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Simple and loss-tolerant free-space quantum key distribution using a squeezed laser
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We consider a continuous-variable (CV) quantum key distribution (QKD) protocol over free-space channels,
which is simpler and more robust than typical CV QKD protocols. It uses a bright laser, squeezed and
modulated in the amplitude quadrature, and self-homodyne detection. We consider a scenario, where the line
of sight is classically monitored to detect active eavesdroppers, so that we can assume a passive eavesdropper.
Under this assumption, we analyze security of the QKD protocol in the composable finite-size regime. Proper
modulation of the squeezed laser to the shot-noise level can completely eliminate information leakage to the
eavesdropper and also eliminate the turbulence-induced noise of the channel in the amplitude quadrature. Under
these conditions, estimation of the eavesdropper’s information is no longer required. The protocol is extremely
robust to modulation noise and highly loss-tolerant, which makes it a promising candidate for satellite-based
continuous-variable quantum communication.
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I. INTRODUCTION

Current wireless communication systems are omnidirec-
tional and so are easy to eavesdrop upon [see Fig. 1(a)].
Public-key cryptography can be used to secure such transmis-
sions, offering security via assumptions about the computa-
tional power of malicious eavesdroppers. These assumptions
are called into question by possible future advances in com-
putational power, in particular the advent of large-scale
quantum computation [1]. Given this, the security of current
communications cannot be guaranteed indefinitely as they
might be stored and decrypted in the future when the re-
quired level of quantum processing becomes available. Laser
communications (lasercomm) can improve security in cer-
tain circumstances via its greater directionality. Nevertheless
eavesdropping is still possible due to beam diffraction [see
Fig. 1(b)]. Here we propose a simple extension to laser-
comm using techniques from quantum key distribution [2,3]
and recent observations about information leakage [4], which
eliminates these eavesdroppers [see Fig. 1(c)].

Quantum key distribution (QKD) allows two trusted par-
ties, Alice and Bob, to share a secure key, unknown to a
potential eavesdropper, Eve. In contrast to current classical
cryptography, QKD provides information-theoretic security
[2,3,5]. Although QKD started with discrete-variable quantum
systems [6,7], it has been extended to continuous-variable
(CV) systems [8–11]. In the former, information is encoded in
discrete degrees of freedom of a single photon, with the detec-
tion realized by single-photon detectors. While, in the latter,
information is encoded in continuous degrees of freedom of
light, and detection is realized by off-the-shelf homodyne
detectors, offering greater compatibility with current optical
telecommunication networks.

*nedahsn@gmail.com

In a typical lasercomm protocol information is encoded
via amplitude modulation of the laser beam and read out via
direct detection, also known as self-homodyne. Similarly, in
this work we propose a CV QKD protocol based on amplitude
modulation of a squeezed laser with read out also via direct
detection. In contrast, in a typical CV QKD protocol informa-
tion is encoded in both amplitude and phase quadratures of
the light while the detection is performed by either homodyne
or heterodyne detectors, requiring the use of a separate local
oscillator [3,12–14]. Our simplification comes by specifically
considering free-space channels and hence limiting the eaves-
dropper to only gathering the lost light, i.e., a passive attack.
While this is not the most general attack, we argue it is a
reasonable restriction given plausible technical capabilities
of Eve. Given this restriction we make a full, composable
finite-key security analysis of our system and find it is robust
to loss, turbulence and excess noise of the source laser.

Free-space channels are flexible in terms of infrastruc-
ture establishment and feasibility of communication with
moving objects. They also provide the possibility of long-
distance quantum communication via orbiting satellites. The
key disadvantage of free-space quantum communications
is, however, atmospheric attenuation and turbulence noise
[15–17]. Atmospheric turbulence causes a random variation
of channel transmissivity in time [18–22]. This transmissivity
fluctuation introduces extra noise on CV QKD systems, which
reduces the secret key rate, and even renders the communica-
tion insecure in the presence of strong turbulence [23–33]. It
is thus of considerable significance that reasonable restrictions
on Eve can lead to a far simpler and more robust system.

II. THE MODEL

We analyze a CV QKD protocol using a squeezed laser
over a free-space channel using modulation in only the am-
plitude quadrature and direct, self-homodyne detection [see
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FIG. 1. A schematic representation of communication scenarios
between Alice and Bob in the presence of an eavesdropper, Eve:
(a) current wireless communication, which is only secure given
computational limitations of Eve; (b) communication using laser-
comm; and (c) the QKD protocol we consider in this paper using a
squeezed laser, which can completely eliminate information leakage
to Eve.

Fig. 1(c)]. A proper modulation of the squeezed states leads
to zero turbulence-induced noise of the free-space channel in
the amplitude quadrature as well as zero information leakage
to the eavesdropper. The protocol does not require estimation
of the eavesdropper’s information, as information leakage is
zero. It is also highly robust against modulation imperfections
(i.e., modulation noise) and can tolerate high values of channel
loss.

First, in our QKD protocol we assume the trusted parties,
Alice and Bob, are able to classically monitor the line of sight,
so that any active presence of an eavesdropper (Eve) in the line
of sight can be detected, and if there is any, the protocol will
be aborted. While an omnipotent eavesdropper might deceive
Alice and Bob, the technologies required seem well beyond
current capabilities. As a result, any active eavesdropping
attacks in the line of sight will be prevented, and Eve will be
limited to only passive attacks.

Second, in our QKD protocol we will exploit squeezed
quantum states for information carriers, similar to the CV
protocol of [4], where by properly encoding information into a
Gaussian modulation of squeezed states (squeezed in a single
quadrature and modulated in the squeezing direction), one
can completely and deterministically eliminate information
leakage to Eve in a reverse reconciliation (RR) scenario [11],
if the channel is pure loss. The necessary condition for leakage
elimination is that the variance of the average input state in
the modulation direction has to be the shot-noise variance.
Unlike [4], we consider bright squeezed states such that the
modulation can be read out via direct detection of the light.

Since a pure-loss channel can be considered as a passive
eavesdropping attack, by the Gaussian modulation of the
squeezed laser to the shot-noise level and limiting Eve to
only passive attacks, we will completely and deterministically
eliminate information leakage to Eve in a RR scenario (i.e.,
obtain zero Holevo information) over free-space channels. As
a result, estimation (or upper bounding) of Eve’s information
is no longer required in this protocol. Such a shot-noise mod-
ulation can also eliminate the channel-fluctuation noise in the
information-carrying quadrature.

Because the protocol uses squeezed bright beams, where
the information is only encoded in the amplitude quadrature,
self-homodyne detection at Bob’s station with no need for a
separate local oscillator will suffice to measure the amplitude
quadrature. This will significantly simplify the experimental
realization of the protocol.

We further investigate the effect of modulation imperfec-
tions. We consider the case where the variance of the average
input state in the squeezing direction is not exactly the shot
noise. In fact, we consider some amount of trusted preparation
noise on top of the shot noise on Alice’s side. We show that
this type of practical imperfection leads to some information
leakage to Eve, where we do the security analysis in the com-
posable finite-size regime. However, the amount of leakage is
sufficiently small, so that its effect on the secret key rate is
negligible.

III. GAUSSIAN-MODULATION SQUEEZED-STATE
PROTOCOL

In a prepare-and-measure scheme, Alice generates a ran-
dom real variable aq, drawn from a Gaussian distribution of
variance Vsig and zero mean. Alice prepares bright squeezed
states with the squeezing in the amplitude q̂ quadrature, where
the variance of the squeezed quadrature is Vsqz. The squeezed
states are then modulated (displaced) by an amount aq in the
direction of the q̂ quadrature. The variance of the average
Gaussian state after the modulator is Vsqz + Vsig in the ampli-
tude q̂ quadrature and 1/Vsqz in the phase p̂ quadrature. We
consider the case where the variance of the squeezed quadra-
ture after the modulation is equal to the shot-noise variance,
i.e., Vsqz + Vsig = 1 [4]. The squeezed states are then sent
through a free-space channel to Bob, who directly measures
the amplitude q̂ quadrature with self-homodyne detection.

Note that in [4], in the preparation step on Alice’s side,
an ensemble of coherent states (modulated in only ampli-
tude quadrature) is prepared. The ensemble is squeezed by
injecting it into an optical parametric oscillator (OPO). The
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resulting ensemble of squeezed coherent states is sent through
the quantum channel to Bob, who measures the channel out-
put via homodyne detection using a local oscillator from the
source laser.

With respect to the proposed experimental realization, we
consider that Alice sends bright amplitude squeezed states.
These might be produced by a squeezed laser, for example,
a pumped noise-reduced semiconductor laser [34], which di-
rectly generates amplitude squeezed states. In addition, unlike
[4], which uses a separate local oscillator for the homodyne
detection, modulation of the squeezed amplitude can be read
out via direct detection of the light, known as self-homodyne
detection, with no need for a separate local oscillator.

With respect to the security analysis, Ref. [4] investigates
the asymptotic regime, and calculates only Eve’s information
(i.e., Holevo bound and not the secret key rate) for an optical
fiber with fixed transmissivity. In our work, however, we make
a full, composable finite-size security analysis of the CV QKD
system for a free-space channel with fluctuating transmissivity
under the assumption of a passive attack. Recall that limiting
the eavesdropper to passive attacks is justified by assuming
Alice and Bob monitor the quantum channel for Eve’s pres-
ence in a free-space channel. Further, we also investigate the
impact deviation from the shot-noise modulation can have on
the security of the protocol.

In contrast to a fiber link with a fixed transmissivity, the
transmissivity, η, of a free-space channel fluctuates in time
due to atmospheric turbulence. Such fading channels can be
characterized by a probability distribution p(η) [18–22]. A
fading channel can be decomposed into a set of subchan-
nels, for which the transmissivity is relatively stable. Each
subchannel ηi occurs with probability pi so that

∑
i pi = 1

or
∫ ηmax

0 p(η) dη = 1 for a continuous probability distribution,
where ηmax is the maximum realisable transmissivity.

In order to analyze the security of the CV QKD protocol,
we consider the equivalent entanglement-based scheme. Alice
first prepares a symmetric two-mode squeezed vacuum state
of quadrature variance V . One mode is kept by Alice (to be
later measured via homodyne detection in the q̂ quadrature),
while the second mode is squeezed (on Alice’s side) in the q̂
quadrature with the squeezing parameter re. The initial entan-
gled state, prepared on Alice’s side, is given by the following
covariance matrix:

MAB0=

⎡⎢⎣ aq 0 cq 0
0 ap 0 cp

cq 0 bq 0
0 cp 0 bp

⎤⎥⎦,

⎧⎪⎪⎨⎪⎪⎩
aq = ap = V ,

bq = Ve−2re , bp=Ve2re ,

cq = e−re
√

V 2−1,

cp = −ere
√

V 2−1.

(1)
Note that in order for the prepare-and-measure scheme to be
equivalent with the entanglement-based scheme we need to
have Vsqz + Vsig = V e−2re and 1/Vsqz = V e2re .

A. Eavesdropping assumptions

The security of CV QKD protocols is typically analyzed
by assuming that a potential eavesdropper, Eve, can carry out
all physically allowed operations, an assumption which grants
capabilities far in excess of present technology. In our work,
under the realistic assumption of Alice and Bob monitoring

the line of sight, we remove the unrealistic assumption of Eve
making an active attack in the line of sight without being seen.
Given this restriction we make a full, composable finite-size
security analysis of our system.

We assume Alice and Bob classically monitor the line of
sight during the quantum communication from both direc-
tions. For Eve to make any active attacks (for instance, a
quantum nondemolition (QND) or an entangling cloner at-
tack.1 [35]) over the line of sight, she is required to be actively
present in the line of sight. Therefore, Alice and Bob will be
able to detect Eve’s active presence and abort the protocol.
Note that we do not claim that performing an active attack is
impossible for Eve. Instead, we claim that making such an
attack, so that Eve can remain invisible to Alice and Bob,
is an extreme technical challenge for Eve, and considered
unrealistic given horizon technology.

Alternatively, Eve could perform a shine-on attack, by us-
ing an entangled state and passively adding extra noise onto
Bob’s detector. Again, this attack will be very challenging for
Eve in a self-homodyne detection scenario with the phase of
the local oscillator being random and also the line-of-sight
being monitored. However, even if Eve can invisibly add extra
noise, it will be identified by Alice and Bob in unexpected
deviations from shot noise at Bob’s station and when they esti-
mate a signal-to-noise ratio (SNR) lower than that they expect
from the light-collection attack. Thus, with no reduction in
practical security, Eve’s attack over free-space channels can
be restricted to a passive attack, which is the same as a beam-
splitter attack. In a passive collective attack, Eve collects the
light lost in the transmission, and stores the quantum states in
her quantum memory to be collectively measured later.

IV. FINITE-SIZE SECURITY ANALYSIS

The Wigner function of Alice and Bob’s ensemble-average
state (over all subchannels) at the output of a free-space chan-
nel with fluctuating transmissivity η is the sum of the Wigner
functions of the states after individual subchannels weighted
by subchannel probabilities [33]. Alice and Bob’s state is
Gaussian after the realization of each subchannel; however,
Alice and Bob’s ensemble-average state is a non-Gaussian
mixture of Gaussian states obtained from individual subchan-
nels.

In an RR scenario, Eve’s information, upper bounded by
the Holevo information in a collective attack, is given by
χ (b:E ) = S (ρE ) − S (ρE |b), where S (ρ) is the von Neumann
entropy of the quantum state ρ. The security is analyzed
based on the purification assumption, i.e., the assumption
that Alice and Bob’s quantum state ρAB is purified by
Eve’s quantum state ρE . This results in S (ρE ) = S (ρAB),
and S (ρE |b) = S (ρA|b). Thus, Eve’s Holevo information is
given by χ (b:E ) = S (ρAB) − S (ρA|b). Note that ρAB is non-
Gaussian for a free-space channel however, according to the

1In addition to entangling cloner attack, modulation of only am-
plitude quadrature can provide Eve with the possibility of an active
intercept and resend attack. However, such an attack needs an active
presence of Eve in the line of sight, which will be prevented under
the assumption of Alice and Bob monitoring the line of sight.
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optimality of Gaussian attacks [36–38], χ (b:E ) can be max-
imized if calculated based on the covariance matrix of ρAB.
The covariance matrix of Alice and Bob’s ensemble-average
state is given by

MAB =

⎡⎢⎢⎣
aq 0 c′

q 0
0 ap 0 c′

p
c′

q 0 b′
q 0

0 c′
p 0 b′

p

⎤⎥⎥⎦, where

b′
q = η f bq + 1 − η f + Var(

√
η)(bq − 1)

b′
p = η f bp + 1 − η f + Var(

√
η)(bp − 1)

c′
q = √

η f cq, c′
p = √

η f cp, where

η f = 〈√η〉2
, Var(

√
η) = 〈η〉 − 〈√η〉2

, (2)

where 〈η〉 = ∫ ηmax

0 ηp(η) dη, and 〈√η〉 = ∫ ηmax

0
√

ηp(η) dη.
Thus, Eve’s effective passive attack can be considered as a
beam-splitter attack with the beam-splitter transmissivity η f .

According to Eq. (2), a fading channel is equivalent with
a fixed-transmissivity channel with transmissivity η f and an
extra non-Gaussian noise of Var(

√
η)(bq(p) − 1) [24,32,33].

This noise depends on the channel fluctuation variance
Var(

√
η) and the input variance to the channel bq(p). When

Eve’s attack is considered passive, it means that the channel
fluctuation is not under Eve’s control. This means that the
fluctuation noise Var(

√
η)(bq(p) − 1) is not accessible to Eve

for the purification, and hence the fluctuation noise should
be considered as a trusted noise on Bob’s side. On the other
hand, having a trusted noise on Bob’s side in a RR scenario
decreases Eve’s information [39]. Hence, in calculating Eve’s
information from the passive attack we consider the (trusted)
fluctuation noise to be zero as this can only overestimate Eve’s
information.

Note that we can also use Eve and Bob’s covariance matrix
to calculate Eve’s Holevo information from the passive attack,
and obtain the same result as that from the purification as-
sumption as discussed above (see Appendix A for more details
on the purification assumption). As a result of Eve’s passive
attack, the covariance matrix of Eve’s ensemble-average state
is given by

ME =
[

(1−η f )bq+η f 0
0 (1−η f )bp+η f

]
. (3)

The covariance matrix of Eve’s system conditioned on Bob’s
homodyne detection (with efficiency ηB and electronic noise
νB) is given by ME |B′=ME−MEB′ (XMB′X)MPMT

EB′ , where
X = diag(1, 0), MP stands for the Moore-Penrose pseudoin-
verse of a matrix, and we have

MB′ = diag(VBq,VBp), where

VBq = ηB[η f bq+1−η f ]+(1−ηB)υ,

VBp = ηB[η f bp+1−η f ]+(1−ηB)υ, where

υ = 1 + νB

1 − ηB
, and

MEB′ = diag(CEBq,CEBp), where

CEBq = √
ηB

√
η f (1 − η f )[1 − bq],

CEBp = √
ηB

√
η f (1 − η f )[1 − bp]. (4)

Note that in reality for Bob’s quadrature variance (after
the detection) we have VBq = ηBb′

q+(1−ηB)υ and VBp =
ηBb′

p+(1−ηB)υ. But, since as noted earlier, the (trusted) fluc-
tuation noise Var(

√
η)(bq(p) − 1) on Bob’s side decreases

Eve’s information, we assume the fluctuation noise is zero in
VBq and VBp of Eq. (4) for the security analysis.

According to the protocol, Alice has to make sure that
the beam leaving her laboratory in the prepare-and-measure
scheme has exactly the shot-noise variance in the q̂ quadra-
ture. It means that the beam leaving Alice’s laboratory in the
entanglement-based scheme also needs to have the shot-noise
variance in the q̂ quadrature, i.e., bq = 1. As a result, accord-
ing to MEB in Eq. (4), there is no correlation between Eve
and Bob in the q̂ quadrature (CEBq = 0), i.e, the quadrature
that contains the key information. Hence, there is no infor-
mation leakage to Eve during the quantum communication
part in a RR scenario, i.e., we have the Holevo information
χ (b:E ) = S (ME )−S (ME |B′ ) = 0.

The shot-noise modulation in the q̂ quadrature has an-
other advantage of eliminating the fluctuation-induced noise
of a free-space channel. Bob’s variance in the q̂ quadra-
ture (before the detection) is given by b′

q=η f bq + 1 − η f +
Var(

√
η)(bq − 1). When we have bq = 1, the fluctuation-

induced noise of the channel in the q̂ quadrature, i.e.,
Var(

√
η)(bq − 1), will become zero, and Bob’s variance will

also be the shot noise, b′
q=1.

Since having bq = 1 results in no information leakage to
Eve during the quantum communication, i.e., χ (b:E )=0, we
do not need to estimate (or upper bound) Eve’s information.
However, the transmissivity of the channel needs to be esti-
mated in order to estimate the SNR of the channel, which will
be used to choose the most efficient error-correcting code rate
for the error-correction step. This means we are still required
to reveal a subset of data for SNR estimation.

Note that in this protocol, χ (b:E ) = 0 does not mean that
Eve and Bob’s quantum systems are not correlated because
Eve and Bob still remain correlated in the phase p̂ quadra-
ture (CEBp �= 0). However, this correlation is irrelevant to the
security of the protocol because the key information is only
encoded in the q̂ quadrature. In fact, χ (b:E ) = 0 means that
Bob’s measurement outcomes are uncorrelated with Eve’s
quantum system E before the error correction. However, in
the error-correction procedure, classical information C of size
lEC (i.e., the size of the syndrome of Bob’s string sent to Alice
in a RR scenario) will be revealed by the trusted parties. In the
privacy amplification step, Alice and Bob have to discard the
leakage during the error correction.

Based on the leftover hash lemma [40,41], the number
of approximately secure bits, �, that can be extracted from
the raw key should be slightly smaller than the smooth
min-entropy of Bob’s string b conditioned on Eve’s
system E ′ (which characterizes Eve’s quantum state E ,
as well as the public classical variable C leaked during
the QKD protocol), denoted by H εsm

min(bN ′ |E ′) [40], i.e.,
we have � � H εsm

min(bN ′ |E ′)−2 log2( 1
2ε̄

), where ε̄ comes
from the leftover hash lemma. Note that N ′ indicates
the length of Bob’s string b after the SNR estimation.
The chain rule for the smooth min-entropy [42] gives
H εsm

min(bN ′ |E ′) = H εsm
min(bN ′ |EC) � H εsm

min(bN ′ |E ) − log2 |C|,
where log2 |C| = lEC, with lEC the size of data leakage
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during the error correction, which can be given by
lEC = N ′[H (b) − βI (a:b)] [42–44], where H (b) is Bob’s
Shannon entropy and β is the reconciliation efficiency.
In order to calculate the length � of the final key
which is ε-secure (ε=2εsm+ε̄+εPE+εcor [42,43]), the
conditional smooth min-entropy H εsm

min(bN ′ |E ) has to
be lower bounded when the protocol did not abort.
Under the assumption of independent and identically
distributed attacks such as collective or individual
attacks, the asymptotic equipartition property [42,45,46]
can be utilized to lower bound the conditional smooth
min-entropy with the conditional von Neumann entropy.
Explicitly, we have H εsm

min(bN ′ |E ) � N ′S (b|E ) − √
N ′
AEP

[42,43], where 
AEP = (d+1)2+4(d+1)
√

log2(2/ε2
sm ) +

2 log2[2/(ε2εsm )]+4εsmd/(ε
√

N ′) with d the discretization
parameter, and S (b|E ) the conditional von Neumann entropy,
which is given by S (b|E ) = H (b) − H εPE (b:E ). Eve’s
information H εPE (b:E ) from a collective (an individual)
attack on Bob’s string b is upper bounded by Holevo
information χεPE (b:E ) (mutual information between Eve and
Bob IεPE (b:E )), except with probability εPE. Recall again that
having bq = 1, we do not need to estimate χεPE (b:E ), as it
is exactly zero. Therefore, the secret key length is given by
�=N ′βI (a:b)−√

N ′
AEP−2 log2( 1
2ε̄

), and the secret key rate
is given by K = �/N . Note that the mutual information is
given by I (a:b) = 1

2 log2
aq

aq−[ηB c′2
q ]/[ηBb′

q+(1−ηB )υ] .

A. Modulation noise

Now we investigate the discrepancies between the ideal
protocol and its practical implementations in terms of the
modulation. We consider the case where the prepared state
on Alice’s side does not have the exact shot-noise variance
in the modulation direction. More precisely, we assume some
preparation noise ξ on Alice’s side, which is assumed to be
trusted in the case of a passive eavesdropper. For the aim
of numerical simulation, we assume bq = 1 and ξ = 0.02.
Eve’s information can still be calculated using Eve and Bob’s
covariance matrices in Eqs. (3) and (4), where the term bq(p) in
Eqs. (3) and (4) should now be replaced by bq(p) + ξ . In this
nonideal modulation case, we have CEBq �= 0 in Eq. (4) due
to bq + ξ > 1, which means the preparation noise on top of
the shot noise leads to information leakage [i.e., χεPE (b:E ) �=
0], and the secret key length for collective attacks is
given by �=N ′βI (a:b)−N ′χεPE (b:E )−√

N ′
AEP−2 log2( 1
2ε̄

).
Note that in the presence of modulation noise, Eve’s in-
formation can also be calculated from the purification
assumption, i.e., using Alice and Bob’s covariance matrix
while assuming the (trusted) fluctuation noise is zero (see
Appendix A).

In Fig. 2 the finite-size key rate of the squeezed-state
protocol is shown as a function of channel loss under the
assumption of passive collective attacks. For the sake of
comparison, we also show the finite-size key rate of a CV
QKD protocol using coherent states, under the assumption
of passive attacks. Similar to the squeezed-state protocol, it
uses Gaussian modulation in only the amplitude quadrature,
and direct detection of the amplitude quadrature [47]. For this
protocol, the Holevo information can still be calculated using
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FIG. 2. Finite-size key rate as a function of channel loss (dB),
where Loss(dB) = −10 log10 η f , for the coherent-state protocol
and the squeezed-state protocol secure against passive individ-
ual and collective attacks, with 6 dB and 10 dB squeezing,
where Squeezing(dB) = −10 log10 Vsqz. The numerical values for the
finite-size regime are the security parameter ε = 10−9 and the dis-
cretization parameter d = 5. The other parameters are Bob’s detector
efficiency ηB = 0.61, electronic noise νB = 0.12, reconciliation effi-
ciency β = 0.98, and excess noise ξ = 0.02 (note that in a passive
attack this noise is assumed to be a trusted preparation noise). The
block size is chosen to be N = 1010, half of which is used in total for
the parameter estimation. The modulation variance in the coherent-
state protocol is optimized to maximise the key rate. We consider
a probability distribution for the free-space channel given by the
elliptic-beam model [20], where the model parameters have been
chosen according to [33].

the same method as discussed for the squeezed-state protocol,
where now we should set re = −ln(

√
V ) and Vsqz = 1. As can

be seen from Fig. 2, for losses above 4 dB, the squeezed-state
protocol outperforms the coherent-state protocol under the
assumption of passive collective attacks. The squeezed-state
protocol can achieve reasonable key rates for losses more than
4 times that of the coherent-state protocol.

Note that for both the squeezed-state and coherent-state
protocols, (passive) Eve’s information from an individual
attack can be upper bounded using the classical mutual
information between Eve and Bob IεPE (b:E ) (except with
probability εPE), where I (b:E ) = 1

2 log2
VBq

VBq−C2
EBq / [(1−η f )bq+η f ]

,

where re and Vsqz should be set differently for each protocol as
mentioned earlier. Note that for the squeezed-state protocol,
Eve’s individual information is only slightly less than the
Holevo information, so that the finite-size key rate for passive
individual attacks is almost the same as the key rate for passive
collective attacks. According to Fig. 2, for losses above 6 dB,
the squeezed-state protocol outperforms the coherent-state
protocol under the assumption of passive individual attacks.
Further, while the coherent-state protocol is not secure for
losses above 13 dB, the squeezed-state protocol can achieve
reasonable key rates for losses up to 18 dB.
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FIG. 3. Holevo information χεPE (b:E ) resulting from the passive
collective attack as a function of channel loss (dB) for the nonideal
squeezed-state protocol with preparation noise ξ (on top of the shot-
noise variance) for 6 dB and 10 dB squeezing. The other parameters
are the same as Fig. 2.

Note that the amount of modulation, Vsig, is related to the
amount of squeezing, Vsqz, because the variance of the ampli-
tude quadrature after the modulation has to be equal to the
shot-noise variance, Vsqz + Vsig = 1. In fact, the more squeez-
ing (lower Vsqz), the higher modulation we can use (higher
Vsig), which means a larger number of squeezed states can be
modulated within the shot-noise variance (more information
can be encoded).

As can be seen from Fig. 3, showing Holevo information
χεPE (b:E ) as a function of channel loss for the squeezed-
state protocol of Fig. 2, the amount of leakage due to the
preparation noise is sufficiently small such that it only has a
negligible effect on the secret key rate shown in Fig. 2. For
instance, even for a large preparation noise of ξ = 0.02, we
have χεPE (b:E ) < 5 × 10−5 for the given values of squeezing
(very small compared to the secret key rate shown in Fig. 2).
Also, Fig. 3 shows that Eve’s information is maximized for the
channel loss of around 3 dB and then reduced with increasing
loss. Note that in the case of modulation noise, where there
is some information leakage to Eve, parameter estimation of
channel transmissivity and preparation noise is required to
upper bound Eve’s information χεPE (b:E ) (see Appendix B for
more details). Note that the squeezed-state protocol is very
robust to error bars of estimators, such that the difference
between χεPE (b:E ) (i.e., Holevo information considering the
error bars due to the finite-size effects) and Holevo informa-
tion given the perfect estimation of channel parameters (i.e,
the asymptotic case) is negligible. Note that this is not the
case for the coherent-state protocol shown in Fig. 2.

V. CONCLUSIONS

We performed composable finite-size security analysis for
a CV QKD protocol using an amplitude squeezed laser for
free-space channels. Amplitude squeezing can be produced
by compact semiconductor lasers [34]. The information is

encoded into the amplitude quadrature such that the Gaussian-
modulated beam has the shot-noise variance, and detection
is performed by the self-homodyne detection of the ampli-
tude quadrature. Under the realistic assumption of classical
monitoring of the line of sight, we limited the eavesdropper
(Eve) to only passive attacks, where she can only collect the
light lost in the communication. Under such an assumption,
the shot-noise modulation eliminates information leakage to
Eve (and also eliminates the channel-fluctuation noise in the
amplitude quadrature). As a result, the parameter estimation
of Eve’s information is no longer required. We investigated
nonideal modulation with some extra noise on top of the shot
noise, which results in sufficiently small information leakage
having negligible effect on the finite key rate. The protocol
is highly robust to modulation noise, and can tolerate high
values of channel loss. While our analysis shows the effec-
tiveness of the protocol for losses up to 18 dB (given practical
squeezing) for the block size of 1010, the performance can
be improved by increasing the block size. For instance, for
the block size of 1011, the protocol can tolerate losses up to
23 dB, expected in downlink channels from low-earth-orbit
satellites. While our analysis focuses on Gaussian modula-
tion, a remaining question would be how the performance is
affected by (non-Gaussian) discrete modulation of squeezed
states to the shot-noise level.
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APPENDIX A: CALCULATE EVE’S HOLEVO
INFORMATION FROM THE PURIFICATION

ASSUMPTION

Let us consider a case where there is some preparation
noise ξ on top of the shot noise on Alice’s side. In this case,
the noise ξ should be considered trusted in a passive attack
scenario. This trusted noise is not attributed to Eve, so it can be
modeled by placing a beam splitter of transmissivity ηp → 1
on Alice’s side before the channel. The preparation noise can
be modeled by a two-mode squeezed vacuum state, ρF ′

0 G′ , of
quadrature variance υ ′ = ξ/(1 − ηp). One input port of the
beam splitter is the initial entangled mode B0 with the q̂ ( p̂)
quadrature variance bq (bp), and the second input port is fed
by one half of the entangled state ρF ′

0 G′ , mode F ′
0 , while the

output ports are mode B′
0 (which is sent to Bob through the

channel) and mode F ′.
At the output of the channel Bob applies homodyne detec-

tion to the received mode B. Bob’s homodyne detector with
efficiency ηB and electronic noise variance of νB can be mod-
eled by placing a beam splitter of transmissivity ηB before an
ideal homodyne detector. The homodyne detector’s electronic
noise can be modeled by a two-mode squeezed vacuum state,
ρF0G, of quadrature variance υ, where υ = 1 + νB/(1 − ηB).
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One input port of the beam splitter is the received mode B,
and the second input port is fed by one half of the entangled
state ρF0G, mode F0, while the output ports are mode B′ (which
is measured by the ideal homodyne detector) and mode F .

In a collective attack, Eve’s information, χ (b:E ), is given
by χ (b:E ) = S (ρE ) − S (ρE |B′ ). Here we assume Alice’s
preparation noise and Bob’s detection noise are not acces-
sible to Eve. In this case, the assumption that Alice and
Bob’s quantum state is purified by Eve’s quantum state re-
sults in S (ρE ) = S (ρAF ′G′B), where the entropy S (ρAF ′G′B)
can be calculated through the symplectic eigenvalues of co-
variance matrix MAF ′G′B. The second entropy we require
in order to determine χ (b:E ) can be written as S (ρE |B′ ) =
S (ρAF ′G′FG|B′ ). The covariance matrix of the conditional
state ρAF ′G′FG|B′ is given by MAF ′G′FG|B′ = MAF ′G′FG −
σAF ′G′FG,B′ (XMB′X)MP σT

AF ′G′FG,B′ . Note that the matrices
MAF ′G′FG, σAF ′G′FG,B′ , and MB′ can be derived from the de-
composition of the covariance matrix

MAF ′G′FGB′ =
[

MAF ′G′FG σAF ′G′FG,B′

σT
AF ′G′FG,B′ MB′

]
. (A1)

Note that the covariance matrix MAF ′G′FGB′ is given by the
rearrangement of the following matrix:

MAF ′G′B′FG = (IA⊕IF ′⊕IG′⊕Sbs⊕IG)T

× (MAF ′G′B⊕MF0G)(IA⊕IF ′⊕IG′⊕Sbs⊕IG),
(A2)

where Sbs is the matrix for the beam splitter transformation
(applied on modes B and F0), given by

Sbs =
[ √

ηB I
√

1 − ηB I
−√

1 − ηB I
√

ηB I

]
, (A3)

and the covariance matrix of the entangled state ρF0G is given
by

MF0G =
[

υ I
√

υ2 − 1 Z√
υ2 − 1 Z υ I

]
. (A4)

Note that the covariance matrix MAF ′G′B is obtained by tracing
out Eve’s mode E from the covariance matrix MAF ′G′BE , given
by

MAF ′G′BE = (IA⊕IF ′⊕IG′⊕Sc
bs)T

× (MAF ′G′B′
0
⊕ME0 )(IA⊕IF ′⊕IG′⊕Sc

bs),

(A5)

where Sc
bs is the matrix for the beam splitter (i.e., channel)

transformation (applied on modes B′
0 and E0), given by

Sc
bs =

[ √
η f I

√
1 − η f I

−√
1 − η f I √

η f I

]
, (A6)

where η f is the effective transmissivity of the free-space
channel, and ME0 is the covariance matrix of the vacuum

state. Note that the covariance matrix MAF ′G′B′
0

is given by the
rearrangement of the following covariance matrix:

MAB′
0F ′G′ = (IA⊕S′

bs⊕IG′ )T

× (MAB0⊕MF ′
0 G′ )(IA⊕S′

bs⊕IG′ ), (A7)

where S′
bs is the matrix for the beam splitter transformation

(applied on modes B0 and F ′
0 ), which is given by

S′
bs =

[ √
ηp I

√
1 − ηp I

−√
1 − ηp I √

ηp I

]
. (A8)

Note that the covariance matrix of the entangled state ρF ′
0 G′ is

given by

MF ′
0 G′ =

[
υ ′ I

√
υ ′2 − 1 Z√

υ ′2 − 1 Z υ ′ I

]
, (A9)

and the covariance matrix MAB0 is given by Eq. (1). Note
that with the assumption of zero (trusted) fluctuation noise,
the purification of Alice and Bob’s state by Eve’s state results
in ME = MAF ′G′B, and ME |B′ = MAF ′G′FG|B′ . Therefore, Eve’s
information, χ (b:E ), calculated from Eve and Bob’s covari-
ance matrix (discussed in the main text) is the same as that
calculated based on the purification assumption (discussed
above).

APPENDIX B: PARAMETER ESTIMATION FOR
SQUEEZED-STATE PROTOCOL

In the prepare-and-measure scheme, for a subchannel with
transmissivity η, we can consider a normal linear model for
Alice and Bob’s correlated q quadrature variables, qA and qB,
respectively,

qB = tsqA + qn,s, (B1)

where ts = √
ηBη, and qn,s follows a centered normal distri-

bution whose variance is determined from the observed data
as follows, σ 2

s = 1 + νB + ηBη(Vsqz + ξ ) − ηBη (note that Al-
ice’s variable qA has the variance Vsig). Using the revealed data
of size ks for the subchannel (note in our numerical simulation
we assumed 105 subchannels), the maximum-likelihood esti-
mators for the subchannel parameters, ts and σ 2

s , are given by
[48,49]

t̂s =
∑ks

i=1 AiBi∑ks
i=1 A2

i

,

σ̂ 2
s = 1

ks

ks∑
i=1

(Bi − t̂sAi )
2
, (B2)

where Ai and Bi are the realizations of qA and qB for the sub-
channel, respectively. The confidence interval for ts is given
by ts ∈ [t̂s − 
(ts), t̂s + 
(ts)], where


(ts) = zεPE/2

√
σ̂ 2

s

ksVsig
. (B3)
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The estimator of the square root of subchannel transmissivity,
and its error bar is given by

√̂
η = t̂s√

η̂B
,


(
√

η) = √̂
η

√∣∣∣∣
(ts)

t̂s

∣∣∣∣2

+
∣∣∣∣
(ηB)

2η̂B

∣∣∣∣2

. (B4)

Here we generalize the above discussed parameter estimation
method to the data of size k revealed over all subchannels to
estimate ξ . Considering Eq. (B1) over all subchannels we can
still have a normal linear model for Alice and Bob’s correlated
q quadrature variables as

qB = tqA + qn, (B5)

where t = √
ηB〈η〉, and qn follows a centered normal distribu-

tion whose variance is determined from the observed data as
σ 2 = 1 + νB + ηB〈η〉(Vsqz + ξ ) − ηB〈η〉. Using the total data
revealed over all subchannels of size k, we can calculate the
maximum-likelihood estimators for t and σ 2, which are given
by

t̂ =
∑k

i=1 AiBi∑k
i=1 A2

i

,

σ̂ 2 = 1

k

k∑
i=1

(Bi − t̂Ai )
2
. (B6)

The confidence intervals for these parameters are given
by t ∈ [t̂ − 
(t ), t̂ + 
(t )], and σ 2 ∈ [σ̂ 2 − 
(σ 2), σ̂ 2 +

(σ 2)] where


(t ) = zεPE/2

√
σ̂ 2

kVsig
,


(σ 2) = zεPE/2
σ̂ 2

√
2√

k
. (B7)

Note that when no signal is exchanged, Bob’s variable
with realization B0i follows a centered normal distribution
whose variance is determined from the observed data as

follows, σ 2
0 = 1 + νB, which is Bob’s shot noise variance.

The maximum-likelihood estimator for σ 2
0 is given by σ̂ 2

0 =
1
N

∑N
i=1 B2

0i. The confidence interval for this parameter is
given by σ 2

0 ∈ [σ̂ 2
0 − 
(σ 2

0 ), σ̂ 2
0 + 
(σ 2

0 )], where 
(σ 2
0 ) =

zεPE/2
σ̂ 2

0

√
2√

N
.2 Now we can estimate 〈η〉 and ξ , which are given

by

〈̂η〉 = t̂2

η̂B
,


(〈η〉) = 〈̂η〉
√∣∣∣∣2
(t )

t̂

∣∣∣∣2

+
∣∣∣∣
(ηB)

η̂B

∣∣∣∣2

,

ξ̂ = σ̂ 2 − σ̂ 2
0

η̂B〈̂η〉 − V̂sqz + 1,


(ξ )

= ξ̂

√∣∣∣∣ 
(σ 2)

σ̂ 2−σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣ 
(σ 2

0 )

σ̂ 2−σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣
(ηB)

η̂B

∣∣∣∣2

+
∣∣∣∣
(〈η〉)

〈̂η〉

∣∣∣∣2

+
(Vsqz). (B8)

Note that in order to maximize Eve’s information, χεPE (b:E ),
from passive collective attacks, the worst-case estimators of
η and ξ should be used to evaluate Eve’s information. Now,
having Eqs. (B4) and (B8), the worst-case estimators of pa-
rameters

√
η (for channel losses above 3 dB) to calculate η f

and ξ are given by
√̂

η + 
(
√

η) and ξ̂ + 
(ξ ). Note also that
for the parameter estimation of the coherent-state protocol,
we can still use the equations provided in this section, but we
should set Vsqz = 1 due to the use of coherent states.

Note that here we estimated the noise ξ by first estimating
the channel transmissivity and revealing a subset of data.
However, since the preparation noise ξ is trusted and not under
Eve’s control, it can be estimated using the whole data block
with a very good precision. This estimation can be performed
in only Alice’s laboratory without revealing any data.

2Note that zεPE/2 is such that 1 − erf (
zεPE/2√

2
)/2 = εPE/2, where erf is

the error function.
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