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Universal quantum operation of spin-3/2 Blume-Capel chains
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We propose a logical qubit based on the Blume-Capel model: A higher-spin generalization of the Ising chain
which allows for an on-site anisotropy-preserving rotational invariance around the Ising axis. We show that
such a spin-3/2 Blume-Capel model can also support localized Majorana zero modes at the ends of the chain.
Inspired by known braiding protocols of these Majorana zero modes, upon appropriate manipulation of the
system parameters, we demonstrate a set of universal gate operations which act on qubits encoded in the doubly
degenerate ground states of the chain.
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I. INTRODUCTION

A single spin-1/2 particle provides a natural two-level
system to support a qubit. According to the Loss-DiVincenzo
realization of such a qubit [1], pulsed control of electric and
magnetic fields enables one-qubit and multiqubit quantum
gates which are sufficient for universal quantum computation.
In this setup, and most other setups for large-scale quan-
tum computing, pulsing the controllable parameters imparts a
dynamical phase which enables conventional gate control. Al-
ternatively, adiabatic and cyclic control of the magnetic field
imparts a geometric phase, i.e., a non-Abelian Berry phase or
a holonomy [2], in addition to the dynamical phase. Exploiting
the holonomies to perform a quantum operation is known as
holonomic quantum computing [3]. As compared to dynamic
gates, geometric gates may (but do not necessarily [4]) benefit
from tolerance to fluctuations [5]. For a spin 1/2, the group
generated by such holonomies is the Abelian U(1) group [6]
and is insufficient for universal quantum computation.

To achieve universal quantum computation the holonomy
group must be non-Abelian and necessitates both (i) two or
more degenerate states and (ii) auxiliary states; these are
known as dark and bright states, respectively, in the trapped
ion literature [7]. Consequently, realization of a universal set
of quantum gates generated by the holonomy necessitates a
system with more than two levels. Although there are several
systems in which geometric control of qubits has been real-
ized, we restrict our interest to spin-based qubits.

One route to realizing this geometric control in spin sys-
tems is higher-spin particles [8]. In particular, it is known
that adiabatically controlling the anisotropy of spin-3/2 parti-
cles generates an SU(2) holonomy group [9,10]. In this case,
because the anisotropies guarantee time-reversal symmetry,
there are two pairs of degenerate states, either of which can
be used to furnish the physical qubit basis while the others are
auxiliary and facilitate operation. These states can be realized
as heavy holes in quantum dots whereby an electric field,
which couples to the anisotropy via the Stark effect or the

quadrupole moment of the field, can control the anisotropies
and thereby perform any single-qubit quantum gate [11,12].
Moreover, it has recently been shown that entanglement of
such holes can be geometrically generated when they are
simultaneously coupled to an electromagnetic cavity [13].

Rather than considering larger spins, auxiliary states can
be provided by more spins as in, for instance, the Ising spin-
1/2 chain. In such a system, it is convenient to express the
spins as nonlocal fermions [14] which, for a chain of finite
length, host Majorana zero modes (MZMs) in the fermionic
representation. As exchanging two MZMs generates a quan-
tum operation [15], an analogous manipulation of the Ising
chain provides a nonuniversal set of holonomic quantum gates
[16] which must be aided by dynamic operations to real-
ize universal quantum control. For instance, in Ref. [17] the
authors considered a spin-1/2 Ising chain in which the accu-
mulation of geometric phase, upon manipulating the direction
of the anisotropic exchange interaction, was supplemented
by an applied magnetic field to perform single-qubit quan-
tum operations. A pulsed exchange interaction between spin
chains imparted a dynamic phase, sufficient to entangle two
qubits.

In an effort to realize an entirely geometric manipulation
of a spin chain, we study a higher-spin generalization of a
spin-1/2 Ising chain known as the Blume-Capel model which
includes an on-site anisotropy along the Ising axis. Like the
spin-1/2 Ising chain, we find that spin-3/2 chains with rota-
tional symmetry also support MZMs localized to the ends of
the chain. Moreover, we find that a single-site chain, i.e., an
isolated spin-3/2 state, also hosts zero-energy MZMs which
can be effectively braided by adiabatic control of the on-
site anisotropy. By exploiting this Majorana representation,
we discover an entirely geometric protocol for single- and
two-qubit operations using the spin-3/2 states. These proto-
cols can be extended from qubits furnished by one spin-3/2
particle to chains of spin-3/2 particles, thus providing an en-
tirely geometric protocol for universal quantum computation
of high-spin chains.
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We emphasize that, while the Majorana representation
is convenient for constructing the sufficient adiabatic gates
to perform universal quantum computation, the topological
protection is not guaranteed. First, similar to the spin-1/2
chain but unlike p-wave superconductors [18], magnetic-field
fluctuations along the Ising axis can spoil the state of the
qubit. Second, topological protection of effective braiding is
guaranteed so long as the anisotropy can be reasonably set
to zero, i.e., the anisotropies depend exponentially on the
external parameters that control them [19]. While the coupling
of MZMs implemented in a p-wave superconductor depends
exponentially on their separation, this is unlikely the case for
the spin-3/2 implementation of MZMs.

Our paper is organized as follows. In Sec. II we show how
a single spin-3/2 state can be used as a qubit and, moreover,
that it has a convenient description in terms of MZMs. We
continue by showing this idea can be generalized to a chain of
spin-3/2 states in Sec. III. In Sec. IV we discuss the quantum
operation. We consider the necessary ingredients to extend our
system to higher spins in Sec. V. We briefly summarize in
Sec. VI.

II. SPIN-3/2 QUBIT

Before discussing a chain of spins, we consider a single
spin 3/2 and the means to utilize it as a qubit. Our approach
will be to decompose the generators of rotation of spin into
tensor products of Pauli matrices Si and σ i, respectively, for
i = x, y, z. The latter can be written in terms of Majorana
operators. Using braiding or partially braiding Majorana zero-
energy modes realizes a non-Abelian geometric phase which
can be used as a qubit gate and reinterpreted in the spin
language.

In order to operate and initialize a spin 3/2 as a qubit, we
suppose there exists a controllable on-site anisotropy which
takes the rather general form HA = −∑5

a=1(da�a). Here the
anisotropies, quadratic in the spin-3/2 generators of rota-
tion, can also be understood as tensor products of spin-1/2
matrices
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where da are the effective weights of the anisotropies. Be-
cause the anisotropy couples to the electric field through
the Stark effect [11] or the quadrupole component [12], we
henceforth assume time-dependent control of da, which is
essential to the operation of the qubit. To initialize our sys-
tem, we require a magnetic field with magnitude h along the
x axis, HB = −(hSx ) = −h(

√
3σ x

2 + σ x
1 σ x

2 + σ
y
1 σ

y
2 )/2. Thus,

FIG. 1. Schematic of two spin-3/2 particles represented as Ma-
jorana fermions. Coupling of Majorana fermions within the same
particle is controlled by the on-site anisotropy (highlighted in blue,
green, and red), while the coupling between interspin Majorana
fermions (highlighted in magenta) is controlled by the product of
spin and anisotropy operators.

the full combined Hamiltonian describing the system is
H3/2 = HA + HB.

The four eigenstates of Sz, |↑〉, |↓〉, |�〉, and |�〉, with
eigenvalues 3/2, −3/2, 1/2, and −1/2, respectively, are
simultaneously eigenstates of �5. In particular, 〈�5〉 = 1
(〈�5〉 = −1) with the expectation values taken with respect
to the state |↑〉 or |↓〉 (|�〉 and |�〉). The spin-3/2 qubit basis
is furnished by |±3/2〉 = (|↑〉 ± |↓〉)/

√
2. To initialize our

system to |+〉, we begin with a large magnetic field and zero
on-site anisotropy da = 0 so that the spin relaxes to the posi-
tive x axis, |→〉 = (|↑〉 + |√3�〉 + √

3|�〉 + |↓〉)/2
√

2. Upon
decreasing the magnetic field, h → 0, and increasing the
z-axis anisotropy, d5 > 0, the spin becomes a symmetric su-
perposition of the high spin aligned parallel and antiparallel
to the z axis, (|↑〉 + |↓〉)/

√
2. We emphasize that a magnetic

field is only necessary to initialize the system but is otherwise
absent, i.e., when changing da. Consequently, when operating
the qubit, because HA preserves time-reversal symmetry, the
Kramers theorem guarantees two pairs of degenerate states
split by

√∑
a |da|2.

We perform a Jordan-Wigner mapping [14] and de-
compose the resultant complex fermions into Majorana
fermions wherein σ x

j = iγ jγ
′
j , σ

y
j = γ ′

j

∏
k< j (iγkγ

′
k ), and

σ z
j = γ j

∏
k< j (iγkγ

′
k ). Consequently, the anisotropies [Eq. (1)]

can likewise be fermionized to obtain

�1 = −iγ1γ2γ
′
2, �2 = −iγ ′

1γ
′
2, �3 = γ ′

1,

�4 = −iγ1γ
′
1, �5 = −iγ ′

1γ2. (2)

Clearly, when there is only z axis anisotropy, i.e., d5 	= 0
and da = 0 for a 	= 5, [HA, γ1] = [HA, γ ′

2] = 0 and γ1 and γ ′
2

are MZMs. Moreover, |±3/2〉 are eigenstates of iγ1γ
′
2 with

eigenvalues ±1.
Focusing on �2, �4, and �5, the anisotropy has the struc-

ture of an inner MZM coupled to three outer MZMs, known
in the literature as a Y junction (Fig. 1) [20]. Borrowing
the protocol from Ref. [19], one can braid two uncou-
pled MZMs: Consider d1 = d3 = 0 and parametrizing the
remaining magnitudes of anisotropy by 
d = (d2, d4, d5) =
d[cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ )]. Consider an initial
Hamiltonian with θ = φ = 0, i.e., HA with d5 	= 0 and the re-
maining da = 0, and an initial state |ψ〉 = α|+3/2〉 + β|−3/2〉
which is a ground state of that Hamiltonian. We proceed in
three steps: (i) Rotate 
d about the y axis so that θ = 0 → θ =
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FIG. 2. Schematic of the changes in coupling necessary to braid
MZMs. (a) For a single spin-3/2 qubit and starting from d5 = d and
the rest of the anisotropies zero, we adiabatically perform the fol-
lowing changes when going from the leftmost panel to the rightmost
panel: (i) d5 → 0 and d2 → d , (ii) d2 → 0 and d3 → d , and (iii)
d3 → 0 and d5 → d . (b) Analogously to braid MZMs residing in
different spin-3/2 qubits and starting from d5 = d , d̃5 = 
, and the
rest of the anisotropies zero, we adiabatically perform the following
changes when going from the upper leftmost panel to the lower
rightmost panel: (i) d5 → 0 and d3 → 
, (ii) d3 → 0 and D → 
,
and (iii) D → 0 and d̃5 → 
.

π/2, (ii) rotate 
d about the z axis so that φ = 0 → φ = ϕ, and
(iii) rotate 
d so that it once again points along the z axis. Here
d̂ = 
d/d traces out a solid angle on the unit sphere, Z =
ϕ [Fig. 2(a)]. This results in the geometric phase of Z/2
imprinted on the state: |ψ〉 → |ψ〉 = exp(iZ/2)α|+3/2〉 +
exp(−iZ/2)β|−3/2〉. That is, this operation corresponds to
a rotation by angle Z around the z axis of the Bloch sphere,
Rz(Z ), of a qubit defined on the basis |±3/2〉. Although we
have chosen a specific path that d̂ traces out, the operation is
independent of the path for any solid angle traced out and rate

independent so long as the inverse time of operation is much
smaller than | 
d|. For Z = π/2, this operation corresponds
precisely to braiding MZMs γ1 and γ ′

2.
It is convenient to continue to use this MZM picture when

attempting to entangle states using a similar protocol. Con-
sider an additional spin-3/2 site also described by HA; as a
point of notation, we use a tilde to distinguish parameters and
operators of the second spin from the first spin. Because of the
nonlocal string operator, the anisotropies on the second site,
after the Jordan-Wigner transformation, take the following
form:

�̃1 = iγ1γ
′
1γ2γ

′
2γ̃1γ̃2γ̃

′
2, �̃2 = −iγ̃ ′
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′
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1γ̃2. (3)

Because �̃2, �̃4, and �̃5 take that same form as their counter-
parts without tildes, it is clear that the single-qubit operation
Rz(Z ) can be performed on the second spin 3/2.

To entangle two qubits, one can braid two MZMs orig-
inating from different spins, which requires a coupling
between them. While there are a number of couplings
that could enable entanglement, we find that the cou-
pling between γ ′

2 and γ̃ ′
1, i.e., HIsing = iDγ̃ ′

1γ
′
2 = D[Sz

1 −
(Sz

1)3]�̃3, in addition to anisotropy control is sufficient.
Consider d1 = d2 = d3 = d4 = d̃1 = d̃3 = 0 and d5 	= 0.
The remaining anisotropies and D are dynamically con-
trolled and parametrized according to 

 = (D, d̃4, d̃5) =

[cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ )]. Starting with θ =
φ = 0 and proceeding analogously to the single-spin opera-
tion we (i) rotate 

 about the y axis so that θ = 0 → θ = π/2,
(ii) rotate 

 about the z axis so that φ = 0 → φ = ϕ, and (iii)
rotate 

 so that it once again points along the z axis. Here

̂ = 

/
 traces out a solid angle I over the unit sphere
embedded in the space of parameters D, d̃4, and d̃5; this
change in coupling is schematically shown Fig. 2(b). We find
that this operates as an Ising ZZ gate in the basis of |↑〉 and
|↓〉,

⎛
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or as an Ising XX gate in the |±3/2〉 basis:⎛
⎜⎝

|+3/2〉|+̃3/2〉
|+3/2〉|−̃3/2〉
|−3/2〉|+̃3/2〉
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0 cos(I ) −i sin(I ) 0
0 −i sin(I ) cos(I ) 0

−i sin(I ) 0 0 cos(I )
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⎞
⎟⎠. (5)

Although these operations are conveniently encoded in
partially braiding MZMs, they are not sufficient for universal
control of a qubit encoded by |±3/2〉. Nonetheless, one may
utilize Ha to encode employing the protocol introduced in
Ref. [21]. In particular, to generate a rotation around the
y axis of the Bloch sphere by an angle ϕ, d3 = d5 = 0

while

d2 = − cos(ϕ) sin(�),

d3 = sin(2ϕ) sin(�/2)2,

d5 = sin(ϕ)2 + 2 cos(2ϕ) cos(�) + 2 cos(�). (6)
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Here � is a function of time which changes from 0 to 2π .
Again, because this is a geometric phase, the details of how
� changes are unimportant so long as it changes adiabati-
cally. Note that this does not have a convenient description
in terms of MZMs as �3 = γ ′

1. This operation with the single-
and two-qubit operations described previously is sufficient for
universal quantum computation.

Alternatively, one could redefine a single qubit to be two
spin-3/2 particles in which a qubit is defined on the sub-
space |↑〉|↓̃〉 and |↓〉|↑̃〉. The two-qubit protocol described
above would allow a geometric navigation to any point on the
Bloch sphere. A two-qubit protocol in the new basis could be
achieved by coupling two spin-3/2 particles constituted in two
different qubits.

III. SPIN-3/2 BLUME-CAPEL MODEL

In this section we generalize the encoding of a qubit from
a single spin 3/2 to a chain. Our starting point is a generaliza-
tion to the well-known Blume-Capel model [22],

HBC = − J

(
N−1∑
i=1

Sz
i Sz

i+1

)
− K

N∑
i=1

(
Sz

i

)2

−
N∑
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(
hiS

x
i

) +
5∑

a=1

(da�a), (7)

which generalizes the Ising chain by including an on-site
anisotropy, parametrized by K , in addition to anisotropic ex-
change, parametrized by J . Moreover, we have included a
site-dependent transverse magnetic field of magnitude hi and
generic anisotropy on the first site of the chain, similar to
Sec. II, where the �a are defined analogously by Eq. (1).
While the latter two terms in Eq. (7) will be convenient for
quantum operation (Sec. IV), we consider hi = da = 0 for the
remainder of this section.

In Eq. (7), Sz
i is the generator of rotation around the z axis

of the spin at site i and, for concreteness, we focus on the
S = 3/2 case wherein

Sz =

⎛
⎜⎝

3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

⎞
⎟⎠. (8)

The spin-3/2 case is convenient because it can be under-
stood in terms of Pauli matrices: One spin-3/2 operator can
be mapped into a tensor product of two spin-1/2 generators
of rotation, Sz = σ z ⊗ 1/2 + 1 ⊗ σ z or, for the chain, Sz

i =
σ z

2i−1/2 + σ z
2i. Accordingly, Eq. (7) transforms from a chain

of spin-3/2 particles to a ladder of spin-1/2 particles (Fig. 3),
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z
2i+2 + 4σ z

2iσ
z
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)
. (9)

This equation can be rewritten as an interacting spinless
fermion system using the Jordan-Wigner mapping [14] σ z

j =
[
∏

i< j (1 − 2ni )](c j + c†
j ) with n j = c†

j c j . Because each term

FIG. 3. A spin-3/2 Blume-Capel model with on-site anisotropy
K and exchange interaction J can be mapped onto a ladder of
exchange-coupled spins 1/2, i.e., a quantum Ising model coupling
spins up to three sites apart. The odd sites (white) couple to even
sites (black) on the same rung with strength 4K and to sites one apart
with strength 2J . Odd sites couple to nearest-neighbor odd (even)
sites with strength J (4J).

in Eq. (9) is in general a nonlocal product of Pauli matrices,
they can be written as

σ z
i σ z

j = (c†
i − ci )

⎡
⎣ ∏

i<k< j

(1 − 2nk )

⎤
⎦(c†

j + c j ), (10)

where we have assumed without loss of generality that
j > i. We can further decompose the complex fermions
into Majoranas according to the definition c j = (γ j + iγ ′

j )/2

wherein c j + c†
j = γ j , c j − c†

j = iγ ′
j , and 1 − 2n j = iγ jγ

′
j .

The products of Pauli matrices take the form σ i
zσ

j
z =

−iγ ′
i γ j

∏
i<k< j (iγkγ

′
k ). Because the terms in Eq. (9) follow

this form with 1 � i < j � 2N , the first and last Majoranas
γ1 and γ ′

2N , respectively, are absent from the the Hamiltonian
and are therefore zero-energy operators that are localized to
the ends of the chain; these are the MZMs.

The degenerate ground states of this system are when all
the spins point parallel or antiparallel to the z axis, which
we denote by |↑〉 and |↓〉, respectively. The degenerate states
can be characterized by the occupation of the zero-energy
complex fermion composed of the MZMs, f = (γ1 + iγ ′

N )/2.
The physical meaning of these states is elucidated by noting
that

1 − 2 f † f = iγ1γ
′
N = σ z

1

[∏
j<N

(− σ x
j

)](− iσ y
N

)

= σ z
1

[∏
j�N

(− σ x
j

)](− σ z
N

) = Pσ z
1σ z

N , (11)

with P a π rotation at each site in the chain. That is, this oper-
ator transforms between the ground states, (1 − 2 f † f )|↑〉 =
|↓〉 and (1 − 2 f † f )|↓〉 = |↑〉, i.e., the eigenstates of this op-
erator are |±〉 = (|↑〉 ± |↓〉)/

√
2 with f † f |±〉 = ±|±〉.

While the MZMs γ1 and γ ′
N are constructed in the absence

of a magnetic field, we find that for a sufficiently small ho-
mogeneous magnetic field hi = h � J, K there exist MZMs
dressed by the magnetic field (see Appendix A). An analogous
chain with a periodic boundary condition is likewise doubly
degenerate; however, there exists no such fermionic modes
f and f † whose occupancy can be used to characterize the
ground state.
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FIG. 4. Numerical simulation of our initialization procedure. Be-
ginning in a high magnetic field on all the sites, hi = 10J , and
K = d5 = 0, the anisotropy (magnetic field on the first site) is lin-
early ramped up (down) to d5 = 10J (h1 = 0). Linearly ramping
down the magnetic field on subsequent sites initializes the state
into |+〉 = (|↑〉 + |↓〉)/

√
2. Here (t f − ti )J = 1500, where we have

taken h̄ = 1.

IV. QUANTUM OPERATION

In this section we detail the initialization and operation of
a qubit furnished by the states |±〉. Although our formulation
of quantum operation is similar to the spin-1/2 Ising chain
[17], we take advantage of the on-site anisotropy available
in higher-spin systems rather than relying on the anisotropy
in the exchange interaction. Critical to the initialization and
operation of the qubit is our ability to decouple the spin at
the first site from the remainder of the chain. This is achieved
by systematically increasing the transverse magnetic field as
we describe below [17]. While we focus on a three-spin chain
below, the procedure can be straightforwardly generalized to
a chain of any length.

A. Initialization

To initialize our system to |+〉, we begin with a large
magnetic field on all the sites, hi/J  1 with zero on-site
anisotropy da = 0, so all the spins point along the positive
x axis, |⇒〉 = |→ →→〉 with Sx

i |→〉 = (3/2)|→〉. Upon de-
creasing the magnetic field on the first site, h1 → 0, and
increasing the z axis anisotropy, d5 > 0, the first spin becomes
a symmetric superposition of the spin aligned parallel and
antiparallel to the z axis, (|↑〉 + |↓〉)|→ →〉/√2. Note that
because hi is large, 〈Sz

2〉 = 0, so the first site is effectively
decoupled from the rest of the chain; in anticipation of sub-
sequent operations, we note that this will be a convenient
position in parameter space in which to perform gate op-
erations. Upon decreasing the magnetic field on the second
site, anisotropic exchange interaction aligns that site parallel
to the first site, (|↑↑〉 + |↓↓〉)| →〉/√2. Proceeding analo-
gously on subsequent sites, the system reaches the state |+〉 =
(|↑↑↑〉 + |↓↓↓〉)/

√
2. Indeed, upon numerically simulating

this manipulation of parameters, the state |→〉 which is ini-
tially orthogonal to |+〉, 〈+|ψ (t0)〉 = 0, is manipulated into
the state |+〉, 〈+|ψ (t f )〉 = 1 (Fig. 4).

B. Single-qubit gates

Operation by a quantum gate can be likewise obtained
by adiabatic control of our parameters. The essence of our
operation relies on the ability to dynamically control the
anisotropies of the first site to exploit the non-Abelian holon-
omy of the spin-3/2 particle as in Sec. II.

Consider a state that has been initialized to |+〉 and da =
hi = 0. Similar to the initialization procedure, let us slowly
ramp up the magnetic field to a large positive value on all
the sites except the first site, hi  J for i > 1. As the ac-
quired Berry phase is zero, the state adiabatically transforms
to (|↑〉 + |↓〉)|→ →〉/√2. As the first site is now decoupled
from the rest of the chain, we focus only on that state and,
for notational convenience, only indicate the state of the first
site. Exploiting the single-qubit operations of a single spin-
3/2, we transform |+3/2〉 to any superposition of the basis
states α|+3/2〉 + β|−3/2〉. It will be convenient to write this
state equivalently as λ|↑〉 + κ|↓〉 for λ = (α + β )/

√
2 and

κ = (α − β )/
√

2. Analogous to the initialization of the qubit,
we slowly ramp down the magnetic field while ramping up the
anisotropy on the second site so that (λ|↑〉 + κ|↓〉)|↑↑〉 →
(λ|↑↑〉 + κ|↓↓〉)|→〉. Applying the same procedure to the
third site results in the state λ|↑↑↑〉 + κ|↓↓↓〉 = α|+〉 +
β|−〉. That is, because we have access to any state on the
Bloch sphere defined by |±3/2〉, we have access to any state
on the Bloch sphere defined by |±〉.

C. Two-qubit gate

Consider two spin chains described by the generalized
Blume-Capel model in a transverse magnetic field, described
by H defined in Sec. III. As a point of notation, we use a tilde
to distinguish parameters and operators of the second chain
from the first chain. It will be convenient to consider a product
state of the two chains |⇑〉|⇑̃〉 = (|+〉| + |−〉)(|+̃〉 + |−̃〉)/2
which is related to the parity eigenstates by a π/2 rotation
around the y axis.

Similar to the single-qubit operations, we ramp up the
transverse magnetic field on all but the first spin sites to de-
couple the former from the remainder of the chain. This leaves
the system described by two copies of HA with da = d̃a = 0
for a 	= 0 and d5 = d̃5 in general not zero and in the product
state |↑〉|↑̃〉. In order to couple the two spins, we use the
interaction between the first two sites given by HIsing and the
protocol for the spin-3/2 qubit to apply the Ising XX gate
on two spin-3/2 states so that |↑〉|↑̃〉 → exp(−iI/2)|↑〉|↑̃〉.
Ramping down the magnetic field on sites i > 1 and ramping
up the anisotropy d5 in both chains, the state transforms to
exp(−iI/2)|↑〉|⇑̃〉. Similar to the transformation made be-
tween Eqs. (4) and (5), this is an Ising XX gate on the basis of
products states of |±〉 and |±̃〉.

V. DISCUSSION

Because the Ising XX gate along with rotations about
any axis of the Bloch sphere of individual qubits allows for
universal quantum computation [23], our outlined procedure
offers universal quantum control of qubits defined in the par-
ity sectors of the generalized Blume-Capel model. Although
one can obtain a similar manipulation of the spin-1/2 Ising
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chain, the spin-3/2 Blume-Capel model offers of quantum
operation by geometric manipulation. The potential advantage
of geometric gates is that they do not suffer from timing
errors to which dynamical phases induced by pulsed gates
are susceptible. However, within the literature (see Ref. [4]
and references therein) there are conflicting reports as to the
degree by which geometric operation benefits over its dynami-
cal counterpart. Simulating error in our system could compare
the operational advantage of geometrically controlled gates
(Sec. III) versus some set of pulsed gates, e.g., those described
in Appendix B. A full-scale simulated comparison of these
methods is beyond the scope of our analysis but could be
characterized in a follow-up study.

A. Physical realization

One system that is often targeted with adiabatic control
is spin-3/2 holes in semiconductors. Adiabatically controlled
electric fields have been theoretically proposed to span the
Bloch sphere [11,12] of a spin-3/2 qubit, in the sense of
Sec. II, and some coherent electrical control of high-spin
nuclei has been experimentally realized [24]. Moreover, co-
herent photons can mediate adiabatic entanglement of two
spin-3/2 holes in a microwave cavity [13]. These tools suggest
that HA and HIsing could be realized using electric fields acting
on spin-3/2 holes in semiconductors and this system would
be a good candidate for a spin-3/2 qubit as described in
Sec. II. However, constructing a chain of such spins could
prove technically difficult.

Perhaps a more natural candidate to realize a high-spin
chain is a molecular magnet. Recently, a few molecules have
been proposed to host MZMs [25]. These molecules are
chains of high spins with a large on-site anisotropy. While
they are not predicted to have anisotropic exchange, we ex-
pect that targeting these molecules for simulation could yield
molecular chains that are well described by the Blume-Capel
Hamiltonian or its generalization and should host MZMs as
per the discussion in Sec. III. Moreover, in a different class
of molecular magnets, several promising experiments have
shown a spectral dependence on the electric field [26–28],
which implies that the anisotropy can be controlled by care-
ful application of the electric field. More recent experiments
have shown that such an electric field directly modifies
the anisotropy in a holmium-based nanomagnet [29]. This
coupling to the electric field can be as strong as holes in semi-
conductors [26,29]. Consequently, we propose a setup similar
to Ref. [13] wherein molecules hosting chains of spin-3/2
rather than spin-3/2 holes are coupled via a microwave cavity.

Because our spin-3/2 chain can be transformed into a spin-
1/2 ladder (Fig. 3), a quantum computer or quantum simulator
could support HBC and HIsing. While braiding of MZMs in
spin-1/2 Ising chains was shown on commercial quantum
computers [30] and in photonic systems [31], braiding of spin
in our system could likewise be realized.

B. Higher-spin chain

Although we have restricted ourselves to the spin-3/2
chain, fermionization of the Blume-Capel model can be gen-
eralized for larger spins in which |S| = (2M − 1)/2 for any

natural number M in which Sz can written as M spin-1/2
states:

Sz = 2M
M∑

i=1

2i−1(1⊗)i−1σ z(⊗1)M−i. (12)

Consequently, the Blume-Capel model described by Eq. (7)
generalizes to a ladder with M legs. For a chain of N sites
there are equivalently M × N spin-1/2 sites. Notice that be-
cause Sz is linear in Pauli matrices, the product of any two
spin operators, on either the same site or adjacent sites, will
be quadratic in spin-1/2 operators on differing sites, i.e., of
the form σ i

zσ
j

z for i 	= j, which commutes with both σ 1
z and

Pσ NM
z using the generalization P = ∏NM

j=1(−σ
j

x ). Thus, we
find the persistence of MZMs at zero energy for higher-spin
generalizations of the Blume-Capel model which satisfy |S| =
(2M − 1)/2. Defining a complex fermion analogous to the
previous section, we can similarly define the ground states
|±〉 = |↑〉 ± |↓〉. Moreover, any anisotropy of even order in
Sz preserves the energy of the MZMs. As a direct result, a
single large spin with anisotropy even in Sz will support two
zero-energy MZMs. Although generalizing the braiding of
these MZMs and subsequent geometric manipulation of the
quantum states is beyond the scope of our present analysis,
should a single spin support quantum operation, an analogous
manipulation of the chain parameters should naturally endow
a universal set of quantum operation in the parity basis of the
chain.

VI. CONCLUSION

In consideration of the Blume-Capel model, we have found
that some higher-spin chains are capable of supporting MZMs
whose occupation naturally defines the basis for a qubit.
Guided by the braiding of MZMs, we developed a protocol
for universal quantum computation of these qubits by holo-
nomic quantum computing. Having identified spin-3/2 states
with MZMs, the vast literature of MZMs can now be directly
applied to single spin-3/2 states and their chains. Specifically,
methods to encode or read MZMs and apply error correction
can now be mapped into the spin-3/2 description. We antic-
ipate this to guide the utilization of higher-spin chains for
hosting quantum information.
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APPENDIX A: MZMS IN THE MAGNETIC FIELD

Similar to the the spin-1/2 Ising chain, we show that
the MZMs persist for a sufficiently small transverse mag-
netic field in the Blume-Capel model. Consider the spin-3/2
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Blume-Capel Hamiltonian in a transverse magnetic field,

Hh = −J

(
N−1∑
i=1

Sz
i Sz

i+1

)
−

N∑
i=1

K (Sz
i )2 − h

N∑
i=1

Sx
i . (A1)

In the absence of a magnetic field, the eigenstates of the
system can be enumerated by the tensor product of the spin
states localized to each site. The ground states |↑〉 have
energy E0/S2 = −(N − 1)J − NK . The lowest-energy exci-
tation is a domain wall with maximal spin, e.g., of the form
· · · ↑↑↓↓ · · · , with energy E0/S2 = −(N − 3)J − NK . That
is, the spectrum is gapped by an energy of 2JS2. Moreover,
for a small magnetic field, the ground energy and first excited
states are unchanged by the application of a magnetic field
to order h/K and h/J . For a sufficiently large magnetic field,

the system is paramagnetically ordered along the direction of
the applied magnetic field. Therefore, there exists a critical
magnetic field hc at which the gap vanishes [32]. Below hc,
we can construct dressed localized edge operators commuting
with the Hamiltonian, i.e., the many-body generalization of γ1

and γ ′
N , that can be constructed explicitly using quasiadiabatic

continuation.
Following the recipe given in Ref. [33], to leading order in

h, the dressed MZM is γ1 + ih[D0, γ1], where

D0 = i
∫ ∞

−∞
dt F (2JS2t )eiH0t

(
N∑

j=1

Sx
j

)
e−iH0t (A2)

and F (t ) is a filter function defined by

∫ ∞

−∞
dt eit F (2JS2t ) = − 1


for || � 1. (A3)

Because [γ1, H0] = 0, we first evaluate

i[Sx
1, γ1] = i

⎛
⎜⎜⎝

0
√

3 0 0
−√

3 0 −2 0
0 2 0

√
3

0 0 −√
3 0

⎞
⎟⎟⎠ = M1 + M2 + M3 + H.c.,

M1 =

⎛
⎜⎜⎝

0
√

3i 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, M2 =

⎛
⎜⎝

0 0 0 0
0 0 −2i 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, M3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0

√
3i 0

0 0 0 0

⎞
⎟⎟⎠. (A4)

The problem amounts to finding the time evolution of these matrices with respect H0. We find that

M j (t ) = exp(iω jt )M j ⊗ exp(iJSzt ), (A5)

where ω1 = 2K , ω2 = 0, ω3 = −2K , and Mj and Sz act on the spin of the first and second sites, respectively. We can evaluate
the integral in Eq. (A2),

i[D0, γ1] = i
∫ ∞

−∞
dt F (2JS2t )

(
3∑

i=1

eiωitMi ⊗ exp(iJSzt ) + H.c.

)

= −
[

3∑
i=1

4∑
j=1

1

ωi + mjJ
Ni ⊗ 1 j

]
, (A6)

where N j = i(M j − M†
j ) and (1i )mn = 1 for m = n = i and zero otherwise. We can rewrite these matrices in terms of

Kronecker products of Pauli matrices,

N1 =
√

3

2
σ y ⊗ (1 + σ z ), N2 = σ x ⊗ σ y − σ y ⊗ σ x, N3 =

√
3

2
σ y ⊗ (1 − σ z ),

11 = 1

4
(1 ⊗ 1 + σz ⊗ 1 + 1 ⊗ σz + σz ⊗ σz ), 12 = 1

4
(1 ⊗ 1 − σz ⊗ 1 + 1 ⊗ σz − σz ⊗ σz ),

13 = 1

4
(1 ⊗ 1 + σz ⊗ 1 − 1 ⊗ σz − σz ⊗ σz ), 14 = 1

4
(1 ⊗ 1 − σz ⊗ 1 − 1 ⊗ σz + σz ⊗ σz. (A7)

Collecting terms and simplifying, we can rewrite Eq. (A6) as

i[D0, γ1] = 1

16
[
(2K )2 − (

3J
2

)2]
[

2Kσ z
1σ

y
2

(
1 + σ

y
3 σ z

4

) + 3J

2
σ

y
2

(
σ z

3 + σ z
4

)] + 1

3J

[
σ x

1 σ
y
2

(
σ z

4 − 2σ z
3

) − σ
y
1 σ x

2

(
2σ z

3 − σ z
4

))]

+ 1

16
[
(2K )2 − (

J
2

)2][2Kσ z
1σ

y
2

(
1 − σ

y
3 σ z

4

) + J

2
σ

y
2

(
σ z

3 − σ z
4

)]
. (A8)
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Upon converting the Pauli matrices to Majoranas, we find that the dressed MZM is

γ1 + h

16
[
(2K )2 − (

3J
2

)2]
[

2iKγ ′
1γ

′
2(1 + iγ ′

3γ4) − 3iJ

2
γ2γ3(1 + iγ ′

3γ4)

]
− ih

3J
γ1γ3(1 − iγ ′

1γ
′
2)(2 − iγ ′

3γ4)

+ h

16
[
(2K )2 − (

J
2

)2][2iKγ ′
1γ

′
2(1 − iγ ′

3γ4) − iJ

2
γ2γ3(1 − iγ ′

3γ4)
]
. (A9)

While this expression is complicated, it shows the weight of
the dressed MZM on the first and second sites. An analogous
expression can be obtained for the dressed γ ′

N .

APPENDIX B: PULSED GATE IMPLEMENTATION

Alternatively to geometric control, some operations can be
performed by pulsing external parameters to apply quantum
gates. In particular, consider one chain in the state |↑〉 whose
first site is in a controllable magnetic field along the Ising axis,
HB = BSz

1. By pulsing this magnetic field for a time tZ , the
initial state transforms as |↑〉 → exp(i3Btz/2)|↑〉. Similarly,

|↓〉 → exp(−i3Btz/2)|↓〉, so this is a rotation about the z axis
of the Bloch sphere by an angle 3BtZ/2 in the basis of |↑〉 and
|↓〉. In the parity basis, this a rotation about the x axis by the
same angle, 3Btz/2.

Likewise, a two-qubit gate can be incorporated by puls-
ing an Ising-like exchange Hex = −J Sz

1S̃z
1 between the first

two spins of two spin-3/2 chains. If the chains are ini-
tially in the state |↑〉|⇑̃〉, the product state is transformed to
exp(i9J tex/4)|↑〉|⇑̃〉 after pulsing the interaction Hex for a
time tex. Proceeding analogously in this basis, one can show
that such an operation leads to an Ising ZZ gate in the |↑〉 and
|↓〉 basis and an Ising XX gate in the |+〉 and |−〉 basis.
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