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The study of state transformations under local operations and classical communication (LOCC) plays a
crucial role in entanglement theory. While this has been long ago characterized for pure bipartite states, the
situation is drastically different for systems of more parties: generic pure qudit states cannot be obtained from
nor transformed to any state (i.e., they are isolated), which contains a different amount of entanglement. We
consider here the question of LOCC convertibility for permutation-symmetric pure states of an arbitrary number
of parties and local dimension, a class of clear interest both for physical and mathematical reasons and for
which the aforementioned result does not apply given that it is a zero-measure subset in the state space. While
it turns out that generic n-qubit symmetric states are also isolated, we consider particular families for which
we can determine to be, on the contrary, endowed with a rich local stabilizer, a necessary requirement for
LOCC convertibility to be possible. This allows us to identify classes in which LOCC transformations among
permutation-symmetric states are possible. Notwithstanding, we provide several results that indicate severe
obstructions to LOCC convertibility in general even within these highly symmetrical classes. In the course of the
study of LOCC transformations, we also characterize the local symmetries of symmetric states.

DOI: 10.1103/PhysRevA.105.032458

I. INTRODUCTION

Entanglement is a purely quantum effect of multicom-
ponent systems, which is behind quantum technologies
outperforming their classical counterparts. Therefore, it has
been a major subject of study in quantum information theory
since its inception [1]. In addition to this, the tools devel-
oped in this field have been found to play a crucial role in
the understanding of condensed matter physics [2]. Entan-
glement theory aims at characterizing which states possess
this property and the different forms in which it can man-
ifest, providing protocols to manipulate it and quantifying
to which extent it can be used. This theory is formulated
within the framework of quantum resource theories [3] where
local operations assisted by classical communication (LOCC)
(see, e.g., [4–6]) are considered to be free operations, which
assigns a pivotal role to this notion. First, entanglement can be
understood as a resource that allows implementation of tasks
which would otherwise be impossible for distant parties that
are constrained to the use of LOCC. Second, LOCC transfor-
mations induce an operationally meaningful partial order in
the set of entangled states under which any entanglement mea-
sure must be monotonic. If a state � can be deterministically
transformed under this class of operations into �, the former
cannot have less entanglement than the latter as any protocol
that can be implemented within this paradigm with � can also
be achieved with � but not necessarily the other way around.
Thus, characterizing LOCC state transformations is a crucial
problem in this theory. It also provides basic primitives for
quantum information protocols and, more importantly, identi-
fies which states are potentially more useful in applications.
In this regard, Nielsen’s theorem [7] provides a milestone

result as it characterizes LOCC convertibility among pure
bipartite states in terms of a simple majorization relation
and shows that simple LOCC protocols with a single round
of classical communication are sufficient [8]. Furthermore,
from the theorem, it follows that there exists a unique [up to
local unitary (LU) transformations] maximally entangled state
|φ+〉 =∑d−1

i=0 |ii〉/√d that can be transformed to any other for
any fixed value of the local dimension d . This means that |φ+〉
has to be the most useful state for any task subject to parties
implementing LOCC protocols regardless of its specific goal,
be it teleportation, metrology, or other tasks.

Regrettably, this picture is much less satisfactory when one
considers pure states shared by more than two parties. First,
it has been long known that in this case there exist pairs
of states which are not related by LOCC even if one lifts
the premise of deterministic transformations and allows an
arbitrary nonzero probability of success [9]. States that can
be interconverted in this latter paradigm are said to belong to
the same stochastic LOCC (SLOCC) class. While there is a
unique SLOCC class for pure entangled bipartite states, gen-
uinely multipartite entangled states of three qubits give rise to
two classes [9], identified, respectively, by the paradigmatic
GHZ and W states

|GHZ〉 = 1√
2

(|000〉 + |111〉),

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉). (1)

The situation has been investigated for a larger number of
parties and/or local dimension where it becomes much more
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complex since in these cases there can be infinitely many
SLOCC classes [10,11]. This establishes that contrary to the
bipartite case, multipartite entanglement appears in inequiv-
alent forms. Specifically, SLOCC classes pinpoint different
equivalence classes but provide no sense of comparison of the
relative usefulness of states. Thus, one could try to study the
ordering induced by LOCC within each SLOCC class in order
to identify the most entangled states for each family. Never-
theless, the analysis of LOCC convertibility in the multipartite
regime appears to be a formidable mathematical problem: the
simple structure of protocols that is sufficient in the bipartite
case does not apply here and it is not even known whether
it is necessary to consider LOCC transformations involving
infinitely many rounds of classical communication [6,12,13].
More importantly, multipartite entanglement displays an ex-
treme behavior in this respect that dooms the above program
to failure. It turns out that almost all states are isolated under
LOCC for most configurations of number of parties and local
dimension [14,15]. In more detail, these works establish that a
generic pure state of homogeneous systems constituted of n >

3 parties with local dimension d > 2 (as well as systems for
which d = 2, n > 4) cannot be transformed to nor obtained
from a non-LU-equivalent state by LOCC. This implies that
the counterpart of the maximally entangled bipartite state, the
maximally entangled set [16] is of full measure in the Hilbert
space. Interestingly, the local stabilizer of each SLOCC class
plays a crucial role in characterizing LOCC transformations
[17] and the aforementioned result follows by proving that for
almost all states this stabilizer is trivial (i.e., it only contains
the identity). In sum, it turns out that the resource theory
of entanglement as formulated by the paradigm of LOCC is
generically trivial in the sense that almost every pair of states
(even if restricted to the same SLOCC class) is incomparable.
Obviously, this statement does not forbid the existence of
particular zero-measure SLOCC classes that might be free of
isolation and display a rich LOCC structure in which every
state can be converted to a less entangled state. Notwithstand-
ing, to the best of our knowledge only two such examples
are known in the literature: the n-qubit W and GHZ classes
[18,19]. On the contrary, all classes studied in four-qubit states
[16,20] and three-qutrit states [21] have LOCCN isolated
states, i.e., states that can neither be reached nor converted
via a nontrivial finite-round LOCC transformation.

We believe that the above results call for a more spe-
cific analysis. On the one hand, this suggests that the study
of multipartite LOCC convertibility should be restricted to
nongeneric subsets that are motivated by physical or infor-
mational interest. On the other hand, studying classes that
have a relevant mathematical structure might make the state-
transformation problem more amenable and lead to new
families that do not display isolation, thus identifying po-
tentially useful states for applications. Actually, these two
alternatives can be brought together under the umbrella of
symmetry. Symmetry principles are a cornerstone in the de-
velopment of physical theories and quantum mechanics is no
exception and, at the same time, they provide a mathemati-
cally pleasant structure. Whereas the symmetries of stabilizer
states [22] and of translational-invariant matrix product states
(of low bond dimension) [23,24] have been studied, we fo-
cus here on another very relevant class of multipartite states,

the one corresponding to permutation symmetry, i.e., states
in the symmetric subspace. These states not only describe
systems of many bosons for indistinguishable particles but
they are often encountered in quantum optics (such as in the
study of superradiance [25]) and appear as the ground states
of natural Hamiltonians (e.g., in the Lipkin-Meshkov-Glick
model [26]). Moreover, permutation-symmetric (referred to
in what follows just as symmetric) states such as the |φ+〉,
W, GHZ, and Dicke states correspond to canonical states in
quantum information theory and its applications (see, e.g.,
[27] and references therein) and a huge experimental effort
has been put forward to prepare these states in the laboratory
both for qubits [28] and for higher local dimensions [29]. In
fact, their symmetry structure has enabled an in-depth analysis
of several of their properties regarding entanglement [27,30].
Most noticeably in our context, SLOCC classes of symmet-
ric states have been carefully studied and several remarkable
mathematical properties have been identified from this point
of view [31–33]. In particular, some of these classes have been
found to have elements in their local stabilizer, which suggest
that the latter is highly nontrivial. We refer to these subclasses
of symmetric states as exceptionally symmetric (ES) classes
(a proper definition is provided in the next section). Lastly, it
should be pointed out that so far, all the known examples of
SLOCC classes that do not display isolation happen to contain
symmetric states (the W and GHZ qubit states).

Thus, the main goal of this paper is to study state con-
vertibility in general within SLOCC classes that contain
symmetric states. Due to the technical difficulty of the prob-
lem at hand, in several instances we will restrict to LOCC
protocols under the very mild and natural assumption that
they consist of a finite (but otherwise arbitrary) number of
rounds of classical communication, which we will denote by
LOCCN . In passing, we will determine the properties and
structure of the local stabilizer group of these families, which
is interesting in its own right [22,23] and could find applica-
tions beyond the study of state transformations.

The outline of the remainder of the article is the following.
In Sec. II, we introduce notation and briefly review results
on the symmetric subspace, SLOCC classes containing sym-
metric states, and the stabilizer of symmetric states. We first
present the preliminaries as these allow us to then provide
the overview of our results in Sec. III in a comprehensible
way. In Sec. IV, we generalize results from [12,13] concern-
ing LOCCN reachability as well as LOCC1 convertibility
(i.e., one-round protocols) of states with a finite stabilizer
to the case of an infinite stabilizer, which is indispensable
for addressing symmetric classes. In Sec. V, we consider n
qubits and we argue that, although SLOCC classes containing
symmetric states form a zero-measure set in the Hilbert space,
generically, they have trivial stabilizer for n � 5 and, thus, can
neither be reached nor converted via LOCC. This allows us, in
turn, to completely characterize the entanglement content of
those states via easily computable entanglement measures. In
Sec. VI, we argue that non-ES classes do not seem promising
with respect to a rich LOCC structure. However, a subclass
of ES classes, the nonderogatory ES classes (for the definition
see Sec. II), do turn out to possess a promising stabilizer which
we derive in Sec. VII. We further show in this section that
indeed a rich LOCC structure is present. More precisely,
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we show that LOCC transformations between two different
symmetric states are possible (Theorem 6). However, we also
show that there always exist states that are isolated (Theo-
rem 8) in a sense that we will explain there, except for the
outstanding GHZ and W class for n-qubit states, which are
free from isolation for all n. Finally, we deal with derogatory
ES classes (for the definition see Sec. II) in Sec. VIII. We
argue that fully characterizing the stabilizer of derogatory
ES classes is beyond the scope of this work. We show that
some of the SLOCC classes somehow resemble multicopy
scenarios of the aforementioned nonderogatory ES classes,
and therefore inherit a nontrivial LOCC structure. Moreover,
we construct a five-qutrit derogatory ES class within which
all states are LOCCN isolated, despite having a nontrivial
stabilizer. Finally, as illustrative examples, we scrutinize the
three- and four-qutrit cases.

II. PRELIMINARIES

We consider n-partite states with n � 3 in homoge-
neous systems described by the Hilbert space H = H1 ⊗
· · · ⊗ Hn = Cd ⊗ · · · ⊗ Cd . We only consider fully entan-
gled states, i.e., states for which all reduced density matrices
have full rank. States |�〉 and |�〉 are SLOCC equivalent
iff there exist local invertible operators Ai ∈ GL(d,C) such
that |�〉 = A1 ⊗ · · · ⊗ An|�〉. We will write states within the
same SLOCC class as local invertible operators acting on
a representative of the SLOCC class, which we will also
call a seed state |�s〉. When considering state transforma-
tions, we will usually denote the initial state as |�〉 = g1 ⊗
· · · ⊗ gn|�s〉 and the final state as |�〉 = h1 ⊗ · · · ⊗ hn|�s〉.
Moreover, we use the notation g = g1 ⊗ · · · ⊗ gn, G = G1 ⊗
· · · ⊗ Gn = g†g and analog notation for h1 ⊗ · · · ⊗ hn. For
convenience, we work with unnormalized states. Furthermore,
let us denote the stabilizer, or (local) symmetries, of a state
|�〉 by S� = {S(1) ⊗ · · · ⊗ S(n) ∈ GL(d,C)×n | S(1) ⊗ · · · ⊗
S(n)|�〉 = |�〉}. If not stated differently, a superindex (i) indi-
cates as above that we refer to the part of the symmetry that is
acting on party i. In order to denote that the matrix B is acting
on party i we will use the notation B(i). Moreover, we will use
a superindex M[b] to indicate the submatrix matrix (M )bb for
the block b.

A. Symmetric subspace

Let us briefly recall some results about permutation-
symmetric states, which we will simply call symmetric states
in the following. We denote the symmetric subspace of
(Cd )⊗n as Symn(Cd ), which is defined as

Symn(Cd ) = {|�〉 ∈ (Cd )⊗n | Pi, j |�〉 = |�〉 ∀ i, j}, (2)

where Pi, j is a nonlocal operator permuting parties i and j
[34,35]. Its complex dimension equals the binomial coeffi-
cient (n + d − 1

d − 1 ) [34,35]. As a simple example, the symmetric
subspace for two qubits is spanned by {|00〉, |11〉, (|01〉 +
|10〉)/

√
2} and hence three dimensional. In general, a state

in |�〉 ∈ Symn(Cd ) can be written as

|�〉 =
∑

�n

∑
�i:#i=ni

α�n |i1, . . . , in〉, (3)

where the first sum is over all d-dimensional vectors �n, whose
entries sum to n, the second sum is over all n-dimensional
vectors �i in which the entry i occurs exactly ni times, and α�n ∈
C [35].

Alternatively to Eq. (3), any |ψ〉 ∈ Symn(Cd ) can also be
written as [36]

|ψ〉 =
r∑

i=1

|wi〉⊗n, (4)

where |wi〉 ∈ Cd ∀ i. The smallest value of r is called sym-
metric tensor rank, which we denote by rankS (ψ ). Since two
symmetric states |ψ〉 and |φ〉 are in the same SLOCC class iff
there exists an invertible A ∈ Cd×d such that |φ〉 = A⊗n|ψ〉
[32,33], the symmetric tensor rank is the same for all sym-
metric states in the same SLOCC class.

In the case of symmetric qubit states we will also use
the Majorana representation. Ignoring normalization, every
|ψ〉 ∈ Symn(C2) can be written as [36]

|ψ〉 =
∑
π

Pπ (|ε1 . . . εn〉), (5)

where each |ε j〉 is a single-qubit state, i.e., |ε j〉 = cos α j |0〉 +
exp(iβ j ) sin α j |1〉 with α j ∈ [0, π/2] and β j ∈ [0, π ] ∀ j,
and the summation runs over all possible permutations. The
Majorana representation is unique in the sense that the
2n real parameters {α j, β j} uniquely identify every state
|ψ〉 ∈ Symn(C2). Given a state |ψ〉, the diversity degree m is
the number of pairs (α j, β j ) that take different values and the
degeneracy configuration {k1, . . . , km} labels how often a state
|ε j〉 [i.e., a pair (α j, β j )] occurs in |ε1 . . . εn〉 [see Eq. (5)].
Since the Majorana representation is unique and two symmet-
ric states |ψ〉 and |φ〉 are in the same SLOCC class iff there
exists an invertible A ∈ C2×2 such that |φ〉 = A⊗n|ψ〉, the
diversity degree and the degeneracy configuration are SLOCC
invariant [31].

In the following, we will be mainly concerned with
SLOCC classes that contain at least one symmetric state. Note
that the union of those SLOCC classes is indeed a measure-
zero set and, thus, having a potentially rich LOCC structure
there does not contradict with Refs. [14,15]. This can be
seen via a simple parameter-counting argument as follows.
As mentioned before, the dimension of the symmetric sub-
space Symn(Cd ) is (n + d − 1

d − 1 ). The maximal dimension of an

SLOCC orbit is n(d2 − 1). Thus, the union of SLOCC classes
containing at least one symmetric state has a dimension of no
more than n(d2 − 1) + (n + d − 1

d − 1 ) [37], while the full Hilbert
space has dimension dn. Given a fixed d , the union of SLOCC
classes containing symmetric states will thus be of measure
zero for sufficiently large n.

B. Exceptionally symmetric and nonexceptionally
symmetric states

In [32,33], it has been shown that any two SLOCC-
equivalent symmetric states |�〉 and |�〉, i.e., symmetric
states for which there exists A1, . . . , An such that |�〉 = A1 ⊗
· · · ⊗ An|�〉, are always related by a local operation of the
form A⊗n, i.e., |�〉 = A⊗n|�〉 for some A. Hence, given a
symmetric seed state |�s〉, it suffices to consider operators of
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the form A⊗n in order to obtain all symmetric states within the
SLOCC class of |�s〉.

Another result in [32,33] addresses the stabilizer of sym-
metric states. Some symmetric states have a stabilizer of the
form B(i) ⊗ B−1

( j) for a matrix B �∝ 1, i.e., B acting on some
party i and B−1 acting on some other party j. Clearly, this
is a property that is common to the whole SLOCC class.
Note that the eigenvalues of B do not play a role (only
their degeneracies), as whenever B ⊗ B−1 is a symmetry of
a state, then so is f (B) ⊗ f (B)−1 for any analytic function
f [33]. This allows one to construct a new symmetry with
B̃ which has the same Jordan structure but has arbitrarily
changed eigenvalues (respecting the degeneracies) [33]. One
can then distinguish two different types of symmetric states
(SLOCC classes containing a symmetric state), which we call
exceptionally symmetric (ES) and nonexceptionally symmetric
(non-ES) states (classes). Symmetric states that have nontriv-
ial symmetries of the form B ⊗ B−1 belong to ES classes and
states that do not have such symmetries belong to non-ES
classes. In fact, the latter states solely have symmetries of the
form A⊗n.

Let us mention that to solve for the symmetries of a sym-
metric state |ψ〉, it is sometimes more convenient to solve
the equation A⊗n|ψ〉 = λ|ψ〉 for A ∈ SL(d,C) (or other suit-
able choices of normalization, e.g., [A]1,1 = 1). Note further
that the equation B ⊗ B−1 ⊗ 1⊗n−2|ψ〉 = λ′|ψ〉 holds only
if λ′ = 1 [38]. In the following, we will therefore consider
the symmetry-defining equation with a proportionality factor
whenever it eases the presentation.

Clearly, considering ES classes, the Jordan normal form of
B is invariant under SLOCC [33]. Hence, we will, without loss
of generality, consider in the remainder of this section and in
Sec. II C B in Jordan normal form. Here and in the following,
Jk denotes a (k × k) Jordan block with eigenvalue 1. If B
is a single Jordan block of size (k + 1) × (k + 1), then the
state

|Ek〉 =
∑

i1+···+in=k

|i1i2 . . . in〉 ∈ Ck+1⊗n
(6)

is the (up to SLOCC) unique state stabilized by B ⊗ B−1

[33]. In the following, we call these states states with k ex-
citations. For k = 1, they are identical to the Dicke states
with one excitation. However, for k > 1, these states differ
from the Dicke states as not all terms in the superposition
are the same up to permutation (e.g., |E2〉 for n = 2 is given
by |E2〉 = |11〉 + |02〉 + |20〉). If B contains more than one
Jordan block, but all eigenvalues have geometric multiplicity
1, i.e., eigenvalues corresponding to different Jordan blocks
are different, then

K⊕
b=1

|Ekb〉 (7)

is (up to SLOCC) the unique state stabilized by B ⊗ B−1 [33],
where K is the total number of Jordan blocks in B of respec-
tive sizes kb + 1. Recall that only the block structure and the
multiplicities but not the specific values of the eigenvalues are
relevant here.

C. Derogatory and nonderogatory exceptionally
symmetric states

The matter becomes more involved when matrices B with
eigenvalues whose geometric multiplicity is larger than 1,
so-called derogatory matrices, are considered. In this case,
states stabilized by B ⊗ B−1 are not unique any more [33].
To discuss these classes further, we use the same notation as
in [33] and consider first the case where all Jordan blocks in B
share the same eigenvalue. The state |i(b j )

j 〉 denotes here and in
the following the (i j + 1)th standard basis vector in the Jordan
block b j . An excitation l is assigned to the (l + 1)th standard
basis vector in a Jordan block. With this notation one can write
the states of fixed excitation number k, which are stabilized by
a derogatory B ⊗ B−1 as [33]∣∣En1,...,nK

k

〉 = ∑
�b:#b=nb

∑
i1+···+in=k

∣∣i(b1 )
1 i(b2 )

2 . . . i(bn )
n

〉
, (8)

where nb � 0 for all b ∈ {1, . . . , K}, and n1 + · · · + nK = n.
The total number of excitations is denoted by k. The first sum
runs over all n-dimensional vectors �b comprised of integers
between 1 and K such that each integer b ∈ {1, . . . , K} ap-
pears exactly nb times within �b. In other words, nb denotes the
number of parties for which |i(b j )

j 〉 has to lie in the range of
the bth Jordan block. To illustrate Eq. (8), let us consider the
three-qutrit case with a Jordan block of size 1 and a Jordan
block of size 2. We have that |E3,0

0 〉 = |000〉 since there is
no excitation and all local vectors lie in the range of the first
Jordan block. As for the state |E2,1

0 〉 = |W 〉, there is still no
excitation, but since the zero-excitation state for the first block
is |0(1)〉 = |0〉 and the one for the second block is |0(2)〉 = |1〉,
we have that within each term, the state |0〉 appears twice
(n1 = 2) and |1〉 appears once (n2 = 1).

A full classification of SLOCC classes for derogatory B
is unknown. In particular, the set {|En1,...,nK

k 〉}k,(n1...,nK ) does
not constitute a set of representatives. However, it has been
shown that a representative of any SLOCC classes stabilized
by some B ⊗ B−1, where B has only a single eigenvalue λ, can
be written as∣∣�λ

α

〉 = maxb(kb)∑
k=0

∑
n1+···+nK =n

αk,n1,...,nK

∣∣En1,...,nK
k

〉
, (9)

where kb denotes the individual block sizes, and in the sum
over nb, those nb for which kb is smaller than k are zero, and
αk,n1,...,nK ∈ C [39].

If B constitutes of K − m Jordan blocks with differ-
ent eigenvalues (to which we refer to via b ∈ {1, . . . , K −
m}) and m Jordan blocks sharing d degenerate eigenvalues
{λ1, . . . , λd}, then the states that are stabilized by B ⊗ B−1

can be written as the direct sum
K−m⊕
b=1

∣∣Ekb

〉 d⊕
j=1

∣∣�λ j
α j

〉
, (10)

where |�λ j
α j 〉 involves only the Jordan blocks that share the

eigenvalue λ j [40].
Going beyond the distinction between ES and non-ES

states and classes, we will now categorize ES states and
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classes into two distinct families. We will call the ES classes
stabilized by some nonderogatory B ⊗ B−1 nonderogatory ES
SLOCC classes and those that are stabilized solely by deroga-
tory B ⊗ B−1 derogatory ES SLOCC classes. Equivalently, the
ES SLOCC classes represented by states in Eqs. (6) and (7)
are nonderogatory, while all remaining ES SLOCC classes
are derogatory. Let us remark that nonderogatory ES classes
may very well be stabilized by some derogatory B ⊗ B−1.
However, derogatory ES classes may not be stabilized by any
nonderogatory B ⊗ B−1.

Let us consider here a few simple examples to illustrate
this classification. In particular, we provide examples which
show that superpositions as in Eq. (9) have to be taken into
account as not all of these are within an SLOCC orbit of
states of the form in Eq. (8). However, it should be noted
that not any state of the form in Eq. (9) results in a different
SLOCC class. Moreover, there exist nonderogatory ES states
that can be written in this form. A very prominent example
of nonderogatory ES states would be the three-qubit W state,
|W 〉 = |001〉 + |010〉 + |100〉, which is of the form given in
Eq. (6) for k = 1. It can be easily verified that B ⊗ B−1 with
B = (x 1

0 x) is a symmetry. Moreover, the three-qubit GHZ
state |GHZ〉 = |000〉 + |111〉 is of the form in Eq. (7) for K =
2 and k1 = k2 = 1, so it is also ES. Indeed, the corresponding
symmetry is with B = (x 0

0 y). Actually, these are the only two
possible nontrivial Jordan normal forms of (2 × 2) matrices.
Hence, the W and the GHZ class are the only two ES classes
of three- (or n-) qubit states, so there exists no derogatory
classes in the n-qubit case. To further clarify the notation for
the excited states in Eq. (8), we consider a rather lengthy but
illuminating example of three four-level systems in derogatory
ES classes. Let us consider B = J2 ⊕ J2, where as before, we
use the notation Jk for a (k × k) Jordan block with eigenvalue
1. Then, |E3,0

1 〉, |E0,3
1 〉, |E2,1

1 〉, |E1,2
1 〉, |E3,0

0 〉, |E0,3
0 〉, |E2,1

0 〉, and
|E1,2

0 〉 are the states given by Eq. (8) for all possible configu-
rations k, n1, n2 for the given B matrix. Using the mapping
|i(b)〉 → |b − 1〉 ⊗ |i〉 these states can be rewritten as∣∣E3,0

0

〉 = |000〉A1B1C1 ⊗ |000〉A2B2C2 ,∣∣E2,1
0

〉 = |W 〉A1B1C1 ⊗ |000〉A2B2C2 ,∣∣E1,2
0

〉 = |W̄ 〉A1B1C1 ⊗ |000〉A2B2C2 ,∣∣E0,3
0

〉 = |111〉A1B1C1 ⊗ |000〉A2B2C2 ,
(11)∣∣E3,0

1

〉 = |000〉A1B1C1 ⊗ |W 〉A2B2C2 ,∣∣E2,1
1

〉 = |W 〉A1B1C1 ⊗ |W 〉A2B2C2 ,∣∣E1,2
1

〉 = |W̄ 〉A1B1C1 ⊗ |W 〉A2B2C2 ,∣∣E0,3
1

〉 = |111〉A1B1C1 ⊗ |W 〉A2B2C2 ,

where |W̄ 〉 = σ⊗3
x |W 〉, σx denotes the Pauli X matrix. Here,

the first party consists of the subsystems A1 and A2, the second
has B1 and B2, and the third party holds the systems C1 and
C2. As mentioned before, in contrast to the nonderogatory
case, it is not the case that the set {|En1,...,nK

k 〉}k,(n1...,nK ) gives
representatives for all SLOCC classes in the derogatory case

[41]. Consider the state∣∣E2,1
1

〉+ ∣∣E3,0
0

〉+ ∣∣E0,3
0

〉
= |GHZ〉 ⊗ |000〉 + |W 〉 ⊗ |W 〉, (12)

which as well gives rise to a derogatory class, but is not
SLOCC equivalent to any of the |En1,n2

k 〉 listed above. This
illustrates that superpositions as in Eq. (9) indeed need to be
considered. Moreover, one additional difficulty arises. There
is no guarantee that the superpositions in Eq. (9) would give
rise to derogatory classes. In contrast to the example above,
they may happen to coincide with a nonderogatory class.
Consider the example∣∣E3,0

1

〉+ ∣∣E0,3
1

〉 = |GHZ〉 ⊗ |W 〉, (13)

or |E2,1
1 〉 + |E1,2

1 〉, which are both equivalent to |W 〉 ⊕ |W 〉.
Therefore, both states are in the same nonderogatory ES
SLOCC class as |W 〉 ⊕ |W 〉 which is nonderogatory.

D. Entanglement and state transformations

As mentioned in the Introduction, the study of LOCC
transformation is central in entanglement theory, as LOCC
cannot increase entanglement. That is, if one state |�〉
can be transformed into another state |�〉 via LOCC (de-
terministically), then the entanglement, measured by some
entanglement measure E of |�〉 is larger or equal to the
entanglement contained in |�〉, i.e., E (|�〉) � E (|�〉). Im-
portantly, this holds for any entanglement measure E . Hence,
the study of LOCC transformations allows the comparison of
the entanglement content of states. The simplest example of
such transformations are local unitaries. However, as unitary
operators are invertible, they do not change entanglement and
are hence irrelevant here.

The existence of a nontrivial transformation presupposes
the existence of local symmetries of the states, which can be
easily seen as follows. Let us first consider the case of finitely
many rounds of LOCC, i.e., LOCCN . If |�〉 can be trans-
formed nontrivially into |�〉 via LOCCN , then there have to
exist at least two distinct local operators M (1)

i ⊗ M (2)
i ⊗ · · · ⊗

M (n)
i , for i = 1, 2 such that M (1)

i ⊗ M (2)
i ⊗ · · · ⊗ M (n)

i |�〉 =
αi|�〉, with αi �= 0. As we consider here fully entangled states,
the local operators have to be invertible. Hence, the equa-
tions above imply that |�〉 needs to possess a local symmetry.

Furthermore, as the LOCC transformation has to be de-
terministic, the measurement operators need to satisfy the
completeness relation. To complicate matters, the measure-
ments need to be implementable via LOCC. That is, one party
performs a measurement and communicates the outcome i to
the other parties who then perform a measurement depending
on i. This process terminates once all possible states which
are generated during the process coincide with the desired
final state. The fact that all local measurements have to obey
the completeness relation make the characterization of LOCC
protocols so complicated.

As one can see from the explanation above, it is the lo-
cal symmetries of the states which make a transformation
possible or not. In case there exist only finitely many lo-
cal symmetries, a simple characterization of all states which
can be reached from any other state via LOCCN have been
presented in Refs. [12,13]. Moreover, the necessary and
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sufficient conditions for the existence of a LOCC transforma-
tion from a given state to any other state have been derived
there for a single round of LOCC, i.e., LOCC1, where one
party implements a nontrivial measurement and the other par-
ties apply (depending on the measurement outcome) a LU. We
will extend these results to infinite symmetry groups here.

It should also be noted here that in case infinitely many
rounds of LOCC are considered, it is still unclear whether
noninvertible local matrices need to be considered as well
[6]. However, even in that case, it has been shown that for
homogeneous systems, almost no state can be transformed
into any other state [14,15]. That is, almost all states are
isolated. The reason is that almost no state possesses a local
symmetry (other than the identity operator).

Let us mention here that the reason for considering LOCC1

transformations in Refs. [12,13] and also here is that, apart
from one exception, all previously studied LOCC transfor-
mations are all-deterministic. That is, in each round of the
LOCC protocol the state is transformed deterministically into
another state. Despite the fact that we will also present here
some examples of pairs of states which can not be transformed
into each other with such a protocol, we will mainly focus on
transformability via LOCC1. Due to that, we introduce here a
notion of weak isolation. A state is called weakly isolated if it
is neither LOCCN reachabe nor LOCC1 convertible.

The fact that LOCC enables to sort the states according
to the entanglement they contain motivates a further inves-
tigation of LOCC transformation among states which are
physically relevant. Knowing which state is more entangled
than another one will also ease the discovery of new (oper-
ational) entanglement measures. In this context, it is worth
mentioning that the study of LOCC and their probabilistic
counterpart, SLOCC transformations, led to a complete set
of easily computable entanglement measures for almost all n
qudit states [42].

In this work, we study the entanglement of symmetric
states, more precisely, we analyze which state transformations
are possible via LOCC within SLOCC classes that contain
symmetric states. As mentioned before, the motivation for
this is physical and manifold. On the one hand, symmetric
states naturally appear in physically relevant systems. In cer-
tain contexts, they display interesting physical features such
as, e.g., superradiance [25,43]. Furthermore, prominent sym-
metric states such as, e.g., the GHZ state, the W state, or
Dicke states have found applications in quantum information
(see, e.g., [44]). All this suggests that a thorough study of
entanglement in symmetric states in general will prove to be
very fruitful.

III. RESULTS

In this section, we summarize the main results of this work
[also see Fig. 1 for a compact summary]. We focus on study-
ing the possible LOCC transformations among and within
SLOCC classes of pure symmetric states. We are particularly
interested in finding SLOCC classes that exhibit a rich struc-
ture of possible LOCC transformations. As explained above,
these transformations impose a partial order on the Hilbert
space, which must be respected by any entanglement measure.
In the course of this investigation, we characterize the local

symmetries of those subsets of states, which are most promis-
ing regarding the set of possible LOCC transformations.

As mentioned in the Introduction, it has been shown that in
homogeneous systems constituted of n > 3 parties with local
dimension d > 2 (as well as systems for which d = 2, n > 4),
LOCC transformations among pure states are almost never
possible [14,15]. This is a consequence of the fact that generic
states of such systems possess a trivial stabilizer. Note that
this statement is not necessarily true for subsets of the Hilbert
space of measure zero and, clearly, the set of symmetric states
forms such a subspace of measure zero. However, we show
that, considering qubits, the statement applies to the symmet-
ric subspace considering n � 5 particles (Theorem 3). To spell
it out, state transformations involving symmetric qubit states
are almost never possible as almost no such state possesses
a nontrivial local symmetry. In this sense, the set of sym-
metric qubit states reflects the properties of the full Hilbert
space. In turn, this result provides a simple and complete
characterization of entanglement of generic symmetric qubit
states.

Compared to the generic case, the situation in the SLOCC
classes corresponding to the n-qubit GHZ and W states is as
different as it could possibly be. It is well known that these two
classes do not contain any isolated state, that is, a state that
can neither be reached from any other state nor converted into
any other state via LOCC (nontrivially). In other words, there,
every state can take part in nontrivial state transformations
(while, generically, no state can). This motivates a detailed
investigation of zero-measure subsets within the symmetric
subspace. The classification of symmetric states into ES and
non-ES states (see Sec. II B) is well suited to identify the
desired subset. The reason for that is the following. Note that
in case the stabilizer is nontrivial, nontrivial LOCC transfor-
mations typically do exist. As explained before, whether a
state can be transformed into another state via LOCC highly
depends on the properties of the stabilizer [6,16,17]. Hence,
the classification into ES and non-ES states, which is purely
based on properties of the stabilizer, is ideally suited here.
For ES states, the symmetry group is nonunitary and infi-
nite. In Sec. IV, we hence generalize the tools for studying
finite-round LOCC (LOCCN) transformations, which have
been introduced for the case of a finite stabilizer [12,13,45],
to the case of an infinite (not necessarily unitary) stabilizer
(Theorem 1 and Lemma 1). We study the implications of
these conditions on the symmetries in Observations 1 and 2.
Moreover, we give a simple necessary and sufficient condition
for when a state is weakly isolated, i.e., isolated with respect
to LOCCN reachability and LOCC1 convertibility (Lemma 2).

Using these results we then study the symmetries and
possible LOCC transformations within the aforementioned
classes of symmetric states.

Non-ES states. Recall that non-ES states are those states
that have symmetries of the form A⊗n only. Note that sym-
metric states with only the trivial stabilizer fall into this
class. As mentioned before, for these states a complete, easily
computable set of entanglement measures is known and the
maximal success probability of transforming one state into
the other can be easily computed [42]. We show that non-ES
states are never reachable via LOCCN (Lemma 3), even if
the stabilizer is nontrivial, which implies that nontrivial finite
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FIG. 1. In this figure, we illustrate the classification of symmetric states and summarize the results. Where not stated otherwise, the
statements hold for arbitrary local dimension d and arbitrary particle numbers n > 3.

round LOCC transformations among two non-ES states are
never possible. Moreover, we show that every SLOCC class
containing an non-ES state for n � 5 contains weakly isolated
states (Lemma 4). In the following we will thus focus on the
most interesting case, the ES states.

ES states. ES states have typically a much larger stabilizer
compared to non-ES states, as the symmetry groups are gener-
ated by symmetries of the form B ⊗ B−1 in addition to A⊗n (in
the sense explained in the preliminaries). Recall that ES states
are partitioned into the two subcategories of nonderogatory
ES and derogatory ES states, depending on the properties of
B (see Sec. II). We deal with these two types separately.

Nonderogatory ES states. Regarding a broad variety of
possible LOCC transformations, nonderogatory ES states ap-
pear particularly promising, as the W and the GHZ state,

whose SLOCC classes do not contain any isolated states,
are examples of nonderogatory ES states. Recall that all the
SLOCC classes and corresponding representatives are known
(see Sec. II). We characterize the stabilizer for all of them
(Theorems 4 and 5). As the W and GHZ states are two
particular cases of nonderogatory ES states, the derived sta-
bilizer serves as a generalization of the (particularly rich)
symmetry groups of both the W and GHZ states. We show
that within each of the SLOCC classes of nonderogatory ES
states, LOCC transformations among two symmetric states
are possible (Theorem 6). Nevertheless, we also show that in
each of these SLOCC classes, except for the qubit-W and the
qubit-GHZ classes, weakly isolated states are present (Theo-
rems 7 and 8). This shows that despite the existence of the
exceptionally large stabilizer within all the nonderogatory ES

032458-7



MARTIN HEBENSTREIT et al. PHYSICAL REVIEW A 105, 032458 (2022)

SLOCC classes, the qubit GHZ and qubit W classes are the
only classes that are free of weak isolation.

Derogatory ES states. Finally, we deal with derogatory ES
states. Recall that the symmetries of the form B ⊗ B−1 are
more restricted here than in the respective nonderogatory ES
counterparts, as at least one eigenvalue needs to be degenerate.
Several difficulties arise, as pointed out in the preliminaries.
In particular, the characterization of derogatory ES SLOCC
classes is very delicate. This is due to the facts that neither the
representatives of derogatory ES SLOCC classes are known
for arbitrary system sizes, nor is there a simple and sufficient
condition for a state to fall into the derogatory ES class.
Due to that, our main focus here will be to demonstrate the
properties of those states with the help of examples. Among
n-qubit and three-qutrit states (Observation 7), there does not
exist any derogatory ES state. The smallest system comprising
derogatory ES states is a four-qutrit system, which we analyze
in detail in Sec. VIII A 2. First, we characterize the symme-
try groups of all derogatory ES four-qutrit states. Then, we
show that in each of the classes, symmetric weakly isolated
states are present. Moreover, we show that certain nontrivial
LOCC transformations are possible (Observation 8). Further,
we identify a derogatory ES five-qutrit state representing an
SLOCC class in which all states are isolated with respect to
LOCCN reachability and convertibility (Observation 6). This
SLOCC class together with the SLOCC classes of the GHZ
and W state (qubits) therefore represent the two extreme cases
of SLOCC classes.

We are presenting these results by first considering qubit
states, for which we show that the generic results hold also
true for symmetric states (Sec. V). Then, we move on to
non-ES states, where we show that the symmetries are still
too restrictive to allow a rich LOCC structure to exist. Nev-
ertheless, we also present a family of symmetric states which
are indeed LOCC convertible. States having the most sym-
metries and hence the most promising candidates for rich
LOCC structures are the ES states and among them actually
the nonderogatory ES states. We scrutinize this class of states
and derive all local symmetries of them. Their symmetries
are so rich that even LOCC transformations among symmetric
states can be derived. However, also in these classes, with the
exception of the GHZ and W classes, we show that weakly
isolated states always exist.

As mentioned above, the symmetries of the form B ⊗ B−1

of derogatory ES states are always strict subsets of their non-
derogatory ES counterparts. However, this is not necessarily
true for the symmetries of the form A⊗n. Thus, the conclusion
that derogatory ES classes exhibit a smaller stabilizer and
hence restricted possibilities of LOCC transformations com-
pared to their nonderogatory counterparts cannot be drawn.
However, all the results presented here indicate that, typ-
ically, the structure of possible LOCC transformations is
richer within nonderogatory ES classes compared to deroga-
tory ES classes. To gain insight into the possible structures
within derogatory ES classes, we analyze in detail small
system sizes and show that, despite the fact that local sym-
metries exist, there exist SLOCC classes where all states are
isolated.

IV. LOCCN REACHABILITY FOR NONUNITARY
STABILIZER

In this section, we generalize two results obtained by some
of us in [12,13] upfront. There, LOCC protocols involving a
finite number of rounds of classical communication, denoted
by LOCCN , are studied. Due to practical reasons, we consider
here LOCCN despite the fact that LOCC protocols may, in
general, include an infinite number of such rounds. For more
details on the difference between LOCC and LOCCN , see
[12,13,46].

In Theorem 1 in [12,13] necessary and sufficient conditions
for reachability under LOCCN have been derived for the case
of a unitary stabilizer. Here, we generalize the theorem to
an arbitrary stabilizer. Moreover, we also generalize Lemma
3 therein, providing necessary and sufficient conditions for
LOCC1 convertibility, i.e., convertibility under a nontrivial
operation performed by one party [47], to the scenario of an
infinite stabilizer. We heavily make use of these generaliza-
tions derived here, which clearly have significance beyond this
work.

Theorem 1. A state |�〉 ∝ h|�s〉 is reachable via LOCCN ,
iff there exists S ∈ S�s such that the following conditions hold
up to permutations of the particles:

(i) For any i � 2, (S(i) )†HiS(i) ∝ Hi and
(ii) (S(1) )†H1S(1) �∝ H1.
The proof works very similarly to the case when the stabi-

lizer is finite (and can therefore be chosen to be unitary) [12]
and is presented in Appendix A.

Lemma 1. A state |�〉 ∝ g|�s〉 is convertible via LOCC1

iff there exist m symmetries Sk ∈ S�s , with m > 1 and H1 > 0
and pk > 0 with

∑m
k=1 pk = 1, such that the following condi-

tions hold up to permutations of the particles:
(i) (S(i)

k )†GiS
(i)
k ∝ Gi for any i � 2 and for all k ∈

{1, . . . , m} and
(ii) G1 =∑m

k=1 pk (S(1)
k )†H1S(1)

k and H1 �∝ (S(1) )†G1S(1)

for any S ∈ S�s fulfilling (S(i) )†GiS(i) ∝ Gi for all i � 2.
The proof is analogous to the proof of Lemma 3 in [13] and

can be found in Appendix A.
Let us consider a simple example to illustrate how these

conditions allow one to decide reachability and convertibility.
Assume that the symmetries of the state |�〉 are P⊗n

z where
Pz = diag(z, 1/z) and z ∈ C and consider the state ⊗ihi|�〉
with hi diagonal and hi �= 1 for all i. Then, using Theorem 1, it
is straightforward to show that these states cannot be reached
with LOCCN as all Hi are diagonal and therefore either (for
|z| �= 1) P†

z HiPz �∝ Hi for all i or (for |z| = 1) P†
z HiPz ∝ Hi

for all i. However, this state is convertible within a single
round to another pure state, which can be easily seen as
follows. The condition (i) in Lemma 1 holds true if, e.g.,
S0 = 1⊗n and S1 = σ⊗n

z . Then, by choosing H̃1 = H1 + ασx

with α �= 0 (but small enough such that H̃1 > 0) it holds that
H1 = 1/2

∑m
k=1(S(1)

k )†H̃1S(1)
k and H̃1 �∝ (S(1) )†H1S(1). Hence,

also condition (ii) holds true.
As seen from above, a crucial property for reachability (and

deterministic convertibility within one round) is the existence
of a symmetry S =⊗i S(i) such that

(S(i) )†HiS
(i) ∝ Hi (14)
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(and analogously for Gi). We call this relation a quasicommu-
tation relation. It can only hold true if the operators S(i) and Hi

are related to each other in a very specific way as the following
observations show.

Observation 1. Let A be a positive k × k matrix and B be
an arbitrary k × k matrix. Then, B†AB ∝ A if and only if B ∝
a−1Ua for some unitary U and some a so that a†a = A.

Observation 2. Let A be a positive k × k matrix and B be
an arbitrary k × k matrix. Then, B†AB ∝ A if and only if the
following two conditions are met:

(1) B is (up to proportionality) similar to a unitary matrix,
i.e., B ∝ R diag(eiφ1 , . . . , eiφk )R−1 for some k × k matrix R
and φ1, . . . , φk ∈ [0, 2π ).

(2) A ∝ R−†XR−1, where X is a direct sum of pos-
itive matrices acting on the degenerate subspaces of
diag(eiφ1 , . . . , eiφk ).

The proofs of these observations can be found in Ap-
pendix B. Note that in the particular case in which the
eigenvalues of B are nondegenerate, i.e., φi are mutually dif-
ferent, X must be a diagonal matrix with positive entries.
Note, further, that these observations directly imply the fol-
lowing corollary.

Corollary 1. For a full-rank, nondiagonalizable k × k ma-
trix B, there exists no positive-definite k × k matrix A such
that the equation B†AB ∝ A is satisfied.

Hence, in order for Eq. (14) to hold true S(i) has to be diago-
nalizable. Note that the symmetries B ⊗ B−1 of the ES classes
are in general not necessarily diagonalizable and, therefore, it
is a priori not clear that nontrivial transformations are possi-
ble in ES classes. An exception here is, e.g., the GHZ state
(of arbitrary dimension), for which the symmetry B ⊗ B−1 is
diagonal.

The conditions in Theorem 1 and Lemma 1 can be em-
ployed to identify states that are neither reachable with
a finite-round LOCC protocol nor deterministically trans-
formable within one round to another pure state. We call such
states in the following weakly isolated states. The following
lemma provides a complete characterization of such states.

Lemma 2. A state |�〉 ∝ g|�s〉 is weakly isolated if and
only if there exists no S ∈ S�s \ {1} such that (S(i) )†GiS(i) ∝
Gi for n − 1 sites i.

Proof. We prove this by showing that a state is not
weakly isolated iff there exists some S ∈ S�s \ {1} such that
(S(i) )†GiS(i) ∝ Gi for n − 1 sites i. Obviously, if |�〉 is
nonisolated, then there must exist some S ∈ S�s such that
(S(i) )†GiS(i) ∝ Gi for n − 1 sites i due to Theorem 1 and
Lemma 1. Let us now prove the converse direction. To this
end, we assume that there exists some S ∈ S�s such that
(S(i) )†GiS(i) ∝ Gi for all i ∈ {1, . . . , n} \ { j} and show that
the state |�〉 is nonisolated. Let us distinguish two cases,
(S( j) )†GjS( j) �∝ Gj and (S( j) )†GjS( j) ∝ Gj . In the first case,
(S( j) )†GjS( j) �∝ Gj , it follows from Theorem 1 that this state
is reachable. In the second case, (S( j) )†GjS( j) ∝ Gj , we can
construct an operator Hj such that Gj =∑k pk (S( j)

k )†HjS
( j)
k

with S( j)
k = (S( j) )k and Hj �∝ (S( j) )†GjS( j). Then either con-

dition (ii) in Lemma 1 is fulfilled and |�〉 is convertible,
or another symmetry S̄ fulfilling the conditions in Theo-
rem 1 can be constructed and |�〉 is reachable. Note first
that due to the fact that S( j) fulfills a quasicommutation

relation, it has to be of the form S( j) ∝ RDR−1 with D =
diag(1, eiα, . . .) with α �= 0 (up to reordering of the eigenval-
ues; see Observation 2). Then, we choose the operator Hj =
Gj + βX with X = R−†(σx ⊕ 0)R−1, β �= 0 such that Hj > 0,
and the probability distribution pk such that

∑
pkeikα = 0.

Note that such a probability distribution always exists for
any α �= 0. With this we have that

∑
pk (S( j)†)kX (S( j) )k =

0 and we obtain Gj =∑k pk (S( j)
k )†HjS

( j)
k . Using that

(S( j) )†GjS( j) ∝ Gj it is easy to see that for β �= 0 it
holds that Hj �∝ (S( j) )†GjS( j) If there does not exist any
(other) symmetry S̃ ∈ S�s such that (S̃( j) )†GjS̃( j) ∝ Hj and
(S̃(i) )†GiS̃(i) ∝ Gi for all i ∈ {1, . . . , n} \ { j}, condition (ii)
in Lemma 1 is fulfilled and |�〉 is hence convertible.
Let us finally consider the case that such an S̃ exists.
Then, S̄ = SS̃−1 is also a symmetry of |�s〉 and we have
that (S̄(i) )†GiS̄(i) ∝ Gi for all i ∈ {1, . . . , n} \ { j}. Moreover,
we have that (S̄( j) )†GjS̄( j) = (S̃( j) )−†(S( j) )†GjS( j)(S̃( j) )−1 �∝
(S̃( j) )−†Hj (S̃( j) )−1 ∝ Gj . Hence, the symmetry S̄ fulfills the
conditions in Theorem 1 and |�〉 is hence reachable. �

V. GENERIC STABILIZER OF QUBIT SLOCC CLASSES
CONTAINING PERMUTATION SYMMETRIC STATES

As the set of symmetric qubit states is of measure zero, it
could well be that symmetric states do have nontrivial stabi-
lizers generically. We will show now that this is in fact not
the case and that the stabilizer for generic states in Symn(C2)
is trivial when n � 5. Hence, in the qubit case the statement
that almost no state transformations are possible also applies
to the union of SLOCC classes containing symmetric states.
It should be noted here that the claim of [48] that almost all
states in Symn(C2) for n � 5 have a trivial stabilizer relies on
extra assumptions. We will present here our own proof of this
fact and additionally prove that generic states in Sym4(C2)
have a nontrivial stabilizer. To this end, we first show that
non-ES states, i.e., states which only possess symmetries of
the form S⊗n, are generic and then prove the statement that
the stabilizer is generically trivial. Finally, we investigate the
entanglement contained in symmetric qubit states.

Let us start out by showing that ES qubit states are of
measure zero.

Theorem 2. The set of ES symmetric states has Lebesgue
measure zero in Symn(C2) when n � 4.

Proof. ES symmetric qubit states belong either to the GHZ
SLOCC class or to the W SLOCC class (as there exist only
two different Jordan forms for 2 × 2 matrices). The lemma in
Appendix C shows that the first class is zero measure when
n � 4. From the Majorana representation, it follows that the
states with degeneracy configuration different from {1, . . . , 1}
have measure zero, which implies that the set of states in
the W SLOCC class, which all have degeneracy configuration
{1, n − 1}, is of zero measure. �

Due to Theorem 2, generic states in Symn(C2) only pos-
sess symmetries of the form S⊗n. However, we show now
that the stabilizer is generically even trivial, i.e., there exists
no symmetry other than the identity operator, when n � 5.
Before presenting a proof for this statement, we find it insight-
ful to explain why this is not the case for n = 3 and 4.
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Observation 3. Generic states in Sym3(C2) have a non-
trivial stabilizer.

Proof. Let |ψ〉 ∈ Sym3(C2) have a Majorana represen-
tation as in Eq. (5). The assumption of genericity implies
that the degeneracy configuration is {1, 1, 1}. Thus, all {|ε j〉}
are different and every pair is a basis of C2. Hence, |ε3〉 =
α|ε1〉 + β|ε2〉 for some α, β ∈ C such that α, β �= 0. Let now
a1 = β/α and a2 = α/β and define the (unique) matrix A ∈
C2×2 such that

A|ε1〉 = a1|ε2〉, A|ε2〉 = a2|ε1〉. (15)

The fact that {|ε1〉, |ε2〉} are linearly independent implies that
A is invertible and different from the identity. Moreover, it
follows that A|ε3〉 = |ε3〉. Thus, A⊗3|ψ〉 = a1a2|ψ〉 = |ψ〉,
which proves the claim. �

Note that the observation above can also be seen by noting
that any three-qubit state has a nontrivial stabilizer [49].

Observation 4. Generic states in Sym4(C2) have a non-
trivial stabilizer.

Proof. Let |ψ〉 ∈ Sym4(C2) have a Majorana representa-
tion as in Eq. (5). Again, the assumption of genericity implies
that the degeneracy configuration is {1, 1, 1, 1}, all {|ε j〉} are
different, and every pair is a basis of C2. Let |ε3〉 = α|ε1〉 +
β|ε2〉 and |ε4〉 = α′|ε1〉 + β ′|ε2〉 with α, β, α′, β ′ �= 0 and de-
fine now

a1 =
√

ββ ′

αα′ , a3 =
√

αβ

α′β ′ , (16)

a2 = 1/a1, and a4 = 1/a3. We consider similarly as before the
(unique) matrix A ∈ C2×2 such that

A|ε1〉 = a1|ε2〉, A|ε2〉 = a2|ε1〉, (17)

which must be again invertible and different from the identity.
With the aforementioned conditions, it follows that A|ε3〉 =
a3|ε4〉 and A|ε4〉 = a4|ε3〉. Thus, A⊗4|ψ〉 = a1a2a3a4|ψ〉 =
|ψ〉, which proves the claim. �

We will next address the question whether in the n-qubit
case with n � 5 generic symmetric states have a trivial sta-
bilizer. This question was already addressed in [48]. We
nevertheless provide here our own proof which is not based
on any assumption [50].

Theorem 3. Generic states in Symn(C2) with n � 5 have a
trivial stabilizer.

Proof. As mentioned before, for generic states it suffices to
consider states with Majorana representation with degeneracy
configuration {1, . . . , 1}, which have the property that any
pair {|εi〉, |ε j〉} (i �= j) is linearly independent and spans C2.
Moreover, due to Theorem 2, to prove our claim it is enough
to show that generic states do not have a nontrivial symmetry
of the form A⊗n|ψ〉 = |ψ〉 since we only need to consider
non-ES states. Now, looking into the Majorana representation,
the above equation translates to∑

π

Pπ (|ε1 . . . εn〉) =
∑
π

Pπ (A|ε1〉 . . . A|εn〉). (18)

As [48] observes the uniqueness of this representation im-
poses then that

A|ε j〉 = a j |επ ( j)〉, (19)

where π is a permutation and {a j �= 0} can be freely chosen
in C [51]. Notice that the permutation π must decompose into
t si-cycles such that

∑t
i=1 si = n.

If there are two 2-cycles (say without loss of generality for
j = 1, 2, 3, 4), then arguing as in Observation 4, this fixes A
uniquely up to an irrelevant proportionality constant and, thus,
Eq. (19) can only hold for j > 4 for a set of states of measure
zero.

If there is a 1-cycle and a 2-cycle (without loss of generality
for j = 1, 2, 3), the argument used in Observation 3 fixes
again A uniquely up to a proportionality constant and again
Eq. (19) can only hold for j > 3 for a set of states of measure
zero.

If there is a 3-cycle [without loss of generality for (123) in
cyclic notation], we take again |ε3〉 = α|ε1〉 + β|ε2〉 for some
α, β ∈ C such that α, β �= 0. Then, Eq. (19) can only hold for
j = 3 if a1 = −a3β/α2 and a2 = a3/(αβ ). Thus, the cases
j = 1, 2 of the aforementioned equation fix A uniquely up
to a proportionality constant and forbid the equation to hold
generically when j > 3.

The proof is finished by noticing that if π contains one
s-cycle with s � 4, then Eq. (19) cannot hold generically for
the indices involving this cycle. To see this, we take without
loss of generality this cycle to be (12 . . . s) and take |ε3〉 =
α|ε1〉 + β|ε2〉 and |ε4〉 = α′|ε1〉 + β ′|ε2〉 with α, β, α′, β ′ �=
0. Equation (19) applied to j = 3 imposes that

a2 = α′

αβ
a3, a1 = αβ ′ − α′β

α2
a3. (20)

Notice that a1 �= 0 due to the fact that |ε3〉 and |ε4〉 are lin-
early independent. The above expressions when plugged into
Eq. (19) for j = 1, 2 fix again A uniquely up to a propor-
tionality constant. Thus, Eq. (19) cannot hold generically for
4 � j � s (this is immediate for s � 5, in the case s = 4 some
straightforward algebra shows that generically A|ε4〉 will not
be proportional to |ε1〉 as this requires that 2αβ ′ = α′β). �

A. Entanglement of SLOCC classes of symmetric qubit states

The results presented above imply that it is generically
impossible to transform one symmetric qubit state into an-
other via LOCC (even if infinitely many rounds of LOCC
are allowed [14]). Hence, the partial order of entanglement
provided by the study of LOCC transformations is trivial
in this case. However, for states with a trivial stabilizer, a
complete set of entanglement measures is presented in [42].
To recall this result here, we denote by |�s〉 a representative
of an SLOCC class of states which only have trivial symme-
tries (note that also for higher dimensions, the union of such
SLOCC classes is of full measure in the Hilbert space). For
an arbitrary normalized state |�〉 = g|�s〉 in such an SLOCC
class, a complete set of entanglement monotones is given by
the set {E�s

�xi
}i∈I , with a finite index set I and

E�s

�x (|�〉) = 〈�x|G|�x〉. (21)

Here, |�x〉 denotes a product state, i.e., |�x〉 = |x1〉 ⊗ · · · ⊗ |xn〉,
with |xi〉 ∈ Cd and G = g†g = ⊗d

i=1Gi. As G in Eq. (21) is
local and |�x〉 is a product state, the entanglement monotones
can be very easily computed.
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Moreover, in the case of generic states, it holds that the
maximal success probability of transforming |�〉 into |�〉 is
given by

P(�,�) = min
�x

E�s

�x (�)

E�s

�x (�)
= ‖�‖2

‖�‖2

1

λmax(G−1H )
, (22)

where λmax(X ) denotes the maximal eigenvalue of X . That
is, given the SLOCC class to which a state belongs to, the
finite set of entanglement monotones given above completely
characterizes the entanglement contained in the state. This is
in complete analogy to the bipartite entanglement monotones
[52]. Moreover, in the multipartite case the minimization in
Eq. (22) does not even need to be computed, and is simply
given by the right-hand side of that equation.

For states of the form g⊗n|�〉, with |�〉 to be an arbitrary
but known state with trivial stabilizer we have that the quanti-
ties

〈�x|G|�x〉 for x ∈ S, (23)

where S denotes a tomographically complete set, e.g., the
eigenbases of the Pauli operators, completely characterizes
the entanglement of a symmetric qubit state.

VI. NONEXCEPTIONALLY SYMMETRIC CLASSES

Whereas no LOCC transformation is generically possible
among qubit states, they might well exist among states in
higher-dimensional Hilbert spaces. Before we consider ES
classes in Sec. VII B, let us show here that non-ES classes
(with all symmetries of the form A⊗n) do not allow for many
LOCC transformations. We first show that no symmetric state
within those classes is reachable via LOCCN . Then, we prove
that for n � 5 in each such SLOCC class weakly isolated
states exist. Finally, we show that the symmetries of non-ES
states can nevertheless be rich enough to allow for nontrivial
transformations. We do so by presenting a family of states
within which all symmetric states are LOCC convertible.

Due to the restricted symmetries of non-ES state, the
following Lemma, which shows that no symmetric non-ES
state is reachable via LOCC, follows straightforwardly from
Theorem 1.

Lemma 3. Let |�s〉 be a non-ES n-qudit state (n > 2).
Then, any symmetric state within the same SLOCC class |�〉
is not reachable via LOCCN .

Proof. As both, |�s〉 and |�〉 are symmetric states and in
the same SLOCC it is possible to find g ∈ SL(d ) such that
|�〉 = g⊗n|�s〉 [32,33]. Moreover, as they are non-ES, all the
symmetries of |�s〉 are of the form S⊗n. Hence, Theorem 1
implies that |�〉 is reachable via LOCCN iff there exists a
symmetry S⊗n such that S†GS ∝ G and S†GS �∝ G, which
clearly cannot be fulfilled. Hence, none of these states is
reachable. �

We show in Appendix D that in each SLOCC class consid-
ered here, there exist weakly isolated states, as stated by the
subsequent lemma.

Lemma 4. Let |�s〉 be a non-ES n-qudit state (n � 5).
Then, there exist weakly isolated states within the SLOCC
class of |�s〉.

The subsequent example will illustrate the difference a
single additional symmetry can make in the context of LOCC
transformations. We will consider the SLOCC classes given
by n-qubit Dicke states, |Dn

k〉, which are defined as the equal
superposition of all computational basis states containing k
times 1. Only in case k = n/2 an additional symmetry arises.
In all other cases these states represent examples of symmetric
qubit states which are isolated. In contrast to that, for k = n/2,
all symmetric states are LOCC-convertible.

As shown in [31], Dicke states with different k are in differ-
ent SLOCC classes. Notice that here we consider k � �n/2�
as σ⊗n

x |Dn
k〉 = |Dn

n−k〉. Moreover, we are going to impose that
k > 1 so that we do not consider ES SLOCC classes (i.e., the
W class). We are going to determine now the stabilizer of
these classes. These Dicke states belong to non-ES SLOCC
classes and any of their symmetry must be of the form S⊗n.
Let si j denote the matrix entries of S. Then,∣∣Dn

k

〉 = S⊗n
∣∣Dn

k

〉
=
∑

j1,..., jn

( ∑
i1+···+in=k

n∏
m=1

s jmim

)
| j1 · · · jn〉. (24)

Since |0 . . . 0〉 is orthogonal to |Dn
k〉 (recall that 1 < k �

�n/2�), we have that

0 =
∑

i1+···+in=k

n∏
m=1

s0im ∝ sn−k
00 sk

01. (25)

Thus, either s00 = 0 or s01 = 0. On the other hand, using anal-
ogously the orthogonality with |1 . . . 1〉, we obtain that either
s10 = 0 or s11 = 0. Since, moreover, S must be invertible, this
leaves us with two options:

S =
(

s00 0
0 s11

)
or S =

(
0 s01

s10 0

)
.

In the case where S is diagonal we see that

S⊗n
∣∣Dn

k

〉 = sn−k
00 sk

11

∣∣Dn
k

〉
. (26)

Thus, all considered Dicke states |Dn
k〉 have the symmetry S⊗n

λ

with Sλ = diag(λ, λ(k−n)/k ) for any λ ∈ C.
In the case where S is not diagonal we have that

S⊗n
∣∣Dn

k

〉 = sn−k
10 sk

01

∣∣Dn
n−k

〉
. (27)

Hence, this cannot be a symmetry unless k = n/2.
Let us now show that in the SLOCC class of |Dn

n/2〉 (and,
thus, n is even) it turns out that every symmetric state is not
isolated. The analysis above tells us that P⊗n

z σ⊗n
x and P⊗n

z

with Pz = diag(z, z−1) (z ∈ C) are symmetries. Using that we
can always choose a z such that P†

z GPz ∈ span{1, σx}, every
symmetric state g⊗n|Dn

n/2〉 can be written as g⊗n
x |Dn

n/2〉 where
[Gx, σx] = 0. Lemma 1 tells us then that all these states are
LOCC-convertible. Let us see now that this is not the case for
k �= n/2. The key difference is that σ⊗n

x is not in the stabilizer
and all symmetries are of the form P⊗n

z as established above.
Hence, using Lemma 2 it is easy to see that any symmetric
state apart from |Dn

k〉 is weakly isolated. This follows on the
one hand from Lemma 3, which implies that none of these
states is reachable and on the other hand from the fact that
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Gx �= 1 does not quasicommute with a diagonal matrix, which
implies that these states are not convertible.

VII. NONDEROGATORY EXCEPTIONALLY
SYMMETRIC CLASSES

As seen from above, non-ES states do not allow many
LOCC transformations, even if the symmetries are nontrivial.
Let us hence consider the case of ES classes and study their
symmetries and possible LOCC transformations. We focus
here on the nonderogatory case and study the more involved
derogatory case in Sec. VIII. As mentioned in Sec. III, the
classes considered here seem to possess the richest LOCC
structure.

We characterize first the symmetries of nonderogatory ES
states (Sec. VII A) and then show that in these classes LOCC
transformations among symmetric states are indeed possible
(Sec. VII B). Note that this enables us to compare the en-
tanglement contained within these states. Moreover, we show
also here that weak isolation always exists. Indeed, symmetric
states which are weakly isolated also exist.

A. The stabilizer

Although ES symmetric states, by definition, have symme-
tries, those symmetries do not yet guarantee that state trans-
formations are possible. Considering the LOCCN-reachability
conditions from Theorem 1, Corollary 1 shows that symme-
tries of the form B ⊗ B−1 (and products thereof) do not allow
to satisfy condition (i) of Theorem 1, unless B is diagonal-
izable, as it is for instance in the case of the generalized
GHZ classes. Hence, symmetries of the form B ⊗ B−1 do not
necessarily guarantee LOCCN reachability.

However, nonderogatory ES classes do have additional
symmetries. From the proof of Theorem 1 in [33], it becomes
clear that symmetries of the form A⊗n and B ⊗ B−1 generate
the whole stabilizer (see also Appendix I). The following two
theorems, which we prove in Appendix E, characterize the
symmetries within nonderogatory ES SLOCC classes.

Theorem 4. For n � 3 the stabilizer of the states |Ek〉 is
generated by operators of the form B ⊗ B−1 and A⊗n, where

(i) B is an arbitrary invertible upper triangular Toeplitz
matrix.

(ii) A⊗n can be written up to a proportionality factor as
A = DS̄ where D is a diagonal matrix with [D]l,l = xl for
some x ∈ C and l ∈ {0, 1, . . . , k} and S̄ is upper triangular
with [S̄]l,l = 1 for all l . Furthermore, S̄ is characterized by
[S̄]i+1,l =∑l−i

j=1[S̄]i,l− jy j for some complex parameters y j

and 〈El |S̄⊗n|Ek〉 = 0 for 0 � l < k. For n � k − 1 the sym-
metries S̄⊗n can be determined by solving linear equations and
(except for a measure-zero subset) any choice of y j leads to a
solution. Therefore, S̄ is a k-parameter group (depending on n
and clearly on k).

This provides a complete (implicit) characterization of the
symmetries of all nonderogatory ES classes. In Appendix E
we present a systematic construction on how the linear equa-
tions determining S̄⊗n can be obtained and solved and we
present an example. Note that Theorem 4 implies that all
symmetries S(1) ⊗ S(2) ⊗ · · · ⊗ S(n) are upper triangular and
normalizing the matrices to [S(i)]0,0 = 1, the diagonal en-

tries of the symmetries are given by [S(i)]l,l = xl for l ∈
{0, 1, . . . , k}, i ∈ {0, 1, . . . , n}, and for some x ∈ C. Note that
this normalization implies a proportionality factor xk , i.e.,
S(1) ⊗ S(2) ⊗ · · · ⊗ S(n)|Ek〉 = xk|Ek〉.

We will next provide a characterization of the symme-
tries in the general nonderogatory case. As we will see, we
will get additional symmetries through acting over different
blocks. Consider, for example, the (generalized) GHZ state,
which has an arbitrary permutation matrix acting on all par-
ties as a symmetry. In the following, however, we show that
not many new symmetries appear in the nonderogatory case.
In fact, we show that the only new symmetries come from
permuting blocks of equal size and a scaling factor of the
individual blocks. In particular, if no blocks have equal size,
e.g., |E3〉 ⊕ |E2〉, no non-block-diagonal symmetries appear at
all.

Theorem 5. For n � 3 the symmetries of states
⊕K

b=1 |Ekb〉
are generated by

(1)
⊕K

b=1 Skb , with Skb a symmetry of the individual |Ekb〉,
i.e., Skb |Ekb〉 = α|Ekb〉 for any b ∈ {1, . . . K};

(2) diagonal matrices D = ⊗iD(�γi) with D(�γi ) =⊕K
b=1(�γi )b1kb for some �γi ∈ CK such that

∏
i(�γi )b = γ

for all b [53];
(3) simultaneous permutations of whole blocks that have

equal size for all parties (i.e., permutations of the form X ⊗n
σ ).

Note that the symmetries in the theorem above are normal-
ized such that S

⊕K
b=1 |Ekb〉 = αγ

⊕K
b=1 |Ekb〉.

B. LOCCN convertibility

In this section, we study state transformations within non-
derogatory ES classes and show that indeed a rich LOCC
structure becomes apparent. In particular, we will show
that within each nonderogatory ES class, transformations
from symmetric states to symmetric states are possible.
Nevertheless, we also show that apart from qubit systems,
nonderogatory ES classes always contain weakly isolated
states. Moreover, in certain nonderogatory ES classes, sym-
metric states that are weakly isolated exist. It thus turns out
that the qubit W and qubit GHZ classes are the only non-
derogatory ES SLOCC classes, which are completely free of
isolation.

Having characterized the stabilizer of nonderogatory ES
classes in Theorems 4 and 5, we are now in the position to
show that within each nonderogatory ES class, transforma-
tions from symmetric states to symmetric states are possible.
Let us start out with a simple example of such a transfor-
mation. To this end, we consider the W state, i.e., |W 〉 =
1/

√
n|E1〉. The stabilizer of this state is given by [49]

1

x

n−1⊗
i=1

(
1 yi

0 x

)
⊗
(

1 −∑n−1
i=1 yi

0 x

)
(28)

with x, yi ∈ C and x �= 0.
Every symmetric state in this SLOCC class can be written

up to LUs as
√

p|0, . . . , 0〉 + √
1 − p|W 〉 [19]. A trans-

formation from this state to
√

p′|0, . . . , 0〉 + √
1 − p′|W 〉

is possible by LOCCN iff p′ � p [19]. In the LOCC
protocol achieving this transformation, all parties act once
consecutively. For simplicity, we recall here the protocol,
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where the initial state is |W 〉. First, note that the final state√
p′|0, . . . , 0〉 + √

1 − p′|W 〉 can be written as(
1 0
0

√
1 − p′

)
⊗
(

1 0
0

√
1 − p′

)
⊗ · · · ⊗

(
1

√
np′

0
√

1 − p′

)
|W 〉. (29)

We will now show that the transformation can be per-
formed in the following n-round protocol:

1 ⊗ 1 ⊗ · · · ⊗ 1|W 〉

−→
(

1 x1

0 b

)
⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

h(1)

|W 〉

=
(

1 0
0 b

)
⊗
(

1 x1

0 1

)
⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

g(1)

|W 〉

−→
(

1 0
0 b

)
⊗
(

1 x2

0 b

)
⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

h(2)

|W 〉

...

−→
(

1 0
0 b

)
⊗ · · · ⊗

(
1 0
0 b

)
⊗
(

1 xn

0 b

)
︸ ︷︷ ︸

h(n)

|W 〉, (30)

where b = √
1 − p′ and xk = √

kp′. That the kth step of the
protocol is possible by a local measurement by party k can be
seen as follows (see also [19]). Let h(k) =⊗i hi(k) denote
the operators that give the state after the kth round through
h1(k) ⊗ · · · ⊗ hn(k)|W 〉 and the operators describing the state
before the next round as g(k) =⊗i gi(k), as in Eq. (30), and
by convention gi(0) = 1. Note that g(k) and h(k) are actu-
ally two ways of representing the same state, i.e., g(k)|W 〉 =
h(k)|W 〉 due to the symmetries of |W 〉. Let us moreover use
the convention Gi(k) = gi(k)†gi(k) and Hi(k) = hi(k)†hi(k).

Let us now prove that the protocol sketched in Eq. (30) can
indeed be implemented via LOCC. To this end, let us consider
round k of the protocol. It is clear that it is possible to perform
a measurement at site k (followed by local unitaries by the
remaining parties) in order to obtain h1(k) ⊗ · · · ⊗ hn(k)|W 〉
from g1(k − 1) ⊗ · · · ⊗ gn(k − 1)|W 〉 if it is possible to find
symmetries Sm such that[

S(i)
m , Gi(k)

] = 0 ∀ i ∈ {1, . . . , n} \ {k}, and (31)∑
m

qm
(
S(k)

m

)†
Hk (k)S(k)

m = Gk (k − 1) (32)

for qm � 0,
∑

m qm = 1. Note that all diagonal unitary sym-
metries fulfill [S(i)

m , Gi(k)] = 0 for all i �= k. Moreover, it is
possible to satisfy Eq. (32) by choosing q1 = q2 = 1

2 and
{Sm}m = {diag(1, e−iφ ), diag(1, eiφ )} with φ = arccos xk−1

xk
=

arccos
√

k−1
k . This proves that the transformation from |W 〉

to
√

p′|0, . . . , 0〉 + √
1 − p′|W 〉 is indeed possible via LOCC.

Note that the corresponding measurement operators (for

round k), which are given by

Mm = hk (k)S(k)
m gk (k − 1)−1, (33)

are upper triangular. Note further that in each round the state
is transformed deterministically into another state in the W
class, i.e., the protocol is all-deterministic. The conditions for
the existence of such a transformation are known explicitly
(see [12,13,16,19]).

We use this example now to prove that in each nonderoga-
tory ES SLOCC classes there exist pairs of symmetric states
which can be converted into each other, as stated in the fol-
lowing theorem.

Theorem 6. In all nonderogatory ES SLOCC classes, there
exist symmetric states |ψ〉 and |φ〉 such that |ψ〉 can be con-
verted into |φ〉 via LOCC.

Proof. Let us first prove the theorem for a single block,
hence, for a n-partite representative |Ek〉. We have already
presented an example for k = 1. The proof for SLOCC classes
represented by |Ek〉 for k � 2 is a simple generalization
thereof, as seen as follows.

Consider the 2n-dimensional subspace spanned by compu-
tational basis states where each local state is either |0〉 or |k〉.
Note that |Ek〉 projected onto that subspace gives a symmetric
state which resembles the |W 〉 state, however with 1 replaced
by k.

Define the measurement operators {Mm}m as in Eq. (33)
where the operators hk (k) and gk (k − 1) act trivially on
the (k − 1)-dimensional subspace spanned by {|1〉, . . . , |k −
1〉} and act as hk (k) and gk (k − 1), respectively, in the
protocol explained above [see Eq. (30)] on the subspace
spanned by |0〉 and |k〉. The symmetries S(k)

m are diagonal
with elements [S(k)

m ] j j = (ei(−1)mφ/k ) j where as before φ =
arccos xk−1

xk
= arccos

√
k−1

k . Clearly, the constructed operators
constitute a valid measurement. Considering the LOCC proto-
col described above with those measurement operators {Mm}m

on the state |Ek〉 leads to states of the form

· · · ⊗

⎛⎜⎜⎝
1

. . .

1
b

⎞⎟⎟⎠⊗

⎛⎜⎜⎝
1 xn

. . .

1
b

⎞⎟⎟⎠|Ek〉. (34)

Hence, it is possible to deterministically transform the
symmetric seed state |Ek〉 to those symmetric states. This
proves the theorem for the case of SLOCC classes represented
by single |Ek〉. The proof straightforwardly generalizes to
SLOCC classes represented by direct sums of |E (b)

k 〉 except
for the case kb = 0 for all b. We will first present an example
for K = 2 and kb = 0, i.e., the qubit GHZ class. Our initial
state of the transformation is the GHZ state, the final state
is of the form gx ⊗ · · · gx ⊗ [gxZ (π/4)]|GHZ〉, where gx �= 1,
[gx, σx] = 0, and Z (φ) = diag(eiφ, e−iφ ). For convenience, we
consider the normalization tr(Gx ) = 1. The following proto-
col (see also [18]) allows to achieve the transformation. Each
party measures once and the measurement is chosen to be the
same for all parties. Its measurement operators are of the form

M1 = gxZ (π/4)√
2

, M2 = gxZ (π/4)σx√
2

. (35)
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Without loss of generality we assume that party n is the last
one to implement a nontrivial measurement. In the first n − 1
rounds all parties except party n (and the party implement-
ing the measurement in this round) apply σx if the second
outcome occurs. Party n applies in this case Z (−π/4)σx and
in case of the first outcome Z (−π/4). In the last round, all
parties apply σx for the second outcome of the measurement
of party n. Using that [gx, σx] = 0, that σ⊗n

x is a symmetry
and that further gx ⊗ · · · ⊗ gx ⊗ gxZ (π/4) ⊗ 1 . . . 1|GHZ〉 =
gx ⊗ · · · ⊗ gx ⊗ gx ⊗ 1 . . . 1 ⊗ Z (π/4)|GHZ〉 it is easy to see
that this succeeds in implementing the transformation. This
transformation can be straightforwardly generalized to higher-
dimensional GHZ classes, as one can analogously before
embedding it into a higher-dimensional space. �

The results above show that, e.g., E (|W 〉) �
E (

√
p|0 . . . 0〉 + √

1 − p|W 〉) for p � 0 for any entanglement
measure E .

Let us show now that also among nonderogatory ES classes
weakly isolated states (even symmetric states) exist. Due to
Lemma 2 and the fact that we have determined important
properties of all symmetries of nonderogatory ES classes, we
are in the position to prove very general statements of the
existence of weak isolation. However, due to the richness of
the considered classes here and the fact that the statements
hold for (almost all) system sizes, the proofs get rather tech-
nical. However, the main idea to prove the existence of weak
isolation is as before: We identify explicitly operators gi such
that the quasicommutation relations presented in Lemma 2
cannot hold for any symmetry of the state, which then im-
plies that the corresponding state is weakly isolated. In this
context, we will make use of the following lemma which can
be straightforwardly proven (see Appendix F).

Lemma 5. Let k � 1. Given an (k + 1) × (k + 1) upper
triangular matrix A for which Al,l = xl for some x ∈ C, and
an (k + 1) × (k + 1) matrix

g =

⎛⎜⎜⎝
1

. . .

1 a
1

⎞⎟⎟⎠, (36)

where a ∈ C. Then it holds that A†g†gA ∝ g†g iff |x| = 1 and
A is of the form

A ∝

⎛⎜⎜⎜⎜⎝
1

x
. . .

xk−1 a
(

1
x∗k−1 − xk

)
xk

⎞⎟⎟⎟⎟⎠. (37)

All matrix elements which are not displayed here are zeros.
We use this lemma now to show that weak isolation exists
in SLOCC classes represented by some |Ek〉 with k � 2. The
proof of this statement implies then also that one can even
find symmetric states which are weakly isolated in case k � 3.
Considering then SLOCC classes which correspond to states
of the form ⊕b|Ekb〉 for more than one b, gets more involved
as additional symmetries exist in case some blocks have the
same size (see Theorem 5). An example of such a class is the
one corresponding to the generalized GHZ state, which might
be expected to have no isolation due to the fact that there is no

isolation for the qubit case. However, as we show below, this
is not the case and in fact, for all these classes, weak isolation
exists.

Let us now start out by showing that weak isolation exists
in SLOCC classes represented by some |Ek〉,

Theorem 7. In any SLOCC classes represented by some
|Ek〉 with k � 2, weakly isolated states exist.

Proof. We will prove the theorem by constructing a family
of states g1 ⊗ · · · ⊗ gn|Ek〉 with the following property. For all
symmetries S(1) ⊗ S(2) ⊗ · · · ⊗ S(n) of the seed state |Ek〉, it
holds that either (S(i) )†g†

i giS(i) ∝ g†
i gi is true for no more than

n − 2 parties, or S ∝ 1⊗n. Due to Lemma 2, states with this
property are neither reachable via LOCCN , nor convertible
via LOCC1.

Consider to this end gi as in Lemma 5 with a being replaced
by ai and pairwise different ai �= 0. Assuming that S†

i g†
i giSi ∝

g†
i gi holds for more than n − 2 parties (let us assume without

loss of generality that it holds for the first n − 1 parties),
let us now show that S ∝ 1. Recall first that it follows from
Theorem 4 that S(l ) for l ∈ {1, . . . , n} is upper triangular and
its diagonal elements are up to some proportionality factor
powers of x. Lemma 5 further implies that

S(i) ∝

⎛⎜⎜⎜⎜⎝
1

x
. . .

xk−1 ai
(

1
x∗k−1 − xk

)
xk

⎞⎟⎟⎟⎟⎠ (38)

for i ∈ {1, . . . , n − 1} and, moreover, |x| = 1. We will now
continue to restrict the form of S(i) by making use of properties
of symmetries of |Ek〉. Whereas Theorem 4 provides an im-
plicit characterization of the symmetry group, more precisely,
of its generators, we are interested here in arbitrary symme-
tries and instead of considering products of the generators, we
will rather focus on specific properties of the symmetries.

Considering the defining equation for symmetries (we in-
troduce here a proportionality factor to avoid the need to take
any normalization condition into account) we have that

S(1) ⊗ S(2) ⊗ · · · ⊗ S(n)|Ek〉 = α|Ek〉 (39)

which is equivalent to∑
i1+···+in=k

[S(1)]m1,i1 . . . [S(n)]mn,in = α δm1+···+mn,k, (40)

for all m1, . . . , mn and for some α ∈ C.
By choosing m = (m1, . . . , mn) = (0, . . . , 0, k − 1), only

one term in the sum of Eq. (40) survives, namely, [S(n)]k−1,k =
0, due to the form of S(1), . . . , S(n−1).

Although the theorem holds for k � 2, let us for now
continue the proof for the case k � 3 and discuss the re-
maining case at the end. Above, we have shown that in row
k − 1 of the matrix S(n), only the diagonal entry is nonvan-
ishing. In case k � 3, we can extend this result to all rows
of S(n). In other words, for all rows s ∈ {0, . . . , k − 1} it
holds that [S(n)]s,s+1 = · · · = [S(n)]s,k = 0. Let us now show
that the statement holds for row s. To this end, consider
for all t ∈ {s + 1, . . . , k} some instances of Eq. (40), where
m = (m1, . . . , mn−1, s) for some choices of m1, . . . , mn−1

such that m1 + · · · + mn−1 = k − t and mi � k − 2 for all i ∈
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{1, . . . , n − 1}. In other words, we want to consider Eq. (40)
for cases where the first n − 1 of the mi sum up to specific
values k − t , but S(1), . . . , S(n−1) are only accessed in rows in
which all but the diagonal entries are vanishing. This choice
of m leads to the fact that in the sum in Eq. (40), only
terms where i1 = m1, i2 = m2, . . . , in−1 = mn−1 contribute.
Hence, we obtain

xk−t [S(n)]s,t = αδk−t+s,k = 0 (41)

for all t ∈ {s + 1, . . . , k}, which proves that S(n) is diagonal.
It immediately follows that all S(i) are diagonal with the same
technique. Recall that in order to prove these statements,
we were using the assumption k � 3. This assumption was
needed, as in this case the desired choices of mi are possible
and hence the considered instances of Eq. (40) exist, which is
not the case if k = 2. Note that although the case k = 2 has
to be treated with additional care, it is still possible to show
that all S(i) must be diagonal using Eq. (40) and the additional
assumption that ai are pairwise different, which is not needed
in case k � 3.

In any case, as Si must have the form in Eq. (38), but at the
same time be diagonal, it follows that x = 1 (as ai �= 0) and
thus S ∝ 1, which completes the proof of the theorem. �

As already noted in the proof of Theorem 7, choosing the
ai pairwise different in the construction of isolated states in
the SLOCC class of |Ek〉 is not necessary in case k � 3. Thus,
the following corollary follows by choosing gi = g for all i.

Corollary 2. In SLOCC classes represented by |Ek〉, where
k � 3, there exist symmetric weakly isolated states.

This adds to the example of the many-qubit symmetric
states (nonexceptionally symmetric states) that are isolated (in
that case not only weakly isolated).

As a first instance of states of the form
⊕

i |Eki〉 we con-
sider now the higher-dimensional GHZ classes symmetric
states corresponding to ki = 0 for all i. We show that also
there, weakly isolated states can be found, which is in contrast
to the qubit case, where no isolation exists.

Observation 5. There is weak isolation in higher-
dimensional GHZ classes. Moreover, there exist symmetric
weakly isolated states.

Proof. Let us consider an n-partite, d-dimensional GHZ
state, |GHZd

n〉 =∑d−1
i=0 | i . . . i︸ ︷︷ ︸

n

〉, and G = 1 +∑d−1
i=1 (ci|i −

1〉〈i| + H.c.) with ci �= 0 small enough such that G > 0 and
with pairwise different absolute values, i.e., |ci| �= |ck| for
i �= k. We will see that states g⊗n|GHZd

n〉 with g = √
G are

weakly isolated. To this end, we will, as before, show that
(S(i) )†GS(i) ∝ G for n − 1 parties implies S ∝ 1. Using S =
(D(�γ1) ⊗ · · · ⊗ D(�γn))(X ⊗n

σ ) (see Theorem 5 and [54]), we
have that

D(�γ )†GD(�γ ) ∝ Xσ GX †
σ . (42)

Considering the diagonal entries of this equation it is straight-
forward to see that up to a (irrelevant) global proportionality
factor the entries in �γ are solely phases. Hence, we either
have that c jei(φ j−1−φ j ) = 0 or c jei(φ j−1−φ j ) = ck . Which of the
two cases one observes and the relation among j and k is
determined by the permutation Xσ . As the absolute values of
c j and ck are nonzero and differ for j �= k, we have that the
permutation has to be trivial. From this and c j �= 0, we obtain

that ei(φ j−1−φ j ) = 1 and hence S(i) ∝ 1 for all parties i, which
proves that there is weak isolation in the GHZ classes beyond
qubits. As the examples that we discussed here are symmetric,
this proves the observation. �

In contrast to the positive result on LOCC transformations
from symmetric states to symmetric states, the isolation result
in Theorem 7 does not immediately generalize to (nonderoga-
tory) direct sums of |Ek〉. However, based on the studies of
the symmetries of

⊕
i |Eki〉 in Theorem 5, we will see in the

following theorem that it is nevertheless possible to construct
weakly isolated states.

Theorem 8. In the SLOCC classes represented by⊕K
b=1 |Ekb〉 with K � 2 and kb �= 0 for at least one

b ∈ {1, . . . , K}, there are weakly isolated states present.
If further kb �= 2 for all b ∈ {1, . . . , K}, then there exist
symmetric weakly isolated states.

Whereas the idea of the proof is the same as in the proof
of Theorem 7, it is much more involved due to the additional
symmetries occurring in this case. For that reason, we post-
pone the proof to Appendix G.

VIII. DEROGATORY EXCEPTIONALLY
SYMMETRIC CLASSES

Most things said about nonderogatory ES SLOCC classes
in the previous section are not true any more for derogatory ES
classes. In this subsection, we will first argue that a full char-
acterization of the symmetries of all derogatory ES classes
seems infeasible. Then, we will show that some of the deroga-
tory ES classes resemble the multicopy scenario and inherit
some of the properties of nonderogatory ES states. Despite the
fact that those states necessarily have a nontrivial stabilizer,
we show that there exist derogatory ES classes in which all
states are isolated with respect to LOCCN . To illustrate the
properties of derogatory ES classes we finally study the three-
and four-qutrit cases in detail.

As mentioned in Sec. II, the first difficulty that arises when
studying derogatory ES classes is the fact that representa-
tives of the SLOCC classes are not available. As explained
there, superpositions of the states {|En1,...,nK

k 〉}k,(n1,...,nK ) must
be taken into account. Moreover, not all superpositions corre-
spond to derogatory classes as some turn out to be equivalent
to nonderogatory ES states, instead. For these reasons, a full
characterization of the symmetries of derogatory ES classes is
beyond the scope of this work.

Let us remark here that some derogatory ES classes have
representatives that decompose into two copies of (possibly
different) entangled states in lower dimensions. Examples are
the classes represented by {|En1,n2

k 〉} j,(n1,n2 ) for B = J2 ⊕ J2

presented in Sec. II [see Eqs. (11)]. This happens, in general,
when considering an individual |En1,...,nK

k 〉. To see this, note
that without loss of generality we can consider all blocks to
have the same size (kb + 1 = k ∀ b [55]), i.e., B = ⊕K

i=1Jk .
This is because either the block is big enough to support the
excitation k − 1 or the seed state is not supported there. In
the same way, if kb + 1 > k the seed state is not supported on
the corresponding levels (thus, it suffices to consider kb + 1 =
k). The aforementioned property follows then as simple con-
sequence of the isometry ⊕K

i=1C
k � CK ⊗ Ck with |i(b)〉 →

|b − 1〉 ⊗ |i〉. Hence, a seed state can be written as |E {nb}
k 〉 =
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|�{nb}〉 ⊗ |Ek〉, where |�{nb}〉 =∑�b:#b=nb
|b1 − 1 . . . bn − 1〉 ∈

Symn(CK ) and where we use the same notation as in Eq. (8).
Note that these derogatory classes hence inherit some of the
properties of nonderogatory ES classes discussed earlier in
this section.

However, it seems that derogatory ES classes allow for
fewer transformations compared to their nonderogatory coun-
terparts. The reason for that is that the symmetries of the
form B ⊗ B−1 of nonderogatory ES classes allow for more
freedom, as their eigenvalues can be freely chosen. In fact,
we identify here a five-qutrit derogatory ES class in which all
states are LOCCN isolated, i.e., they can neither be reached
nor converted to another pure state with a finite-round LOCC
protocol. Note that this is the first example of such a LOCCN-
isolated class with nontrivial stabilizer.

Observation 6. There exist derogatory classes in which all
states are LOCCN isolated.

Proof. In order to prove the observation, we explicitly
consider one derogatory SLOCC class and show that all states
within the class are isolated. Let us consider the SLOCC class
represented by the five-qutrit state

|ψderogatory〉 = ∣∣E5,0
0

〉+ ∣∣E3,2
0

〉+ ∣∣E2,3
0

〉+ ∣∣E0,5
1

〉
. (43)

Note that this state belongs to a derogatory class described
by one block of size one and a second block of size two.
It can be easily verified that, indeed, B(i) ⊗ B−1

( j) are symme-
tries of |ψderogatory〉, for any parties i, j ∈ {1, . . . , 5}, where

B = (
1 0 0
0 1 1
0 0 1

).

In Appendix H we show that, in fact, B(i) ⊗ B−1
( j) and ana-

lytic functions thereof constitute the full symmetry group of
|ψderogatory〉. Hence, all symmetries S(1) ⊗ · · · ⊗ S(5) differing
from 1 have the property that at least two of the S(i) are not
diagonalizable. Corollary 1 shows that with such symmetries
it is not possible to satisfy condition (i) of Theorem 1. Hence,
no state in the considered SLOCC class is LOCCN reachable
and, therefore, no state is convertible either. Thus, all states in
this class are isolated (not only weakly isolated). �

A. Three and four qutrits

In this section, we consider the smallest local dimension
(d = 3) in which nontrivial derogatory matrices emerge and
we focus on three- and four-qutrit derogatory ES SLOCC
classes. In three dimensions, the Jordan normal form of
derogatory matrices can only take two distinct forms, namely,

B1 =
⎛⎝x 0 0

0 x 0
0 0 y

⎞⎠ and B2 =
⎛⎝x 0 1

0 x 0
0 0 x

⎞⎠ (44)

with x, y ∈ C, which we call “type 1” and “type 2”. Notice
that we swap the computational basis vectors |1〉 and |2〉 when
writing B2 as compared to the normal form (x 1

0 x) ⊕ x. This
is to express the state |�2〉 in Eq. (48) as an n-qubit symmetric
state in the subspace span{|0〉, |1〉} plus an orthogonal n-qutrit
part. In general, the matrix B of the B ⊗ B−1 ⊗ 1⊗2 symmetry
need not be in Jordan normal form. Recall from Sec. II B that
the Jordan normal form of B is SLOCC invariant and one can
always find a state within the same SLOCC class for which B

is in Jordan normal form [33]. Hence, in order to determine
the representatives of derogatory ES classes, it suffices to
consider the states stabilized by the symmetry with B1 or B2

and identify those that do not have additional nonderogatory
symmetries.

Any potential n-qutrit derogatory ES state |�i〉 of type
i = 1, 2 satisfies Bi ⊗ Bi

−1 ⊗ 1⊗n−2|�i〉 = |�i〉 where the use
of an equality instead of a proportionality is explained in
Sec. II B. Since an ES state stabilized by B ⊗ B−1 is also
stabilized by f (B) ⊗ f (B)−1 for any analytic function f (see
Sec. II B), nonderogatory states can also be stabilized by the
derogatory Bi ⊗ Bi

−1 in Eq. (44). Therefore, the potential
derogatory ES states also include nonderogatory ES states.

As mentioned in Sec. II C, any derogatory ES state has to
be of the form in Eq. (10). For the ease of presentation in this
section, we will use instead of |En1,...,nK

k 〉 in Eq. (8)∣∣Sn
k

〉 = 1√
n!

∑
π

Pπ (|0n−k1k〉) = 1√
Cn

k

∣∣En−k,k
0

〉
, (45)

∣∣F n
k

〉 = 1√
n!

∑
π

Pπ (|0n−k2k〉) = 1√
Cn

k

∣∣En,0
k

〉
(46)

as the orthonormal basis, where the summations are over all
permutations in the symmetric group Sn and Cn

k = n!
(n−k)!k!

is the binomial coefficient. The complete sets of potential
type-1 and -2 n-qutrit derogatory ES states can be obtained
from Eqs. (6)–(9). Since the matrix B1 has a degeneracy only
in the first two one-dimensional Jordan blocks, |�1〉 can be
any superposition of states with 0 excitation distributed over
the two blocks |En−k,k

0 〉 (k = 0, . . . , n), plus a zero-excitation
state |E0〉 in the third dimension. For B2, the degeneracy is
between the two-dimensional Jordan block in the subspace
span{|0〉, |2〉} and the middle one-dimensional block. Hence,
|�2〉 can be any superposition of states with 0 excitation dis-
tributed over the two blocks plus a one-excitation state |En,0

1 〉,
that has support only from the two-dimensional block in B2.
In the new notation, these two sets of states are

|�1〉 =
n∑

k=0

ak√
Cn

k

∣∣En−k,k
0

〉⊕ an+1|E0〉

= a0|0n〉 +
n−1∑
k=1

ak

∣∣Sn
k

〉+ an|1n〉 + an+1|2n〉, (47)

|�2〉 =
n∑

k=0

bk√
Cn

k

∣∣En−k,k
0

〉+ bn+1√
n

∣∣En,0
1

〉
= b0|0n〉 +

n−1∑
k=1

bk

∣∣Sn
k

〉+ bn|1n〉 + bn+1

∣∣F n
1

〉
, (48)

where ak, bk ∈ C satisfy
∑n+1

k=0 |ak|2 = 1 =∑n+1
k=0 |bk|2.

1. Three qutrits

We will show that there exist no derogatory ES states
in three qutrits. First, we define an n-qubit symmetric state
(embedded in the Hilbert space of n qutrits) to be a state
with local rank �2. We then consider all potential three-qutrit
derogatory ES states and determine all the corresponding
SLOCC classes. We show that every symmetric SLOCC rep-
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resentative stabilized by Bi ⊗ Bi
−1 ⊗ 1 (i = 1, 2) is either

a three-qubit state or coinciding with the three-qutrit non-
derogatory ES SLOCC representatives |E0〉 ⊕ |E0〉 ⊕ |E0〉 =
|03〉 + |13〉 + |23〉, 1√

3
|E1〉 ⊕ |E0〉 = |S3

1〉 + |23〉, and |E2〉 ∝
|S3

2〉 + |F 3
1 〉 (see Sec. II B).

Observation 7. There are no derogatory ES states in three
qutrits since any potential three-qutrit derogatory ES state
belongs to one of the five SLOCC classes represented by

(a) |03〉 + |23〉, (b) |03〉 + |13〉 + |23〉, (c) |S3
1〉 + |23〉,

(d) |F 3
1 〉, and (e) |S3

2〉 + |F 3
1 〉,

which are all nonderogatory.
Proof. The states corresponding to a4 = 0 = b4 in

Eqs. (47) and (48) are three-qubit states which are non-
derogatory [56]. We will show that all three-qutrit ES states
in Eqs. (47) and (48) with a4, b4 �= 0 can be reached from
three-qubit |GHZ2〉 ∝ |03〉 + |23〉, |W 〉 = |F 3

1 〉, and the rep-
resentatives of three three-qutrit nonderogatory ES SLOCC
classes using SLOCC transformation A⊗3.

As shown in Eqs. (47) and (48), potential type-1 and
type-2 derogatory ES states are given by the superposition
of any three-qubit symmetric states and an orthogonal state
|23〉 and |F 3

1 〉, respectively. It was proven in Ref. [9] that
any three-qubit symmetric states falls into one of the three
SLOCC classes represented by the states |03〉, |03〉 + |13〉,
and |S3

1〉. The representatives of all potential type-1 deroga-
tory ES SLOCC classes are then simply superpositions of
the three three-qubit representatives and the state |23〉 as
SLOCC transformations A⊗3 with block-diagonal matrices
A = (a c

b d) ⊕ e ∈ GL(3,C) are sufficient to reach any state
|�1〉 in Eq. (47) from

(a) |03〉 + |23〉, (b) |03〉 + |13〉 + |23〉, or (c)
∣∣S3

1

〉+ |23〉.
The state (a) is the three-qubit GHZ state [57], whereas states
(b) and (c) are stabilized by B ⊗ B−1 ⊗ 1 with nonderogatory

matrices B = x ⊕ y ⊕ z and B = (
x 0 1
0 y 0
0 0 x

), respectively.

We now show that any potential type-2 derogatory ES
state belongs to one of the three following SLOCC classes
represented by

(d) |F 3
1 〉, (e)

∣∣S3
2

〉+ ∣∣F 3
1

〉
, and (f) |13〉 + ∣∣F 3

1

〉
,

where (d) is the three-qubit W state, (e) is stabilized by B ⊗
B−1 ⊗ 1 with nonderogatory matrix B = (

x 1 0
0 x 1
0 0 x

), and (f)

is SLOCC equivalent to the nonderogatory representative (c).
It can be easily seen that these are the complete list of type-
2 ES SLOCC representatives from explicit constructions of
SLOCC transformations A⊗3 with

(d) A =
⎛⎝1 0 b0√

3
0 1 b1

0 0 b4

⎞⎠, (e) A =
⎛⎝1 0 b0√

3
0

√
b2 b1

0 0 b4

⎞⎠,

(f) A =

⎛⎜⎜⎝
1 b2√

3b2/3
3

b0√
3

− b3
2

9b2
3

0 b1/3
3 b1 − b2

2√
3b3

0 0 b4

⎞⎟⎟⎠,

which transform the state (d) to any three-qutrit state |�2〉
in Eq. (48) with b2 = b3 = 0, the state (e) to the ones with
b2, b4 �= 0 and b3 = 0, and the state (f) to those with b3, b4 �=
0. Recall that b4 �= 0 ensures the state |�2〉 to have local
rank 3. This shows in particular that all three-qutrit states are
nonderogatory. �

We already know all the representatives of n-qutrit non-
derogatory ES SLOCC classes from Sec. II B to be

|E0〉 ⊕ |E0〉 ⊕ |E0〉 = |0n〉 + |1n〉 + |2n〉, (49)

|E1〉 ⊕ |E0〉 = √
n
∣∣Sn

1

〉+ |2n〉, and (50)

|E2〉 = √Cn
2

∣∣Sn
2

〉+ √
n
∣∣F n

1

〉
, (51)

where the coefficients in Eqs. (50) and (51) can be set to 1
using SLOCC transformations. If we consider potential can-
didates for derogatory ES SLOCC representatives, they would
be, for instance, those states of the form |Sn

k>1〉 + |2n〉 that
are SLOCC inequivalent to |Sn

1〉 + |2n〉. However, for three
qutrits, the state |S3

2〉 + |23〉 is SLOCC equivalent to |S3
1〉 +

|23〉 and the state |13〉 + |23〉 is just the three-qubit GHZ state.
Thus, these states are not derogatory. The situation changes in
four qutrits because there exist states such as |S4

2〉 + |24〉 that
are not SLOCC equivalent to any of the three nonderogatory
representatives as we will see in the next subsection. This
guarantees the existence of derogatory ES representatives for
four qutrits.

2. Four qutrits

We move on to study four-qutrit ES states that are sta-
bilized by Bi ⊗ Bi

−1 ⊗ 1⊗2 (i = 1, 2) since our goal is to
investigate the properties of derogatory ES states which, as
explained in the previous subsection, are guaranteed to exist
in four qutrits. We first list the representatives for all four-
qutrit derogatory ES SLOCC classes. Then, we characterize
all the local invertible symmetries for each of these repre-
sentatives. Finally, we show that every four-qutrit derogatory
ES SLOCC class contains weakly isolated states, LOCCN-
reachable states, and also LOCC1-convertible states.

Representatives of derogatory ES SLOCC classes. To ob-
tain representatives of all four-qutrit derogatory ES SLOCC
classes, we start by identifying the representatives of SLOCC
classes with symmetric states stabilized by Bi ⊗ Bi

−1 ⊗ 1⊗2

(i = 1, 2) and then we eliminate the ones that are SLOCC
equivalent to the three nonderogatory representatives in
Eqs. (49)–(51).

Consider now the symmetric states in Eqs. (47) and (48)
and set n = 4. Note that we need not consider the states with
a5 = 0 = b5 as they are four-qubit states and therefore must
be nonderogatory [56]. The first four terms of both states
describe any four-qubit symmetric state. We can use the result
from Ref. [31] that there are only five families of four-qubit
symmetric SLOCC classes represented by

|14〉, ∣∣S4
1

〉
,
∣∣S4

2

〉
, |04〉 + ∣∣S4

2

〉
,{

|04〉 + |14〉 + μ
∣∣S4

2

〉
: μ ∈ C and μ �= ±

√
2

3

}
. (52)
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We define the set encompassing all these four-qubit states to
be S4

qubit. The last family contains infinitely many SLOCC
classes for each class corresponding to a finite number of
μ ∈ C. For |�1〉 in Eq. (47), superpositions of each four-qubit
representative and the orthogonal state |24〉 give an over-
complete list of SLOCC representatives {|ψ〉 + |24〉 : |ψ〉 ∈
S4

qubit}. This list is overcomplete because

|ψ (μ)〉 := |04〉 + μ
∣∣S4

2

〉+ |14〉 + |24〉 (53)

=
(∣∣E4,0

0

〉+ μ√
6

∣∣E2,2
0

〉+ ∣∣E0,4
0

〉)⊕ |E0〉 (54)

is SLOCC equivalent to, for instance, |ψ (−μ)〉. Among the
list, we recognize that |14〉 + |24〉 is just a four-qubit |GHZ2〉,
and the states |S4

1〉 + |24〉 and |ψ (μ = 0)〉 are nonderogatory
[see Eqs. (49) and (50)]. We should also point out that (i)
|ψ (μ = ±√

6)〉 is SLOCC equivalent to |ψ (μ = 0)〉 and (ii)

|ψ (μ = ±
√

2
3 )〉 is SLOCC equivalent to |S4

2〉 + |24〉. The re-

maining representatives |S4
2〉 + |24〉, |04〉 + |S4

2〉 + |24〉, and

{|ψ (μ)〉 : μ ∈ C and μ �= 0,±
√

2
3 ,±√

6} are indeed deroga-
tory which we will prove in Sec. VIII A 2 b when we
characterize all local invertible symmetries of these represen-
tatives.

For |�2〉 in Eq. (48), we have an overcomplete list of
SLOCC representatives with {|ψ〉 + |F 4

1 〉 : |ψ〉 ∈ S4
qubit}. In

contrast to the type-1 derogatory case, the number of potential
type-2 derogatory ES SLOCC classes is finite and can be
represented by five states∣∣F 4

1

〉
,
∣∣S4

2

〉+ ∣∣F 4
1

〉
, |14〉 + ∣∣F 4

1

〉
,

|14〉 + ∣∣S4
2

〉+ ∣∣F 4
1

〉
and

∣∣S4
3

〉+ ∣∣F 4
1

〉
. (55)

By explicit construction of SLOCC transformations A⊗4, we
show that all states |�2〉 in Eq. (48) with b5 �= 0 can be
reached from these five representatives. The constructions
of A⊗4 are shown in Appendix J 1. Again, we identify the
representatives that are nonderogatory: |S4

2〉 + |F 4
1 〉 (SLOCC

equivalent to
√

6|S4
2〉 + 2|F 4

1 〉 = |E2〉) and |14〉 + |F 4
1 〉 =

|E0〉 ⊕ 1
2 |E1〉 which are stabilized by B ⊗ B−1 ⊗ 1⊗2 with

nonderogatory B = (
x 1 0
0 x 1
0 0 x

) and B = (
x 0 1
0 y 0
0 0 x

), respec-

tively. Restricting to four-qutrit states with full local rank, the
remaining two representatives |14〉 + |S4

2〉 + |F 4
1 〉 = |E0,4

0 〉 +
1√
6
|E2,2

0 〉 + 1
2 |E4,0

1 〉 and |S4
3〉 + |F 4

1 〉 = 1
2 (|E1,3

0 〉 + |E4,0
1 〉) are

derogatory which will be verified in Sec. VIII A 2 b. Thus, we
obtain the following representatives of all four-qutrit deroga-
tory ES SLOCC classes:∣∣S4

2

〉+ |24〉, |04〉 + ∣∣S4
2

〉+ |24〉, |14〉 + ∣∣S4
2

〉+ ∣∣F 4
1

〉
,∣∣S4

3

〉+ ∣∣F 4
1

〉
,

{
|ψ (μ)〉 : μ ∈ C and μ �= 0,±

√
2

3
,±

√
6

}
.

(56)

As already pointed out, different values of μ may lead to states
that are SLOCC equivalent. However, all other states that are
not of the form |ψ (μ)〉 are not within the SLOCC class of
another state in Eq. (56). In order to see that, recall that the
Jordan normal form is SLOCC invariant. As we will show in

the next section for all symmetries B(i) ⊗ B−1
( j) , it holds that

B = B1 (B generated by B2) for type-1 (type-2) representa-
tives, respectively. Hence, type-1 and type-2 representatives
cannot be within the same SLOCC class. The cardinality of
the group that consists of all A for which A⊗4|ψ〉 = |ψ〉 has
to be the same for any symmetric state in the SLOCC class of
a symmetric state |ψ〉. Using this, as well as the results on the
symmetries A⊗4 given in the next subsection, it is easy to see
that the two type-2 representatives, as well as |S4

2〉 + |24〉 and
|04〉 + |S4

2〉 + |24〉 are SLOCC inequivalent to all other states
in Eq. (56).

Characterization of all local symmetries. For each deroga-
tory representative |ψ〉, we find all invertible symmetries⊗4

j=1 S( j) (i.e.,
⊗4

j=1 S( j)|ψ〉 = |ψ〉). We use the fact that the
operators S( j) are invertible to obtain

i, j〈2, k|S(i) ⊗ S( j)|�1〉 = i, j〈2, k|�1〉 = 0, (57)

i, j〈2, k′|S(i) ⊗ S( j)|�2〉 = i, j〈2, k′|�2〉 = 0, (58)

for k = 0, 1, k′ = 1, 2, and for any states |�1〉 and |�2〉 in
Eqs. (47) and (48). From these equations, we show that the
local symmetries of the type-1 and type-2 derogatory repre-
sentatives must be of the forms

S( j) =
⎛⎝a d 0

b e 0
0 0 p

⎞⎠(for type 1),

S( j) =
⎛⎝a d g

0 e h
0 0 p

⎞⎠(for type 2) (59)

for all j = 1, 2, 3, 4 (see Appendix J 2 for the proof). Note
that the local symmetries of each derogatory representative
|ψ〉 form a group S( j)

ψ for any site j. As mentioned in Sec. II B,

any symmetry
⊗4

j=1 S( j) can be generated by the symmetries

of the two forms A⊗4 and B(i) ⊗ B−1
( j) for any ES state [33].

Due to Eq. (59), we can restrict the invertible matrices A and
B to block-diagonal (upper triangular) form for type-1 (-2)
derogatory symmetries.

As discussed in Sec. II B, we can use equality instead of
proportionality in solving for the symmetries. We identify all
symmetries of the form A⊗4 of each derogatory representative
|ψ〉 in Eq. (56) by solving the degree-2 polynomial equations

(A⊗2 ⊗ 1⊗2 − 1⊗2 ⊗ Ã⊗2)|ψ〉 = 0 (60)

and imposing that Ã = A−1 once we fix enough entries in
matrices A and Ã.

The full set of B ⊗ B−1 ⊗ 1⊗2 symmetries of each |ψ〉 can
be found easily by solving the equation

(B ⊗ 1⊗3 − 1 ⊗ B ⊗ 1⊗2)|ψ〉 = 0 (61)

for arbitrary invertible matrix B. We find that all these sym-
metries of type-1 and -2 derogatory representatives can be
generated entirely by applying analytic functions f on the
matrices B1 and B2 in Eq. (44), respectively. This is not nec-
essarily true in general.

As mentioned before, the general expression of the local
symmetry S( j) for any site j of each derogatory representative
can be deduced from arbitrary products of matrices A and B
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since A⊗4 and B(i) ⊗ B−1
( j) on any sites i, j generate the full

local symmetry. This gives us the group of local invertible
symmetries of each representative |ψ〉.

Type-1 symmetries. We now list all the local symmetries of
type-1 derogatory representatives |S4

2〉 + |24〉, |04〉 + |S4
2〉 +

|24〉, and {|ψ (μ)〉 : μ ∈ C and μ �= 0,±
√

2
3 ,±√

6}. Any ma-

trix B that corresponds to the B(i) ⊗ B−1
( j) symmetries of these

representatives must be B = x ⊕ x ⊕ y = B1 in Eq. (44) for
nonzero x, y ∈ C. Since B does not include any nonderogatory
matrices, these representatives are indeed derogatory.

As for the A⊗4 symmetries, there are only three possibili-
ties for the matrix A which are

A1 =
(

a 0
0 ± 1

a

)
⊕ p, A2 =

(
0 ± 1

b
b 0

)
⊕ p,

A3 = c

(
1 ei( δ+ϕ

2 +β )

iei( δ+ϕ

2 +α) eiδ

)
⊕ p, (62)

where the allowed values for each parameter are different for
each representative:

(i) |S4
2〉 + |24〉 only has this symmetry with A1 and A2 for

nonzero a, b ∈ C and p = ±1 or ±i. From arbitrary prod-
ucts of A and B of this representative, we deduce that its

local symmetries are given by S( j) = (
x j a 0
0 ± x j

a
) ⊕ y j, S( j) =

( 0 ± x j
b

x j b 0 ) ⊕ y j , where a, b must be the same for all sites (i.e.,

j independent).
(ii) |04〉 + |S4

2〉 + |24〉 only has this symmetry with A1 for
a, p = ±1 or ±i. Similarly, its local symmetries can only take
the form S( j) = x j ⊕ ±x j ⊕ y j (with a absorbed in x j).

(iii) For any μ �= 0,±
√

2
3 ,±√

6, |ψ (μ)〉 := |04〉 + |14〉 +
|24〉 + μ|S4

2〉 has this symmetry with A1 and A2 for a, b, p =
±1 or ±i. Thus, its local symmetries can only take the
two forms S( j) = x j ⊕ ±x j ⊕ y j and S( j) = ( 0 ±x j

x j 0 ) ⊕ y j .

Only for μ = √
2i (and also for μ = −√

2i which we do
not consider separately here as it corresponds to the same
SLOCC class), |ψ (μ)〉 also has the A⊗4 symmetry with

A3 for c = {
1√
2

eiπ ( m
2 − 1

12 )
, if ei(δ+ϕ) = 1,

1√
2

eiπ ( m
2 + 1

12 )
, if ei(δ+ϕ) = −1

(m = 0, 1, 2, 3), α, β ∈
{0, π}, δ, ϕ ∈ {π

2 , 3π
2 } fulfilling ei(α+β+ϕ) = i for A3 being

invertible, and p = ±1 or ±i. Hence, the local symmetry
group of |ψ (μ = ±√

2i)〉 composes of all the local sym-
metries for other μ and, additionally, the ones of S( j) =
x′

j (
1 ei( δ+ϕ

2 +β )

iei( δ+ϕ
2 +α) eiδ

) ⊕ y′
j , where α, β, δ, ϕ must be the same

for all sites (i.e., j independent).
In addition, for

⊗4
j=1 S( j) to stabilize the above

representatives, all x j, y j, x′
j, y′

j ∈ C above must satisfy∏4
j=1 x j = 1 =∏4

j=1 y j =∏4
j=1 y′

j and for μ = √
2i,∏4

j=1 x′
j = {

1
4 e−i π

3 = 1−√
3i

8 , if ei(δ+ϕ) = 1,
1
4 ei π

3 = 1+√
3i

8 , if ei(δ+ϕ) = −1.

Type-2 symmetries. We give the full list of local symme-
tries of type-2 derogatory representatives |14〉 + |S4

2〉 + |F 4
1 〉

and |S4
3〉 + |F 4

1 〉. These representatives can only have the

B(i) ⊗ B−1
( j) symmetries with B = (

x 0 y
0 x 0
0 0 x

) for x, y ∈ C and

x �= 0, which are generated by B2 in Eq. (44). Since B does
not include any nonderogatory matrices, these representatives
must be derogatory.

The conditions for each representative to be stabilized by
A⊗4 are as follows:

(i) |14〉 + |S4
2〉 + |F 4

1 〉 only has this symmetry with A =
a ⊕ ±a ⊕ a where a = ±1 or ±i.

(ii) |S4
3〉 + |F 4

1 〉 only has this symmetry with A = a ⊕
1

a1/3 ei 2mπ
3 ⊕ 1

a3 for nonzero a ∈ C and m = 0, 1, 2.
Arbitrary products of the matrices A and B of each repre-

sentative lead us to the general form of local symmetries

(i) S( j) =
⎛⎝x j 0 y j

0 ±x j 0
0 0 x j

⎞⎠,

(ii) S( j) =
⎛⎝x ja 0 y j

0 x j

a1/3 ei 2mπ
3 0

0 0 x j

a3

⎞⎠,

where x j, y j, a ∈ C, x j, a �= 0 and a is j independent, for rep-
resentatives (i) and (ii), respectively. In addition, for

⊗4
j=1 S( j)

to be a stabilizer of the above representatives, all x j, y j ∈ C

must satisfy
∏4

j=1 x j = 1 and
∑4

j=1
y j

x j
= 0. We show more

details on how we derive all the possible matrices A in
Appendix J 3.

Weak isolation, reachability via LOCCN , and convertibility
via LOCC1. We will next prove that weakly isolated states,
LOCCN-reachable states, and LOCC1-convertible states exist
in every derogatory ES SLOCC class. To show the existence
of weakly isolated states (see Lemma 2), we construct a
positive-definite 3 × 3 complex matrix Gj = g†

jg j for any site
j such that (S( j) )†GjS( j) ∝ Gj cannot be satisfied for any
nontrivial S( j) ∈ S( j)

ψ (i.e., S( j) �∝ 1). In fact, given that Gj > 0,
(S( j) )†GjS( j) ∝ Gj holds only if S( j) is diagonalizable (see
Corollary 1). Hence, we only have to consider diagonalizable
S( j) in the remaining section.

We find that there always exist some matrices Gj

that violate (S( j) )†GjS( j) ∝ Gj locally for every four-qutrit
derogatory ES SLOCC class. Two explicit examples are

Gj =
⎛⎝α β∗ 0

β δ ε∗
0 ε ν

⎞⎠, Gj =
⎛⎝ α β∗ γ ∗

β δ 0
γ ∗ 0 ν

⎞⎠, (63)

with α, δ, ν > 0 and nonzero β, γ , ε ∈ C such that Gj > 0.
It is straightforward to check that (S( j) )†GjS( j) − λGj = 0
cannot hold for any λ and for any nontrivial local symmetry
S( j) ∈ S( j)

ψ of each representative |ψ〉 in Eq. (56). If we pick
these matrices Gj for more than two sites j and any 3 × 3
positive-definite matrices G′

k for the remaining sites k, then
this will fulfill the weak isolation criterion in Lemma 2. Thus,
we conclude that all four-qutrit derogatory ES SLOCC classes
contain weakly isolated states.

We also find that all four-qutrit derogatory ES SLOCC
classes contain states that are both reachable under LOCCN

and convertible under LOCC1. We first construct such
examples for all four-qutrit derogatory ES SLOCC classes
except for the class of the type-2 representative |S4

3〉 + |F 4
1 〉,

then we provide an example for the class represented by
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|S4
3〉 + |F 4

1 〉. Let us consider |�̃〉 ∝⊗4
i=1 h̃i|ψ〉 where |ψ〉

is of the form in Eq. (56), |ψ〉 �= |S4
3〉 + |F 4

1 〉 and h̃†
1h̃1 =

H̃1 = (
α β∗ 0
β δ ε∗
0 ε ν

) > 0 with β, ε �= 0. Note that H̃1 satisfies

S†H̃1S �∝ H̃1 for S = 1 ⊕ −1 ⊕ 1 ∈ S(1)
ψ [58] [i.e., satisfy-

ing condition (ii) in Theorem 1], and h̃†
j h̃ j = H̃j = α j ⊕

δ j ⊕ ν j > 0 commuting with S for j = 2, 3, 4 [i.e., fulfill-
ing condition (i) in both Theorem 1 and Lemma 1]. A state⊗4

i=1 gi|ψ〉 with gi = h̃i for i = 2, 3, 4 and g†
1g1 = G1 =

1
3 H̃1 + 2

3 S†H̃1S = (
α − β∗

3 0
− β

3 δ − ε∗
3

0 − ε
3 ν

) satisfying H̃1 �∝ S′†G1S′

for all S′ ∈ S(1)
ψ can reach the state |�̃〉 via LOCC1. The

state |�̃〉 can also be converted to another state
⊗4

i=1 hi|ψ〉
with h†

1h1 = H1 = (
α −2β∗ 0

−2β δ −2ε∗
0 −2ε ν

) > 0 and hi = h̃i for

i = 2, 3, 4 via LOCC1 because H̃1 = 1
4 H1 + 3

4 S†H1S, H1 �∝
S̃†H̃1S̃ for all S̃ ∈ S(1)

ψ , and [S, Hi�2] = 0 together satisfy

Lemma 1. Therefore, |�̃〉 is both LOCCN reachable and
LOCC1 convertible.

We now construct an LOCCN-reachable and LOCC1-
convertible example for the SLOCC class of |S4

3〉 + |F 4
1 〉.

We consider the same state |�̃〉 as before (but now |ψ〉 =
|S4

3〉 + |F 4
1 〉), which satisfies S′†H̃1S′ �∝ H̃1 for S′ = 1 ⊕ −1 ⊕

−1 ∈ S(1)
ψ . The state

⊗4
i=1 g′

i|ψ〉 with g′†
1 g′

1 = G′
1 = 1

3 H̃1 +
2
3 S′†H̃1S′ = (

α − β∗
3 0

− β

3 δ ε∗
0 ε ν

) satisfying H̃1 �∝ S′′†G′
1S′′ for all

S′′ ∈ S(1)
ψ and g′

i = h̃i for i = 2, 3, 4, can reach the state

|�̃〉 via LOCC1. Similarly, the state |�̃〉 can also be con-
verted to a different state

⊗4
i=1 h′

i|ψ〉 with h′†
1 h′

1 = H ′
1 =

(
α −2β∗ 0

−2β δ ε∗
0 ε ν

) > 0 and h′
i = h̃i for i = 2, 3, 4 via LOCC1

since H̃1 = 1
4 H ′

1 + 3
4 S′†H ′

1S′, H ′
1 �∝ S̃′†H̃1S̃′ for all S̃′ ∈ S(1)

ψ ,

and [S′, H ′
i�2] = 0 satisfy Lemma 1. Thus, |�̃〉 is again both

LOCCN reachable and LOCC1 convertible.
There are also states that are LOCC1 convertible but not

LOCCN reachable in some four-qutrit derogatory ES SLOCC
classes. For example, in the SLOCC class of the type-1 repre-
sentative |ψ〉 = |04〉 + |S4

2〉 + |24〉, a state |�〉 ∝⊗4
i=1 gi|ψ〉

with g†
i gi = Gi = αi ⊕ δi ⊕ νi for i = 1, . . . , 4 is not LOCCN

reachable because [S, Gi] = 0 for all S ∈ S(i)
ψ which are all

diagonal (see Sec. VIII A 2 b) and for all i, thereby vio-
lating condition (ii) in Theorem 1. However, there exists a

state |�〉 ∝ h1
⊗4

i=2 gi|ψ〉 with h†
1h1 = H1 = (

α1 β∗ 0
β δ1 ε∗
0 ε ν1

) >

0 with β, ε �= 0 and an S = 1 ⊕ −1 ⊕ 1 ∈ S(1)
ψ such that G1 =

1
2 (H1 + S†H1S) and H1 �∝ S̃†G1S̃ for all S̃ ∈ S(1)

ψ . This satisfies
both conditions in Lemma 1, so the initial state |�〉 can be
converted into |�〉 with LOCC1.

As a remark, there are more weakly isolated states,
LOCCN-reachable states, and LOCC1-convertible states than
what we have presented here. We summarize our findings
regarding four-qutrit derogatory ES SLOCC classes in the
following observation.

Observation 8. The representatives of all four-qutrit
derogatory ES SLOCC classes are∣∣S4

2

〉+ |24〉, |04〉 + ∣∣S4
2

〉+ |24〉, |14〉 + ∣∣S4
2

〉+ ∣∣F 4
1

〉
,∣∣S4

3

〉+ ∣∣F 4
1

〉
, {|ψ (μ)〉 : μ ∈ C and μ �= 0,±

√
2

3
,±

√
6}.

All these classes contain both weakly isolated states, LOCCN-
reachable states, and LOCC1-convertible states.

Convertible via LOCC with probabilistic steps. We have
already shown that all four-qutrit derogatory ES SLOCC
classes possess rich entanglement structures in the sense that
each class contains examples that are either weakly isolated,
LOCCN reachable, or LOCC1 convertible. In fact, some of
these classes contain states that are convertible only with more
intricate LOCC protocols. In the following, we will give an
example of a state in the SLOCC class represented by the
state |ψ (μ = √

2i)〉 in Eq. (53), which can only be converted
to another LU-inequivalent state via an LOCC protocol with
intermediate probabilistic steps [12,13]. This kind of protocol
converts the initial state into some LU-inequivalent states
probabilistically via local measurements in the intermediate
steps before reaching the same target state in the final step.
In contrast to most previously studied LOCC transformations,
there exist examples of this type of transformations (such as
the one presented below) which are not achievable with an
all-det-LOCCN protocol which consists only of deterministic
rounds.

In this example, we consider the SLOCC class of |�s〉 :=
|ψ (μ = √

2i)〉 and the goal is to convert the initial state
|�〉 ∝ g1 ⊗ g2 ⊗ 1 ⊗ 1|�s〉 into the target state |�〉 ∝ h1 ⊗
h2 ⊗ 1 ⊗ 1|�s〉 where gi = √

Gi and hi = √
Hi (i = 1, 2) are

defined by the positive-definite matrices

G1 =
⎛⎝ 2p + 2 1 − (2p − 1)i p(1 − √

3i)
1 + (2p − 1)i 4 − 2p 0

p(1 + √
3i) 0 2

⎞⎠,

(64)

G2 =

⎛⎜⎝ 3 3 − 2
1−q − i 3+√

2+i√
2

q

3 − 2
1−q + i 5 0

3+√
2−i√
2

q 0 4

⎞⎟⎠, (65)

H1 =
⎛⎝ 4 1 − i 1+√

3
2 (1 − i)

1 + i 2 1
1+√

3
2 (1 + i) 1 2

⎞⎠, (66)

H2 =

⎛⎜⎝ 5 −i − 1+q
1−q

1+i√
2

i − 1+q
1−q 3 1

1−i√
2

1 4

⎞⎟⎠, (67)

and the parameters p = 1−√
2+√

3
2 and q =

√
2+√

2−1
1+√

2
. Note

that one cannot construct a four-qutrit example that needs an
intermediate probabilistic step by simply embedding the 2 × 2
matrices from the four-qubit example in Refs. [12,13] in the
subspace span{|0〉, |1〉} and adding an orthogonal component
to the third dimension via a direct sum. This is because there
are more nontrivial symmetries in four qutrits than in four
qubits, so the initial four-qubit state in Refs. [12,13] is no
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longer weakly isolated when promoted to four qutrits. For
instance, the trivial symmetry S = 1 for qubits can become
nontrivial after extending it to three dimensions (e.g., S′ =
1 ⊕ eiϕ with ϕ �= 0).

To see why the initial state |�〉 is not convertible via
any all-det-LOCCN protocol, we first recall that all these
protocols constitute of a sequence of LOCC1 transformations
[47]. Thus, it is sufficient to show that |�〉 is not LOCC1

convertible. Since S†GiS �∝ Gi for i = 1, 2 and for all lo-
cal symmetries S �∝ 1 of |ψ (μ = √

2i)〉 [see item (iii) under
“type-1 symmetries” in Sec. VIII A 2 b], condition (i) in
Lemma 1 is not fulfilled, thereby not being LOCC1 and all-
det-LOCCN convertible.

The LOCC protocol that transforms |�〉 to |�〉 consists of
two steps. The first step involves party 1 measuring with M1 =√

ph1g−1
1 and M2 = √

1 − ph1S(1)g−1
1 where p = 1−√

2+√
3

2

and S(1) = ( 0 ei 3π
4

ei 3π
4 0

) ⊕ 1, which fulfill
∑2

i=1 M†
i Mi = 1.

This results in two (unnormalized) intermediate states h1 ⊗
g2 ⊗ 1 ⊗ 1|�s〉 and h1S(1) ⊗ g2 ⊗ 1 ⊗ 1|�s〉 which are LU
inequivalent due to S(1)†H1S(1) ⊗ G2 ⊗ 1⊗2 �∝ Ŝ†(H1 ⊗ G2 ⊗
1⊗2 )̂S for all Ŝ =⊗4

j=1 Ŝ( j) ∈ S�s , and therefore, the protocol
is not all-deterministic. As we will see later, there exist lo-
cal unitary symmetries S, S′ �∝ 1 satisfying S†H1S ∝ H1 and
S′†S(1)†H1S(1)S′ ∝ H1 [with S′ = (S(1) )−1S], such that both
states satisfy condition (i) in Lemma 1 for deterministic
LOCC1 conversions in the next step.

In the first branch, party 2 measures with M1 =
√

qh2g−1
2 and M2 = √

1 − qh2S
(2)

g−1
2 where q =

√
2+√

2−1
1+√

2
,

S
(2) = x2(1 −i

1 i ) ⊕ 1, and x2 = q(1+√
2+i)

2(1−q) , which satisfy∑2
i=1 M

†
i Mi = 1 and result in two (unnormalized) states h1 ⊗

h2 ⊗ 1 ⊗ 1|�s〉 and h1 ⊗ h2S
(2) ⊗ 1 ⊗ 1|�s〉. If party 2 ob-

tains the second measurement outcome, party 1 will apply
U = h1S

(1)
h−1

1 with S
(1) = x1(1 −i

1 i ) ⊕ y1, x1 = 1+√
3i

4x2
, and

y1 = 1+i−√
6ei 3π

4

2 x1 (where U is unitary due to [H1, S
(1)

] =
0 and S

(1)
being unitary). Parties 3 and 4 will apply

unitaries S
(3) = 1√

2
(1 −i
1 i ) ⊕ 1 and S

(4) = 1√
2
(1 −i
1 i ) ⊕ 1

y1
,

respectively. With
⊗4

j=1 S
( j)|�s〉 = |�s〉, we obtain the target

state |�〉.
In the second branch, party 2 measures with M̃1 =√

qh2S(2)g−1
2 and M̃2 = √

1 − qh2S̃(2)S(2)g−1
2 where q =√

2+√
2−1

1+√
2

, S(2) = (0 1
1 0) ⊕ 1+i√

2
, S̃(2) = x̃2(1 1

i −i) ⊕ 1, and

x̃2 = i q(1+√
2+i)

2(1−q) , which fulfill
∑2

i=1 M̃†
i M̃i = 1 and result in

two (unnormalized) states h1S(1) ⊗ h2S(2) ⊗ 1 ⊗ 1|�s〉 and
h1S(1) ⊗ h2S̃(2)S(2) ⊗ 1 ⊗ 1|�s〉. For the first measurement
outcome, parties 3 and 4 will apply unitaries S(3) = (0 1

1 0) ⊕
1 and S(4) = ( 0 e−i 3π

4

e−i 3π
4 0

) ⊕ 1−i√
2

, respectively. If the sec-

ond measurement outcome occurs, party 1 applies Ũ =
h1S̃(1)h−1

1 with S̃(1) = x̃1(1 1
i −i) ⊕ ỹ1, x̃1 = 1−√

3i
4̃x2

, and ỹ1 =
1−i+√

6ei π
4

2 x̃1 (where Ũ is unitary since [H1, S̃(1)] = 0 and S̃(1)

is unitary), whereas parties 3 and 4 apply unitaries S̃(3)S(3) and
S̃(4)S(4) where S̃(3) = 1√

2
(1 1

i −i) ⊕ 1 and S̃(4) = 1√
2
(1 1

i −i) ⊕

1
ỹ1

. Given that
⊗4

j=1 S( j)|�s〉 = |�s〉 and
⊗4

j=1 S̃( j)|�s〉 =
|�s〉, the intermediate states in the second branch can also
be converted into the target state |�〉 using a single round of
LOCC.

To summarize the example, the first step is probabilistic,
which gives rise to two LU-inequivalent branches, but the
second step is deterministic in each branch.

IX. CONCLUSION

In this work we have exhaustively analyzed deterministic
LOCC transformations in SLOCC classes that contain a sym-
metric state. Since these conversions are almost never possible
for generic states, only zero-measure subsets of states can dis-
play a rich LOCC structure. Symmetric states (together with
their SLOCC classes) indeed form such a zero-measure sub-
set which, moreover, has a clear physical and mathematical
relevance. In fact, the only SLOCC classes known so far that
are free of isolation correspond to the ones of the symmetric
n-qubit W and GHZ states. Our results indicate that, neverthe-
less, symmetric SLOCC classes are in general equally limited
for LOCC manipulation as the full state space. We have shown
that, as in the general case, almost every symmetric n-qubit
state with n � 5 has a trivial local stabilizer. Thus, generic
states of this form are isolated. Turning to symmetric states
of arbitrary local dimension, we have proven that transforma-
tions among non-ES states are never possible and that weak
isolation exists in the corresponding classes. This motivates
the study in greater detail of ES classes, which in particular
have a richer stabilizer (and which we have moreover proven
to be nongeneric within symmetric classes at least for n-qubit
states). In fact, we have characterized the local stabilizer for
these classes in the nonderogatory case and we have found
that LOCC transformations among symmetric states are in
this case possible. However, we have provided a plethora of
results that show that these families are still plagued with
(weak) isolation. Nevertheless, the identified possible trans-
formations in this case might turn out to be helpful in finding
applications of entangled ES states. Finally, we have consid-
ered derogatory ES classes, where a full characterization of
the SLOCC classes and their representatives remains open.
Notwithstanding, we have observed that they admit classes in
which all states are isolated under LOCCN . In addition to this,
we have characterized the local stabilizer and study in detail
the LOCC convertibility properties of derogatory ES classes
for four-qutrit states.

On a technical level, we have obtained other results that
might be of future use. First, in order to study LOCCN

transformability we have generalized the results of [12,13]
from SLOCC classes with a finite stabilizer to an arbitrary
one, where the commutation conditions of the former case
translate to quasicommutation relations. We expect that these
results will be helpful when studying LOCC transformations
for other classes of states. Second, we have studied prop-
erties of the local stabilizer for several SLOCC families of
symmetric states and, in particular, we have determined it for
nonderogatory ES SLOCC classes, a result that can be of use
for other applications of these states in quantum information
theory and quantum many-body physics.
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A question that remains open is the existence of SLOCC
families with no isolated states beyond the n-qubit W and
GHZ classes. Further studies of the structure of SLOCC
classes generated by states displaying different forms of
symmetry than permutation symmetry and translational sym-
metry, as studied in [23,24], might prove fruitful in this
direction. The results presented here can also be used to study
transformations from pure states to ensembles of pure states.
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APPENDIX A: PROOFS OF THEOREM 1 AND LEMMA 1

In this Appendix we provide the proofs of the necessary
and sufficient conditions for pure states to be reachable (con-
vertible) via LOCCN (by one round of an LOCC protocol),
respectively. For better readability we repeat the correspond-
ing Theorem (Lemma), respectively. The proofs are analogous
to the ones for finite (unitary) symmetries presented in
[12,13]. However, for the sake of completeness we recall them
here.

Theorem 1. A state |�〉 ∝ h|�s〉 is reachable via LOCCN ,
iff there exists S ∈ S�s such that the following conditions hold
up to permutations of the particles:

(i) For any i � 2(S(i) )†HiS(i) ∝ Hi and
(ii) (S(1) )†H1S(1) �∝ H1.
Proof. The proof is analogous to the one for unitary sym-

metries in [12]. We will first show that the conditions in the
theorem are necessary and then present an explicit example of
a transformation that allows to reach |�〉.

The protocol involves only finitely many rounds and is
nontrivial, hence, there exists a last nontrivial round of the
protocol. In order for the transformation to be deterministic
any state |χ〉 which is obtained in one branch of the LOCC
protocol in the second to last round has to be transformed in
the last round deterministically to |�〉. It is straightforward
to see that therefore these states have to be in the same
SLOCC class, i.e., |χ〉 ∝ g|�s〉 for some g ∈ G. We assume
then that without loss of generality party 1 applies a nontriv-
ial measurement in the last step, which is described by the
operators {Ai}, and all the other parties apply (depending on
the outcome) a LU. Note that at least two outcomes are not
related to each other via a unitary, i.e., it has to hold that
A†

2A2 �∝ A†
1A1, as otherwise the last round would be trivial.

Moreover, we have that (A1 ⊗ 1)g|�s〉 = r1 ⊗n
i=2 Uih|�s〉 and

(A2 ⊗ 1)g|�s〉 = r2 ⊗n
i=2 Vih|�s〉 for some local unitaries Ui

and Vi and r1, r2 > 0. It is easy to see that the latter equa-
tions are equivalent to

h−1
(⊗n

i=2 U †
i

)
(A1 ⊗ 1)g = r1S1, (A1)

h−1
(⊗n

i=2 V †
i

)
(A2 ⊗ 1)g = r2S2, (A2)

where S1, S2 ∈ S�s . This implies that

A1 = r (1)
1 h1S(1)

1 g−1
1 , A2 = r (1)

2 h1S(1)
2 g−1

1 , (A3)

gi = r (i)
1 UihiS

(i)
1 = r (i)

2 VihiS
(i)
2 , ∀ i > 1 (A4)

where r j =∏i r (i)
j , for j = 1, 2. Using the last equations for

g†
i gi and that hi and S(i)

2 are invertible it follows that condition
(i) in Theorem 1 has to hold for S = S1S−1

2 . Using further that
A†

1A1 �∝ A†
2A2 and Eq. (A3) one obtains condition (ii) for S =

S1S−1
2 .
We will next show that |�〉 is reachable via LOCCN if con-

ditions (i) and (ii) are fulfilled. In order to do so we construct a
transformation and choose the initial state |�〉 ∝ g|�s〉 of the
transformation such that for i > 1, Gi = Hi ∝ (S(i) )†HiS(i),
i.e., we choose gi = Vihi ∝ WihiS(i), for some unitaries Vi,Wi.
Note that these have to exist as condition (i) implies that
hiS(i)(hi )−1 is up to proportionality factor a unitary. Further,
we choose g1 such that rG1 = pH1 + (1 − p)(S(1) )†H1S(1),
for some 0 < p < 1 and r = p + (1 − p)tr((S(1) )†H1S(1) )
[59]. Then, the following LOCC protocol allows to transform
g|�s〉 to h|�s〉. Party 1 performs a generalized measurement
with measurement operators

√
p√
r
h1g−1

1 ,
√

1−p√
r

h1S(1)g−1
1 . All the

other parties i apply then depending on the measurement
outcome either V †

i or W †
i , respectively. �

Lemma 1. A state |�〉 ∝ g|�s〉 is convertible via LOCC1

iff there exist m symmetries Sk ∈ S�s , with m > 1 and H1 > 0
and pk > 0 with

∑m
k=1 pk = 1, such that the following condi-

tions hold up to permutations of the particles:
(i) (S(i)

k )†GiS
(i)
k ∝ Gi for any i � 2 and for all k ∈

{1, . . . , m} and
(ii) G1 =∑m

k=1 pk (S(1)
k )†H1S(1)

k and H1 �∝ (S(1) )†G1S(1)

for any S ∈ S�s fulfilling (S(i) )†GiS(i) ∝ Gi for all i � 2.
Proof. The proof is a straightforward generalization of the

proof of Lemma 3 in [13].
If. If conditions (i) and (ii) are fulfilled, then the follow-

ing LOCC1 transformation allows to nontrivially convert the
state. The first party performs a generalized measurement
with measurement operators Ak = √

pkhSkg−1
1 . Condition (ii)

ensures that
∑

k A†
kAk = 1. For outcome k one obtains the

state h1S(1)
k ⊗ g2 ⊗ · · · ⊗ gn|�s〉. Due to condition (i) there

exist unitaries U (i)
k satisfying giS

(i)
k ∝ U (i)

k gi. Depending on
the measurement outcome k parties i ∈ {2, . . . , n} apply now
the unitaries U (i)

k in order to obtain h1 ⊗ g2 ⊗ · · · ⊗ gn|�s〉
for all measurement outcomes. Note that if the second part
of condition (ii) is fulfilled, this transformation is non-trivial.

Only if. Without loss of generality we assume in the follow-
ing that the nontrivial measurement is implemented by the first
party. In order for a state to be convertible via LOCC1 there
has to exist a state h̃1 ⊗ · · · ⊗ h̃n|�s〉, a measurement {Ak}m

k=1,∑m
k=1 A†

kAk = 1, and unitaries U (i)
k (for k ∈ {2, . . . , m}) such
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that for all k ∈ {1, . . . , m},
Akg1 ⊗ U (2)

k g2 ⊗ · · · ⊗ U (n)
k gn|�s〉 ∝ h̃1 ⊗ · · · ⊗ h̃n|�s〉.

(A5)

Note that as the transformation should be nontrivial it has to
hold that H̃ �∝ S†GS for all S ∈ S�s . Equation (A5) can only
hold true if there exist S̃k ∈ S�s such that

Ak ∝ h̃1S̃(1)
k g−1

1 , (A6)

U (i)
k ∝ h̃iS̃

(i)
k g−1

i ∀ i � 2. (A7)

Using then that
∑m

k=1 A†
kAk = 1 and that U (i)

k are unitaries
we obtain that there have to exist pk > 0 such that (for an
appropriately chosen normalization of H̃ )∑

k

pk
(
S̃(1)

k

)†
H̃1S̃(1)

k = G1, (A8)(
S̃(i)

k

)†
H̃iS̃

(i)
k ∝ Gi ∀ i � 2 ∀ k. (A9)

With the definitions S(i)
k = (S̃(i)

1 )−1S̃(i)
k and H1 = (S̃(1)

1 )†H̃1S̃(1)
1

it therefore has to hold true that
∑

k pk (S(1)
k )†H1S(1)

k = G1,
(S(i)

k )†GiS
(i)
k ∝ Gi for all i � 2, and H1 �∝ (S(1) )†G1S(1) for

any S ∈ S�s such that (S(i) )†GiS(i) ∝ Gi for all i � 2. This
completes the proof. �

APPENDIX B: ON THE QUASICOMMUTATION RELATION

Here we provide the proofs of Observations 1 and 2. In
order to improve readability we repeat the observations here.

Observation 1. Let A be a positive k × k matrix and B be
an arbitrary k × k matrix. Then, B†AB ∝ A if and only if B ∝
a−1Ua for some unitary U and some a s.t. a†a = A.

Proof. It can be easily verified that if B and A are as in
the statement, then the relation B†AB ∝ A is indeed satisfied.
Let us now show the converse direction. Assume B†AB ∝ A.
As A is positive, there exists a matrix a such that A = a†a.
Thus, B†a†aB ∝ a†a, or, equivalently, (aBa−1)†aBa−1 ∝ 1.
Hence, aBa−1 ∝ U for some unitary U and the statement of
the lemma follows. �

Observation 2. Let A be a positive k × k matrix and B be
an arbitrary k × k matrix. Then, B†AB ∝ A if and only if the
following two conditions are met.

(1) B is (up to proportionality) similar to a unitary matrix,
i.e., B ∝ R diag(eiφ1 , . . . , eiφk )R−1 for some k × k matrix R
and φ1, . . . , φk ∈ [0, 2π ).

(2) A ∝ R−†XR−1, where X is a direct sum of pos-
itive matrices acting on the degenerate subspaces of
diag(eiφ1 , . . . , eiφk ).

Note that in the particular case in which the eigenvalues
of A are nondegenerate, i.e., φi are pairwise different, X is a
diagonal matrix with positive entries.

Proof. We will first show the sufficient part of the observa-
tion and afterwards the necessary part. Assume that A and B
fulfill the conditions (i) and (ii). We then have

B†AB

∝ R−† diag(e−iφ1 , . . . , e−iφk )X diag(eiφ1 , . . . , eiφk )R−1

= R−†XR−1 = A, (B1)

where we have used that diag(eiφ1 , . . . , eiφk ) and X commute
due to the condition on X . This shows the sufficient part of the
observation.

Let us now prove the necessary part. Assume B†AB ∝ A.
Statement (i) follows from Observation 1. Using that B is as
in statement (i) we have that

diag(e−iφ1 , . . . , e−iφk )R†AR diag(eiφ1 , . . . , eiφk )

∝ R†AR. (B2)

Using the abbreviation X = R†AR and denoting the propor-
tionality factor by λ we have

diag(e−iφ1 , . . . , e−iφk )X diag(eiφ1 , . . . , eiφk ) = λX. (B3)

As X is positive, the diagonal entries of X must be positive
numbers and we have λ = 1. We hence obtain that entries Xi, j

must vanish whenever φi �= φ j . Thus, X is a positive matrix
that is composed of a direct sum of (positive) matrices acting
on the degenerate subspace of diag(eiφ1 , . . . , eiφk ). Recalling
that A = R−†XR−1, statement (ii) follows. This completes the
proof of the lemma. �

APPENDIX C: HARDLY ANY SYMMETRIC STATE
IS IN THE GHZ CLASS

In this Appendix, we prove the following lemma.
Lemma 6. The set of symmetric states in the GHZ SLOCC

class has Lebesgue measure zero in Symn(Cd ) except when
both d = 2 and n = 3.

Proof. Obviously, rankS (GHZ) � d , so it suffices to prove
that generically the symmetric tensor rank is larger than d .
This follows from the Alexander-Hirschowitz theorem [60],
which shows that for n > 2 the set of states with symmetric
tensor rank equal to � fn(d )� where

fn(d ) = 1

d

(
n + d − 1

n

)
= (d + n − 1) . . . (d + 1)

n!
(C1)

has full Lebesgue measure in Symn(Cd ) (with a few excep-
tional values of (n, d ) which require � fn(d )� + 1) [36]. Thus,
to prove the claim it is enough to notice that fn(d ) > d [except
for f3(2)], which can be easily verified by induction. �

APPENDIX D: WEAK ISOLATION IN NON-ES CLASSES

We prove here Lemma 4, which we restate here in order to
increase readability.

Lemma 4. Let |�s〉 be a non-ES n-qudit state (n � 5). Then,
there exist weakly isolated states within the SLOCC class of
|�s〉.

Proof. We will prove the lemma by constructing a state
g1 ⊗ · · · ⊗ gn|�s〉 and showing that it satisfies the condition
given in Lemma 2 (and is weakly isolated, thus). Let us denote
the local dimension of |�s〉 by d .

In order to construct the isolated state let us consider three
orthonormal bases {|v(1)

j 〉}d−1
j=0 , {|v(2)

j 〉}d−1
j=0 , and {|v(3)

j 〉}d−1
j=0 ,

such that any two basis vectors belonging to two different
bases have nonvanishing overlap, i.e., 〈v(i1 )

j1
|v(i2 )

j2
〉 �= 0, for any

i1, i2 ∈ {1, 2, 3} s.t. i1 �= i2 and for any j1, j2 ∈ {0, . . . , d −
1}. Such a construction is given, e.g., by mutually unbiased
basis, at least three of them exist for any d [61]. Let us
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moreover consider d pairwise different positive reals
x0, . . . , xd−1. Then, an isolated state is given by
G1 =∑ j x j |v(1)

j 〉〈v(1)
j | and G2 =∑ j x j |v(2)

j 〉〈v(2)
j |,

G3 =∑ j x j |v(3)
j 〉〈v(3)

j |, G4 = G5 = 1, and G6, . . . , Gn may
be chosen arbitrarily.

Recall that the symmetry group of |�s〉 consists of symme-
tries of the form A⊗n only. Let us now prove that the state g1 ⊗
· · · ⊗ gn|�s〉 is isolated by showing that there does not exist
any nontrivial A such that A†GiA ∝ Gi for n − 1 sites i. To this
end, let us assume that A†GiA ∝ Gi for at least four out of the
five sites {1, 2, 3, 4, 5} and show that it follows that A ∝ 1. As
A†GiA ∝ Gi for at least one i ∈ {4, 5}, A must be proportional
to a unitary. Then, A†GiA ∝ Gi if and only if [A, Gi] = 0. Note
that G1, G2, and G3 are constructed such that they possess
nondegenerate eigenvalues. Commuting matrices, where (at
least) one of the matrices has this property are simultaneously
diagonalizable with a unique (up to irrelevant phases) eigen-
basis. We now have that [A, Gi] = 0 for at least two out of the
three sites i ∈ {1, 2, 3}. Let us assume without loss of general-
ity that [A, G1] = 0 and [A, G2] = 0. Then, A|v(1)

0 〉 = λ|v(1)
0 〉

for some λ ∈ C. Moreover, we have that A|v(2)
j 〉 = μ j |v(2)

j 〉
for some μ j ∈ C for all j ∈ {0, . . . , d − 1}. As A is propor-
tional to a unitary, all eigenvectors corresponding to distinct
eigenvalues must be orthogonal. However, as 〈v(1)

0 |v(2)
j 〉 �= 0

for all j ∈ {0, . . . , d − 1} we have that μ j = λ for all j.
Hence, A = λ1. This completes the proof of the lemma. �

APPENDIX E: SYMMETRIES OF NONDEROGATORY
ES STATES

In this Appendix, we characterize the symmetries of non-
derogatory ES SLOCC classes, which are representated by
states of the form given in Eq. (7). First, we analyze the
symmetries of a single |Ek〉 (Theorem 4). Then, we consider
direct sums thereof (Theorem 5). We restate Theorems 4 and
5 here for readability.

Theorem 4. For n � 3 the stabilizer of the states |Ek〉 is
generated by operators of the form B ⊗ B−1 and A⊗n, where

(i) B is an arbitrary invertible upper triangular Toeplitz
matrix.

(ii) A⊗n can be written up to a proportionality factor as
A = DS̄ where D is a diagonal matrix with [D]l,l = xl for
some x ∈ C and l ∈ {0, 1, . . . , k} and S̄ is upper triangular
with [S̄]l,l = 1 for all l . Furthermore, S̄ is characterized by
[S̄]i+1,l =∑l−i

j=1[S̄]i,l− jy j for some complex parameters y j

and 〈El |S̄⊗n|Ek〉 = 0 for 0 � l < k. For n � k − 1 the sym-
metries S̄⊗n can be determined by solving linear equations and
(except for a measure-zero subset) any choice of y j leads to a
solution. Therefore, S̄ is a k-parameter group (depending on n
and clearly on k).

Proof. Recall that, as already pointed out in the main text,
any symmetry of a symmetric state can be written as a product
of symmetries of the form B(i) ⊗ B−1

( j) ⊗ 1 . . . 1 and A⊗n. We
prove the theorem by considering these two types of symme-
tries separately.

We will first characterize all symmetries of the form B ⊗
B−1 ⊗ 1 . . . 1. For these symmetries it has to hold that

B(1)|Ek〉 = B(2)|Ek〉. (E1)

Recall that any potential proportionality factor in Eq. (E1)
must equal one, as discussed in Sec. II B. Projecting Eq. (E1)
on some state with k − m excitations (m � k) on all parties
but party 1 and 2 we obtain that

B(1)|Em〉 = B(2)|Em〉. (E2)

Projecting Eq. (E2) on the the computational basis state |m +
1〉 on party 2 results in

m∑
l=0

[B]m+1,l |m − l〉 = 0. (E3)

This implies that [B]m+1,l = 0 for all l � m and any m < k,
i.e., B is upper triangular. Next we project this equation on the
computational basis state |m − l〉 with l � m on party 2. We
obtain

B|l〉 =
l∑

x=0

[B]m−l,m−l+x|l − x〉. (E4)

As this equation has to hold true for any m � k (and l � m)
we have that [B]m−l,m−l+x = [B]0,x, i.e., B is a Toeplitz matrix.
It can be easily seen for an upper triangular Toeplitz matrix
(E1) is fulfilled and therefore this condition is also sufficient.

It remains to characterize the symmetries of the form A⊗n,
i.e., to characterize A such that

A⊗n|Ek〉 = λ|Ek〉. (E5)

We will first show by induction that for all m, j ∈
{0, 1, . . . , k}, [A]m, j = 0 whenever m > j, i.e., A is upper
triangular. To this end, let us consider the projection on the
computational basis state |m1m2〉 of the first two parties with
m1 + m2 > k and use that A is invertible to obtain

〈m1m2|A⊗2|Ek〉 = 0. (E6)

Projecting then the remaining parties on a state with k − l
excitations (l � k) results in

〈m1m2|A⊗2|El〉 =
∑

i1+i2=l

[A]m1,i1 [A]m2,i2 = 0. (E7)

We then consider this equation for m1 = m > ñ + 1 and m2 ∈
{k − (ñ + 1), . . . , k}. Note that for these choices of m1 and m2

it indeed holds that m1 + m2 > k.
Let us then assume that [A]m, j = 0 whenever m > j holds

for columns j up to ñ and show that the statement then also
holds for column ñ + 1. We will show that the induction
hypothesis together with assuming [A]m,ñ+1 �= 0 for some
m > ñ + 1 leads to the fact that A is not invertible, which
is a contradiction, and thus shows that [A]m,ñ+1 = 0 for any
m > ñ + 1.

Considering Eq. (E7) with l = ñ + 1 and using the in-
duction hypothesis ([A]m, j = 0 for m > j and all j � ñ)
we obtain the single equation [A]m,ñ+1[A]m2,0 = 0 for all
m2 ∈ {k − (ñ + 1), . . . , k}, which implies [A]m2,0 = 0. More-
over, by considering Eq. (E7) for l ∈ {ñ + 2, . . . , k} one
obtains iteratively [A]m2,0 = [A]m2,1 = · · · = [A]m2,k−(ñ+1) =
0. In other words, in the m2th row of A, only the last ñ + 1 en-
tries are nonvanishing. Note that this statement holds for ñ + 2
rows. This is a contradiction, as A has to be invertible, thus we
have completed the induction step by showing [A]m,ñ+1 = 0
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for m > ñ + 1. Note that the induction basis ñ = 0 can be
shown in a similar way.

Hence, A has to be upper triangular. Projecting then
Eq. (E5) on |m1m2 . . . mn〉 with

∑
mi = k we obtain that∏

i[A]mi,mi = λ. Considering also the projection on |(m1 +
1)(m2 − 1) . . . mn〉 and choosing m2 = 1 we have that

[A]m1+1,m1+1

[A]m1,m1

= [A]1,1

[A]0,0
≡ x (E8)

for some x ∈ C and m1 ∈ {0, . . . , k − 1}. Normalizing A
such that [A]0,0 = 1 this implies that [A]m,m = xm. Note
that this implies that we can write A = DS̄ with D =
diag(1, x, x2, . . . , xk ) for some x and S̄ being upper triangular
and [S̄]m,m = 1 for all m � k. Note further that D⊗n is a
symmetry on its own. Therefore, S̄⊗n is a symmetry too and it
hence only remains to characterize S̄. That is, we have that

S̄⊗n|Ek〉 = |Ek〉, (E9)

where we further used that [S̄]m,m = 1 and S̄ is upper triangu-
lar in order to see that λ = 1. We will next use that for any
symmetry S̄⊗n, we have that

JS̄ = S̄B (E10)

for some B which is a symmetry of the form B ⊗ B−1 ⊗ 1⊗n−2

and J being here the (k + 1)-dimensional Jordan block with
eigenvalue λ. This is due to the fact that (S̄−1)⊗n(J ⊗ J−1 ⊗
1⊗n−2)S̄⊗n has to be a symmetry and that it is of the form B ⊗
B−1 ⊗ 1⊗n−2. It can be straightforwardly seen that Eq. (E10)
corresponds to

λ[S̄]i,l + [S̄]i+1,l =
l−i∑
j=0

[S̄]i,l− j[B]0, j . (E11)

Note that B has to have the same eigenvalue as Jλ, i.e., [B]0,0 =
λ and therefore

[S̄]i+1,l =
l−i∑
j=1

[S̄]i,l− j[B]0, j . (E12)

As we will show, this constraint implies for an upper trian-
gular S̄ that

S̄⊗n|Ek〉 =
∑
l�k

αl |El〉, (E13)

with αl ∈ C. It then only remains to impose the constraints on
S̄ that lead to αl = 0 for l < k. We will present a systematic
way of doing so. In particular, we will show that for a generic
choice of [B]0, j in Eq. (E12) there exists a valid symmetry.

In order to first show Eq. (E13) we will use that J+J− =
1 − |0〉〈0| with J+ =∑k−1

j=0 | j + 1〉〈 j| and J− =∑k
j=1 | j −

1〉〈 j| and that for 0 <
∑n

j=1 mj with 0 � mj � k there always
exists at least one party j for which mj �= 0 (which we label
without loss of generality in the following by party 1). With
this and labeling for better readability here the parties on
which the operators are acting on by subindices (as well as
omitting all identity operators) we have that

〈m1m2 . . . mn|S̄⊗n|Ek〉
= 〈m1m2 . . . mn|(1(1) − |0〉1〈0|)S̄⊗n|Ek〉

= 〈m1m2 . . . mn|J+
(1)J

−
(1)S̄

⊗n|Ek〉
= 〈m1m2 . . . mn|J+

(1)S̄
⊗nB(1)|Ek〉

= 〈m1m2 . . . mn|J+
(1)S̄

⊗nB(2)|Ek〉
= 〈m1m2 . . . mn|J+

(1) ⊗ J−
(2)S̄

⊗n|Ek〉
= 〈(m1 − 1)(m2 + 1) . . . mn|S̄⊗n|Ek〉, (E14)

where we used that S̄ fulfills Eq. (E12) and therefore J−S̄ =
S̄B for B being a (noninvertible) upper triangular Toeplitz ma-
trix and B(1)|Ek〉 = B(2)|Ek〉 by the argumentation above. Note
that we chose here to increase the excitation number of party
2 but we could have chosen here equivalently any other party.
Note further that if

∑n
j=1 mj = 0 this implies that mj = 0 for

all j which corresponds to a single computational basis state.
Hence, we have that any projection of Eq. (E9) solely depends
on
∑n

j=1 mj . We further have that due to the fact that S̄ is
upper triangular any projection on a computational basis state
with

∑n
j=1 mj > k is equal to zero. This completes the proof

that Eq. (E13) holds true.
With this S̄ (being an upper triangular matrix with only

ones on the diagonal) is characterized by Eq. (E12) and
〈El |S̄⊗n|Ek〉 = 0 for l < k. We will next show that for n �
k − 1 and for nearly any choice of [B]0, j in Eq. (E12) there
exists a solution for S̄⊗n. In order to do so, we provide a
construction that allows to successively solve this set of equa-
tions by solving only linear ones. Instead of projecting on
〈Ek−l |, we consider the projection on a particular computa-
tional basis state, namely, for any fixed excitation number∑n

j=1 mj = k − l with k � l � 1, the state for which k − l
parties hold the state |1〉 and the remaining n − k + l parties
have the state |0〉. Note that due to Eq. (E14) these lead to the
same equation as 〈Ek−l |S̄⊗n|Ek〉 = 0 if Eq. (E12) is fulfilled. It
can be easily seen that the resulting equation only depends on
[S̄]1,m and [S̄]0,m−1 with m ∈ {1, . . . , l + 1} (and [B]0, j). Us-
ing then Eq. (E12) one observes that this equation in fact only
depends on [S̄]0,m−1 with m ∈ {1, . . . , l + 1} (and [B]0, j) and
that it is linear in [S̄]0,l . Hence, solving the equations for [S̄]0,l

in increasing order of l (starting with l = 1) and inserting the
result in the equation for l + 1, one can determine [S̄]0,l for
1 � l � k. With this all projections on computational basis
states with

∑n
j=1 mj < k (and therefore also on |Ej〉 with

j < k) are zero and S̄⊗n is indeed a symmetry. Note that in our
construction we solved linear equations in [S̄]0,l for 1 � l � k
(i.e., these equations have in general a solution except for very
special values of [B]0, j) and that as S̄ is upper triangular and
[S̄]m,m = 1 for all m it is always invertible. Hence, for any
[B]0, j (up to a measure zero subset) there exists a solution
and S̄ depends only on n, k and [B]0, j for j ∈ {1, . . . , k}. Note
that if {[B]0, j} is such that in the lth step of the protocol the
equation is independent of the value of [S̄]0,l , then [S̄]0,l can
be chosen to be a free parameter and one can proceed to solve
the equations iteratively as discussed above. �

As we have shown in the proof, the following algorithm
allows to determine the symmetries S̄⊗n:

(1) Start with l = 1.
(2) Consider the projection of S̄⊗n|Ek〉 = |Ek〉 on the com-

putational basis state for which k − l parties hold the state |1〉
and the remaining n − k − l parties have the state |0〉.
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(3) If l �= 1 insert the expressions for [S̄]0,m, m ∈
{1, . . . , l − 1} into this equation.

(4) Solve the resulting linear equation for [S̄]0,l . If the
equation vanishes for any value of [S̄]0,l , then [S̄]0,l is in the
following a free parameter. If the equation does not vanish
for any value of [S̄]0,l , then there does not exist a symmetry
for this choice of {[B]0, j} and the algorithm terminates. Other-
wise, replace l → l + 1 and repeat steps 2–4 until l + 1 > k.

In order to illustrate how one can easily determine the
symmetry S̄⊗n with our algorithm, let us consider as an ex-
ample the case k = 2. From the projection of S̄⊗n|Ek〉 = |Ek〉
on |100 . . . 0〉 (

∑n
j=1 mj = k − 1) one obtains the equation

[S̄]1,2 + (n − 1)[S̄]0,1

= ([B]0,2 + [B]0,1[S̄]0,1) + (n − 1)[S̄]0,1 = 0, (E15)

where we used Eq. (E12). Considering first [B]0,1 �= −(n − 1)
we have that [S̄]0,1 = −[B]0,2/([B]0,1 + n − 1). We next con-
sider the projection on |000 . . . 0〉 (

∑n
j=1 mj = k − 2) which

results in the equation

n[S̄]0,2 + n(n − 1)

2
([S̄]0,1)2

= n[S̄]0,2 + n(n − 1)([B]0,2)2

2([B]0,1 + n − 1)2
= 0 (E16)

and therefore for [B]0,1 �= −(n − 1),

[S̄]0,2 = − (n − 1)([B]0,2)2

2([B]0,1 + n − 1)2
.

Note that if [B]0,1 = −(n − 1), then S̄ can only be a symmetry
if [B]0,2 = 0 [see Eq. (E15)] and we further have that [S̄]0,1

is a free parameter. This illustrates how the procedure above
allows to determine the symmetries.

Note that in Theorem 4, the symmetries are normalized in
such a way that A⊗n|Ek〉 = xk|Ek〉, a fact which will be rele-
vant when considering the symmetries of direct sums of |Ek〉
in the following theorem. We now characterize the symmetries
of the general nonderogatory case.

Theorem 5. For n � 3 the symmetries of states
⊕K

b=1 |Ekb〉
are generated by

(1)
⊕K

b=1 Skb , with Skb a symmetry of the individual |Ekb〉,
i.e., Skb |Ekb〉 = α|Ekb〉 for any b ∈ {1, . . . K};

(2) diagonal matrices D = ⊗iD(�γi ) with D(�γi) =⊕K
b=1(�γi )b1kb for some �γi ∈ CK such that

∏
i(�γi)b = γ

for all b;
(3) simultaneous permutations of whole blocks that have

equal size for all parties (i.e., permutations of the form X ⊗n
σ ).

Proof. Let us assume without loss of generality that the
contributions |Ekb〉 are sorted in order of descending sizes,
i.e., k1 � k2 � · · · � kK , where we denote the total num-
ber of blocks by K . Let us use the notation |i(b)〉 for the
single-particle basis corresponding to block b. It can be easily
verified that simultaneous permutations of blocks of equal size
are indeed symmetries, that are matrices X ⊗n

σ , where

Xσ =
∑

b∈{1,...,K}

∑
i∈{0,...,kb}

|i(σ (b))〉〈i(b)|, (E17)

for σ ∈ SK , such that kσ (b) = kb for all b ∈ {1, . . . , K}, where
SK denotes the symmetric group. We will prove the lemma by

first showing that any symmetries of
⊕

i |Eki〉 can be brought
into a block diagonal through acting on them by some X ⊗n

σ

from the left. Then, we will show that each block in the
block-diagonal form must individually satisfy the constraints
obtained in Theorem 4.

Let us first show that the symmetries can be brought into
a block-diagonal form with K blocks of sizes kb + 1. Con-
sidering projections of

⊕
b |Ekb〉 onto | j (b1 )

1 , j (b2 )
2 〉, we obtain,

similarly as in the proof of Theorem 4, the equations
∀ c ∈{1, . . . , K} ∀ l ∈ {0, . . . , kc}∑

i1+i2=l

[S1]
j
(b1 )
1 ,i(c)

1
[S2]

j
(b2 )
2 ,i(c)

2
= 0, (E18)

which symmetries S1 ⊗ · · · ⊗ Sn necessarily have to satisfy
for all j1 ∈ {0, . . . , kb1}, j2 ∈ {0, . . . , kb2} in case b1 �= b2, and
for j1 + j2 > kb in case b1 = b2 = b. Note that in order to
ease the notation, we denote in this proof the part of the sym-
metry that is acting on party i via a subindex i, i.e., Si ≡ S(i).

Let us now show by induction that Si can be brought into
a block-diagonal form, as outlined above. Let us first show
that the statement holds for the first k1 + 1 columns of the
matrices Si, i.e., the columns that constitute the first block,
which has size k1 + 1. As S1 has to be invertible, at least
one element in the first column of S1 must be nonvanishing.
Assuming this element has a block index of b1, Eq. (E18) for
c = 1 can be used to show that for all other blocks b �= b1,
for all j2 ∈ {0, . . . , kb}, and for all i2 ∈ {0, . . . , k1} it must
hold that [S2] j (b)

2 ,i(1)
2

= 0. From this it follows that S2 has∑
b∈{1,...,K}\{b1}(kb + 1) rows where one can only find non-

vanishing elements on the last
∑

b∈{2,...,K}(kb + 1) columns.
Thus, unless kb1 = k1, S2 cannot be invertible, which implies
that nonvanishing elements in the first column of S1 can only
appear in rows which belong to blocks of the largest possible
size k1. Moreover, in order for S2 to be invertible, it must then
also contain a nonvanishing element in the first column, in
a row corresponding to the same block, b1. Thus, the same
argument can be used to show that in S1, and actually in
all Si, the elements [Si] j (b)

2 ,i(1)
2

vanish for all b �= b1, for all
j2 ∈ {0, . . . , kb}, and for all i2 ∈ {0, . . . , k1}. In case the block
b1, that contains the nonvanishing entries, is not the first
one, we can swap the positions of block 1 and block b1 by
applying an appropriate X ⊗n

σ from the left. Thus, we have
successfully brought Si into block-diagonal form for the first
k1 + 1 columns.

Let us now prove the induction step, i.e., assume that Si

are in block-diagonal form for the columns corresponding
to the first m blocks, and show that Si can be brought into
block-diagonal form also on columns corresponding to the
following block, block m + 1. Again, some entry on column
1 +∑b∈{1,...,m}(kb + 1) of S1 must be nonvanishing. Let us
assume this element has a block index of bm+1. Again, con-
sidering Eq. (E18) (for c = m + 1) leads to the fact that for
all other blocks b �= bm+1, for all j2 ∈ {1, . . . , kb}, and for all
i2 ∈ {0, . . . , km+1} it must hold that [S2] j (b)

2 ,i(m+1)
2

= 0. Similarly
as before, it can be shown that this must hold not only for
S2, but in fact for all Si. Let us now argue that the block
index of the nonvanishing element bm+1 must be one of the
largest-sized blocks among the remaining blocks with indices
m + 1, . . . , K . First, note that the block index bm+1 cannot be
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one of the first blocks 1, . . . m, in other words, the nonvan-
ishing element cannot be on the first

∑
b∈{1,...,m}(kb + 1) rows

of S1. The reason for that is that in this case there would be
2(kbm+1 + 1) columns of Si with nonvanishing elements only
on the same kbm+1 + 1 rows, leading to a contradiction as Si

must be invertible. Moreover, similarly as before, the block
index bm+1 cannot index a block that has a size kbm+1 that
is smaller than km+1, as we find

∑
b∈{m+1,...,K}\{bm+1}(kb + 1)

rows of Si where one can only find nonvanishing elements on
the last

∑
b∈{m+2,...,K}(kb + 1) columns, which implies that Si

cannot be invertible when kbm+1 < km+1. As the block sizes of

block m + 1 and bm+1 coincide, we can find an appropriate
block permutation operator X ⊗n

σ from the left in order to swap
the two blocks m + 1 and bm+1. Thus, we have brought Si into
a block-diagonal form for the columns corresponding to the
first m + 1 blocks. The following sketch illustrates the induc-
tion proof showing that Si can be brought into block-diagonal
form. In the induction proof, we show that the “gray-shaded
areas” in Eq. (E19) have to vanish. Moreover, it is sketched
how a contradiction arises when the next nonvanishing ele-
ment does not appear in a block that has largest size among the
remaining blocks, as then the matrix Si cannot be invertible,

(E19)

This completes the proof that the symmetries can be brought
into a block-diagonal form with K blocks of sizes k1 +
1, . . . , kK + 1.

With this the equation S1 ⊗ · · · ⊗ Sn(
⊕K

b=1 |Ekb〉) ∝⊕K
b=1 |Ekb〉 now separates into K individual equa-

tions S[b]
1 ⊗ · · · ⊗ S[b]

n |Ekb〉 = α|Ekb〉 for some α ∈ C.
Thus, it is clear that the individual blocks have to satisfy
the constraints derived in Theorem 4. In particular, the
diagonal entries of S[b]

i must be proportional to powers
of some complex number xb, i.e., [S[b]

i ]l,l = λi,bxl
b for all

l ∈ {0, . . . , kb} for all parties i. In order to get the same α

for all b, and keeping the normalization of S[b] assumed in
Theorem 4, we need to introduce a factor α/(xkb

b

∏
i λi,b) for

block b.
Moreover, note, that aside from the “block-global” scaling

factor discussed above, scaling factors of the individual S[b]
i

did not play a role in Theorem 4, as in the case of a single
block these scaling factors are only a global factor, which does
not play a role. Here, however, each block b at party i can have
a different scaling factor (�γi)b, as long as taking the product of
this factor over all parties for a fixed b yields the same value
for all b. Thus, additional symmetries somehow resembling
the diagonal symmetries of GHZ states arise, which are of the

form

D(�γ1) ⊗ · · · ⊗ D(�γn), (E20)

where

D(�γi) =
K⊕

b=1

(�γi )b1kb, (E21)

for some �γi ∈ CK for i ∈ {1, . . . , n − 1}, and (�γn)b =
γ

(�γ1 )b...(�γn−1 )b
for all b ∈ {1, . . . , K} and some γ ∈ C. This com-

pletes the proof of the lemma. �

APPENDIX F: PROOF OF LEMMA 5

In this Appendix we prove Lemma 5 from the main text,
which we restate here for readability.

Lemma 5. Let k � 1. Given an (k + 1) × (k + 1) upper
triangular matrix A for which Al,l = xl for some x ∈ C, and
an (k + 1) × (k + 1) matrix

g =

⎛⎜⎜⎝
1

. . .

1 a
1

⎞⎟⎟⎠, (F1)
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where a ∈ C. Then, it holds that A†g†gA ∝ g†g iff |x| = 1 and A is of the form

A ∝

⎛⎜⎜⎜⎜⎝
1

x
. . .

xk−1 a
(

1
x∗k−1 − xk

)
xk

⎞⎟⎟⎟⎟⎠. (F2)

Proof. First, note that G = g†g = 1k−1 ⊕ G̃ with G̃ = ( 1 a
a∗ 1 + |a|2 ). Let us now rewrite the equation A†g†gA ∝ g†g taking the

block structure into account, i.e.,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Ã†
0,0 0

Ã†
1,1Ã†

0,1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0

G̃0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Ã0,0 Ã0,1

Ã1,10

=

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Ã†
0,0Ã0,0 Ã†

0,0Ã0,1

Ã†
1,1G̃Ã1,1Ã†

0,1Ã0,0

, (F3)

as

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Ã†
0,0Ã0,0 Ã†

0,0Ã0,1

Ã†
1,1G̃Ã1,1Ã†

0,1Ã0,0

∝

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0

G̃0

, where A =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Ã0,0 Ã0,1

Ã1,10

. (F4)

From the upper left part of Eq. (F4) we get that Ã00, which is
an upper triangular matrix, must be proportional to a unitary
matrix. This implies that Ã00 must be diagonal. From the lower

right part we obtain Ã1,1 ∝ (
xk−1 a( 1

x∗k−1 − xk )

0 xk ) and |x| = 1.

Moreover, as Ã0,0 is invertible, the upper right part of Eq. (F4)
implies Ã0,1 = 0. This proves the “only if” part of the lemma.
However, all steps in the proof are in fact equivalences, which
prove the lemma. �

APPENDIX G: WEAK ISOLATION IN NONDEROGATORY
ES CLASSES

We prove here Theorem 8, which we restate here to in-
crease readability.

Theorem 8. In the SLOCC classes represented by⊕K
b=1 |Ekb〉 with K � 2 and kb �= 0 for at least one b ∈

{1, . . . , K}, there are weakly isolated states present. If fur-
ther kb �= 2 for all b ∈ {1, . . . , K}, then there exist symmetric
weakly isolated states.

Proof. Similarly as in the proof of Theorem 7, we will
prove the theorem by constructing a family of states g1 ⊗
· · · ⊗ gn(

⊕K
b=1 |Ekb〉) with the property that for all symmetries

S1 ⊗ S2 ⊗ · · · ⊗ Sn of the state
⊕K

b=1 |Ekb〉, it holds that either
S†

i g†
i giSi ∝ g†

i gi is true for no more than n − 2 parties, or S ∝
1⊗n. This implies that the states g1 ⊗ · · · ⊗ gn(

⊕K
b=1 |Ekb〉)

are neither reachable via LOCCN nor convertible via LOCC1.
Note that in order to ease the notation, we denote in this proof
the part of the symmetry that is acting on party i via a subindex
i, i.e., Si ≡ S(i).

States of the form
⊕K

b=1 |Ekb〉 for which the block sizes and
their number of occurrences coincide and which differ there-
fore only by the order of the blocks are SLOCC equivalent and
we choose as representative in the following the state in which
the blocks are ordered with increasing size, i.e., kb � kb′ for
b > b′. We will construct Gi based on direct sums of G[b]

i
from the proof of Theorem 7 (for kb � 2) and Observation
5 (for more than two blocks with kb = 0), respectively, but
with some additional nonvanishing elements, that appear at
the junction of two blocks. As will be clear later on, these
off-diagonal elements ensure that G[b]

i cannot quasicommute
with the symmetries in the case of qubit GHZ and W blocks
and will impose additional constraints on the diagonal gate in
Theorem 5. More precisely, let us construct

Gi =
K⊕

b=1

G[b]
i +

K∑
b=2

(cb|0(b−1)〉〈0(b)| + H.c.), (G1)

where for b ∈ {2, . . . , K}, cb ∈ C and cb �= 0 and small
enough such that Gi > 0. Moreover, for any b ∈ {1, . . . , K}
for which kb � 2 we choose g[b]

i =
√

G[b]
i to be of the form

given in Eq. (36) with a being replaced by a free parameter
ai, which is different for different blocks, we will thus de-
note it by ai,b. Let us further choose ai,b �= 0 with pairwise
different absolute value for all b for which kb � 2 and in
case kb = 2, moreover ai,b should be pairwise different for all
i ∈ {1, . . . , n}. For any b ∈ {1, . . . , K} for which kb = 1 we
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choose

G[b]
i =

(
1 p
p db

)
, (G2)

with G[b]
i > 0 and db �= db′ for b �= b′. For any b ∈ {1, . . . , K}

for which kb = 0 we choose G[b]
i = 1. Moreover, for blocks b

with kb = 0 we choose the corresponding coefficients cb such
that all absolute values are pairwise different (as in Observa-
tion 5), i.e., |cb| �= |cb′ | for b, b′ such that kb = kb′ = 0.

Let us now, based on study of symmetries of
⊕

b |Ekb〉
in Theorem 5, show that the condition S†

i g†
i giSi ∝ g†

i gi for
i ∈ {1, . . . , n − 1} implies that S ∝ 1. Recall that the symme-
tries are generated by the symmetries of single blocks, certain
scalings of the individual blocks, and permutations of blocks
of equal size. More precisely, any symmetry can be written as

S =
(

K⊕
b=1

S[b]

)
[D(�γ1) ⊗ · · · ⊗ D(�γn)]

(
X ⊗n

σ

)
(G3)

for some σ permuting blocks of equal size, �γ1, . . . , �γn−1 ∈ CK

[62], and symmetries S[b] of |Ekb〉.
In the following, we will consider the diagonal and off-

diagonal blocks of the quasicommutation relation, i.e., we
partition our matrices into blocks M = (Mb1b2 )b1b2 , where
the block structure is determined by the block structure of⊕K

b=1 |Ekb〉. With this we obtain that the quasicommutation
relation is fulfilled only if

|(�γi )b|2
(
S[b]

i

)†
G[b]

i S[b]
i ∝ G[σ (b)]

i (G4)

and

cb
(
S[b−1]

i

)†|0(b−1)〉〈0(b)|S[b]
i (�γi )

∗
b−1(�γi )b

∝ cσ (b)|0(b−1)〉〈0(b)| (G5)

and the permutation Xσ is such that it maps off-diagonal
blocks (Gi )b1b2 that only contain zeros solely to blocks (Gi )b′

1b′
2

that are the zero matrix [of same size as (Gi )b1b2 ].
Let us first note that if a block b with kb = 1 occurs, we

obtain from Eq. (G5) that S[b]
i , which in general can be an

arbitrary upper triangular matrix, has to be diagonal in order
for the quasicommutation relation to possibly hold true. Using
then that G[b]

i is of the form in Eq. (G2) it is straightforward
to see that from Eq. (G4) it follows that S[b]

i has to be propor-
tional to the identity and that there cannot be any nontrivial
permutation among blocks with kb = 1, i.e., σ (b) = b for
blocks with kb = 1.

Considering Eq. (G4) for blocks with kb � 2 we observe
that these equations are of similar form in Lemma 5. Here,
in contrast to there, the operator G̃[b]

i on the left-hand side
may differ from the one on the right-hand side of Eq. (G4).
Nevertheless, similar techniques as in Lemma 5 can be used
to see that S[b]

i must have the form given in Eq. (37) with
|xb| = 1, with the only difference that the (kb − 1, kb) matrix
element of S[b]

i now reads as [S[b])
i ]kb−1,kb = ai,σ (b)

(x∗
b )k−1 − ai,b(xb)k .

The same techniques as in the proof of Theorem 7 can be
used to prove that the S[b]

i must be diagonal. Whereas there,
this condition implied, and in fact was satisfied by, the choice
x = 1, here we obtain the conditions

ai,σ (b) − ai,bxb = 0 (G6)

for all i ∈ {1, . . . , n} and b ∈ {1, . . . , K}. As for all b, ai,b have
pairwise different absolute value, Eq. (G6) cannot be satisfied
unless σ (b) = b for all b, i.e., the symmetry S in Eq. (G3) can
only contain trivial block permutations for blocks with kb �
2. Moreover, it follows that xb = 1 for all b, which directly
implies S[b] ∝ 1 in Eq. (G3) for kb � 2.

If there are more than two blocks with kb = 0, one obtains
analogously to the argumentation in Observation 5 that there
can be no permutations of blocks with kb = 0 [and that for b
with kb = 0, (�γi )b is independent of b].

Let us next consider the case that there are exactly two
blocks with kb = 0 and at least one further block with kb > 0,
which we label without loss of generality in the following by
b = 1, 2 (for kb = 0) and b = 3 (for a block with kb > 0). As
we will show, there cannot be any nontrivial permutation of
the two blocks with kb = 0. Note first that as we have already
shown for our choice of Gi no nontrivial permutations among
blocks with kb > 0 are possible (even if we are in the case that
there are several of the same size). Hence, it is only possible
to permute the two blocks with kb = 0. However, this would
map c3|0(2)〉〈0(3)| to c3|0(1)〉〈0(3)|. As (Gi )13 is the zero matrix
and c3 �= 0, no such permutation is possible.

Hence, for any block structure we have reduced the form
of S to S = D(�γ1) ⊗ · · · ⊗ D(�γn). It remains to be shown that

D(�γi)
†GiD(�γi ) ∝ Gi (G7)

for i ∈ {1, . . . , n − 1} implies that S ∝ 1. From the diago-
nal of Eq. (G7) we still get some restriction, namely, |(�γi)b|
is independent of b for all i ∈ {1, . . . , n − 1}. Considering
now the matrix elements |0(b−1)〉〈0(b)| of Eq. (G7) for all
b ∈ {2, . . . , K}, we finally get (�γi)b−1 = (�γi)b for all b ∈
{2, . . . , K} and for all i ∈ {1, . . . , n − 1}, which implies S ∝
1. Similarly as in Theorem 7 and Observation 5, the states
considered here constitute examples of symmetric states that
are weakly isolated, as long as there is no |E2〉 contribution.
This proves the theorem. �

Let us remark, that in the construction of isolated states
in Theorem 8, it seems that populating some elements in gi

that lie outside the block-diagonal structure is necessary, as
otherwise unitary D(�γi ) symmetries remain and, presumably,
transformations become possible.

APPENDIX H: SYMMETRIES OF |ψderogatory〉
In this Appendix, we characterize the symmetries of the

state

|ψderogatory〉 = ∣∣E5,0
0

〉+ ∣∣E3,2
0

〉+ ∣∣E2,3
0

〉+ ∣∣E0,5
1

〉
,

introduced in Sec. VIII within the main text.
Let us first recall the individual contributions∣∣E5,0

0

〉 = |00000〉, (H1)∣∣E3,2
0

〉 = |00011〉 + |00101〉 + |01001〉 + |10001〉
+|00110〉 + |01010〉 + |10010〉 + |01100〉
+|10100〉 + |11000〉, (H2)∣∣E2,3

0

〉 = |00111〉 + |01011〉 + |01101〉 + |01110〉
+|10011〉 + |10101〉 + |10110〉 + |11001〉
+|11010〉 + |11100〉, (H3)∣∣E0,5

1

〉 = |11112〉 + |11121〉 + |11211〉 + |12111〉
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+|21111〉. (H4)

Let us now characterize the symmetries of |ψderogatory〉, i.e.,
the invertible matrices S(i) satisfying

5⊗
i=1

S(i)|ψderogatory〉 = |ψderogatory〉. (H5)

Let us first derive some necessary conditions for S(i). To
this end, note that i, j〈22|ψderogatory〉 = 0 for any i, j. Hence,
also i, j〈22|S(i) ⊗ S( j)|ψderogatory〉 = 0. From this, one obtains
the equations

[S(i)]2,1[S( j)]2,1 = 0, (H6)

[S(i)]2,0[S( j)]2,0 + [S(i)]2,1[S( j)]2,1 = 0, (H7)

[S(i)]2,0[S( j)]2,0 + [S(i)]2,2[S( j)]2,1 + [S(i)]2,1[S( j)]2,2 = 0
(H8)

for all i, j. Using that all S(i) are invertible, one obtains
[S(i)]2,1 = 0 for all i ∈ {1, . . . , 5} and without loss of general-
ity [S(i)]2,0 = 0 for all i ∈ {1, . . . , 4}. Let us moreover without
loss of generality normalize S(1) . . . , S(4) such that [S(i)]2,2 =
1 for all i ∈ {1, . . . , 4}. Reinserting these S(i) into Eq. (H5),

it is now straightforward to obtain S(i) = (
1 0 0
0 1 ai

0 0 1
), where

a1, . . . , a4 ∈ C are arbitrary and a5 = −(a1 + a2 + a3 + a4).
Thus, all symmetries are generated by B(i) ⊗ B−1

( j) , where B =
(
1 0 0
0 1 1
0 0 1

) (and analytic functions thereof).

APPENDIX I: SYMMETRIES OF SYMMETRIC STATES

For completeness, we show here that any symmetry of a
symmetric state is generated by A⊗n and B ⊗ B−1-type sym-
metries. This result straightforwardly follows from [33].

Lemma 7. The symmetry group of a symmetric state |ψ〉
is generated by symmetries of the form A⊗n and B(i) ⊗ B−1

( j) ⊗
1⊗(n−2)

{1,...,n}\{i, j}.
Proof. The proof of this lemma follows very much the

techniques introduced in [33], in particular on the construc-
tion in Sec. II A therein. Let us assume S = S(1) ⊗ S(2) ⊗
· · · ⊗ S(n) is a symmetry of |ψ〉. We will prove the lemma
by showing that S can be written as a product of the con-
stituents listed in the lemma. It holds that S(1) ⊗ S(2) ⊗
· · · ⊗ S(n) = Ã⊗n(1 ⊗ S̃(2) ⊗ · · · ⊗ S̃(n) ) where Ã = S(1) and
S̃(i) = (S(1) )−1S(i) for i ∈ {2, . . . , n}. As Ã⊗n is symmetric,
we have 1 ⊗ S̃(2) ⊗ S̃(3) ⊗ · · · ⊗ S̃(n)|ψ〉 = S̃(2) ⊗ 1 ⊗ S̃(3) ⊗
· · · ⊗ S̃(n)|ψ〉, from which it follows that S̃(2) ⊗ 1⊗(n−1)|ψ〉 is
a symmetric state and, moreover, S̃(i) ⊗ 1⊗(n−1)|ψ〉 is symmet-
ric for all i ∈ {2, . . . , n}. Using Lemma 1 in [33], we thus
have that S̃(i) ⊗ (S̃(i) )−1 is a symmetry of |ψ〉. Let us now
reduce S by acting on it from the right with 1 ⊗ (S̃(2) )−1 ⊗
· · · ⊗ (S̃(n−1))−1 ⊗ S̃(n−1) . . . S̃(2) to the form Ã⊗n(1⊗(n−1) ⊗
S̃(n)S̃(n−1) . . . S̃(2) ). Now we utilize Theorem 2 introduced in
[33], by which S̃(n)S̃(n−1) . . . S̃(2) can be rewritten as Pn, where
P is a nth root of S̃(n)S̃(n−1) . . . S̃(2), such that 1⊗(n−1) ⊗ P|ψ〉
is symmetric. It follows from Lemma 1 in [33] that, therefore,
P(i) ⊗ P−1

( j) are symmetries of |ψ〉. We can thus further reduce
S by acting on it with P⊗(n−1) ⊗ P−n+1 from the right to the

form (ÃP)⊗n. We have thus reduced an arbitrary symmetry
S(1) ⊗ S(2) ⊗ · · · ⊗ S(n) by acting on it with symmetries of the
form B(i) ⊗ B−1

( j) from the right to the form A⊗n, which proves
the lemma. �

APPENDIX J: FOUR-QUTRIT DEROGATORY ES SLOCC
CLASSES

This Appendix is meant to provide technical details that are
omitted in Sec. VIII A 2. We first show explicit constructions
of A⊗4 that allow the five SLOCC representatives in Eq. (55)
to reach all states |�2〉 in Eq. (48) with b5 �= 0. We need
not consider the states with b5 = 0 as they are four-qubit,
and therefore must be nonderogatory [56]. We then fill in
the details for characterizing all the local symmetries of each
representative.

1. All four-qutrit states |�2〉 can be reached via SLOCC

For the representatives |ψ〉 ∈ {|F 4
1 〉, |S4

2〉 + |F 4
1 〉, |14〉 +

|F 4
1 〉, |14〉 + |S4

2〉 + |F 4
1 〉, |S4

3〉 + |F 4
1 〉}, we construct invert-

ible matrices A such that

A⊗4|ψ〉 = b0|04〉 +
3∑

k=1

bk

∣∣S4
k

〉+ b4|14〉 + b5

∣∣F 4
1

〉
for any bi ∈ C for i = 0, ..., 5 and b5 �= 0. We define

A1 =
⎛⎝1 0 b0

2
0 x b1

0 0 b5

⎞⎠ and A2 =
⎛⎝a d g

0 e h
0 0 b5

a3

⎞⎠. (J1)

(a) With |ψ〉 = |F 4
1 〉 and A1 where x = 1, A⊗4

1 |ψ〉 reaches
all states with b2 = b3 = b4 = 0 and b5 �= 0.

(b) With |ψ〉 = |S4
2〉 + |F 4

1 〉 and A1 where x = √
b2 and

det A1 = √
b2b5 �= 0, A⊗4

1 |ψ〉 reaches all states with b2, b5 �=
0 and b3 = b4 = 0.

(c) With |ψ〉 = |14〉 + |F 4
1 〉 and A2 where a = 1, e =

b1/4
4 , d = b3

2e3 , b2 = √
6d2e2, g = b0−d4

2 , h = b1 − 2d3e, and

det A2 = b1/4
4 b5 �= 0, A⊗4

2 |ψ〉 reaches all states with b2 =
√

6b2
3

4b4
and b4, b5 �= 0.

(d) With |ψ〉 = |14〉 + |S4
2〉 + |F 4

1 〉 and A2 where e =
b1/4

4 , d = b3
2e3 , a = ±

√
b2
e2 − √

6d2, g = b0−d4−√
6a2d2

2a3 , h =
b1−2d3e−√

6a2de
a3 , and det A2 = b5e

a2 = 4b7/4
4 b5

4b2b4−
√

6b2
3

�= 0, A⊗4
2 |ψ〉

reaches all states with b2 �=
√

6b2
3

4b4
and b4, b5 �= 0.

(e) With |ψ〉 = |S4
3〉 + |F 4

1 〉 and A2 where a = 1, e =
b1/3

3 , d = b2√
6e2 , g = b0

2 − d3, h = b1 − 3d2e, and det A2 =
b1/3

3 b5 �= 0, A⊗4
2 |ψ〉 reaches all states with b3, b5 �= 0 and

b4 = 0.
Therefore, all four-qutrit states |�2〉 with b5 �= 0 can be

reached via SLOCC from one of the five SLOCC representa-
tives in Eq. (55).

2. Structure of local symmetries

We now prove that any local invertible symmetries S( j) of
type-1 (type-2) derogatory ES SLOCC representatives must
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be block diagonal (upper triangular), i.e., they are of the form
given in Eq. (59).

For all type-1 representatives |ψ1〉 ∈ {|S4
2〉 + |24〉, |04〉 +

|S4
2〉 + |24〉} ∪ {|04〉 + |14〉 + |24〉 + μ|S4

2〉 : μ ∈ C and μ �=
0,±

√
2
3 ,±√

6}, it holds for k = 0, 1 that

i, j〈2, k|S(i) ⊗ S( j)|ψ1〉 = i, j〈2, k|ψ1〉 = 0,

which imposes constraints on the matrix elements of S( j):

[S(i)]2,m[S( j)]0,m = 0, [S(i)]2,m[S( j)]1,m = 0, (J2)

[S(i)]2,0[S( j)]0,1 + [S(i)]2,1[S( j)]0,0 = 0, (J3)

[S(i)]2,0[S( j)]1,1 + [S(i)]2,1[S( j)]1,0 = 0, (J4)

for m = 0, 1, 2 and i �= j. If [S(i)]2,0 �= 0 or [S(i)]2,1 �= 0 for
any index i, then it follows from the above equations that
[S( j)]0,0 = [S( j)]1,0 = [S( j)]0,1 = [S( j)]1,1 = 0 which implies
that S( j) is not invertible. To avoid that, we must have
[S(i)]2,0 = [S(i)]2,1 = 0 for all i. Invertibility of S(i) requires
then that [S(i)]2,2 �= 0, thereby forcing [S(i)]0,2 = [S(i)]1,2 = 0
for all i due to Eqs. (J2). Therefore, it must be that S(i) =
(
a d 0
b e 0
0 0 p

) where ae − bd �= 0 and p �= 0 for all i = 1, 2, 3, 4.

Since the constraints in Eqs. (J2)–(J4) hold for all type-1
representatives, the block-diagonal restriction for S(i) applies
to all of them.

For all type-2 representatives |ψ2〉 ∈ {|14〉 + |S4
2〉 +

|F 4
1 〉, |S4

3〉 + |F 4
1 〉}, it holds for k′ = 1, 2 that

i, j〈2, k′|S(i) ⊗ S( j)|ψ2〉 = i, j〈2, k′|ψ2〉 = 0,

which imposes constraints on the matrix elements of S( j):

[S(i)]2,m′ [S( j)]2,m′ = 0, [S(i)]2,m′ [S( j)]1,m′ = 0, (J5)

[S(i)]2,0[S( j)]2,m′+1 + [S(i)]2,m′+1[S( j)]2,0 = 0, (J6)

[S(i)]2,0[S( j)]1,m′+1 + [S(i)]2,m′+1[S( j)]1,0 = 0, (J7)

for m′ = 0, 1 and i �= j. The first constraint implies that
[S(i)]2,0 = 0 and [S( j)]2,1 = 0 for at least three indices i, j. If
[S(i)]2,0 �= 0 for one index i, then [S( j)]2,0 = 0 for all j �= i and
[S(i)]2,0[S( j)]2,1 = 0 = [S(i)]2,0[S( j)]2,2 from constraints (J6).
This leads to [S( j)]2,1 = [S( j)]2,2 = 0 and det S( j) = 0 (non-
invertible) for all j �= i, so [S(i)]2,0 = 0 must hold for all i.
For the three or four indices i where [S(i)]2,1 = 0, [S(i)]2,2 has
to be nonzero for det S(i) �= 0, so [S( j)]1,0 = 0 must hold for
all j to satisfy Eq. (J7). If [S(i)]2,1 �= 0 for one index i, then
from Eq. (J5), [S( j)]1,1 = 0 and (recall [S( j)]1,0 = [S( j)]2,0 =
[S( j)]2,1 = 0) det S( j) = 0 for all j �= i. Therefore, we have

that [S(i)]2,1 = 0 and S(i) = (
a d g
0 e h
0 0 p

) where aep �= 0 for all

i = 1, 2, 3, 4. Since the constraints in Eqs. (J5)–(J7) hold for
both type-2 representatives, the upper triangular restriction for
S(i) applies to all of them. This concludes our proof.

3. Symmetries of the form A⊗4

We sketch the proof for the complete characterization of
A⊗4 symmetries that are listed in Sec. VIII A 2 b for each

four-qutrit derogatory representative |ψ〉. The proof involves
solving the equation

(A⊗2 ⊗ 1⊗2 − 1⊗2 ⊗ Ã⊗2)|ψ〉 = 0 (J8)

by restricting both matrices A and Ã to be invertible and
block diagonal or upper triangular depending on whether the
representative is type 1 or 2 and, subsequently, imposing that
Ã = A−1.

For all type-1 representatives |ψ1〉, it is clear that
A⊗4|ψ1〉 = |ψ1〉 requires the matrix entry A2,2 = ±1 or ±i
since A’s block-diagonal structure ensures that the state |2〉
cannot mix with |0〉 and |1〉. Hence, we focus only on the qubit
subspace of A and Ã, which resembles the problem studied in
[20], and define

A =
(

a c
b d

)
⊕ A2,2, Ã =

(
ã c̃
b̃ d̃

)
⊕ Ã2,2. (J9)

(a) For |ψ1〉 = |S4
2〉 + |24〉, Eq. (J8) allows only

(i) b = b̃ = c = c̃ = 0, a = ±d̃ , d = ±ã, and ad =
ãd̃ . Set Ã = A−1 ⇒ d = ± 1

a .
(ii) a = ã = d = d̃ = 0, b = ±b̃, c = ±c̃, and bc =

b̃c̃. Set Ã = A−1 ⇒ c = ± 1
b .

These correspond to A1 and A2 in Eq. (62).
(b) For |ψ1〉 = |04〉 + |S4

2〉 + |24〉, Eq. (J8) allows only the
condition in (a)(i) above. Imposing Ã = A−1 in Eq. (J8) gives
a2 = 1/a2, which results in A1 in Eq. (62) with a = ±1 or ±i.

(c) For |ψ1〉 = |04〉 + |14〉 + |24〉 + μ|S4
2〉 with μ �= 0,

±
√

2
3 ,±√

6,±√
2i, Eq. (J8) together with Ã = A−1 allows

only the two conditions in (a) above (corresponding to ad −
bc = ±1) and requires a2 = ±1 and b2 = ±1, which result in
A1 and A2 in Eq. (62) with a, b = ±1 or ±i.

(d) For |ψ1〉 = |04〉 + |14〉 + |24〉 + √
2i|S4

2〉, Eq. (J8) al-
lows only the conditions in (c) and an additional symmetry
(corresponding to ad − bc = ei(θ± π

3 ) for θ = 0, π ), which de-
mands d = aeiδ and a2 = −e−i(δ+ϕ)b2 = e−i(δ+ϕ)c2 for δ, ϕ ∈
{π

2 , 3π
2 }. Introducing α, β ∈ {0, π}, we have b = aiei( δ+ϕ

2 +α)

and c = aei( δ+ϕ

2 +β ). For A to be invertible, ad − bc =
a2eiδ (1 − iei(α+β+ϕ) ) �= 0 ⇒ ei(α+β+ϕ) = i. Finally, imposing
(A⊗4 − 1⊗4)|ψ1〉 = 0 gives

a4 =
{ 1

4 e−i π
3 , if ei(δ+ϕ) = 1

1
4 ei π

3 , if ei(δ+ϕ) = −1

⇒ a =
{

1√
2
eiπ ( m

2 − 1
12 ), if ei(δ+ϕ) = 1

1√
2
eiπ ( m

2 + 1
12 ), if ei(δ+ϕ) = −1

for m = 0, 1, 2, 3, thereby obtaining A3 in Eq. (62).
For all type-2 representatives |ψ2〉, we define

A =
⎛⎝a d g

0 e h
0 0 p

⎞⎠ and Ã =
⎛⎝ã d̃ g̃

0 ẽ h̃
0 0 p̃

⎞⎠. (J10)

(a) For |ψ2〉 = |14〉 + |S4
2〉 + |F 4

1 〉, Eq. (J8) and the invert-
ibility of A and Ã allow only d = d̃ = h = h̃ = 0, a = ±ẽ,
e = ±ã, ag = ãg̃, a2 = ã p̃, and ã2 = ap. Set Ã = A−1 ⇒
e = ± 1

a , g = 0, and p = 1
a3 . Finally, A⊗4|ψ2〉 = |ψ2〉 requires
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a4 = 1. Thus, the only option for A is A = a ⊕ ±a ⊕ a where
a = ±1 or ±i.

(b) For |ψ2〉 = |S4
3〉 + |F 4

1 〉, Eq. (J8) and the invertibility
of A and Ã allow only d = d̃ = h = h̃ = 0, e2 = ãẽ, ẽ2 = ae,
ag = ãg̃, a2 = ã p̃, and ã2 = ap. Set Ã = A−1 ⇒ g = 0, p =

1
a3 , and e = 1

a1/3 ei 2mπ
3 for m = 0, 1, 2. Thus, A can only be A =

a ⊕ 1
a1/3 ei 2mπ

3 ⊕ 1
a3 where a ∈ C.

This concludes the characterization of all A⊗4 symmetries
of every four-qutrit derogatory representative.

[1] See, e.g., R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[2] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008); J. Eisert, M. Cramer, and M. B. Plenio, 82, 277
(2010).

[3] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001
(2019).

[4] M. J. Donald, M. Horodecki, and O. Rudolph, J. Math. Phys.
43, 4252 (2002).

[5] E. Chitambar, D. Leung, L. Mancinska, M. Ozols, and A.
Winter, Commun. Math. Phys. 328, 303 (2014).

[6] M. Hebenstreit, M. Englbrecht, C. Spee, J. I. de Vicente, and
B. Kraus, New J. Phys. 23, 033046 (2021).

[7] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[8] H.-K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001).
[9] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

(2000).
[10] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys.

Rev. A 65, 052112 (2002).
[11] E. Briand, J.-G. Luque, J.-Y. Thibon, and F. Verstraete, J. Math.

Phys. 45, 4855 (2004).
[12] C. Spee, J. I. de Vicente, D. Sauerwein, and B. Kraus, Phys.

Rev. Lett. 118, 040503 (2017).
[13] J. I. de Vicente, C. Spee, D. Sauerwein, and B. Kraus, Phys.

Rev. A 95, 012323 (2017).
[14] G. Gour, B. Kraus, and N. R. Wallach, J. Math. Phys. 58,

092204 (2017).
[15] D. Sauerwein, N. R. Wallach, G. Gour, and B. Kraus, Phys. Rev.

X 8, 031020 (2018).
[16] J. I. de Vicente, C. Spee, and B. Kraus, Phys. Rev. Lett. 111,

110502 (2013).
[17] G. Gour and N. R. Wallach, New J. Phys. 13, 073013 (2011).
[18] S. Turgut, Y. Gül, and N. K. Pak, Phys. Rev. A 81, 012317

(2010).
[19] S. Kintas and S. Turgut, J. Math. Phys. 51, 092202 (2010).
[20] C. Spee, J. I. de Vicente, and B. Kraus, J. Math. Phys. 57,

052201 (2016).
[21] M. Hebenstreit, C. Spee, and B. Kraus, Phys. Rev. A 93, 012339

(2016).
[22] M. Englbrecht and B. Kraus, Phys. Rev. A 101, 062302

(2020).
[23] D. Sauerwein, A. Molnar, J. I. Cirac, and B. Kraus, Phys. Rev.

Lett. 123, 170504 (2019).
[24] M. Hebenstreit, D. Sauerwein, A. Molnar, J. I. Cirac, and B.

Kraus, Phys. Rev. A 105, 032424 (2022).
[25] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[26] R. Orús, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 101, 025701

(2008).
[27] M. Aulbach, Classification of entanglement in symmetric states,

Ph.D. thesis, University of Leeds, 2011; Int. J. Quantum Inf. 10,
1230004 (2012).

[28] R. Prevedel, G. Cronenberg, M. S. Tame, M. Paternostro, P.
Walther, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 103,
020503 (2009); W. Wieczorek, R. Krischek, N. Kiesel, P.
Michelberger, G. Tóth, and H. Weinfurter, ibid. 103, 020504
(2009); T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D.
Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich,
and R. Blatt, ibid. 106, 130506 (2011); C. Song, K. Xu, W.
Liu, C.-P. Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang, Q.
Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang,
Y.-A. Chen, C.-Y. Lu, S. Han, and J.-W. Pan, ibid. 119, 180511
(2017); X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E.
Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L.
Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, ibid. 120, 260502 (2018).

[29] B. C. Hiesmayr, M. J. A. de Dood, and W. Löffler, Phys. Rev.
Lett. 116, 073601 (2016); M. Erhard, M. Malik, M. Krenn, and
A. Zeilinger, Nat. Photonics 12, 759 (2018).

[30] J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi,
Phys. Rev. A 67, 022112 (2003); M. Hayashi, D. Markham, M.
Murao, M. Owari, and S. Virmani, ibid. 77, 012104 (2008); G.
Tóth and O. Gühne, Phys. Rev. Lett. 102, 170503 (2009); M.
Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani,
J. Math. Phys. 50, 122104 (2009); R. Hübener, M. Kleinmann,
T.-C. Wei, C. González-Guillén, and O. Gühne, Phys. Rev. A
80, 032324 (2009); M. Aulbach, D. Markham, and M. Murao,
New J. Phys. 12, 073025 (2010); W. Ganczarek, M. Kuś, and
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