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Hardy-like quantum pigeonhole paradox and the projected-coloring graph state
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A Hardy-like version of the quantum pigeonhole paradox is proposed, which can also be considered as a
special kind of Hardy’s paradox. Besides an example induced from the minimal system, a general construction
of this paradox from an n-qubit quantum state is also discussed. Moreover, by introducing the projected-coloring
graph and the projected-coloring graph state, a pictorial representation of the Hardy-like quantum pigeonhole
paradox can be presented. This Hardy-like version of the quantum pigeonhole paradox can be implemented more
directly in experiment than the original one, since it does not require some sophisticated techniques such as weak
measurements. In addition, from the angle of Hardy’s paradox, some Hardy-like quantum pigeonhole paradoxes
may be able to set a new record for the success probability of demonstrating Bell nonlocality.
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I. INTRODUCTION

When three two-level quantum particles (qubits) are pre-
and postselected in a specific subensemble, an effect of no
two particles being in the same quantum state could arise,
conflicting with the pigeonhole principle which states that if
three pigeons are put into two boxes, necessarily two pigeons
will stay in the same box. Such a counterintuitive quantum
feature provides an interesting demonstration that quantum
correlations cannot be simulated classically, and was referred
to as the quantum pigeonhole effect (or paradox) in the sem-
inal work [1] by Aharonov et al. In some sense, it can also
be regarded as a demonstration of Bell nonlocality [2] or
contextuality [3,4] without inequalities.

However, since the quantum pigeonhole paradox is a
kind of pre- and postselection [5,6] effect, usually it cannot
be implemented directly, and the experimental demonstra-
tion requires some sophisticated techniques such as weak
measurements [7–9]. To overcome this limitation, a natural
thought is to explore new versions of the quantum pigeonhole
paradox without pre- and postselection. Following this idea,
we find a Hardy-like version of such a paradox [referred to
as the “Hardy-like quantum pigeonhole (HLQP) paradox” in
what follows], which can also be considered as a special kind
of Hardy’s paradox [10,11].

On the other hand, although the earliest version of Hardy’s
paradox [10,11] can be considered as the simplest form of the
Bell theorem [12], a major shortcoming is that the success
probability of excluding local realistic descriptions of quan-
tum mechanics is not very high (the best record of previous
versions is 1/2n−1 [13], where the qubit number n � 3). This
bottleneck may cast a gloom over the application of Hardy’s
paradox. How to improve that may depend on the investiga-
tion of some unconventional Hardy’s paradoxes. Since the
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HLQP paradox is a kind of Hardy’s paradox, it may bring
some unexpected advantages to address this problem.

In addition, recall that many quantum features can be
exhibited vividly by their mathematical counterparts (for
example, a kind of multiparticle entanglement can be repre-
sented by graphs [14,15]). As far as we know, such elegant
counterparts of a Hardy’s paradox are very rare (another dis-
advantage). In order to fill this gap, an exploration for some
mathematical counterparts to represent the HLQP paradox is
necessary.

In this paper, we present a general construction of the
n-qubit HLQP paradox. Besides, in order to give a suitable
mathematical counterpart as a representation of the HLQP
paradox, we introduce a kind of quantum state called the
projected-coloring graph state, which can be represented by a
kind of nontraditional graph called a projected-coloring graph.
We show that each uncolorable projected-coloring graph can
induce a HLQP paradox. Furthermore, we find that some
n-qubit HLQP paradoxes (which are also n-qubit Hardy’s
paradoxes) can provide a greater success probability in show-
ing Bell nonlocality (or contextuality) than previous Hardy’s
paradoxes (n > 3). In the end, we also briefly discuss another
kind of quantum paradox called the Hardy-like map coloring
paradox, which is essentially equivalent to a specific kind of
HLQP paradox.

II. A MINIMAL HARDY-LIKE QUANTUM
PIGEONHOLE PARADOX

First, denote by Xi (Yi, Zi ) the Pauli matrices σx (σy, σz )
of the ith qubit and |0〉 and |1〉 the two eigenstates (with
eigenvalues +1 and −1, respectively) of Z . Besides, let two
mutually orthogonal states, |+〉 = (|0〉 + |1〉)/

√
2 and |−〉 =

(|0〉 − |1〉)/
√

2 be two “boxes” and three qubits be three “pi-
geons.” Namely, Xi = 1 (Xi = −1) indicates that the ith qubit
(pigeon) is in the box |+〉 (|−〉). Here, Xi = 1, for example,
denotes the event that Xi is measured and the outcome +1
is obtained. To construct a HLQP paradox, one can usually
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assume that the quantum state admits a local hidden vari-
able (LHV) model [2,16] or a noncontextual hidden variable
model [3,17,18]. For simplicity, hereinafter we only discuss
the HLQP paradox of ruling out the LHV model, and accord-
ingly, we only consider the spacelike separated measurements.

In analogy with the conventional quantum pigeonhole
paradox, the minimal system of producing a HLQP paradox
also requires three qubits. To begin with, we consider the
three-qubit quantum state

|�〉 = 1
2 (|000〉 − |011〉 − |101〉 − |110〉). (1)

Actually, |�〉 is a Greenberger-Horne-Zeilinger (GHZ) state
[19,20], because |�〉 = (| ���〉 + | ���〉)/

√
2. Here, | �

〉 = (|0〉 + i|1〉)/
√

2 and | �〉 = (|0〉 − i|1〉)/
√

2.
Once the qubit i is measured and found in the box |0〉 in

a run of the experiment, the other two qubits (“pigeons”),
say, j and k, can be found in the state |φ−

i j 〉 = 1√
2
(|0〉i|0〉 j −

|1〉i|1〉 j ). Namely, if Xj and Xk were assumed to be measured
in this run, their values should satisfy XjXk = −1, which
indicates that the qubits j and k cannot stay in the same
box. Then one can get the following properties (referred to
as “Hardy-like constraints” hereinafter):

P(X2X3 = −1 | Z1 = 1) = 1, (2a)

P(X1X3 = −1 | Z2 = 1) = 1, (2b)

P(X1X2 = −1 | Z3 = 1) = 1, (2c)

P(Z1 = 1, Z2 = 1, Z3 = 1) = 1
4 . (2d)

Here, P(X2X3 = −1 | Z1 = 1), for example, is the conditional
probability of X2 and X3 measured with outcomes satisfy-
ing X2X3 = −1 given that the result of Z1 = 1, and P(Z1 =
1, Z2 = 1, Z3 = 1) stands for the joint probability of ob-
taining the result of Z1 = 1, Z2 = 1, Z3 = 1. Based on the
constraints of Eqs. (2a)–(2c) and Eq. (2d), one can construct a
HLQP paradoxical argument as follows.

Consider a run of the experiment for which Z1, Z2, and Z3

are measured and the results Z1 = 1, Z2 = 1, and Z3 = 1 are
obtained (it will happen with a probability of 1/4). Assume
that the state admits a LHV model. Since we have got Z1 = 1,
it follows from Eq. (2a) that if X2 and X3 had been measured,
their results should satisfy X2X3 = −1. In fact, from the as-
sumption of locality [21], even if X1 had been measured on
qubit 1, one would still have X2X3 = −1. Thus in this run the
outcomes of measuring X2 and X3 (determined by the hidden
variables λ) must satisfy X2(λ)X3(λ) = −1, indicating that
qubits 1 and 2 cannot stay in the same box. Likewise, one can
infer that X1(λ)X3(λ) = −1 and X1(λ)X2(λ) = −1 from the
measurement results Z2 = 1 and Z3 = 1, respectively. There-
fore any two qubits cannot stay in the same box (for this run),
which contradicts with the classical pigeonhole principle (see
also Appendix A). Namely, a three-qubit HLQP paradox is
produced. As a consequence, one can conclude that quantum
correlations cannot be classically simulated and any realistic
interpretations of quantum mechanics must be nonlocal.

Besides, it is noted that counterintuitive conclusions of
various physical paradoxes usually arise from some improper
assumptions. For example, in the conventional quantum pi-
geonhole paradox, the paradoxical conclusion (a violation of
the pigeonhole principle) is achieved by adopting a realistic

view of the weak values [1,9,22]. By contrast, in the scenario
of the HLQP paradox, this paradoxical conclusion is achieved
by using another realistic assumption regarding quantum sys-
tems, i.e., the assumption of a LHV model [or more generally,
a (non)contextual version of the HLQP paradox can also be
achieved by the assumption of noncontextual hidden variable
models].

Remark 1. (i) Some quantum state can induce more than
one HLQP paradox (e.g., the results of Z1 = Z2 = −1, Z3 =
1 in the above example can also induce a HLQP para-
dox, but it is equivalent to the case of replacing |�〉 with
1
2 (|000〉 + |011〉 + |101〉 − |110〉) and considering the results
of Z1 = Z2 = Z3 = 1; similar tricks also apply to systems
with more qubits). Without loss of generality, hereinafter we
only discuss the aforementioned kind of HLQP paradoxes
(in which LHV models will be ruled out based on the runs
of the experiment that each involved the Pauli-Z observable
being measured with the outcome +1). (ii) Note that the
above three-qubit HLQP paradoxical argument also applies to
a more general quantum state |�′〉 = α|�〉 + β|111〉, where
|α|2 + |β|2 = 1 (|α| �= 0), but essentially this counterintuitive
quantum feature arises from the component |�〉 rather than
|111〉. Thus for simplicity it is enough to show the three-
qubit HLQP paradox by resorting to |�〉. (iii) This three-qubit
HLQP paradox can also be regarded as a Hardy’s paradox
induced from a three-qubit GHZ paradox [19,20].

III. A GENERAL n-qubit (n � 3) HLQP PARADOX

Inspired by the three-qubit HLQP paradox, a general n-
qubit HLQP paradox can be constructed based on a special
kind of quantum state called the projected-coloring graph
(PCG) state, and an n-qubit PCG state can usually be defined
as

|Pn〉 = 1√
p + 1

(
|00 · · · 0〉 −

∑
i∈I

θi|�0〉S̄i
|�1〉Si

)
, (3)

where Si ⊂ {1, 2, . . . , n}, 2 � |Si| < n, and |Si ∪ S j | >

max{|Si|, |S j |} (i �= j ∈ I); here, |Si|, for example, denotes
the number of qubits in the set Si. Besides, |�1〉Si ≡ ⊗k∈Si |1〉k

and |�0〉S̄i
≡ ⊗k∈S̄i

|0〉k . Moreover, the index set I is used to
describe a group of specific subsets of {1, 2, . . . , n} and the
coefficients θi = ±1. Also note that p = ∑

i∈I |θi|.
For a given n-qubit PCG state |Pn〉, one can define a Hardy

matrix A and its argumented Hardy matrix B as follows:

A = (Ai j )p×n, B = (A| �	), (4)

where the components Ai j = 1 if i ∈ I = {1, 2, . . . , p} and
j ∈ Si; and Ai j = 0 otherwise. Besides, the ith component of
the vector �	 is 	i = (θi + |θi|)/2.

In a run of the experiment, if
Zj1 , Zj2 , . . . , Zjn−|Si | ({ j1, j2, . . . , jn−|Si|} = S̄i ) are measured
and the results Zj1 = Zj2 = · · · = Zjn−|Si | = 1 are obtained,

i.e., the qubits in S̄i are found in |�0〉S̄i
, then the qubits in Si

are in the eigenstate of
∏

k∈Si
Xk (with the eigenvalue −θi).

Therefore, for any i ∈ I,

P

( ∏
k∈Si

Xk = −θi|Zj1 = Zj2 = · · · = Zjn−|Si | = 1

)
= 1. (5)
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Besides, denote by ∪p
i=1S̄i = {p1, p2, . . . , pq}. Since | ∪p

i=1
S̄i| > |S̄k| (∀k ∈ I), i.e., the results of obtaining Zp1 = Zp2 =
· · · = Zpq = 1 can only arise from the component |00 · · · 0〉 in
|Pn〉, then we can get

P(Zp1 = Zp2 = · · · = Zpq = 1) = 1

p + 1
> 0. (6)

Note that Eqs. (5) and (6) can provide a total of p + 1
constraints. Then a practical criterion for constructing the
HLQP paradox can be described as follows.

Theorem 1. Given an n-qubit PCG state |Pn〉, one can al-
ways construct a HLQP paradox if rank(A) �= rank(B), where
A and B are the corresponding Hardy matrix and argumented
Hardy matrix, respectively.

Proof. The proof is similar to the discussion of the afore-
mentioned three-qubit HLQP paradox.

Consider a run of the experiment for which
Zp1 , Zp2 , . . . , Zpq are measured and the results Zp1 = 1, Zp2 =
1, . . . , Zpq = 1 are obtained [it will happen with a probability
of 1/(p + 1) by Eq. (6)], where {p1, p2, . . . , pq} = ∪p

i=1S̄i.
Assume that |Pn〉 admits a LHV model. For any Si (1 � i �
p), if Zj1 , Zj2 , . . . , Zjn−|Si| and Xjn−|Si|+1, Xjn−|Si|+2, . . . , Xjn
were measured in this run (where { j1, j2, . . . , jn−|Si|} = S̄i,
{ jn − |Si| + 1, jn − |Si| + 2, . . . , jn} = Si), then necessarily∏

k∈Si
Xk = −θi according to Eq. (5), because in this run

Zj1 = Zj2 = · · · = Zjn−|Si| = 1.
Analogous to the argument of the three-qubit HLQP para-

dox, as long as the conditions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
k∈S1

Xk = −θ1,∏
k∈S2

Xk = −θ2,
...∏

k∈Sp
Xk = −θp

(7)

cannot hold simultaneously (namely, contradict with the pi-
geonhole principle), a HLQP paradox can be produced. By
performing logarithm operations on both sides of each equa-
tion (over the complex field), we can get⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
k∈S1

ln Xk = ln(−θ1),∑
k∈S2

ln Xk = ln(−θ2),
...∑

k∈Sp
ln Xk = ln(−θp).

Note that the value of each Xk is either +1 or −1, and besides,
ln 1 = 0 and ln(−1) = ln(eiπ ) = iπ . Since θi = ±1, one can
get ln(−θ j ) = iπ (θ j + |θ j |)/2 = iπ	 j . Let yk = ln Xk be the
kth component of vector �y; the above system of equations can
be rewritten as

A�y = iπ �	,

where A is the Hardy matrix defined in Eq. (4). This system
has at least one solution only if rank(A) = rank( A iπ �	 ) =
rank( A �	 ) = rank(B). Therefore, if rank(A) �= rank(B),
the system of equations (7) has no solution. In this case, a
HLQP paradox can be constructed. �

Note that Theorem 1 can induce a formalized approach
to construct a HLQP paradox (which could facilitate
the computer search). Based on that, one can even find
several analytic constructions for the HLQP paradox.

For example, a (2k + 1)-qubit (k � 1) PCG state with
Si = {i, i + 1} (i = 1, 2, . . . , 2k + 1, and i + 1 = 1 if
i = 2k + 1) and θi = 1, i.e., |P2k+1〉 = (|00 · · · 0〉 −
|1100 · · · 00〉 − |0110 · · · 00〉 − |0011 · · · 00〉 − · · · −
|0000 · · · 11〉 − |1000 · · · 01〉)/

√
2k + 2, can always produce

a HLQP paradox, since rank(A) = 2k and rank(B) = 2k + 1.
Obviously, when k = 1, such a HLQP paradox is exactly
the aforementioned three-qubit HLQP paradox. In that case,

since A = (
1 1 0
0 1 1
1 0 1

) and B = (
1 1 0 1
0 1 1 1
1 0 1 1

), one can check

that rank(A) = 2 and rank(B) = 3.
Moreover, note that rank(A) �= rank(B) is only a sufficient

condition for constructing a HLQP paradox, since the proof
of Theorem 1 is based on a particular choice of the boxes (|+〉
and |−〉). However, as long as the boxes are not prescribed,
even if rank(A) = rank(B) holds, sometimes a HLQP paradox
can still be constructed.

For example, consider the state (|000〉 + |110〉 + |101〉 +
|011〉)/2. Namely, S1 = {1, 2}, S2 = {2, 3}, and S3 = {1, 3},
and 	1 = 	2 = 	3 = 0 (θ1 = θ2 = θ3 = −1). Therefore

A = (
1 1 0
0 1 1
1 0 1

) and B = (
1 1 0 0
0 1 1 0
1 0 1 0

). Then one can get

rank(A) = rank(B). However, if two boxes are chosen to be
| �〉 = (|0〉 + i|1〉)/

√
2 and | �〉 = (|0〉 − i|1〉)/

√
2, a HLQP

paradox can still be constructed based on the following con-
straints:

P(Y2Y3 = −1 | Z1 = 1) = 1, (8a)

P(Y1Y3 = −1 | Z2 = 1) = 1, (8b)

P(Y1Y2 = −1 | Z3 = 1) = 1, (8c)

P(Z1 = 1, Z2 = 1, Z3 = 1) = 1
4 . (8d)

In this scenario, one can also present a similar theorem based
on such a choice of boxes (by redefining the Hardy matrix A
and its augmented matrix B). In fact, this version of the HLQP
paradox can be considered as a locally unitary equivalence of
the aforementioned three-qubit HLQP paradox. Such kind of
equivalence also applies to more complicated cases. Therefore
it is enough to discuss the HLQP paradox in one choice of the
boxes.

Furthermore, analogous to the statement in point (ii) of Re-
mark 1, one can also construct an n-qubit HLQP paradox from
a more general quantum state (see Appendix B for details).

IV. A GRAPHICAL REPRESENTATION
OF THE HLQP PARADOX

Many well-known quantum features or phenomena may
have some vivid descriptions in terms of their mathematical
counterparts, but such elegant descriptions are rare for the
Hardy’s paradox. To fill the gap, here we shall present a
pictorial representation of the HLQP paradox.

To start, let us introduce some notions.
A projected-coloring graph P = (V, E ) associated with

the PCG state |Pn〉 = (|00 · · · 0〉 − ∑
i∈I θi|�0〉S̄i

|�1〉Si )/
√

p + 1
[see Eq. (3)] can be defined as an unconventional weighted
graph which consists of a set of vertices V = {1, 2, . . . , n}
and a set of edges E = {Si|i = 1, 2, . . . , p} with weights red
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FIG. 1. Simple examples of legal or illegal PCGs, wherein
closed green and red curves stand for edges with weights G
and R, respectively. (a) The PCG associated with the four-qubit
PCG state |P4〉 = (|0000〉 + |0〉{4}|�1〉{1,2,3} + |0〉{1}|�1〉{2,3,4})/

√
3 =

(|0000〉 + |1110〉 + |0111〉)/
√

3, in which two edges are S1 =
{1, 2, 3} and S2 = {2, 3, 4}, respectively, and their weights are
both G since θ1 = θ2 = −1. (b) The PCG associated with the
three-qubit PCG state |P3〉 = (|000〉 − |0〉{1}|�1〉{2,3} + |0〉{2}|�1〉{1,3} +
|0〉{3}|�1〉{1,2})/2 = (|000〉 − |011〉 + |101〉 + |110〉)/2, wherein three
edges are S1 = {1, 2}, S2 = {2, 3}, and S3 = {1, 3}, respectively (the
weights correlated with S1, S2, and S3 are G, R, and G, respectively).
(c) An illegal PCG (the edges are S1 = {1}, S2 = {1, 2, 3}, S3 =
{2, 3}, S4 = {2, 4}, and S5 = {2, 3}; note that |S1 ∪ S2| = |{1} ∪
{1, 2, 3}| = 3 and |S3 ∪ S2| = |{2, 3} ∪ {1, 2, 3}| = 3, i.e., the edges
S1 and S3 are contained in the edge S2, which obviously does not
meet the requirement of a PCG).

(R) and green (G) (corresponding to θi = 1 and θi = −1,
respectively).

According to the definition of |Pn〉 in Eq. (3), each edge Si

may connect more than two vertices (here, we use a closed
curve circulating two or more vertices to represent an edge),
which looks somewhat like an edge of the hypergraph referred
to in Ref. [23]. Clearly, such a property is different from that
of a conventional graph in which an edge can connect only
two vertices. To get a better understanding of that, one can see
two simple examples in Figs. 1(a) and 1(b).

Besides, any two edges Si,S j ∈ E should satisfy |Si ∪
S j | > max{|Si|, |S j |} [also see the definition of |Pn〉 in
Eq. (3)]. This will guarantee that each edge cannot be con-
tained in any other edges; see a counterexample in Fig. 1(c).

Moreover, a PCG is called a connected PCG if one can-
not find a subset I ′ ⊂ I (I = {1, 2, . . . , p}, 0 < |I ′| < |I|)
such that (∪i∈I ′Si ) ∩ (∪ j∈(I−I ′ )S j ) = ∅. Namely, there are
no isolated substructures in a connected PCG. For simplicity,
hereinafter only connected PCGs are considered.

Next, we consider such a vertex-coloring game: For a given
n-vertex PCG P , check whether there exists a consistent col-
oring scheme for all the vertices, wherein the coloring rules
are described as follows.

(i) Each vertex vk (vk ∈ {1, 2, . . . , n}) can only be colored
with either R or G. If vk is colored by R, its coloring value
c(vk ) is defined as c(vk ) = −1; otherwise c(vk ) = 1.

(ii) If the weight of the edge Si is R, its weight value W (Si )
is defined as W (Si ) = −1; otherwise W (Si ) = 1. Namely,
W (Si ) = −θi.

(iii) If there exists at least one vertex-coloring solution,
such that

∏
vk∈Si

c(vk ) = W (Si ) holds for any Si ∈ E , then the
PCG P is colorable; otherwise P is uncolorable.

Example 1. The PCG is given in Fig. 1(a), and the associ-
ated four-qubit PCG state is |P4〉 = (|0000〉 + |0〉{4}|�1〉{1,2,3} +
|0〉{1}|�1〉{2,3,4})/

√
3 = (|0000〉 + |1110〉 + |0111〉)/

√
3, in

which four vertices are v1 = 1, v2 = 2, v3 = 3, and v4 = 4
and two edges are S1 = {1, 2, 3} and S2 = {2, 3, 4}. Besides,
θ1 = θ2 = −1 [or W (S1) = W (S2) = 1]. Let us consider the
vertex coloring of P4. Note that if this PCG is colorable,
c(1)c(2)c(3) = 1 and c(2)c(3)c(4) = 1 should hold
simultaneously, where c(i) = ±1 for i = 1, 2, 3, 4. In fact,
there are four solutions that meet this requirement: (i) c(1) =
c(2) = c(3) = c(4) = 1; (ii) c(1) = c(4) = 1, c(2) =
c(3) = −1; (iii) c(1) = c(2) = c(4) = −1, c(3) = 1; and
(iv) c(1) = c(3) = c(4) = −1, c(2) = 1. Accordingly, there
exist four vertex-coloring solutions for the vertices 1,2,3,4:
(G, G, G, G), (G, R, R, G), (R, R, G, R), and (R, G, R, R).
Thus this PCG is colorable.

Example 2. Consider the PCG shown in Fig. 2(a). The
corresponding PCG state is exactly the state discussed in
the aforementioned three-qubit HLQP paradox, i.e., |�〉 =
(|000〉 − |0〉{3}|�1〉{1,2} − |0〉{2}|�1〉{1,3} − |0〉{1}|�1〉{2,3})/2 =
(|000〉 − |110〉 − |101〉 − |011〉)/2. The three edges are
S1 = {1, 2}, S2 = {1, 3}, and S3 = {2, 3}, and their weight
values are the same: W (S1) = W (S2) = W (S3) = −1 (θ1 =
θ2 = θ3 = 1). Then if this PCG is colorable, the system of
equations c(1)c(2) = −1, c(1)c(3) = −1, c(2)c(3) = −1
should have at least one solution. However, there exist no
such consistent solutions. Therefore this PCG is uncolorable.
Similar discussions can apply to all the examples shown in
Fig. 2.

It is noted that by associating c(1), c(2), and c(3) with
the values X1, X2, and X3, respectively, one can connect
c(2)c(3) = −1, c(1)c(3) = −1, c(1)c(2) = −1 (in example
2) with a group of inconsistent relations X2X3 = −1, X1X3 =
−1, X1X2 = −1. Also note that one can get this group of
relations from the Hardy-like constraints given in Eqs. (2a)–
(2c), if one consider a run of the experiment that Z1, Z2, Z3

are measured and the results Z1 = Z2 = Z3 = 1 are obtained
(under the assumption of a LHV model). This indicates that
the heart of the paradoxical argument for the aforementioned
three-qubit HLQP paradox can be simulated by the uncol-
orability of this three-vertex PCG, i.e., the PCG shown in
Fig. 2(a) can be considered as a pictorial representation of
that HLQP paradox. In addition, each edge of the PCG can
be connected with a Hardy-like constraint [the edges {2, 3},
{1, 3}, and {1, 2} of Fig. 2(a) are associated with Eqs. (2a),
(2b), and (2c), respectively].

The following theorem will shows us a more general con-
nection between the vertex coloring of a PCG and the HLQP
paradox.

Theorem 2. There exists a one-to-one correspondence be-
tween an uncolorable PCG and the condition rank(A) �=
rank(B), where A and B are the Hardy matrix and argumented
Hardy matrix of the corresponding PCG state.

Proof. Notice that in an n-vertex PCG P , the coloring
value of the jth ( j ∈ {1, 2, . . . , n}) vertex c( j) can be as-
sociated with the value assigned to Xj of the jth qubit.
Besides, the uncolorable condition states that

∏
k∈Si

c(k) =
W (Si ) = −θi (i ∈ I) cannot hold for all the edges, which
corresponds exactly to the system of p equations

∏
k∈S1

Xk =
−θ1,

∏
k∈S2

Xk = −θ2, . . . ,
∏

k∈Sp
Xk = −θp having no solu-

tions. As mentioned in the proof of Theorem 1, the condition
of no solution for this system of equations is equivalent
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FIG. 2. Examples of uncolorable PCGs. (a)–(f) Some typical three-qubit and five-qubit uncolorable loop PCGs in which each edge
contains only two vertices. (g) This PCG contains a three-qubit uncolorable substructure P ′ = (V ′, E ′), where V ′ = {1, 2, 4} and E ′ =
{{1, 2}, {1, 4}, {2, 4}}, which implies that it is not an irreducible uncolorable PCG. (h)–(l) Some typical four-qubit uncolorable PCGs. (m)
Another five-qubit uncolorable PCG, wherein each edge contains four vertices.

to rank(A) �= rank(B). Then we can get a one-to-one corre-
spondence between an uncolorable PCG and the condition
rank(A) �= rank(B). �

On the other hand, one can check that an n-vertex colorable
PCG will give rise to rank(A) = rank(B).

Besides, the above proof also implies another general one-
to-one correspondence, i.e., for any Hardy-like constraints
given in terms of Eq. (5) [rather than Eq. (6)], there exists
an edge in the PCG associated with it, and vice versa. Since
such a correspondence for Fig. 2(a) has been discussed above,
here we give another more complicated example.

Example 3. The PCG in Fig. 2(d) is associated
with the PCG state (|00000〉 + |11000〉 + |01100〉 −
|00110〉 − |00011〉 − |10001〉)/

√
6. S1 = {1, 2}, S2 = {2, 3},

S3 = {3, 4}, S4 = {4, 5}, and S5 = {1, 5} are five edges
with weights G, G, R, R, and R [or their weight values are
W (S1) = 1, W (S2) = 1, W (S3) = −1, W (S4) = −1, and
W (S5) = −1], respectively. One can easily check that there
are no consistent solutions for c(1)c(2) = 1, c(2)c(3) = 1,
c(3)c(4) = −1, c(4)c(5) = −1, c(1)c(5) = −1, indicating
that this PCG is uncolorable. As mentioned in the proof
of Theorem 2, one can define a one-to-one connection
between the system of equations c(1)c(2) = 1, c(2)c(3) = 1,
c(3)c(4) = −1, c(4)c(5) = −1, c(1)c(5) = −1 and the
system X1X2 = 1, X2X3 = 1, X3X4 = −1, X4X5 = −1,
X1X5 = −1. The former is induced from the edges
S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 4}, S4 = {4, 5}, and
S5 = {1, 5}, while the latter is induced from the Hardy-
like constraints P(X1X2 = 1 | Z3 = Z4 = Z5 = 1) = 1,
P(X2X3 = 1 | Z1 = Z4 = Z5 = 1) = 1, P(X3X4 = −1 | Z1 =
Z2 = Z5 = 1) = 1, P(X4X5 = −1 | Z1 = Z2 = Z3 = 1) = 1,
and P(X1X5 = −1 | Z2 = Z3 = Z4 = 1) = 1. From this angle,
these Hardy-like constraints can be represented by the edges
of the PCG.

Furthermore, according to Theorem 1, for an n-qubit PCG
state |Pn〉, if rank(A) �= rank(B), a HLQP paradox can be
constructed, and from Theorem 2, one can see that the cor-
responding PCG P is uncolorable. Thus the HLQP paradox
induced from a PCG state can be represented by an uncol-
orable PCG.

Next, an n-qubit HLQP paradox is said to be a genuinely
n-qubit HLQP paradox if one cannot reduce the number
of Hardy-like constraints and still have a HLQP paradox.
Besides, the corresponding PCG is called an irreducible un-
colorable PCG.

Notice that each edge of an uncolorable PCG is associated
with a Hardy-like constraint of the correlated HLQP para-
dox. Then another definition of the irreducible uncolorable
PCG can be described as follows: For a given uncolorable
PCG, it would become colorable if any edge is deleted,
and then such an uncolorable PCG is irreducible. In other
words, an irreducible uncolorable PCG has no uncolorable
substructures. Clearly, Figs. 2(a)–2(f) and 2(h)–2(m) are all
irreducible uncolorable PCGs. This is because if any of their
edges are deleted, they would no longer be uncolorable PCGs.
In contrast, Fig. 2(g) is not an irreducible PCG, as it has an
uncolorable substructure.

Since an n-vertex irreducible uncolorable PCG is corre-
lated to a genuinely n-qubit HLQP paradox, it is very helpful
in the study of the optimization of a HLQP paradox.

Remark 2. (i) Uncolorable PCGs are also very useful in
the study of the conventional quantum pigeonhole paradox
(see Appendix C). (ii) Unlike the graph (or hypergraph) state
[14,15,23], the PCG state is a “conditional subsystem stabi-
lizer state” rather than a stabilizer state, and sometimes this
may bring us some unexpected advantages.

V. THE SUCCESS PROBABILITY OF RULING OUT
LHV THEORIES

For an n-qubit Hardy’s paradox, the maximal success prob-
ability of excluding local realism in previous versions [13,24]
is 1/2n−1. Actually, this probability can be greatly improved
by some HLQP paradoxes. For example, consider the HLQP
paradox induced from the PCG state (associated with an
n-vertex loop PCG) |ALn〉 = 1√

n+1
(|�0〉V − |1〉1|1〉n|�0〉V \{1,n} +∑n−1

i=1 |1〉i|1〉i+1|�0〉V \{i,i+1}). Clearly, the success probability
is PL

n = 1/(n + 1), which decays much slower over n than
PG

n and PS
n listed in Table I. Namely, this HLQP paradox is
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TABLE I. The success probabilities of three kinds of Hardy’s
paradoxes for n qubits.

Scenario Success probability (n � 3)a

Loop PCG state induced PL
n = 1/(n + 1)

Generalized, Ref. [13] PG
n = 1/2n−1

Standard, Ref. [24] PS
n = 1/2n × (1 + cos π

n−1 )

aFor n � 3, PL
n � PG

n > PS
n .

more efficient [25] in demonstrating Bell nonlocality than two
representative Hardy’s paradoxes [13,24].

VI. HARDY-LIKE MAP COLORING PARADOX

Besides the uncolorable PCGs, other mathematical objects
or problems that mimic some specific HLQP paradoxes can
also be found, such as the map coloring problem, in which
for a given planar map, usually four colors are required to
guarantee that no two adjacent regions have the same color
(also known as the four-color theorem [26]). In other words,
using two or three colors to color the planar map, one cannot
ensure each pair of adjacent regions to have different colors
in most situations. Here, a simple example based on the map
coloring problem will be presented, and it will be referred to
as the “Hardy-like map coloring paradox.”

To construct a Hardy-like quantum map coloring paradox,
we associate a quantum state with a map (each region stands
for a qubit) and use the value (±1) of Xi of the ith qubit in
a run of the experiment to label the “color” of the ith region,
i.e., only two colors are involved in such a map. One can infer
that for a great number of such maps, one can always find
two adjacent regions sharing the same color according to the
four-color theorem stated above.

As an example, we associate |M(4)〉 = 1√
7
(|0000〉 −

|1100〉 − |1010〉 − |1001〉 − |0110〉 − |0101〉 − |0011〉) with
the map of Fig. 3(a). Assume that |M(4)〉 can be modeled
by LHV; then a paradoxical conclusion can be produced
as follows. Consider a run of the experiment for which
Z1, Z2, Z3, Z4 are measured and the results Z1 = Z2 = Z3 =
Z4 = 1 are obtained (this would happen with a probability of
1/7). Since we have Za = Zb = 1 (a �= b ∈ {1, 2, 3, 4}), then
according to the assumption of local realism, if Xc and Xd

(c �= d �= a �= b ∈ {1, 2, 3, 4}) had been measured in this run,
their results should satisfy Xd Xd = −1. As a consequence, if
X1, X2, X3, X4 were measured in this run, one can infer that
X1X2 = X1X3 = X1X4 = X2X3 = X2X4 = X3X4 = −1, which
indicates that no two adjacent regions have the same color.

(a) (b)

FIG. 3. (a) A map to be colored by two colors. (b) At least four
colors are required to guarantee that no two adjacent regions have the
same color for this map.

Clearly, to achieve that, at least four colors are required; see
the illustration in Fig. 3(b). However, only two colors are used
in this map, which implies that there should have been some
adjacent regions sharing the same color, a contradiction. Then
one can get a Hardy-like quantum map coloring paradox.

Similar constructions can also apply to a great number of
planar maps called bicolor uncolorable maps (for which there
exist no consistent coloring solutions, if two adjacent regions
sharing the same color is forbidden and only two colors are
provided). Clearly, the Hardy-like map coloring paradox is
another manifestation of a HLQP paradox, and the bicolor
uncolorable map can be regarded as the representation for this
quantum paradox.

In contrast with the uncolorable PCG representation, it
seems more intuitive to understand some specific HLQP para-
doxes from the angle of map coloring problems, since these
problems are based on many people’s common sense (four-
color theorem) and in many situations one does not really have
to check all possible colorings (the contradiction is too obvi-
ous). However, the shortcoming is that the bicolor uncolorable
map representation can only be considered as a subclass of the
uncolorable PCG representation (it only applies to the planar
graphical structure and cannot describe a PCG with edges
containing more than two vertices).

VII. DISCUSSION AND CONCLUSION

To summarize, we have studied the general construction of
the n-qubit Hardy-like quantum pigeonhole (HLQP) paradox
(which is also a special class of Hardy’s paradox). In addition,
by introducing the notions of the PCG state and the PCG,
we give a pictorial representation of the HLQP paradox. This
paradox has several advantages. From the angle of the quan-
tum pigeonhole paradox, the HLQP paradox scheme seems
to be more friendly to the experimental physicist, and from
the perspective of Hardy’s paradox, a family of HLQP para-
doxes has surpassed [1/(n + 1)] previously reported values
for the success probability of demonstrating Bell nonlocality
(the record of the previous Hardy’s paradoxes is 1/2n−1; see
Ref. [13]).

Some extended topics require further investigation, such
as the qudit PCG state, the qudit HLQP paradox, and the
analytic construction of some HLQP paradoxes. On the other
hand, notice that any stabilizer of a system can exhibit a kind
of symmetry. However, usually a PCG state is only a “con-
ditional subsystem stabilizer state” rather than a full-system
stabilizer state. The breaking of such a stabilizer symmetry
may lead to some unknown properties and unexpected advan-
tages. For example, “all-versus-nothing” proofs [27] of Bell
nonlocality which work for 100% of the runs of the experi-
ments (e.g., the GHZ paradox) are commonly induced from
perfect correlations [19,28] of the quantum states. However,
so far, such proofs induced from systems with nonperfect
correlations are still very rare. By noticing that PCG states
may induce more than one HLQP paradox [see point (i) of
Remark 1] and combining them together might give a stronger
demonstration of Bell nonlocality [29], one could construct
such all-versus-nothing proofs from some PCG states with
nonperfect correlations [30], which may have some potential
applications in quantum information protection.
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In addition, since every property of quantum mechanics
not present in classical physics could lead to an operational
advantage [31–33], we believe that the HLQP paradox can
also provide us some useful resources in certain quantum
information processing.
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APPENDIX A: ANOTHER WAY TO GET THE
CONTRADICTION OF THE THREE-QUBIT

HLQP PARADOX

If |�〉 admits a LHV model, then Eqs. (2a)–(2c)
in the main text imply that {Z1 = 1} ⊂ {X2X3 = −1},
{Z2 = 1} ⊂ {X1X3 = −1}, and {Z3 = 1} ⊂ {X1X2 = −1}.
One can get P(Z1 = 1, Z2 = 1, Z3 = 1) � P(X2X3 =
−1, X1X3 = −1, X1X2 = −1) = 0, which contradicts with
Eq. (2d).

APPENDIX B: A MORE GENERAL FORM OF THE
QUANTUM STATE THAT CAN INDUCE AN n-QUBIT

HLQP PARADOX

As mentioned in Remark 1 of the main text, the three-qubit
HLQP paradox can also be induced from a more general
quantum system |�′〉 = α|�〉 + β|111〉, where |α|2 + |β|2 =
1 (|α| �= 0). It is noted that the term |111〉 does not cause
any essential changes in the demonstration of the three-qubit
HLQP paradox.

Likewise, if an n-qubit HLQP paradox can be induced from
the state |Pn〉 [see Eq. (3) of the main text], then such a HLQP
paradox can also be induced from a more general quantum

system

|P′
n〉 = α|Pn〉 + β|Bn〉, (B1)

where |α|2 + |β|2 = 1 (|α| �= 0), 〈Pn|Bn〉 = 0, and

|Bn〉 =
∑
i∈J

λi|�0〉T̄i
|�1〉Ti . (B2)

Here, Ti ⊂ {1, 2, . . . , n} and |S̄r ∩ T̄s| < |S̄r | (∀r, s), wherein
S̄r has been defined in Eq. (3) of the main text. Besides, the
index set J is used for describing all possible Ti and the
coefficient λi ∈ C.

Similarly, the term |Bn〉 does not cause any essential
changes in the demonstration of the n-qubit HLQP paradox.
In fact, here the component |Bn〉 can be considered as a gen-
eralization of the term |111〉 in |�′〉.

APPENDIX C: ANOTHER TYPE OF CONVENTIONAL
QUANTUM PIGEONHOLE PARADOX

FOR THREE QUBITS

Sometimes uncolorable PCGs are helpful in looking for
new conventional quantum pigeonhole paradoxes. For exam-
ple, Fig. 2(b) in the main text can induce another type of
quantum pigeonhole paradox, while Fig. 2(a) corresponds to
the original quantum pigeonhole paradox [1].

The initial state is prepared in |�i〉 = |+〉|−〉|+〉, and
the final state is |� f 〉 = |0〉|1〉|0〉. Here, two boxes are | �
〉 = (|0〉 + i|1〉)/

√
2 and | �〉 = (|0〉 − i|1〉)/

√
2. One can

find 〈�i| I+Y1Y2
2 |� f 〉 = 〈�i| I−Y1Y3

2 |� f 〉 = 〈�i| I−Y2Y3
2 |� f 〉 = 0.

Therefore, at intermediate times if the qubits {1, 3} were mea-
sured, they would be found in the same box, and likewise, if
the qubits {2, 3} were measured, they would also be found in
the same box. However, if the qubits {1, 2} were measured, the
case would be different, i.e., they would be found in different
boxes, a contradiction according to the classical pigeonhole
principle.
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