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Practical parallel self-testing of Bell states via magic rectangles
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Self-testing is a method to verify that one has a particular quantum state from purely classical statistics. For
practical applications, such as device-independent delegated verifiable quantum computation, it is crucial that
one self-tests multiple Bell states in parallel while keeping the quantum capabilities required of one side to a
minimum. In this work, we use the 3×n magic rectangle games (generalizations of the magic square game) to
obtain a self-test for n Bell states where the one side needs only to measure single-qubit Pauli observables. The
protocol requires small input sizes [constant for Alice and O(log2 n) bits for Bob] and is robust with robustness
O(n5/2√ε), where ε is the closeness of the ideal (perfect) correlations to those observed. To achieve the desired
self-test, we introduce a one-side-local quantum strategy for the magic square game that wins with certainty, we
generalize this strategy to the family of 3×n magic rectangle games, and we supplement these nonlocal games
with extra check rounds (of single and pairs of observables).
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I. INTRODUCTION

One of the most profound properties of quantum theory—
one that defies our classical intuition—is that it exhibits
nonlocality [1]. This distinct characteristic enables us to de-
duce that certain results we gather in an experimental setting
cannot be explained with classical notions, and that there is
necessarily some underlying quantumness at work. Even more
interestingly, nonlocality makes it possible to deduce the exact
quantum state of a real experimental system based on purely
classical statistics. This property is known as self-testing. Be-
yond the foundational importance of being able to verify the
quantum state of a totally untrusted black-box experimental
setup, self-testing has many practical uses due to the higher
levels of security it is able to offer. While the standard no-
tions of nonlocality lead to device-independent cryptography
(see, for example, Refs. [2,3]), self-testing enables such ap-
plications as device-independent secure delegated (verifiable)
quantum computation [4–7] among other device-independent
protocols that involve quantum computation. The crucial point
is that, to enable device-independent quantum computation,
one needs to test the quantum state itself (that is, one must
perform self-testing); simple observation of nonlocal correla-
tions does not suffice.

Delegated verifiable blind quantum computation [8,9] is ar-
guably one of the most important applications of self-testing.
Here, a client wishes to delegate some computation to a server
(which has a quantum computer) such that the privacy of their
input/output and computation is preserved, and in a way that
allows the client to verify the validity of the answer that they
receive. This is a setting with increasing practical relevancy,
since quantum hardware companies already offer their ser-
vices in the cloud. Protecting the privacy of client data and
giving reassurances that the computation was performed as
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desired are crucial to making this model work. In this setting,
since one side (the server) has access to a universal quantum
computer, having extra quantum operations being performed
on this side as part of a self-test comes with almost no further
practical limitations. On the other hand, the client is assumed
to have minimal quantum capabilities. Moreover, the client
and server should self-test multiple maximally entangled Bell
states in parallel. This is required in order to perform any
interesting quantum computation (otherwise the client could
simply perform the computation classically on their side).
It follows that any natural self-test for such an application
will have minimal experimental requirements on one side (the
client) while also being required to test for many Bell states in
parallel. This is precisely the nature of the self-test we obtain
in this work.

A further observation is that self-tests of quantum states
typically arise as the observation of an optimal quantum
strategy for a certain nonlocal game. Conversely, exploring
how different nonlocal games that appear elsewhere in the
literature can be used for self-testing and what (if any) ad-
vantages these offer over other self-tests is, in its own right, an
interesting endeavor. Here we examine the recently introduced
generalization of the magic square game to rectangular dimen-
sions [10], and we obtain a family of self-tests that compare
favorably to other self-tests.

It is worth mentioning that one can compare self-tests with
respect to a number of different figures of merit, with the
importance of each depending on the application for which
one wishes to use the self-test. We consider several different
qualities, and in Sec. VI analyze what our proposed self-tests
achieve and how they compare to other works. The first is
the experimental complexity required by our self-test. This
depends on the honest strategy and determines the quantum
devices and resources required by each party. The second is
that of communication complexity (required input and output
sizes for the parties involved). Its most important ingredient is
that of input question size, as this determines the amount of
randomness that must be consumed per round of interaction
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of the protocol. This can also play an important role in other
aspects, e.g., in how much randomness can be generated in
possible applications to private randomness expansion. Fi-
nally, the third figure of merit that self-tests can be compared
upon is their robustness, i.e., how close to the ideal behavior
the observed correlations need to be in order to ensure that
the tested quantum state is sufficiently close to the desired
reference state. Given that experiments have intrinsic imper-
fections and correlations cannot be perfectly saturated in a real
setting, achieving good robustness is crucial for practical uses
of self-testing. While many self-testing protocols are designed
to perform well with respect to few particular figures of merit,
it is key for the application at hand that a protocol achieves
appropriate levels of performance simultaneously across all
relevant areas. This is a major consideration in the self-test
we present here.

A. Our contributions

We aim to obtain an improved self-test of multiple Bell
states (with respect to different figures of merit). The nonlo-
cal games at the core of our approach belong to the set of
magic rectangle games. Our contributions may be summa-
rized specifically as follows:

(i) We provide a quantum strategy to win the magic square
game with certainty. This strategy involves three Bell pairs
and, importantly, one side (say Alice) need only ever make
local (single-qubit) Pauli measurements [11]. We say this
strategy has the “one-side-local” property.

(ii) Based on this quantum strategy, we present a one-
side-local self-test of three Bell states. This requires the
introduction of some extra “check” rounds. Compared to other
self-tests using the magic square game, ours requires a sim-
pler experimental setup (one-side-local) and certifies a greater
number of Bell states in parallel.

(iii) We also consider the set of 3×n magic rectangle
games, obtaining one-side-local quantum strategies for these
(again winning with certainty) involving n Bell states.

(iv) From these strategies, we construct a parallel self-test
of n Bell pairs that is one-side-local. This is our main result, as
it offers an experimentally simpler parallel self-test that (i) has
good input size scaling in the number of Bell states (constant
for Alice and logarithmic for Bob), (ii) uses only perfect
correlations, and (iii) is robust with robustness O(n

5
2
√

ε),
where ε is the closeness of the ideal (perfect) correlations
to those observed. Importantly, these properties are achieved
simultaneously.

B. Overview of techniques

Our two main results are self-testing protocols for three and
n Bell states, respectively. Informally, to self-test a quantum
state one needs to provide a local isometry that maps an
untrusted state (and operators) to a reference state (and opera-
tors), which are close to the desired ones. Our proofs proceed
in five steps. In the first step, we define a nonlocal game (along
with an optimal quantum winning strategy for that game) that
will form the basis of the self-test. Importantly, the particular
strategy given should involve the states that we are testing. In
the second step, we give the honest behavior for the self-test.
This fixes the experimental requirements for each side. The

honest behavior includes (i) the optimal quantum strategy for
the nonlocal game given earlier; and (ii) additional “check”
rounds, where some further correlations (that do not need to
exhibit nonlocality on their own) are requested [12]. In the
third step, we define the (untrusted) observables and specify
all the correlations that are to be tested. This is the information
we have from experiment; it quantifies the proximity of the
real experiment to the ideal maximum winning probabilities,
and it forms the basis for obtaining the desired isometry. In
the fourth step, the above correlations are used to prove that
the untrusted single-qubit Pauli operators have commutation
and anticommutation relations exactly as the correspond-
ing (trusted) Pauli operators have. This is the hardest step,
as it demonstrates that the correlations obtained from the
experiment suffice to construct some untrusted operators that
behave as the desired trusted operators. The fifth and final
step is simply the application of a theorem of Coladangelo
[13], wherein the existence of the desired local isometry was
reduced to the satisfaction of the commutation and anticom-
mutation relations obtained in the fourth step.

1. Self-test of three Bell states

a. Base nonlocal game. We introduce a strategy for win-
ning the magic square game with certainty (Sec. III). This
strategy has two interesting features. First, unlike the “stan-
dard” strategy that involves two Bell states [14], this strategy
involves three Bell states. This means that any self-test based
on this would result in self-testing more Bell states in parallel
than using the magic square game in the standard way [15]. To
succeed in the parallel self-testing of more Bell states requires
some extra correlations (obtained from some “check” rounds)
to prevent dishonest players from simply following the stan-
dard magic square strategy using only two Bell states. The
second feature is that this strategy can be realized with Pauli
measurements (as in the standard magic square strategy) but
with one of the players (say Alice) needing only to perform
local (single-qubit) measurements. In the usual magic square
strategy, both parties must measure in entangled bases (see
Sec. II C). This implies that a self-test based on this strategy
would be simpler to execute experimentally and, importantly,
impose fewer quantum-technological requirements on Alice’s
side—something of immediate interest for major applications
of self-testing.

b. Honest run. Alice plays the one-side-local magic square
strategy (see Sec. III), with the difference being that she
measures locally each of her three qubits and returns these as
her answer, allowing the product of pairs to be checked by a
referee. Bob has two types of rounds: game rounds, where he
plays the modified magic square game by measuring pairs of
qubits in the X̂ ⊗ X̂ , Ŷ ⊗ Ŷ , and Ẑ ⊗ Ẑ bases simultaneously,
and “check” rounds, where he measures his three qubits
locally.

c. Untrusted observables and correlations. Alice has only
untrusted local Pauli observables, while Bob has different un-
trusted observables in game and check rounds. Interestingly,
Bob’s observables in the check rounds are the ones used
for the isometry, while the observables of game rounds are
used to enforce the suitable commutation and anticommuta-
tion relations on Alice’s side. The correlations observed are
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those required for the magic square game along with the (per-
fect) Einstein–Podolsky–Rosen (EPR) correlations in check
rounds.

d. Commutation and anticommutation. The main theorem
for this case (Theorem 9 of Sec. IV C) is stated informally
here.

Theorem 1 (Informal Theorem 9). The game-round ob-
servables of Alice and the check-round observables of Bob
obey standard commutation and anticommutation relations up
to O(

√
ε), where ε is the distance of the observed correla-

tions from the ideal ones. The observables commute when
acting on different qubits; commute when they are of the
same type and act on the same qubit; and anticommute
when they act on the same qubit and are conjugate (e.g., X
and Z).

e. Isometry. Using the relations provided by the aforemen-
tioned theorem, and following [13], we obtain a suitable local
isometry and complete the self-test.

2. Self-test of many Bell states

a. Base nonlocal game. We introduce a strategy that wins
the 3×n magic rectangle game with certainty using n Bell
states (Sec. V A). Note that the 3×n magic rectangle game
can also be won with only two Bell states, but our strategy
enables the parallel self-test of n Bell states, having the same
one-side-locality as our previous result.

b. Honest run. Alice plays the magic rectangle strategy
(see Sec. V A) described by measuring all of her qubits in one
of the three Pauli bases (all in the same basis). Suitable prod-
ucts of her outcomes can be checked for consistency in the
magic rectangle game by a referee. Bob now has three round
types: game rounds, local check rounds (in which single-qubit
correlations are checked), and pair check rounds (in which
correlations of pairs of qubits are checked).

c. Untrusted observables and correlations. Alice has only
untrusted local Pauli observables, while Bob has untrusted
observables for all three round types. The local-check-round
observables are used to construct the subsequent local isom-
etry, while the other observables are used to obtain suitable
commutation and anticommutation relations.

d. Commutation and anticommutation. The main theorem
(Theorem 16 of Sec. V D) contains the same type of relations
as in the case with three Bell states, where obtaining the
anticommutation relations is considerably more complicated
(and requires the extra set of rounds). This is stated informally
as follows:

Theorem 2 (Informal Theorem 16). The game-round ob-
servables of Alice and the local-check-round observables of
Bob obey standard commutation relations up to O(

√
ε) and

anticommutation relations up to O(n
√

ε), where ε is the dis-
tance of the observed correlations from the ideal ones. The
observables commute when acting on different qubits; com-
mute when they are of the same type and act on the same
qubit; and anticommute when they act on the same qubit and
are conjugate (e.g., X and Z).

e. Isometry. Again following [13] and using the relations
provided by Theorem 16, we recover the desired local isome-
try that results in a self-test of n Bell states.

C. Related works

The magic square game was first introduced by Mermin
[16], Peres [17]. Aravind [14] gives a nontechnical demonstra-
tion of the Mermin-Peres magic square game. In a previous
work, we examined an extension of the magic square game
to arbitrary rectangular dimensions [10]. A family of these
games is used as the basis for the self-test presented here.

The concept of self-testing was first introduced by Mayers
and Yao [18] in a cryptographic context, with the first mention
of the term “self-testing” appearing in [19]. Wu et al. [15]
gave the first self-test of two maximally entangled pairs of
qubits based on the magic square game, making use of the
work of McKague [20] on self-testing in parallel. Coladangelo
[13], Coudron and Natarajan [21] independently gave robust
parallel self-tests of arbitrarily many Bell states based on the
magic square game. A result of Coladangelo [13], which is in
turn based on results of Chao et al. [22], is used in the present
work (see Theorem 6). Natarajan and Vidick [23] gave the
first example of a self-test for n Bell states with constant ro-
bustness. Subsequent work by the same authors achieved such
a test where the number of bits of communication required
is logarithmic in n [24]. A variant of this by Natarajan and
Wright [25], called the “Pauli basis test,” is presented as part
of the work of Ji et al. [26]. Work in another direction is of-
fered by Šupić et al. [27], who exhibit (without consideration
of robustness) a constant-input-size parallel self-test for many
copies of an arbitrary state given a self-test for a single copy.
On self-testing maximally entangled states of arbitrary local
dimension d , the results of Fu [28] and Mančinska et al. [29]
provide robust self-tests using constant-sized questions and
answers. However, the robustness of the former is exponential
in d and in the latter is not constructed. Sarkar et al. [30] also
provide such a self-test, however its robustness is not studied.
More details on self-testing can be found in the recent and
excellent review by Šupić and Bowles [31].

D. Organization of the paper

In Sec. II some background on the properties of quan-
tum states, self-testing, and the magic square and rectangles
nonlocal games is given. In Sec. III a one-side-local optimal
quantum winning strategy for the magic square game is given,
and in Sec. IV this strategy is used as the basis of a par-
allel, one-side-local self-test of three Bell states. In Sec. V
a generalization of this one-side-local quantum strategy for
3×n magic rectangle games is given, and the corresponding
self-test for n Bell states is proven. We conclude in Sec. VI.

II. PRELIMINARIES

A. States and measurements

We let registers of observers Alice and Bob be labeled by
the letters A and B, respectively. A local Hilbert space of Alice
will be denoted HA, and similarly a local Hilbert space of Bob
will be denoted HB. Sometimes we will need to talk about
different Hilbert spaces local to an observer’s subsystem. For
this, we will use notation such as H′

A or H̃A to mean different
Hilbert spaces on Alice’s side. The set of linear operators on H
will be denoted L(H). The action of an operator QA ∈ L(HA)
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on a multipartite state |�〉 ∈ HA ⊗ HB will often be shortened
as QA|�〉 = QA ⊗ IB|�〉.

For the purposes of self-testing, all quantum measurements
will be defined to have two possible outcomes labeled by ±1.
We will not make any other assumptions about the physical
state spaces of Alice and Bob. In particular, we will not as-
sume their dimensions. We take all unknown measurements
to be projective on some unknown state, with observables of
the form M = M+ − M− for some orthogonal projections M+
and M− satisfying M+ + M− = I and M+M− = M−M+ = 0.
With our definitions, all unknown observables are also unitary
operators and satisfy the involutory property M2 = I . Such
operators that are both Hermitian and unitary are also known
as reflection operators. An operator that is not unknown (but is
instead a reference operator) will be denoted by a hat symbol,
for example the Pauli X̂ observable.

The following lemma will be useful to estimate the action
of unknown observables on an unknown state. The norm ‖ · ‖
associated with a Hilbert space will refer to that induced by its
inner product throughout:

Lemma 3. Let |ϕ〉 and |χ〉 be normalized states belong-
ing to the same Hilbert space and let ε � 0. If the real part
Re〈ϕ|χ〉 � 1 − ε, then ‖|ϕ〉 − |χ〉‖ �

√
2ε.

Proof. Immediate from the definition of the induced norm
‖|v〉‖ = √〈v|v〉. �

Remark. In the ideal case of ε = 0, we get |ϕ〉 = |χ〉.
We will denote by |�+〉 the maximally entangled Bell state

shared between Alice and Bob,

|�+〉AB = |0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B√
2

. (1)

In cases in which Alice and Bob share multiple such states,
we may label each by an additional index so that each qubit of
an observer’s register can be uniquely identified. That is, we
may write

|�+〉(i)
AB = |0〉i

A ⊗ |0〉i
B + |1〉i

A ⊗ |1〉i
B√

2
. (2)

To denote the case of n copies of such states, with one-half of
each being held by Alice and the other by Bob, we will adopt
the notation

|�+〉⊗n
AB =

n⊗
i=1

|�+〉(i)
AB. (3)

B. Self-testing

Consider local measurements made on a system shared by
two observers, Alice and Bob, who are unable to communicate
with one another. Self-testing is a procedure that allows the
observers to deduce the quantum state they share from purely
classical (and device-independent) observations. Specifically,
given a probability distribution defining the behavior of un-
trusted measurement devices held by Alice and Bob, it is often
possible to deduce (up to some local isometry) the quantum
state they share. Moreover, one can also often deduce the local
quantum measurements corresponding to different inputs and
outputs for each device.

Instead of the physical unknown state being specified by
a density operator ρ on HA ⊗ HB, we will work throughout

with purifications |�〉 ∈ HA ⊗ HB ⊗ HP for some purifying
space HP separate from both observers. This is for the sake of
mathematical convenience and, since all operations accessible
to the observers will act trivially on this purifying space, we
will often suppress it in our notation.

Let us denote a possible output of Alice upon an input x
by a. Similarly, upon an input y, let b represent an output
of Bob. A fixed configuration of probabilities p(a, b|x, y) de-
fines a behavior for the observers. Self-testing relies on the
Born rule to express such probabilities in terms of quantum
correlations p(a, b|x, y) = 〈�|Ma|x ⊗ Nb|y|�〉 for some mea-
surements {Ma|x}a ⊂ L(HA) for Alice and {Nb|y}b ⊂ L(HB)
for Bob. An isometry � : HA ⊗ HB → H′

A ⊗ H′
B is called

local if it can be written as � = �A ⊗ �B for some isometries
�D : HD → H′

D, where D stands for either A or B. We are
now ready to state what it means to self-test quantum states.

Definition 4 (Self-testing of states). A behavior defined by
correlations p(a, b|x, y) is said to δ-approximately self-test
the state |� ′〉 ∈ H′

A ⊗ H′
B if, for any state |�〉 ∈ HA ⊗ HB ⊗

HP from which these correlations may arise, there exists a
junk state |ξ 〉 ∈ H̃A ⊗ H̃B ⊗ HP and isometries �D : HD →
H′

D ⊗ H̃D defining the local isometry � = �A ⊗ �B ⊗ IP

such that

‖�|�〉 − |� ′〉 ⊗ |ξ 〉‖ � δ. (4)

The definition of self-testing given here can be extended to
the case in which we wish to self-test some quantum measure-
ments in addition to a state.

Definition 5 (Self-testing of measurements). A behavior
p(a, b|x, y) is said to δ-approximately self-test the state |� ′〉 ∈
H′

A ⊗ H′
B and measurements {M̂a|x}a ⊂ L(H′

A) and {N̂b|y}b ⊂
L(H′

B) if, for any state |�〉 ∈ HA ⊗ HB ⊗ HP and measure-
ments {Ma|x}a ⊂ L(HA) and {Nb|y}b ⊂ L(HB) from which
these correlations may arise, there exists a junk state |ξ 〉 ∈
H̃A ⊗ H̃B ⊗ HP and isometries �D : HD → H′

D ⊗ H̃D defin-
ing the local isometry � = �A ⊗ �B ⊗ IP such that∥∥�Ma|xNb|y|�〉 − M̂a|xN̂b|y|� ′〉 ⊗ |ξ 〉∥∥ � δ (5)

for all a, b, x, and y.
Since all unknown observables we will be dealing with take

the form M = M+ − M− satisfying M+ + M− = I , we can
always write each measurement operator as M± = (I ± M )/2.
To self-test a state |� ′〉 and a measurement {M̂+, M̂−} (having
observable M̂ = M̂+ − M̂− and acting nontrivially only on
one side of the reference space) according to Definition 5, it is
sufficient by the linearity of isometries to instead show both

‖�|�〉 − |� ′〉 ⊗ |ξ 〉‖ � δ, (6)

‖�M|�〉 − M̂|� ′〉 ⊗ |ξ 〉‖ � δ. (7)

The following theorem of Coladangelo [13] (based closely
on the work of Chao et al. [22]) allows us to deduce the
existence of a local isometry required for the parallel self-
testing of n Bell states and single-qubit Pauli observables.
Rather than using a behavior of the observers directly, the
theorem states sufficient conditions in terms of appropriate
correlation, anticommutation, and commutation relations of
unknown observables available to Alice and Bob. Much of the
current work will be dedicated to proving such relations from
certain given correlations.
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Theorem 6 (Ref. [13], Theorem 3.5). Let |�〉 ∈ HA ⊗ HB,
where HA and HB have even dimension. Suppose there exist
balanced reflections X i

A, Zi
A ∈ L(HA) and X i

B, Zi
B ∈ L(HB) for

i ∈ {1, . . . , n} such that, for D either A or B and for all distinct
i and j, they satisfy∥∥(

Mi
A − Mi

B

)|�〉∥∥ � δ, (8a)∥∥{
X i

D, Zi
D

}|�〉∥∥ � δ, (8b)∥∥[
Mi

D, N j
D

]|�〉∥∥ � δ, (8c)

where M and N can be either of X and Z . Then, there exists
a state |ξ 〉 ∈ H̃A ⊗ H̃B and a local isometry � = �A ⊗ �B,
where �D : HD → (C2)

⊗n ⊗ H̃D, such that for all i,∥∥�|�〉 − |�+〉⊗n
AB ⊗ |ξ 〉∥∥ ∈ O

(
n

3
2 δ

)
, (9a)∥∥�Mi

D|�〉 − M̂i
D|�+〉⊗n

AB ⊗ |ξ 〉∥∥ ∈ O
(
n

3
2 δ

)
, (9b)

where X̂ i
D and Ẑ i

D are Pauli observables acting on the ith qubit
subsystem of register D.

The assumptions of Theorem 6 that the unknown state
spaces HA and HB have even dimension and that the unknown
reflection operators acting on these spaces are balanced (that
is, their +1 and −1 eigenspaces have equal dimension) are not
an issue for self-testing. In the construction of the isometry,
one can always extend the HD by direct sum with Hilbert
spaces of appropriate dimensions on which the extension of
|�〉 is defined to have no mass, and correspondingly extend
each reflection to have eigenspaces of equal dimensions. Thus
we may freely assume these are automatically satisfied by any
unknown reflections defined later as part of our self-testing
proofs.

C. The magic square game

The Mermin-Peres magic square game [14] consists of two
players, Alice and Bob, who are not allowed to communicate
during each round of the game. This could be achieved, for
example, by ensuring a spacelike separation between the two
players. Each round consists of Alice and Bob, respectively,
being assigned a row and column of an empty 3×3 table
uniformly at random, which they must fill according to the
following rules:

S1. Each filled cell must belong to the set {+1,−1}.
S2. Rows must contain an even number of negative entries

(i.e., the product of Alice’s entries to any assigned row must
be +1).

S3. Columns must contain an odd number of negative en-
tries (i.e., the product of Bob’s entries to any assigned column
must be −1).

Neither player has knowledge of which row or column the
other has been assigned, nor does either player know what
values the other has entered. The game is won if both players
enter the same value into the cell shared by their row and
column. It is clear that the optimal classical strategy succeeds
with probability 8/9 only [32], and may be achieved by both
players agreeing to each follow a particular configuration for
their entire table before the game begins. Strikingly, if the
players are allowed to share an entangled quantum state, it has
been shown to be possible for them to win the magic square
game with certainty [16,17].

X̂ ⊗ I X̂ ⊗ X̂ I ⊗ X̂

−X̂ ⊗ Ẑ Ŷ ⊗ Ŷ −Ẑ ⊗ X̂

I ⊗ Ẑ Ẑ ⊗ Ẑ Ẑ ⊗ I

FIG. 1. A quantum strategy for the magic square game, in which
the players share the entangled state given in Eq. (10). Observables
X̂ , Ŷ , and Ẑ are the Pauli spin operators, and I is the identity operator.
Measurements of Alice correspond to a row, and those of Bob to a
column. This strategy cannot be realized with either player perform-
ing only measurements localized to single-qubit registers.

A possible quantum winning strategy for the magic square
allows the players to share the entangled state

|�+〉(1)
AB ⊗ |�+〉(2)

AB. (10)

Depending on which row and column are assigned, the players
make measurements on their respective quantum systems ac-
cording to the observables given in the corresponding cells of
Fig. 1. The outcomes of these determine the values which Al-
ice and Bob should enter into their respective row and column
to win with certainty. Moreover, Fig. 1 shows that (unlike,
say, the CHSH game) optimal strategies can be implemented
by performing measurements of the two-qubit Pauli group
only.

In the context of practical quantum strategies, we refer to
measurements as local in the sense that they are performed
on only a single-qubit register. It will be important for our
purposes to understand that the strategy depicted here cannot
be implemented, for either player, entirely with local mea-
surements. To see this for Bob, consider the measurements
contained in the second column of Fig. 1. Upon this column
being selected, Bob is required to answer with three bits,
produced by a measurement performed on his subsystem. The
measurement, as given, is implemented as the simultaneous
measurement of three observables (one for each bit of the
answer). While the three corresponding observables X̂ ⊗ X̂ ,
Ŷ ⊗ Ŷ , and Ẑ ⊗ Ẑ are compatible when considered over Bob’s
entire subsystem, he cannot generally perform the six com-
ponent measurements on his two registers independently and
then combine the outcomes to obtain the required three-bit an-
swer; the six local measurements X̂ ⊗ I , I ⊗ X̂ , Ŷ ⊗ I , I ⊗ Ŷ ,
Ẑ ⊗ I , and I ⊗ Ẑ do not all commute in pairs, and thus the
measurement cannot be realized as the simultaneous measure-
ment of these six local observables. Similarly, consideration of
the second row of Fig. 1 shows that the strategy for Alice also
cannot be implemented by performing only local measure-
ments. We present in Sec. III a strategy for the magic square
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game that can be realized using only local measurements for
one of the players, at the cost of requiring three shared Bell
states.

D. Magic rectangle games

The magic square game can be generalized to be played on
an m×n table [10]. Such a magic rectangle game corresponds
to m possible questions for Alice and n for Bob. To avoid
trivially winning strategies, the game rules are generalized
accordingly.

Definition 7 (Magic rectangle games). An m×n game
is specified by fixing some α1, . . . , αm and β1, . . . , βn

each belonging to {+1,−1}, such that their product
satisfies

α1, . . . , αm · β1, . . . , βn = −1. (11)

The rules of the given game are then as follows:
R1. Each filled cell must belong to the set {+1,−1}.
R2. Upon being assigned the ith row, the product of Alice’s

entries must be αi.
R3. Upon being assigned the jth column, the product of

Bob’s entries must be β j .
As before, the game is won if both players enter the same

value into their shared cell.
The 3×3 magic square game described in Sec. II C is

simply the special case in which α1 = α2 = α3 = 1 and β1 =
β2 = β3 = −1. In fact, there are 2m+n−1 different specifica-
tions of m×n games allowed by Eq. (11).

We will later be concerned specifically with 3×n games
in which entries to rows must all have positive products and
entries to columns must all have negative products. Such
games are defined by αi = 1 and β j = −1 for all i and j
and must have odd n due to Eq. (11). A particular class of
winning strategies for these games will be used to build part
of our self-test of n Bell states. In the case of these particular
games, and as opposed to [10], we can rephrase the definition
of magic rectangles in a way that will prove more useful
for our self-testing purposes. If (p1, . . . , pn) ∈ {+1,−1}n is
any possible output row of Alice (whose product is required
to be +1), then there exists an assignment of a1, . . . , an ∈
{+1,−1} such that p j = ∏

k �= j ak for all j. To see this, simply
take ak = pk for all k. Conversely then, we may ask that
Alice outputs some a1, . . . , an ∈ {+1,−1} and leave it to the
game referees to check whether the appropriate products pj =∏

k �= j ak form a winning row. Notice in our special case of n
odd, such p j automatically satisfy the rule for Alice’s rows∏n

j=1 p j = +1 for any assignment of the ak . We now rephrase
the definition of 3×n magic rectangle games in this special
case.

Definition 8 (3×n magic games). Given n odd, Al-
ice and Bob receive inputs x ∈ {1, 2, 3} and y ∈ {1, . . . , n},
respectively. Alice outputs n bits a1, . . . , an ∈ {+1,−1}.
Bob outputs (b1, b2, b3) ∈ {+1,−1}3 are required to satisfy
b1b2b3 = −1. The game is won if

∏
k �=y ak = bx.

Remark. While Bob’s output here is column y of a magic
rectangle, Alice’s output corresponds to filling row x as
(p1, . . . , pn), where p j = ∏

k �= j ak . The win condition is then
equivalent to the familiar case when both players enter the
same value into the shared cell py = bx.

I ⊗ X̂ ⊗ X̂ X̂ ⊗ I ⊗ X̂ X̂ ⊗ X̂ ⊗ I

I ⊗ Ŷ ⊗ Ŷ Ŷ ⊗ I ⊗ Ŷ Ŷ ⊗ Ŷ ⊗ I

I ⊗ Ẑ ⊗ Ẑ Ẑ ⊗ I ⊗ Ẑ Ẑ ⊗ Ẑ ⊗ I

FIG. 2. The proposed magic square strategy. To realize any par-
ticular row, Alice is only required to measure each of her qubits
locally, as the observables to be measured for any individual one of
her three qubits commute within each row.

III. ONE-SIDE-LOCAL MAGIC SQUARE STRATEGY

Recall that the usual quantum winning strategy for the
magic square game requires some measurements of both Alice
and Bob to be performed in entangled bases (see the discus-
sion of Sec. II C). We now propose a quantum strategy for the
magic square game, also winning with certainty, which can be
realized under the additional constraint that Alice may only
make measurements localized to single qubits of her quantum
system. Each round begins by allowing Alice and Bob to share
three Bell states,

|�〉 = |�+〉(1)
AB ⊗ |�+〉(2)

AB ⊗ |�+〉(3)
AB. (12)

Half of each Bell state is given to Alice, and the other half to
Bob. The proposed measurement strategy is depicted in Fig. 2.

Notice in Fig. 2 that each row is formed out of commuting
observables whose product is equal to the identity operator.
Similarly, the observables in each column commute and have
a product equal to minus the identity operator. Moreover, the
eigenvalues of each observable are +1 and −1. These facts
combined show that Rules S1–S3 in Sec. II C are automat-
ically satisfied by the outcomes of measuring a full row or
column. If M̂A is any observable for Alice’s system contained
in Fig. 2, and if M̂B is the observable of the same cell for Bob’s
system, then it is easy to show the correlation

〈�|M̂AM̂B|�〉 = 1. (13)

This can be seen, for example, by writing the Bell states
comprising the shared state of Eq. (12) in terms of eigenstates
of the X̂ , Ŷ , and Ẑ operators, respectively,

|�+〉 = |+〉 ⊗ |+〉 + |−〉 ⊗ |−〉√
2

= |+i〉 ⊗ |−i〉 + |−i〉 ⊗ |+i〉√
2

= |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉√
2

. (14)
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Alice, therefore, always measures the same outcome as Bob
for the shared cell (either both +1 or both −1), and so they
win the game with certainty.

For any particular row assigned to Alice, it is clear from
inspection of Fig. 2 that she need only make single-qubit
measurements; for any given qubit of her system, the single-
qubit observables she is required to measure with respect to
that qubit of her register mutually commute within the row.
That is, it is always possible for Alice to realize the required
observables by recording the measurement outcomes of a
particular Pauli operator (X̂ , Ŷ , or Ẑ depending on the row)
on each one of her three qubits. This strategy can thus be
phrased naturally for the magic square game in the sense of
Definition 8 with n = 3. Bob generates his outputs according
to the columns of Fig. 2 as usual. The jth output bit a j of
Alice, however, results from the outcome of the single-qubit
Pauli measurement X̂ j

A , Ŷ j
A , or Ẑ j

A on Alice’s jth qubit depend-
ing on whether the first, second, or third row was assigned,
respectively.

IV. SELF-TEST OF THREE BELL STATES

By augmenting the correlations arising from a winning
magic square strategy by certain additional correlations that
ensure Alice implements her side of the strategy locally, it
is possible to self-test three copies of the Bell state |�+〉.
These additional correlations are obtained from Bob making
single-qubit Pauli measurements of his qubits in some rounds
of the test, which we will call “check” rounds. Rounds that
are not check rounds will be called “game” rounds. We now
describe the structure of the self-test and specify its honest
behavior. Afterward, we exhibit explicitly the correlations of
unknown observables used in the test. Finally, we show how
these correlations can be used to prove the relevant commuta-
tion and anticommutation relations required for a self-testing
proof.

A. Structure and honest behavior

Alice receives an input x ∈ {1, 2, 3} and Bob an input
y ∈ {1, 2, 3}. Additionally, Bob receives an input c ∈ {0, 1}
controlling whether the round is a game or check round. If
the round is a game round (c = 0), then it is the goal of the
players to win at the magic square game (in the sense of
Definition 8) with the row and column assigned to Alice and
Bob given by x and y, respectively. Otherwise, if the round is a
check round (c = 1), then the players are required to perfectly
correlate certain combinations of their output bits (which will
be convenient to state after our description of the honest be-
havior). Notice, however, that Alice is not directly provided
with the information of whether the round is to be consid-
ered a game or check round. The protocol is summarized in
Protocol 1.

Protocol 1. A protocol for certifying three Bell states. Strategies
in which Alice uses entangled measurements are ruled out by local
check rounds. The protocol is phrased in terms of the parameter n, as
it will be extended in Sec. V B in order to self-test n Bell states.

Let n = 3 be the number of Bell states to be certified. In each
round, a verifier chooses c ∈ {0, 1} and y ∈ {1, . . . , n}. The
verifier sends Bob (c, y) and, depending on c, runs one of the
following subprotocols:

0. Magic game: Send Alice x ∈ {1, 2, 3}. Alice and Bob
answer with a1, . . . , an and b1, b2, b3 in {+1, −1}
satisfying b1b2b3 = −1. Accept if and only if

∏
k �=y ak = bx .

1. Local check: Send Alice x ∈ {1, 3}. Alice and Bob answer
with a1, . . . , an and b1, . . . , bn in {+1, −1}.

(a) If x = 1, accept if and only if ay = by.
(b) If x = 3, accept if and only if aj = bj for all j �= y.

In an honest round of the experiment, the players share
three Bell states, so that |�〉 = |�+〉⊗3

AB as in the magic square
strategy of Sec. III. Alice always performs her side of this
magic square strategy, providing each of her output bits aj to
the referees (as in Definition 8) by measuring

X̂ j
A if x = 1, (15a)

Ŷ j
A if x = 2, (15b)

Ẑ j
A if x = 3. (15c)

The honest behavior of Bob depends on the type of round c.
If c = 0, then Bob also performs his side of our one-side-local
magic square strategy, returning outputs according to measur-
ing the observables in column y of Fig. 2 so that the magic
square game is won with certainty. Otherwise, if c = 1, then
the input y determines which one of three sets of single-qubit
Pauli measurements he performs. Specifically, Bob’s output
bits are generated as the measurement outcomes of the set of
Pauli observables,{

X̂ 1
B , Ẑ2

B, Ẑ3
B

}
if y = 1, (16a){

Ẑ1
B, X̂ 2

B , Ẑ3
B

}
if y = 2, (16b){

Ẑ1
B, Ẑ2

B, X̂ 3
B

}
if y = 3. (16c)

It is convenient at this point to call attention to the per-
fect correlations of output bits expected in honest check
rounds. These are all the single-qubit quantum correlations
〈�|X̂ j

A X̂ j
B |�〉 = 1 and 〈�|Ẑ j

AẐ j
B|�〉 = 1. Observation of a ver-

sion of these correlations using untrusted observables (which
will not be assumed to be identical for Bob upon his different
inputs) will become a requirement for our protocol to certify
the desired reference state.

B. Unknown observables and correlations

We will denote the unknown state shared by the play-
ers by |�〉, and the expectation value of an unknown
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observable M with respect to this state by 〈M〉 = 〈�|M|�〉.
We now describe the unknown observables which will be used
by Alice and Bob in our self-testing proof. Recall that, in
contrast to the honest Pauli observables used in the previous
Sec. IV A, such unknown observables are denoted without a
hat symbol (using X for the corresponding unknown version
of the Pauli X̂ observable). We may not assume a priori, in
the potentially dishonest case of the self-testing protocol, that
the players measure any of the same observables upon being
given different inputs. For this reason, we introduce notation
in such a way that the observer and their input can always be
deduced from the label of an unknown observable. This choice
of notation will be seen in Eqs. (17), (18), and (20).

It is important to note that all unknown observables that
are to be measured as part of the same local input commute
by definition. For example, from the observables defined im-
mediately below, it can always be assumed that [X 1

A , X 2
A ] =

0, since both observables correspond to the input x = 1 for
Alice. Furthermore, it can always be assumed that any two
observables defined for different players commute. These two
properties will be exploited frequently in proofs throughout
the rest of the work.

1. Alice’s observables

We define sets of mutually commuting unknown observ-
ables on Alice’s side to be measured depending on her input x
as {

X 1
A , X 2

A , X 3
A

}
if x = 1, (17a){

Y 1
A ,Y 2

A ,Y 3
A

}
if x = 2, (17b){

Z1
A, Z2

A, Z3
A

}
if x = 3. (17c)

Each of these unknown observables corresponds to a single-
qubit Pauli observable, which acts on the qubit of Alice
indicated by its superscript.

2. Bob’s observables (game rounds)

For game rounds (c = 0), we will denote the sets of un-
known observables to be measured by Bob, depending on his
input y, by {

X 1
B ,Y 1

B , Z1
B

}
if y = 1, (18a){

X 2
B ,Y 2

B , Z2
B

}
if y = 2, (18b){

X 3
B ,Y 3

B , Z3
B

}
if y = 3. (18c)

The overline notation used in each superscript reflects that
these observables correspond to the product of single-qubit
Pauli observables acting on all qubits of Bob other than
that indicated. For example, here the unknown observable
X 1

B corresponds to X̂ 2
B X̂ 3

B in the honest case. Note also that
Rule S3 of the magic square game requires columns to have
negative products. In terms of unknown observables, that is
〈X y

BY y
B Zy

B〉 = −1 for all y. Thus we need not have defined one
observable in each set, say Y y

B , since this implies

Y y
B |�〉 = −X y

BZy
B|�〉. (19)

We will, however, choose to keep all of these observables for
notational convenience, referring to Eq. (19) when necessary.

3. Bob’s observables (check rounds)

For check rounds (c = 1), Bob’s unknown observables
correspond to single-qubit Pauli X and Z observables acting
on his system. These will be denoted as follows, with an
additional subscript to distinguish unknown observables of
different inputs:{

X 1
B,1, Z2

B,1, Z3
B,1

}
if y = 1, (20a){

Z1
B,2, X 2

B,2, Z3
B,2

}
if y = 2, (20b){

Z1
B,3, Z2

B,3, X 3
B,3

}
if y = 3. (20c)

4. Correlations

The correlations of unknown observables amounting to a
uniformly ε0-close to perfect strategy for the magic square
game (i.e., correlations obtained in game rounds) are, for all
distinct i, j, k ∈ {1, 2, 3},〈

X i
AX j

A X k
B

〉
� 1 − ε0, (21a)

−〈
Y i

AY j
A X k

B Zk
B

〉
� 1 − ε0, (21b)〈

Zi
AZ j

AZk
B

〉
� 1 − ε0. (21c)

The correlations constituting uniformly ε1-close to perfect
check rounds are, again for all distinct i, j ∈ {1, 2, 3},〈

X i
AX i

B,i

〉
� 1 − ε1, (22a)〈

Zi
AZi

B, j

〉
� 1 − ε1. (22b)

Figure 3 clarifies the meaning of our unknown observables for
game rounds.

C. Commutation and anticommutation relations

In this section, we prove commutation and anticommu-
tation relations (acting on our unknown state) for those
unknown observables of Alice and Bob corresponding to
single-qubit Pauli measurements. To do this, we use the
correlations of Sec. IV B. The results of this section are sum-
marized in the following theorem:

Theorem 9. Let i, j, k, l ∈ {1, 2, 3} be such that i �= k and
j �= l . We have correlations between each unknown observ-
able of Alice with each of the corresponding observables on
Bob’s side, ∥∥(

X i
A − X i

B,i

)|�〉∥∥ �
√

2ε1, (23)∥∥(
Zi

A − Zi
B,k

)|�〉∥∥ �
√

2ε1. (24)

We have the state-dependent anticommutativity of all un-
known X observables with all unknown Z observables
corresponding to the same qubit,∥∥{

X i
A, Zi

A

}|�〉∥∥ � 9
√

2ε0 + 16
√

2ε1, (25)∥∥{
X i

B,i, Zi
B,k

}|�〉∥∥ � 9
√

2ε0 + 20
√

2ε1. (26)

Finally, we have the state-dependent commutativity of un-
known X and Z observables. On Bob’s side, we have∥∥[

X i
B,i, X j

B, j

]|�〉∥∥ � 4
√

2ε1, (27)∥∥[
Zi

B,k, Z j
B,l

]|�〉∥∥ � 4
√

2ε1; (28)
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X2
AX3

A X1
AX3

A X1
AX2

A

Y 2
AY 3

A Y 1
AY 3

A Y 1
AY 2

A

Z2
AZ3

A Z1
AZ3

A Z1
AZ2

A

(a)

X1
B X2

B X3
B

−X1
BZ1

B −X2
BZ2

B −X3
BZ3

B

Z1
B Z2

B Z3
B

(b)

FIG. 3. The layout of unknown observables in a magic square
strategy for (a) Alice and (b) Bob.

and moreover, restricting to observables corresponding to dif-
ferent qubits i �= j,∥∥[

X i
B,i, Z j

B,l

]|�〉∥∥ � 8
√

2ε1. (29)

On Alice’s side, for different qubits i �= j, we have∥∥[
Mi

A, N j
A

]|�〉∥∥ � 4
√

2ε1, (30)

where M and N can be either of X and Z .
Proof. Combine Propositions 10, 11, and 13. �
Proposition 10 (Correlation). For all distinct i, j ∈

{1, 2, 3},
we have the correlation estimates∥∥(

X i
A − X i

B,i

)|�〉∥∥ �
√

2ε1, (31a)∥∥(
Zi

A − Zi
B, j

)|�〉∥∥ �
√

2ε1. (31b)

Proof. Apply Lemma 3 to the correlations given in
Eq. (22). �

The following proposition shows the commutation of un-
known observables which we expect to correspond to local
measurements on different qubits. Since observables defined
for different players are assumed to commute, we show com-
mutation for the observables of each player separately.

Proposition 11 (Commutation). For all i, j, k, l ∈ {1, 2, 3}
such that i �= k and j �= l , we have∥∥[

X i
B,i, X j

B, j

]|�〉∥∥ � 4
√

2ε1, (32a)∥∥[
Zi

B,k, Z j
B,l

]|�〉∥∥ � 4
√

2ε1. (32b)

Moreover, if i �= j we have commutation relations for Bob,∥∥[
X i

B,i, Z j
B,l

]|�〉∥∥ � 8
√

2ε1, (33)

and for Alice, ∥∥[
Mi

A, N j
A

]|�〉∥∥ � 4
√

2ε1, (34)

where M and N can be either of X and Z .
Proof. Using the triangle inequality with the estimates of

Proposition 10, and the commutation of Alice’s observables
corresponding to the same input, we can write∥∥[

X i
B,i, X j

B, j

]|�〉∥∥ � 4
√

2ε1 + ∥∥[
X j

A , X i
A

]|�〉∥∥
= 4

√
2ε1, (35)

showing Eq. (32a). Similarly, to obtain Eq. (32b),∥∥[
Zi

B,k, Z j
B,l

]|�〉∥∥ � 4
√

2ε1 + ∥∥[
Z j

A, Zi
A

]|�〉∥∥
= 4

√
2ε1. (36)

We now assume i �= j. From the definition of Bob’s check-
round observables [Eq. (20)] we have [X i

B,i, Z j
B,i] = 0. We use

this and Proposition 10 to get∥∥[
X i

A, Z j
A

]|�〉∥∥ = ∥∥X i
AZ j

A|�〉 − Z j
AX i

A|�〉∥∥
� 2

√
2ε1 + ∥∥X i

AZ j
A|�〉 − X i

B,iZ
j

B,i|�〉∥∥
= 2

√
2ε1 + ∥∥X i

AZ j
A|�〉 − Z j

B,iX
i
B,i|�〉∥∥

� 4
√

2ε1 + ∥∥X i
AZ j

A|�〉 − X i
AZ j

A|�〉∥∥
= 4

√
2ε1. (37)

Combining this with the definition of Alice’s observables
[Eq. (17)], from which we have [X i

A, X j
A ] = 0 and [Zi

A, Z j
A] =

0, yields Eq. (34). To obtain Eq. (33), we again use Proposition
10 to write∥∥[

X i
B,i, Z j

B,l

]|�〉∥∥ � 4
√

2ε1 + ∥∥[
Z j

A, X i
A

]|�〉∥∥ � 8
√

2ε1,

(38)
where the final inequality uses Eq. (34) just proved. �

We now show an intermediate result that will allow us
to prove the anticommutativity of unknown local X and Z
observables. The lemma shows that Alice’s unknown observ-
ables for pairs of X and Z operators not acting on the same
qubits anticommute (cf. the observables used in the magic
square strategy of Sec. III). The proof follows a similar line
to [15].

Lemma 12. For all distinct i, j, k ∈ {1, 2, 3} we have anti-
commutation relations for Bob’s game round observables,∥∥{

X i
AX j

A , Zi
AZk

A

}|�〉∥∥ � 9
√

2ε0. (39)

Proof. By estimating the game-round correlations of
Eq. (21) using Lemma 3, and repeatedly applying the triangle
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inequality,

∥∥{
X i

AX j
A , Zi

AZk
A

}|�〉∥∥
� 4

√
2ε0 +

∥∥∥Z j
BX k

B |�〉 + X j
B X i

BZi
AZk

A|�〉
∥∥∥

= 4
√

2ε0 +
∥∥∥X j

B Z j
BX k

B Zi
AZ j

A|�〉 + X i
BZ j

AZk
A|�〉

∥∥∥
� 6

√
2ε0 +

∥∥∥(
X j

B Z j
B

)(
X k

B Zk
B

)
|�〉 + X i

BZi
B|�〉

∥∥∥
� 8

√
2ε0 +

∥∥∥(
Y i

AY j
A

)(
Y i

AY k
A

)|�〉 + X i
BZi

B|�〉
∥∥∥

= 8
√

2ε0 +
∥∥∥Y j

A Y k
A |�〉 + X i

BZi
B|�〉

∥∥∥
� 9

√
2ε0, (40)

where the first equality results from applying unitary operators

Zi
AZ j

A and X j
B inside the norm. �

We are now in a position to prove the required anticommu-
tativity of unknown X observables with Z observables which
act on the same qubits of the unknown state.

Proposition 13 (Anticommutation). For all i ∈ {1, 2, 3} we
have anticommutation relations for Alice’s unknown observ-
ables,

∥∥{
X i

A, Zi
A

}|�〉∥∥ � 9
√

2ε0 + 16
√

2ε1. (41)

Furthermore, for all j ∈ {1, 2, 3} distinct from i we have an-
ticommutation relations for Bob’s check-round observables,

∥∥{
X i

B,i, Zi
B, j

}|�〉∥∥ � 9
√

2ε0 + 20
√

2ε1. (42)

Proof. Let k ∈ {1, 2, 3} be distinct from i and j. Then

∥∥{
X i

A, Zi
A

}|�〉∥∥
= ∥∥X j

B, jZ
k
B,i

{
X i

A, Zi
A

}|�〉∥∥
= ∥∥X i

AZi
AX j

B, jZ
k
B,i|�〉 + Zi

AX i
AX j

B, jZ
k
B,i|�〉∥∥

�
∥∥X i

AZi
AZk

B,iX
j

B, j |�〉 + Zi
AX i

AX j
B, jZ

k
B,i|�〉∥∥

+ 8
√

2ε1

�
∥∥X i

AZk
B,iX

j
B, jZ

i
B, j |�〉 + Zi

AX j
B, jZ

k
B,iX

i
B,i|�〉∥∥

+ 10
√

2ε1

= ∥∥X i
AZk

B,iZ
i
B, jX

j
B, j |�〉 + Zi

AX j
B, jX

i
B,iZ

k
B,i|�〉∥∥

+10
√

2ε1

�
∥∥{

X i
AX j

A , Zi
AZk

A

}|�〉∥∥ + 16
√

2ε1

� 9
√

2ε0 + 16
√

2ε1. (43)

For the first inequality, we commuted Bob’s check-round
observables using Eq. (33) of Proposition 11. For the final in-
equality, we applied Lemma 12 to bound the anticommutator
norm. All other inequalities were found from the correlation
estimates of Proposition 10.

To obtain Eq. (42), we use Proposition 10 to write∥∥{
X i

B,i, Zi
B, j

}|�〉∥∥ � 4
√

2ε1 + ∥∥{
X i

A, Zi
A

}|�〉∥∥
� 9

√
2ε0 + 20

√
2ε1, (44)

where the final inequality follows from Eq. (41) just
proved. �

V. SELF-TEST OF MANY BELL STATES

We can use similar techniques to Sec. IV to self-test n > 3
Bell states, provided n ≡ 3 (mod 4) (which we will assume
throughout this section). In this case, the honest strategy is
played using a 3×n magic game, as described by Definition 8.
The strategy for this game upon which we base our self-
test will be explained in Sec. V A. The structure and honest
behavior of the self-test will simultaneously be described in
Sec. V B, with all general unknown observables for Alice and
Bob and their required correlations then defined in Sec. V C.
All commutation and anticommutation relations required to
construct a local self-testing isometry will finally be shown in
Sec. V D. From this, we have the final self-testing statement
for many Bell states.

Theorem 14. Let |�〉 ∈ HA ⊗ HB be an unknown state
shared by Alice and Bob and let n ≡ 3 (mod 4) with n > 3
be the number of Bell states to be self-tested. Let sets of
pairwise commutative, ±1-valued, unknown observables in
L(HA) for Alice be given as in Eq. (54), and in L(HB) for
Bob as in Eqs. (55), (57), and (58). Suppose that these observ-
ables satisfy all correlations given in Eqs. (59)–(61) and let
ε = max{ε0, ε1, ε2}. Then, for any choice (ki )n

i=1 of elements
in {1, . . . , n} where each ki �= i, there exists a junk state |ξ 〉
and a local isometry � such that, for all i ∈ {1, . . . , n},∥∥�|�〉 − |�+〉⊗n

AB ⊗ |ξ 〉∥∥ ∈ O
(
n

5
2
√

ε
)
, (45a)∥∥�X i

A|�〉 − X̂ i
A|�+〉⊗n

AB ⊗ |ξ 〉∥∥ ∈ O
(
n

5
2
√

ε
)
, (45b)∥∥�Zi

A|�〉 − Ẑ i
A|�+〉⊗n

AB ⊗ |ξ 〉∥∥ ∈ O
(
n

5
2
√

ε
)
, (45c)∥∥�X i

B,i|�〉 − X̂ i
B|�+〉⊗n

AB ⊗ |ξ 〉∥∥ ∈ O
(
n

5
2
√

ε
)
, (45d)∥∥�Zi

B,ki
|�〉 − Ẑ i

B|�+〉⊗n
AB ⊗ |ξ 〉∥∥ ∈ O

(
n

5
2
√

ε
)
. (45e)

Proof. Take the observables {X i
A, Zi

A}n
i=1 of Eq. (54) and

{X i
B,i, Zi

B,ki
}n

i=1 of Eq. (57) to be the (extended if necessary)
reflections assumed by Theorem 6, with δ given by the largest
upper bound appearing in Theorem 16. �

Relatively few of the unknown observables defined as part
of the self-test are actually used to construct the isometry, with
most only serving in the proofs of necessary commutation and
anticommutation relations. The total number of observables
defined in Eqs. (54), (55), (57), and (58) is 2n2 + 4n, while
only 4n of these are required for the isometry of Theorem 6.
In particular, we are free to use any n of the Zi

B,y of Eq. (57)
provided that we cover all qubits (denoted by the superscript
index). This freedom is expressed in Theorem 14 above by
choice of the ki. In the honest case, many of the unknown
observables are in fact identical to one another.

For this self-test, Bob must make Pauli measurements on
pairs of qubits to ensure their commutation. This was not
explicitly required in the self-test of three Bell states, since
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Bob’s game-round observables (corresponding to products of
Pauli observables on all but one of his qubits) automatically
served this purpose. We would thus like a way to subdivide all
possible pairs of (an odd number of) qubits into as few disjoint
sets of disjoint pairs as possible. This is equivalent to finding
an optimal edge coloring for the complete graph Kn where n
is odd. The following lemma constructs such a coloring.

Lemma 15. Consider the complete graph Kn for n odd,
whose vertices are labeled by V = {1, . . . , n}. For each v ∈
V , color the edges {v − i, v + i} by color v for all i ∈
{1, . . . , n−1

2 }, where addition is performed modulo n. This is a
proper n-edge-coloring for Kn and is optimal in the sense that
it uses as few colors as possible.

Proof. Define the color of each edge {a, b} to be a+b
2

(mod n), where the multiplicative inverse of 2 modulo n al-
ways exists since 2 is coprime to any odd n. Suppose that
two edges {x, i} and {x, j} have the same color under this
definition. Then x+i

2 ≡ x+ j
2 (mod n), and thus i = j. There-

fore, no two distinct adjacent edges can have the same color.
That is, we defined a proper edge coloring. Notice that all
edges of the same color v here take the form {v − i, v + i}
for i ∈ {1, . . . , n−1

2 }. Hence our coloring is identical to that
given in the statement. Optimality results from the fact that
the chromatic index of Kn is n when n is odd. �

Remark. If the graph is depicted by straight lines drawn
between the vertices of a regular n-gon, the given construction
assigns a different color to each of n sets of parallel edges.

Since we will be dealing with many noncommutative ob-
jects, we unambiguously define the finite product notation to
be formed with indices in ascending order as

n∏
i=1

Mi ≡ M1M2, . . . , Mn. (46)

We will use this notation to denote the composition of (not
necessarily commutative) operators.

A. Magic game strategy

A simple winning strategy for 3×n magic games, in which
players share three Bell states and Alice need only make
single-qubit measurements, can be constructed by append-
ing deterministic columns to the 3×3 strategy of Sec. III.
However, we will base our self-test on an alternative strategy,
which will be described here.

Let Alice and Bob share the n Bell states,

|�〉 =
n⊗

j=1

|�+〉( j)
AB. (47)

Figure 4 depicts the 3×n measurement strategy on which our
self-test will be based.

Since n ≡ 3 (mod 4), the observable for each square of the
strategy is composed of 2 (mod 4) single-qubit Pauli observ-
ables. Hence the three observables in each column mutually
commute and satisfy Bob’s negative product rule,(∏

j �=y

X̂ j

)( ∏
j �=y

Ŷ j

)( ∏
j �=y

Ẑ j

)

=
∏
j �=y

X̂ jŶ j Ẑ j = in−1I = i2I = −I. (48)

j �=1

X̂j

j �=2

X̂j
. . .

j �=n

X̂j

j �=1

Ŷ j

j �=2

Ŷ j
. . .

j �=n

Ŷ j

j �=1

Ẑj

j �=2

Ẑj
. . .

j �=n

Ẑj

FIG. 4. The 3×n magic game strategy upon which our self-test
is based. Pauli observables that act on qubit j of a player’s register
are denoted by X̂ j , Ŷ j , and Ẑ j .

Since the Pauli observables appearing in each row are all of
the same type, the squares in each row mutually commute.
Moreover, since Pauli observables are involutory and there are
an even number of such observables corresponding to each
qubit in each row, every row has product +I . There is also
perfect correlation between Alice’s and Bob’s observables for
each square of the strategy. That is, letting Ŝ stand for X̂ , Ŷ ,
or Ẑ , and for all y,

〈�|
∏
j �=y

Ŝ j
A

∏
j �=y

Ŝ j
B|�〉 =

∏
j �=y

〈�+|Ŝ j
AŜ j

B|�+〉( j)

AB

= (±1)n−1 = 1. (49)

This strategy can again be naturally phrased as a winning
strategy for magic games in the sense of Definition 8. Alice
generates her outputs a j as the outcomes of measurements of
X̂ j

A , Ŷ j
A , or Ẑ j

A depending on whether the first, second, or third
row was assigned, respectively. Bob generates his outputs
(b1, b2, b3) according to the outcomes of observables in Fig. 4
for the column he was assigned. By Eq. (48), Bob’s outputs
always satisfy the rule b1b2b3 = −1. By Eq. (49), for input
row and columns x and y, respectively, the outputs always
satisfy

∏
j �=y a j = bx. Therefore, in the strategy described, the

players win with certainty.
In terms of experimental implementation, note that Alice

need only make single-qubit Pauli measurements for her side
of the strategy. On Bob’s side, making the required compatible
measurements of

∏
j �=y X̂ j

B ,
∏

j �=y Ŷ j
B , and

∏
j �=y Ẑ j

B may seem
impractical for systems with large n. Note, however, that since
the pairs of Pauli observables X̂ ⊗ X̂ , Ŷ ⊗ Ŷ , and Ẑ ⊗ Ẑ mu-
tually commute, Bob need only measure 3

2 (n − 1) such pairs
to construct measurements of all three required observables.

B. Structure and honest behavior

As in our self-test for three Bell states, Alice receives
an input x ∈ {1, 2, 3}. However, Bob now receives an input
y ∈ {1, . . . , n}. Furthermore, Bob’s input controlling the type
of round is now a trit c ∈ {0, 1, 2}. The additional value c = 2
determines that the players are requested to check correlations
between certain pairs of Pauli observables. As such, we will
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call such rounds where c = 2 pair check rounds, and rename
those rounds where c = 1 to local check rounds to avoid am-
biguity. Alice must always output n bits, whereas the number
of output bits of Bob depends on the type of round c. The
protocol is summarized in Protocol 2.

Protocol 2. Protocol for certifying n Bell states. Intuitively, pair
check rounds rule out those single-qubit 3×n magic rectangle game
strategies found by extending strategies for smaller 3×n′ games us-
ing deterministic entries. Otherwise, the required correlations could
be satisfied by provers sharing fewer Bell states.

Let n = 3 (mod 4) be the number of Bell states to be certified.
The verifier chooses c ∈ {0, 1, 2} and performs Protocol 1 with an
additional subprotocol if c = 2 is chosen:

2. Pair check: Send Alice x ∈ {1, 3}. Alice answers with
a1, . . . , an. Bob answers with n − 1 bits by−k,y+k

and b′
y−k,y+k in {+1, −1} (with addition taken modulo n) for

all k ∈ {1, . . . , n−1
2 }.

(a) If x = 1, accept if and only if aia j = bi, j for all i, j.
(b) If x = 3, accept if and only if aia j = b′

i, j for all i, j.

Honest rounds consist of the players sharing n Bell states,

|�〉 =
n⊗

j=1

|�+〉( j)
AB. (50)

Alice always provides each of her output bits a j by mea-
suring the n observables of our 3×n magic game strategy
(Sec. V A),

X̂ j
A if x = 1, (51a)

Ŷ j
A if x = 2, (51b)

Ẑ j
A if x = 3. (51c)

This is structurally identical to Eq. (15) in the previous
self-test of three Bell states, with the exception that n mea-
surements are now made upon each input.

Once again the honest behavior of Bob depends on c. If it
is a game round (c = 0), then Bob must output three bits, as
usual with the goal of winning the 3×n magic game. In the
case of a local check round (c = 1), Bob proceeds similarly
to Eq. (16) of the previous self-test, but now generates his jth
of n output bits depending on the input y as the measurement
outcomes of Pauli observables Ŝ j

B, where

Ŝ j
B =

{
X̂ j

B if y = j,

Ẑ j
B otherwise.

(52)

Finally, if it is a pair check round (c = 2), Bob measures n − 1
Pauli observables of the form X̂ ⊗ X̂ and Ẑ ⊗ Ẑ on disjoint
pairs of qubits. Depending on the input y, the observables he
measures are{

X̂ y− j
B X̂ y+ j

B

}(n−1)/2

j=1 ∪ {
Ẑy− j

B Ẑy+ j
B

}(n−1)/2

j=1 , (53)

where addition is taken modulo n. Notice that all observables
in the set of Eq. (53) mutually commute, and by the construc-
tion given in Lemma 15 the combination of all n such sets
covers every possible pair of n qubits.

The correlations that we expect to be satisfied from honest
check rounds are the appropriate perfect correlations between
Alice and Bob. For local check rounds, these are (as be-
fore) all the single-qubit correlations 〈�|X̂ j

A X̂ j
B |�〉 = 1 and

〈�|Ẑ j
AẐ j

B|�〉 = 1. For pair check rounds, these are the correla-
tions between all pairs of observables 〈�|X̂ j

A X̂ k
A X̂ j

B X̂ k
B |�〉 = 1

and 〈�|Ẑ j
AẐk

AẐ j
BẐk

B|�〉 = 1.

C. Unknown observables and correlations

Recall that, as in Sec. IV B for the previous self-test of three
Bell states, all unknown observables must be labeled uniquely
with respect to each observer’s possible input questions in
order to avoid assumptions about their measurements in this
potentially dishonest case.

1. Alice’s observables

We define sets of mutually commuting unknown observ-
ables on Alice’s side to be measured depending on her input x
as {

X j
A

}n

j=1 if x = 1, (54a){
Y j

A

}n

j=1 if x = 2, (54b){
Z j

A

}n

j=1 if x = 3. (54c)

Each of these unknown observables corresponds to a single-
qubit Pauli observable which acts on the qubit of Alice
indicated by its superscript.

2. Bob’s observables (game rounds)

For game rounds (c = 0), we will denote the sets of un-
known observables to be measured by Bob, depending on his
input y, by {

X y
B,Y y

B , Zy
B

}
. (55)

It should once again be noted that one of the observables for
each input is redundant, as

Y y
B |�〉 = −X y

BZy
B|�〉 (56)

by the rule for the product of Bob’s outputs (see Definition 8).
We will, however, keep all for notational convenience.

3. Bob’s observables (local check rounds)

For local check rounds (c = 1), Bob’s unknown observ-
ables correspond to single-qubit Pauli X̂ and Ẑ observables
acting on his system. The set of observables for input y is
defined by {

X y
B,y

} ∪ {
Z j

B,y : 1 � j � n, j �= y
}
. (57)

4. Bob’s observables (pair check rounds)

For pair check rounds (c = 2), we define sets of n − 1
observables for each input y as{

X y− j,y+ j
B

}(n−1)/2

j=1 ∪ {
Zy− j,y+ j

B

}(n−1)/2

j=1 , (58)

where addition is taken modulo n. In contrast to the honest
case of Eq. (53), we have not assumed that Bob’s outputs
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arise as the product of multiple other observables. The two
superscript indices denote that these observables correspond
to the product of Pauli observables on pairs of qubits. For
example, the unknown observable X 1,2

B corresponds to X̂ 1
B X̂ 2

B
in the honest case. In the notation we have introduced, the
order of superscript indices for an unknown observable is
unimportant. Thus, for convenience, we also introduce la-
bels with reversed ordering of superscripts and identify these
with observables appearing in Eq. (58). Specifically, let the
labels X i, j

B ≡ X j,i
B and Zi, j

B ≡ Z j,i
B . This is consistent with the

honest case, in which the corresponding pairs of observables
commute. By Lemma 15, the pairs of indices (y − j, y + j)
appearing in Eq. (58) for a given input y are pairwise disjoint
and the combination of these pairs over every input gives
every possible index pair (up to ordering of the indices). Thus
the n sets of n − 1 pair check observables defined account for
measurements of X̂ ⊗ X̂ and Ẑ ⊗ Ẑ on every possible pair
of n qubits and, moreover, the observables for a given input
mutually commute in the honest case as expected.

5. Correlations

The correlations of unknown observables amounting to a
uniformly ε0-close to perfect strategy for the 3×n magic game
(i.e., correlations obtained in game rounds) are, with reference
to the winning strategy described in Sec. V A,〈⎛

⎝∏
j �=k

X j
A

⎞
⎠X k

B

〉
� 1 − ε0, (59a)

−
〈⎛
⎝∏

j �=k

Y j
A

⎞
⎠X k

B Zk
B

〉
� 1 − ε0, (59b)

〈⎛
⎝∏

j �=k

Z j
A

⎞
⎠Zk

B

〉
� 1 − ε0. (59c)

The correlations constituting uniformly ε1-close to perfect
local check rounds are, for all distinct i, j ∈ {1, . . . , n},〈

X i
AX i

B,i

〉
� 1 − ε1, (60a)〈

Zi
AZi

B, j

〉
� 1 − ε1. (60b)

The correlations describing uniformly ε2-close to perfect pair
check rounds are, for all distinct i, j ∈ {1, . . . , n},〈

X i
AX j

A X i, j
B

〉
� 1 − ε2, (61a)〈

Zi
AZ j

AZi, j
B

〉
� 1 − ε2. (61b)

From the assumption that all of these correlations are satisfied
for our unknown observables, we will deduce appropriate
commutation and anticommutation relations which imply the
existence of a local self-testing isometry by Theorem 6.

D. Commutation and anticommutation relations

Here we will deduce the appropriate state-dependent com-
mutation and anticommutation relations of our unknown
reflections from which a local self-testing isometry can be
constructed. The results of this section are summarized in the
following theorem.

Theorem 16. Let i, j, k, l ∈ {1, . . . , n} be such that i �= k
and j �= l . We have correlations between each unknown ob-
servable of Alice with each of the corresponding observables
on Bob’s side, ∥∥(

X i
A − X i

B,i

)|�〉∥∥ �
√

2ε1, (62)∥∥(
Zi

A − Zi
B,k

)|�〉∥∥ �
√

2ε1. (63)

We have the state-dependent anticommutativity of all un-
known X observables with all unknown Z observables
corresponding to the same qubit,∥∥{

X i
A, Zi

A

}|�〉∥∥ � 3n
√

2ε0 + 2(n − 1)
√

2ε2

+
(

13(n − 1)

2
+ 17

)√
2ε1, (64)∥∥{

X i
B,i, Zi

B,k

}|�〉∥∥ � 3n
√

2ε0 + 2(n − 1)
√

2ε2

+
(

13(n − 1)

2
+ 21

)√
2ε1. (65)

Finally, we have the state-dependent commutativity of un-
known X and Z observables. On Bob’s side, we have∥∥[

X i
B,i, X j

B, j

]|�〉∥∥ � 4
√

2ε1, (66)∥∥[
Zi

B,k, Z j
B,l

]|�〉∥∥ � 4
√

2ε1; (67)

and moreover restricting to observables corresponding to dif-
ferent qubits i �= j,∥∥[

X i
B,i, Z j

B,l

]|�〉∥∥ � 8
√

2ε1. (68)

On Alice’s side, for different qubits i �= j, we have∥∥[
Mi

A, N j
A

]|�〉∥∥ � 4
√

2ε1, (69)

where M and N can be either of X and Z .
Proof. Combine Propositions 17–19. �
We begin by expressing the correlations of Eq. (60), be-

tween those observables of the players corresponding to local
Pauli observables acting on the same qubit, in terms of norms.

Proposition 17 (Correlation). For all distinct i, j ∈
{1, . . . , n} we have the correlation estimates∥∥(

X i
A − X i

B,i

)|�〉∥∥ �
√

2ε1, (70a)∥∥(
Zi

A − Zi
B, j

)|�〉∥∥ �
√

2ε1. (70b)

Proof. Apply Lemma 3 to the correlations given in
Eq. (60). �

We now show the required state-dependent commutation
relations for observables that correspond to local Pauli observ-
ables acting on different qubits. Since observables of Alice
are defined to commute exactly with those of Bob, it is only
necessary to consider state-dependent commutation relations
on each side separately.

Proposition 18 (Commutation). For all i, j, k, l ∈
{1, . . . , n} such that i �= k and j �= l , we have∥∥[

X i
B,i, X j

B, j

]|�〉∥∥ � 4
√

2ε1, (71a)∥∥[
Zi

B,k, Z j
B,l

]|�〉∥∥ � 4
√

2ε1. (71b)
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Moreover, if i �= j we have commutation relations for Bob,∥∥[
X i

B,i, Z j
B,l

]|�〉∥∥ � 8
√

2ε1 (72)

and for Alice, ∥∥[
Mi

A, N j
A

]|�〉∥∥ � 4
√

2ε1, (73)

where M and N can be either of X and Z .
Proof. As the proof of Proposition 11, but using the corre-

lations of Eq. (60) instead of Eq. (22). �
The following proposition states the robust state-dependent

anticommutation relations between each pair of unknown
X and Z observables corresponding to the same qubit, de-
pending on the correlation errors ε0, ε1, and ε2. A sketch
proof is given below for the ideal case with vanishing errors,
with the more lengthy, full proof being the contents of the
Appendix.

Proposition 19 (Anticommutation). For all i ∈ {1, . . . , n}
we have state-dependent anticommutation relations for un-
known observables of Alice,∥∥{

X i
A, Zi

A

}|�〉∥∥ � 3n
√

2ε0 + 2(n − 1)
√

2ε2

+
(

13(n − 1)

2
+ 17

)√
2ε1. (74)

Furthermore, for all j ∈ {1, . . . , n} distinct from i we have
state-dependent anticommutation relations for Bob’s check-
round observables∥∥{

X i
B,i, Zi

B, j

}|�〉∥∥ � 3n
√

2ε0 + 2(n − 1)
√

2ε2

+
(

13(n − 1)

2
+ 21

)√
2ε1. (75)

Sketch proof. For the sake of sketching the proof, take cor-
relation errors to vanish ε0 = ε1 = ε2 = 0. We will show the
state-dependent anticommutation relation {X 1

A , Z1
A}|�〉 = 0.

The relations for observables corresponding to the other
qubits follow similarly.

From the game correlations Eq. (59b), we have(
n∏

k=2

Zk
BX k

B

)
|�〉 + Z1

BX 1
B |�〉 = 0, (76)

where the sign of the first term uses that n is odd. Swapping to
Alice’s side those observables acting immediately on the state
and multiplying on the left by appropriate unitary operators
gives

X 2
B

(
n−1∏
k=3

Zk
BX k

B

)
Zn

B|�〉 + Z2
BZ1

BX n
A X 1

A |�〉 = 0. (77)

Rewriting this by commuting those X and Z observables within each term of the product with k odd results in

(
(n−3)/2∏

k=1

X 2k
B X 2k+1

B Z2k+1
B Z2k+2

B

)
X n−1

B Zn
B|�〉 + Z2

BZ1
BX n

A X 1
A |�〉 = 0. (78)

Using the correlations of Eqs. (59a) and (59c) to swap Bob’s observables to Alice’s side (and freely inserting the identity operator
as X n−1

A X n−1
A into the resulting first term) yields

(∏
k �=n

Zk
A

)( ∏
k

X k
A

)(
(n−3)/2∏

k=1

X n−2k+1
A Zn−2k+1

A Zn−2k
A X n−2k

A

)
X 2

A |�〉 + X n
A X 1

A Z1
AZ2

A|�〉 = 0. (79)

From the correlations of Eq. (60) we have

X 2
A Z1

B,nZ2
B,nX n

B,nX 1
B,1|�〉 = X n

B,nZ1,2
B X 1,2

B |�〉. (80)

Hence multiplying Eq. (79) on the left by Z1
B,nZ2

B,nX n
B,nX 1

B,1, applying Eq. (80) via the triangle inequality in its first term
(commuting the resulting observables for Bob with the existing observables of Alice), and in its second term using the
correlations of Eq. (60),

X n
B,nZ1,2

B X 1,2
B

( ∏
k �=n

Zk
A

)( ∏
k

X k
A

)(
(n−3)/2∏

k=1

X n−2k+1
A Zn−2k+1

A Zn−2k
A X n−2k

A

)
|�〉 + (

X n
A X 1

A Z1
AZ2

A

)2|�〉 = 0. (81)

Lemma 20 shows for all k ∈ {1, . . . , n−3
4 } that in particular

(
X 4k+2

A Z4k+2
A Z4k+1

A X 4k+1
A

)(
X 4k

A Z4k
A Z4k−1

A X 4k−1
A

)|�〉 = X 4k−1,4k+1
B Z4k−1,4k+1

B Z4k,4k+2
B X 4k,4k+2

B |�〉. (82)

Since n ≡ 3 (mod 4), we can consider successive pairs of terms in the final product of Eq. (81). We can replace each pair of
these terms using pair check observables by repeatedly applying Eq. (82) and commuting the resulting observables of Bob with
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those of Alice. This gives

X n
B,nZ1,2

B X 1,2
B

(
(n−3)/4∏

k=1

X 4k−1,4k+1
B Z4k−1,4k+1

B Z4k,4k+2
B X 4k,4k+2

B

)(∏
k �=n

Zk
A

)( ∏
k

X k
A

)
|�〉 + (

X n
A X 1

A Z1
AZ2

A

)2|�〉 = 0. (83)

Lemma 21 with σ = id chosen to be the identity permutation shows( ∏
k �=n

Zk
A

)(∏
k

X k
A

)
|�〉 = X n

A X 1,2
B

(
(n−3)/4∏

k=1

X 4k−1,4k+1
B X 4k,4k+2

B

)
Z1,2

B

(
(n−3)/4∏

k=1

Z4k−1,4k+1
B Z4k,4k+2

B

)
|�〉. (84)

If we assume that all pair check observables appearing in
Eq. (83) are measured as part of the same (pair check round)
input for Bob (which is compatible with an honest strategy
since all of these observables have either disjoint or identical
superscript index pairs to all others), then all such observables
mutually commute. Thus applying Eq. (84) to Eq. (83) and
using the involutory property of all pair check observables to
achieve many cancellations, we get

X n
A X n

B,n|�〉 + (
X n

A X 1
A Z1

AZ2
A

)2|�〉 = 0. (85)

It should be noted that, for the simplicity of this sketch, the
set of mutually commuting pair check observables used as an
input here does not necessarily match one of the inputs defined
in Eq. (58). Nonetheless, it is still the case that only n such sets
must be used to complete the proof for all anticommutation re-
lations of Alice’s observables, and (with the proof essentially
unchanged) the set used here matches one of those in Eq. (58)
under a suitable permutation of the qubit labels.

Applying the correlations of Eq. (60a) once in the first term
of Eq. (85) and then multiplying on the left by Z2

AZ1
AX 1

A X n
A

gives {
X 1

A X n
A , Z1

AZ2
A

}|�〉 = 0. (86)

By identical argument to the proof of Proposition 13, but
using Propositions 17 and 18 instead of Propositions 10
and 11 and using Eq. (86) in place of Lemma 12, this im-
plies the desired state-dependent anticommutation relation
{X 1

A , Z1
A}|�〉 = 0 for Alice’s observables.

The state-dependent anticommutation relations for Bob
can all be obtained by simple application of Proposition 17,
given those just proved for Alice’s observables. �

VI. DISCUSSION

In this work, we introduced one-side-local quantum strate-
gies for the magic square and 3×n magic rectangle games
that win with certainty. We then supplemented these strategies
with some extra correlations obtained via “check” rounds to
obtain the desired self-tests. Our final result is a parallel self-
test for n maximally entangled Bell states, which has several
practical advantages over other protocols. Being a parallel
self-test of n Bell states, our protocol makes no assumptions
within the n single-qubit systems of each side.

We examine first the experimental requirements of realiz-
ing our self-test—something that is determined by the honest
runs. All observables used in the honest strategy for our self-
test can be implemented as the tensor product of at most two
Pauli operators (of the same type) acting on different pairs

of qubits. A unique advantage of our work is that, moreover,
Alice need only ever make local measurements of single-qubit
Pauli observables in the honest case. This is especially impor-
tant for major uses of self-testing. For example, in the context
of delegated quantum computation, the “client” could have
very limited quantum capabilities. It suffices that they are able
to measure single qubits in Pauli bases.

Another interesting property of our self-test concerns its
communication complexity. Of particular importance is the
size of input questions, which quantify how much randomness
must be consumed by the protocol in each round of interac-
tion. Our test requires constant size (1 trit) input questions for
Alice, and for Bob it requires O(log2 n) bit inputs. With a few
exceptions [27–30] (in each of which robustness is either not
explicitly constructed or doubly exponential in n), other works
have achieved at best logarithmic input complexities (see, for
example, Refs. [22,24]). In our protocol, one of the players
need only receive questions of a constant size. Players must
each output O(n) bit answers, except for in game rounds, in
which Bob need only return 2 bit outputs.

Our protocol also has the practical advantage that it
makes use of solely perfect correlations; any optimal strategy
succeeds with certainty, thus requiring fewer rounds of exper-
iment to achieve a desired statistical confidence.

The final figure of merit that we consider is robustness to
noise. Given correlations that are at worst ε-close to perfect,
using a self-testing theorem that can be found in [13], our
results achieve a robustness that is O(n

5
2
√

ε) for the collection
of Bell states and all single-qubit Pauli observables. That is, to
achieve a robustness δ it is sufficient that ε(n, δ) ∈ O(n−5δ2).
The self-testing works of Coladangelo [13] and Coudron and
Natarajan [21] using instead the parallel repetition of the
magic square game as a basis perform slightly better in this
regard, with ε(n, δ) ∈ O(n−3δ2) and ε(n, δ) ∈ O(n−4δ4) being
sufficient for robustness δ, respectively. The work of Coudron
and Natarajan [21] achieves robustness for observables act-
ing on all qubits simultaneously, however both works are
examples of strictly parallel self-tests and thus necessarily
require O(n) bit inputs. A protocol of Natarajan and Vidick
[23] exhibits the interesting property that its robustness does
not depend on n. The same authors later extended this work
to have communication complexity only logarithmic in the
number of entangled states to be certified. The protocol, how-
ever, instead self-tests N maximally entangled qudit states and
corresponding single-qudit Pauli observables defined over a
finite field Fq, where q increases with N [24]. It is unclear
whether the honest strategy provided can be realized with
local measurements with respect to Bell states [33].

032456-15



SEAN A. ADAMSON AND PETROS WALLDEN PHYSICAL REVIEW A 105, 032456 (2022)

TABLE I. Comparison between certain protocols capable of self-testing n EPR pairs in parallel. Cells highlighted in green depict favorable
comparisons within the property being considered. Those in red compare unfavorably and those in yellow neutrally. We consider whether the
honest strategy of each protocol uses only local (single-qubit) measurements, is constructed entirely from measurements of the Pauli group
(on standard Bell states), and makes use of only perfect correlations (so that the strategy wins with certainty). The error tolerance ε(n, δ) is a
sufficient maximum error in the observed correlations so that the states and measurements tested (up to local isometry) are a distance at most
δ from ideal. Input question sizes (the amounts of randomness consumed) are given in units of information.

.lotrorrE.rroctcefrePiluaPlacoLlocotorP ε(n, δ)

Input size

Alice Bob

3 × n protocol (this work) Alice Yes Yes O(n−5δ2) O(1) O(log n)
Šupić et al. [27 A/Nstset-flesesabnosdnepeD] O(1)
Chao et al. [22] Yes No No O(n−5δ2) O(log n)
Natarajan and Vidick [24] No No Yes O(poly(δ)) O(poly(log n))
Natarajan and Vidick [23] As CHSH or magic square O(δ16) O(n)
Coladangelo [13] (magic square) No Yes Yes O(n−3δ2) O(n)
Coladangelo [13] (CHSH) Yes No No O(n−3δ2) O(n)
Coudron and Natarajan [21] No Yes Yes O(n−4δ4) O(n)
McKague [20] (Mayers–Yao) Yes No No O(n−8δ8) O(log log n)

Our protocol is unique in that it achieves several desirable
properties simultaneously. The prover with minimal quantum-
technological capabilities (the client) need only make local
single-qubit measurements in Pauli bases upon accepting
questions all of constant size. Despite this, our protocol relies
entirely on perfect correlations, maintains a noise tolerance
comparable with that of most others, and requires questions
provided to the server to be of size at most logarithmic in the
number of Bell states tested. Sample comparisons with some
other protocols can be found in Table I. The list of works
included is not exhaustive, and other figures of merit could
also be considered depending on intended applications.

Future works

Aside from our self-testing result, all self-tests whose hon-
est strategies rely solely on the magic square game (such as
those of [13,21]) can of course be implemented using our
one-side-local strategy if desired. It may also be possible to
use our one-side-local strategy as a direct replacement for
honest subroutines in other protocols (such as the CHSH game
in the protocol of Chao et al. [22] or for the anticommutation
test of Natarajan and Vidick [23]), allowing them to function
with the additional benefits of local Pauli measurements and
perfect correlations at the same time.

In this work, we made use of a theorem of Co-
ladangelo [13] to translate our main state-dependent com-
mutation/anticommutation results into a proper self-testing
statement on the existence of a desired local isometry. Other
choices of isometry could equally well have been made. On

the one hand, other results based on the relevant commutativ-
ity and anticommutativity of untrusted observables exist. For
example, a result of Ref. [20] (Lemma 6) could be directly
substituted for that used here, offering the additional prop-
erty of simultaneously testing multiple Pauli measurements
at the cost of poorer robustness scaling ε(n, δ) ∈ O(n−8δ4).
On the other hand, it would be interesting to examine the
plausibility of more robust isometries for our self-test. Such
isometries could arise either as improved general techniques
for the construction of self-testing isometries given certain re-
lations between the untrusted observables (similar to [13,20]),
or alternatively in the form of specially constructed isome-
tries making use of features unique to the testing scenario.
Another possible future direction is to study the robustness
of our protocol experimentally (or numerically under the
semidefinite-programming characterization of quantum corre-
lations [34–37]).

Adaptation of our results for device-independent ver-
sions of delegated verifiable blind quantum computation
protocols, or other secure quantum computation protocols
[38,39], could be explored. The utility of our protocol for
device-independent quantum key distribution could also be
examined.
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APPENDIX: ROBUST ANTICOMMUTATION RELATIONS

Lemma 20. For all distinct i, j, k, l ∈ {1, . . . , n} we have the estimate between Alice’s observables and Bob’s pair check
observables,

∥∥(
X l

AZl
AZk

AX k
A

)(
X j

A Z j
AZi

AX i
A

)|�〉 − X i,k
B Zi,k

B Z j,l
B X j,l

B |�〉∥∥ � 18
√

2ε1 + 4
√

2ε2. (A1)
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Proof. First, commuting X j
A with X k

A (as they correspond to the same input) and then using Proposition 17 and the triangle
inequality to swap four of Alice’s observables to Bob’s side, we have∥∥(

X l
AZl

AZk
AX k

A

)(
X j

A Z j
AZi

AX i
A

)|�〉 − X l
AZl

AZk
AX j

A X i
B,iZ

i
B,kZ j

B,kX k
B,k|�〉∥∥ � 4

√
2ε1. (A2)

Commuting X k
B,k with observables of the same input (Zi

B,k and Z j
B,k) and then again using the correlations to swap observables

back to Alice’s side gives ∥∥(
X l

AZl
AZk

AX k
A

)(
X j

A Z j
AZi

AX i
A

)|�〉 − X l
AZl

AZk
AX j

A Z j
AZi

AX k
A X i

A|�〉∥∥ � 8
√

2ε1. (A3)

Applying Eq. (61a) correlations between Alice’s observables and Bob’s pair check observables once followed by swapping five
of Alice’s observables to Bob’s side gives∥∥(

X l
AZl

AZk
AX k

A

)(
X j

A Z j
AZi

AX i
A

)|�〉 − X i,k
B X l

AZi
B,l Z

j
B,l X

j
B, jZ

k
B, jZ

l
B, j |�〉∥∥ � 13

√
2ε1 +

√
2ε2. (A4)

Commuting X j
B, j with observables of the same input (Zk

B, j and Zl
B, j) and again swapping local check observables back to Alice’s

side yields ∥∥(
X l

AZl
AZk

AX k
A

)(
X j

A Z j
AZi

AX i
A

)|�〉 − X i,k
B X l

AX j
A Zl

AZk
AZ j

AZi
A|�〉∥∥ � 18

√
2ε1 +

√
2ε2. (A5)

Finally, commuting Z j
A with Zk

A and applying three correlations of Eq. (61) to switch all observables of Alice with pair check
observables of Bob gives the result.

Lemma 21. For any permutation σ of {1, . . . , n}, letting σk = σ (k) for each k, we have the estimate∥∥∥∥∥
( ∏

k �=n

Zσk
A

)( ∏
k

X σk
A

)
|�〉 − X σn

A X σ1,σ2
B

(
(n−3)/4∏

k=1

X σ4k−1,σ4k+1
B X σ4k ,σ4k+2

B

)

Zσ1,σ2
B

(
(n−3)/4∏

k=1

Zσ4k−1,σ4k+1
B Zσ4k ,σ4k+2

B

)
|�〉

∥∥∥∥∥ � 2n
√

2ε1 + (n − 1)
√

2ε2. (A6)

Proof. Noting that all the X k
A pairwise commute and using the correlations of Eq. (61a) to swap Alice’s observables with Bob’s

pair check observables,∥∥∥∥∥
( ∏

k �=n

Zσk
A

)(∏
k

X σk
A

)
|�〉 − X σ1,σ2

B

(
(n−3)/4∏

k=1

X σ4k−1,σ4k+1
B X σ4k ,σ4k+2

B

)( ∏
k �=n

Zσk
A

)
X σn

A |�〉
∥∥∥∥∥ � n − 1

2

√
2ε2. (A7)

Consider only the final part of the second term in Eq. (A7). We can repeatedly apply the triangle inequality with Proposition 17
to write ∥∥∥∥∥

(∏
k �=n

Zσk
A

)
X σn

A |�〉 − X σn
B,σn

( ∏
k �=n

Zσk
B,σn

)
|�〉

∥∥∥∥∥ � n
√

2ε1. (A8)

Since all of Bob’s observables in this equation correspond to the same input, we can commute X σn
B,σn

with the product to its right
and then use Proposition 17 again to give∥∥∥∥∥

( ∏
k �=n

Zσk
A

)
X σn

A |�〉 − X σn
A

( ∏
k �=n

Zσk
A

)
|�〉

∥∥∥∥∥ � 2n
√

2ε1. (A9)

Combining this with Eq. (A7) via the triangle inequality yields∥∥∥∥∥
( ∏

k �=n

Zσk
A

)( ∏
k

X σk
A

)
|�〉 − X σn

A X σ1,σ2
B

(
(n−3)/4∏

k=1

X σ4k−1,σ4k+1
B X σ4k ,σ4k+2

B

)( ∏
k �=n

Zσk
A

)
|�〉

∥∥∥∥∥ � 2n
√

2ε1 + n − 1

2

√
2ε2. (A10)

Finally, since all the Zk
A pairwise commute, the correlations of Eq. (61b) imply∥∥∥∥∥

( ∏
k �=n

Zσk
A

)
|�〉 − Zσ1,σ2

B

(
(n−3)/4∏

k=1

Zσ4k−1,σ4k+1
B Zσ4k ,σ4k+2

B

)
|�〉

∥∥∥∥∥ � n − 1

2

√
2ε2. (A11)

Combining this with the previous Eq. (A10) using the triangle inequality yields the result. �
We now exhibit the full proof of Proposition 19 with nonzero correlation errors.
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Proof of Proposition 19. Let i ∈ {1, . . . , n} and let σk = σ (k) for each k ∈ {1, . . . , n}, where σ is some permutation of
{1, . . . , n}. Assume that σ is such that σ1 = i. From the game correlations Eq. (59b) we have∥∥∥∥∥

(
n∏

k=2

Y σk
A

)
|�〉 + Zσ1

B X σ1
B |�〉

∥∥∥∥∥ �
√

2ε0. (A12)

Again, from the same correlations, ∥∥∥∥∥
(

n∏
k=2

Zσk
B X σk

B

)
|�〉 + Zσ1

B X σ1
B |�〉

∥∥∥∥∥ � n
√

2ε0, (A13)

where the sign of the first term uses that n is odd. Now using the game correlations Eq. (59a),∥∥∥∥∥
(

n−1∏
k=2

Zσk
B X σk

B

)
Zσn

B

( ∏
k �=n

X σk
A

)
|�〉 + Zσ1

B

( ∏
k �=1

X σk
A

)
|�〉

∥∥∥∥∥ � (n + 2)
√

2ε0. (A14)

Multiplying on the left by the unitary operators
∏

k �=n X σk
A and Zσ2

B leaves the norm unchanged and gives∥∥∥∥∥X σ2
B

(
n−1∏
k=3

Zσk
B X σk

B

)
Zσn

B |�〉 + Zσ2
B Zσ1

B X σn
A X σ1

A |�〉
∥∥∥∥∥ � (n + 2)

√
2ε0. (A15)

Rewriting this by commuting those X and Z observables within each term of the product with k odd results in∥∥∥∥∥
(

(n−3)/2∏
k=1

X σ2k
B X σ2k+1

B Zσ2k+1
B Zσ2k+2

B

)
X σn−1

B Zσn
B |�〉 + Zσ2

B Zσ1
B X σn

A X σ1
A |�〉

∥∥∥∥∥ � (n + 2)
√

2ε0. (A16)

Using the correlations of Eq. (59a) and (59c) to swap Bob’s observables to Alice’s side (and freely inserting the identity operator
as X σn−1

A X σn−1
A into the resulting first term) yields∥∥∥∥∥

( ∏
k �=n

Zσk
A

)( ∏
k

X σk
A

)(
(n−3)/2∏

k=1

X σn−2k+1
A Zσn−2k+1

A Zσn−2k
A X σn−2k

A

)
X σ2

A |�〉 + X σn
A X σ1

A Zσ1
A Zσ2

A |�〉
∥∥∥∥∥ � 3n

√
2ε0. (A17)

Now notice from the correlations of Eq. (60) we have the estimate∥∥X σ2
A Zσ1

B,σn
Zσ2

B,σn
X σn

B,σn
X σ1

B,σ1
|�〉 − X σn

B,σn
Zσ1,σ2

B X σ1,σ2
B |�〉∥∥ � 3

√
2ε1 + 2

√
2ε2, (A18)

where we achieved this by commuting X σn
B,σn

with other observables of the same input and converting local check observables
to observables of Alice and then to pair check observables. Hence multiplying Eq. (A17) on the left by Zσ1

B,σn
Zσ2

B,σn
X σn

B,σn
X σ1

B,σ1
,

applying Eq. (A18) via the triangle inequality in its first term (commuting the resulting observables for Bob with the existing
observables of Alice), and in its second term using the correlations of Eq. (60),∥∥∥∥∥X σn

B,σn
Zσ1,σ2

B X σ1,σ2
B

( ∏
k �=n

Zσk
A

)( ∏
k

X σk
A

)(
(n−3)/2∏

k=1

X σn−2k+1
A Zσn−2k+1

A Zσn−2k
A X σn−2k

A

)
|�〉 + (

X σn
A X σ1

A Zσ1
A Zσ2

A

)2|�〉
∥∥∥∥∥

� 3n
√

2ε0 + 7
√

2ε1 + 2
√

2ε2. (A19)

Since n ≡ 3 (mod 4), we can consider successive pairs of terms in the final product of Eq. (A19). We can estimate each pair
of terms using pair check observables by repeatedly applying the estimate of Lemma 20 in the first term and commuting the
resulting observables of Bob with those of Alice. This gives∥∥∥∥∥X σn

B,σn
Zσ1,σ2

B X σ1,σ2
B

(
(n−3)/4∏

k=1

X σ4k−1,σ4k+1
B Zσ4k−1,σ4k+1

B Zσ4k ,σ4k+2
B X σ4k ,σ4k+2

B

)(∏
k �=n

Zσk
A

)(∏
k

X σk
A

)
|�〉 + (

X σn
A X σ1

A Zσ1
A Zσ2

A

)2|�〉
∥∥∥∥∥

� 3n
√

2ε0 +
(

9(n − 3)

2
+ 7

)√
2ε1 + (n − 1)

√
2ε2. (A20)

We may assume the permutation σ to in fact be such that all pair check observables appearing in Eq. (A6) of Lemma 21 and
Eq. (A20) correspond to the same (pair check round) input for Bob. This is compatible with an honest behavior (in which pair
check observables correspond to pairs of Pauli observables) since all of these observables Ml,m

B (where M represents either X or
Z) have either disjoint or identical indices to all others. Specifically, referring to the definition [see Eq. (53)] of Bob’s observables
to be measured upon an input y when c = 2, we may assume they all correspond to the input y = σn, in which qubit σn is not
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to be tested. Therefore, after applying the estimate of Lemma 21 to the first term in Eq. (A20), we may freely commute all pair
check observables and use their involutory property to achieve many cancellations. This yields∥∥X σn

A X σn
B,σn

|�〉 + (
X σn

A X σ1
A Zσ1

A Zσ2
A

)2|�〉∥∥ � 3n
√

2ε0 + 13(n − 1)

2

√
2ε1 + 2(n − 1)

√
2ε2. (A21)

Applying the correlations of Eq. (60a) once in the first term and then multiplying on the left by Zσ2
A Zσ1

A X σ1
A X σn

A gives

∥∥{
X σ1

A X σn
A , Zσ1

A Zσ2
A

}|�〉∥∥ � 3n
√

2ε0 +
(

13(n − 1)

2
+ 1

)√
2ε1 + 2(n − 1)

√
2ε2. (A22)

By identical argument to the proof of Proposition 13, but using Propositions 17 and 18 instead of Propositions 10 and 11 and
using the bound of Eq. (A22) in place of Lemma 12, this implies

∥∥{
X σ1

A , Zσ1
A

}|�〉∥∥ � 3n
√

2ε0 +
(

13(n − 1)

2
+ 17

)√
2ε1 + 2(n − 1)

√
2ε2. (A23)

That σ1 = i yields the result of Eq. (74).
To obtain Eq. (75) we use Proposition 17 to write∥∥{

X i
B,i, Zi

B, j

}|�〉∥∥ � 4
√

2ε1 + ∥∥{
X i

A, Zi
A

}|�〉∥∥
� 3n

√
2ε0 +

(
13(n − 1)

2
+ 21

)√
2ε1 + 2(n − 1)

√
2ε2, (A24)

where the final equality follows from Eq. (74) just proved. �
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