices that could be extremely important for future
technologies.
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APPENDIX A: NOTATION OF THE HEAT SIGN

The coupling sequence Uχ,ti U U−χ,t j , where U±χ,t =
exp{iχHS (t ) ⊗ HD}, allows us to determine the variation of
the internal energy of the system, i.e., �U = ε f − εi [9,10].
This is the energy supplied to the system; if the system absorbs
energy �U > 0 and if it emits energy, �U < 0. This can be
seen directly by calculating the CGF and the average value, as
discussed in Ref. [9].

On the contrary, the transformation U−χ,ti Udiss Uχ,t j mea-
sures the energy supplied by the system to the environment.
In other words, we are “measuring” q = εi − ε f . Therefore,
if q = εi − ε f > 0, the system emits an energy quantum de-
creasing its energy, while the environment increases its energy
absorbing an energy quantum. If q = εi − ε f < 0, the system
absorbs an energy quantum increasing its energy, while the
environment decreases its energy emitting an energy quantum.

Notice that this is the opposite notation with respect to the
usual one where the q is the energy supplied to the system as
heat. As a consequence, the energy conservation law takes the
form 〈�U 〉 + 〈Q〉 − 〈W 〉 = 0.

APPENDIX B: HEAT PROBABILITY DENSITY
DISTRIBUTION

We use the operator sum representation [25,26]. This is
an effective phenomenological way to describe the dissipative
dynamics induced by the exp(−i�tHSE ) operator. By using
the operator sum representation, we can simplify the calcula-
tion, effectively describing the evolution of the open system
neglecting the complex environment dynamics.

The k operator elements describing the dissipation process
are denoted with {Mk,s}, where s is a time index. The density
operator evolution from time ts to ts+1 is given by ρS (ts+1) =∑

k Mk,sρS (t )(Mk,s)†. Since the problem is time dependent,
we need a different set of operator elements {Mk,l}, where 0 �
l � N is now a new index which is related to the time.

Let us first describe the system evolution under the effect of
a single operator (5). We suppose that the system and detector
are initially described by the factorized density operator ρ0 =
ρS,0 ⊗ ρD = ∑

i0, j0,λ,λ′ ρi0 j0ρλλ′ |i0, p〉〈 j0, λ′|, where ρi0 j0 and
ρλλ′ are the system and detector density matrix elements.
It is convenient to write the system density matrix in the
eigenbasis of the initial Hamiltonian H0

S . In the following it
will be useful to write the evolution in the time-dependent
basis of the time-dependent Hamiltonian Hs

S denoted with
{|is〉}, {| js〉}, {|ns〉} and {|ms〉} and use the simplified notation
U 0 = exp{−i�tH0

S }.
The operator sequence of system evolution exp(−i�tH0

S ),
first system-detector coupling exp(i χ

2 H0
S ⊗ HD), dissipation,

and second system-detector coupling exp(−i χ

2 H0
S ⊗ HD)

leads to the evolution

ρ0 →
∑

ρλλ′U 0
i0i0ρi0 j0 (U 0)†

j0 j0
|i0, λ〉〈 j0, λ

′|

→
∑

ρλλ′ei χ

2 (λεi0 −λ′ε j0 )U 0
i0i0ρi0 j0 (U 0)†

j0 j0
|i0, λ〉〈 j0, λ

′|

→
∑

ρλλ′ei χ

2 (λεi0 −λ′ε j0 )Mk,0
n0i0

U 0
i0i0ρi0 j0 (U 0)†

j0 j0
(Mk,0)†

j0m0

×|n0, λ〉〈m0, λ
′|

→
∑

ρλλ′ei χ

2 [λ(εi0 −εn0 )−λ′(ε j0 −εm0 )]

×Mk,0
n0i0

U 0
i0i0ρi0 j0 (U 0)†

j0 j0
(Mk,0)†

j0m0
|n0, λ〉〈m0, λ

′|,
(B1)

where, at every step, the sum must be considered on every
index in the density matrix element. Notice that because we
have decomposed the initial density operator in the eigenbasis
of H0

S , the first dynamical operator contributed only to phase
factors, e.g., U 0

i0i0 = exp(−i�tεi0 ).
Generalizing this result to the dynamics discretized in

N steps, denoting with ns−1 = l and ms−1 = r and using

the short notation AP1
nN i0

= (�N
s=0Mk,s

nsis
U l

isns−1
) and (AP2

j0mN
)† =

[�N
s=0(U l )†

ms−1 js
(Mk,s)†

jsms
], we have

ρN =
∑
P1,P2

ρλλ′ei χ

2 [λqP1 −λ′qP2 ]AP1
nN i0

ρi0 j0

(
AP2

j0mN

)†

×|nN , λ〉〈mN , λ′|, (B2)
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where AP1
nN i0

is the probability amplitude of path P1 : l →
i0 → n0 → i1 → · · · → nN and AP2

j0mN
is the probability am-

plitude for the path P2 : r → j0 → m0 → j1 → · · · → mN .
They are related to dissipated heat qP1 = ∑

s(εis − εns ) and
qP2 = ∑

s(ε js − εms ), respectively.
From the dynamics of the density operator, we can de-

termine the QCGF and QPDF for the dissipated heat. The
QPDF for the variation of internal energy and work can be
determined by the above one, as discussed in Eq. (10) of the
main text.

APPENDIX C: INTEGER ENERGY EXCHANGES IN HEAT
QUASIPROBABILITY DISTRIBUTION

From Eqs. (10) and (B2), it might seem that the dissipated
heat distribution can have a half integer, i.e., nonclassical
energy peaks. These are typical of pure quantum features that
should not be present in a large classical environment and
have not been observed in the experiments in Ref. [12]. This
apparent contradiction can be understood by a deeper analysis
of Eqs. (B1) and (B2).

We focus on the amplitude-damping channels because they
are the only ones that contribute to the dissipated heat since
they induce transitions between eigenstates of the instanta-
neous Hamiltonian. We discuss the case of a prototypical
two-level system. In this case, the operator elements in the
operator sum representation at time ts in the {|gs〉 , |es〉} basis
are [25,26]

M0,s =
(

1 0
0

√
1 − p

)
,

M1,s =
(

0
√

p
0 0

)
. (C1)

Let us now consider Eq. (B1). The sum has two dissipative
contributions for k = 0 and k = 1 associated with the oper-
ators M0,0 and M1,0, respectively. Since the M0,0 operator is
diagonal, we have that n0 = i0 and m0 = j0 and the exponent
vanishes.

On the contrary, the M1,0 operator has only nonvanishing
off-diagonal matrix elements so that n0 �= i0 and m0 �= j0. In
a two-level system, this implies that the energy variations
are an integer value of the energy gap, i.e., εi0 − εn0 = ±ε

and ε j0 − εm0 = ±ε. When we take the off-diagonal matrix
element of the detector density matrix, we have λ′ = −λ and,
in the exponent, the energy gaps are combined to give 2ε

or 0. Therefore, the exponents in Eq. (B1) are either 0 or
exp (±iχλε) and the fractional contributions cancel out. A
similar derivation can be done for any sequential transitions.
This implies that in the final expressions for the quasiprobabil-
ity heat distribution in Eq. (10), only integer energy exchanges
are present.

APPENDIX D: FAST DISSIPATION REGIME

We discuss the limit of fast dissipation for a two-level
system. The operator elements are given in Eq. (C1) and,
at any time ts, we have that ρS (ts+1) = M0,sρS (ts)M0,s +
M1,sρS (ts)(M1,s)†.

In the case of fast dissipation, i.e., p = 1, the system al-
ways completely relaxes to the instantaneous ground state
of the Hamiltonian. From Eq. (C1), the dissipative operator
elements can be written as M0,s

i j = δigsδ jgs , M1,s
i j = δigsδ jes , and

(M1,s)†
i j = δiesδ jgs .

First, we calculate P(�U ) in this limiting case. Since the
system-detector couplings are performed only at the begin-
ning and at the end of the evolution, the discussion is greatly
simplified. The evolution can be obtained by Eq. (B1), re-
calling the after the dissipation there is no coupling with the
operator exp(−i χ

2 H0
S ⊗ HD). We have∑

ρλλ′ρi0 j0 |i0, λ〉〈 j0, λ
′| →

∑
ρλλ′ei χ

2 (λεi0 −λ′ε j0 )Mk,0
n0i0

ρi0 j0 (Mk,0)†
j0m0

|n0, λ〉〈m0, λ
′|.

(D1)

(Notice that in the last sum, the dissipative operators are at
time t = 0 and summed on the k index.)

With a closer analysis, we have that∑
k M0,s

n0i0
ρi0 j0 (M0,s)†

j0m0
= M0,0

n0i0
ρi0 j0 (M0,0)†

j0m0
+ M1,0

n0i0
ρi0 j0

(M1,0)†
j0m0

. By using the above explicit expression of the
dissipative operators, in the first term all the indices are fixed
to g0, i.e., i0 = j0 = n0 = m0 = g0, while in the second one,
we have i0 = j0 = e0 and n0 = m0 = g0. The full sum in
Eq. (D1) reads∑

ρλλ′ρi0 j0 |i0, λ〉〈 j0, λ
′| →

∑
ρλλ′ ρ̄g0g0 |g0, λ〉〈g0, λ

′|,
(D2)

where

ρ̄g0g0 = ρg0g0 ei χ

2 (λ−λ′ )εg0 + ρe0e0 ei χ

2 (λ−λ′ )εe0 . (D3)

As expected, the system is in the ground state after the
dissipation. The first line is just an alternative writing to point
out the origin of the terms that sum up to ρ̄g0g0 .

Since we are now interested in the internal energy, only
the final state of the system is important, which is when
the second system-detector coupling takes place. The inter-
mediate dynamics is complex, but we know that, because
of the fast relaxation, the system eventually ends up in the
|gN 〉 state. In other terms, the system state |g0〉 undergoes
a sequence of excitations (due to the drive) and relaxations
(due to the environment). However, it eventually relaxes to the
final ground state |gN 〉 so that the effective dynamics is simply
|g0〉 → |gN 〉.

With these observations, we can immediately
write the evolution of (D2) that becomes ρN =∑

λλ′ ρλλ′ ρ̄g0g0 |gN , λ〉〈gN , λ′| and, after the second
system-detector coupling, we obtain

ρN =
∑
λλ′

ρλλ′ ρ̄g0g0 e−i χ

2 (λ−λ′ )εgN |gN , λ〉〈gN , λ′|. (D4)

Assuming that εgN = εg0 and using Eq. (D3), the corre-
sponding probability density function reads (recalling that we
have to take λ′ = −λ = −1 and then calculate the Fourier
transform)

P(�U ) = ρg0g0δ(�U ) + ρe0e0δ[�U − (εe0 − εgN )]. (D5)
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This has an immediate interpretation. If the system starts and
ends in the ground state, there is no variation of internal
energy. This occurs with probability ρg0g0 . If the system starts
in the excited state and ends in the ground state, the energy
variation is εe0 − εgN and this process occurs with probability
ρe0e0 .

More importantly, the half-energy exchanges are not pos-
sible and the allowed exchanges are associated to positive
probabilities (ρg0g0 and ρe0e0 ). Since these were the signature
of a quantum process and were associated with the violation
of the Leggett-Garg inequality, we deduce that the presence of
the environment has made the evolution classical.

With a similar approach, it is possible to calculate the heat
distribution P(Q) in the fast dissipative limit. The general
first evolution and dissipation are given by Eq. (B1). Fol-
lowing the calculation for P(�U ), we impose the constraints
on the M operators that impose i0 = j0 = n0 = m0 = g0 for
the first term and i0 = j0 = e0, n0 = m0 = g0 for the second
term. In this way, we obtain the ground-state matrix element
(|g0, λ〉〈g0, λ

′|) after the dissipation,∑
ρλλ′ρi0 j0 |i0, λ〉〈 j0, λ

′| →∑
λλ′

ρλλ′
(
ρg0g0 + M1,0

g0e0
ρe0e0 (M1,0)†

e0g0
ei χ

2 (λ−λ′ )(εe0 −εg0 )
)

×|g0, λ〉〈g0, λ
′|. (D6)

The first term corresponds to the absence of dissipation since
it is associated with the transformation g0 → g0. The second
is related to the transition e0 → g0 (due to the M1 operators)
and associated to the energy exchange εe0 − εg0 that appears
in the exponent.

The following steps are analogous. After the applica-
tion of the U 1 operator, the new density operator in the
{|i1〉} basis reads

∑
i1, j1

ρλλ′ρi1 j1 |i1, λ〉〈 j1, λ′|, with ρi1 j1 =
U 1

i1i0ρi0 j0 (U 1)†
j0 j1

. Analogously to the above calculation
[Eq. (D3)], the matrix element of the system density operator
after the second dissipation is

ρ̄g1g1 = ρg1g1 + M1,1
g1e1

ρe1e1 (M1,1)†
e1g1

ei χ

2 (λ−λ′ )(εe1 −εg1 ). (D7)

It is interesting to explicitly write this using the above
results. We have four contributions:

U 1
g1g0

ρg0g0 (U 1)†
g0g1

+U 1
g1g0

M1,0
g0e0

ρe0e0 (M1,0)†
e0g0

(U 1)†
g0g1

ei χ

2 (λ−λ′ )(εe0 −εg0 )

+ M1,1
g1e1

U 1
e1g0

ρg0g0 (U 1)†
g0e1

(M1,1)†
e1g1

ei χ

2 (λ−λ′ )(εe1 −εg1 )

+ M1,1
g1e1

U 1
e1e0

M1,0
g0e0

ρe0e0 (M1,0)†
e0g0

(U 1)†
e0e1

(M1,1)†
e1g1

× ei χ

2 (λ−λ′ )(εe1 −εg1 +εe0 −εg0 ). (D8)

The first term corresponds to the transition g0 → g1 and no
dissipated heat. The second one corresponds to the transition
e0 → g0 → g1 and dissipated heat εe0 − εg0 during the first
dissipative process. The third one corresponds to the transi-
tion g0 → e1 → g1 and dissipated heat εe1 − εg1 during the
second dissipative process. The fourth one corresponds to the
transition e0 → g0 → e1 → g1 and dissipated heat εe0 − εg0

and εe1 − εg1 during both of the dissipative processes.
By extension, the full dissipative evolution is the sum over

all the dissipative paths. We obtain

ρN =
∑

P1

ρλλ′ei χ

2 (λ−λ′ )qP1AP1
gN i0

ρi0i0

(
AP1

i0gN

)†

× |gN , λ〉〈gN , λ′|, (D9)

where P1 : i0 → n0 → i1 → · · · → nN and ik, nk = gk, ek .
There are important differences between the result for any

dissipation strength in Eq. (8) and this one. First, in Eq. (D9),
only the diagonal terms of the density operator appear ρi0i0 .
This implies that the effect of the initial coherences is de-
stroyed by the presence of the environment. Second and more
important, there is only a path P1 in the path summation.
The second path P1 which should cause the quantum interfer-
ence in the evolution disappears because of the environmental
effect. This means that the term AP1

gN i0
ρi0i0 (AP1

i0gN
)† can be in-

terpreted as the probability to go from i0 to gN . This is not
possible with different paths P1 and P2.

The corresponding probability density distribution is

P(Q) =
∑

P1

AP1
gN i0

ρi0i0

(
AP1

i0gN

)†
δ[Q − qP1 ]. (D10)

Since AP1
gN i0

ρi0i0 (AP1
i0gN

)† are now probabilities, this is a positive
probability density function.

As discussed in the main text, the protocol to determine
the QPDF of the work is similar to the one used in the heat
apart from two additional system-detector couplings at the
beginning and the end of the evolution. Therefore, the P(Q)
can be immediately obtained from Eq. (D11),

P(W ) =
∑

P1

AP1
gN i0

ρi0i0

(
AP1

i0gN

)†
δ
[
Q − (

qP1 − εe0 + εgN

)]
.

(D11)
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