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Local discrimination of generalized Bell states via commutativity
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We study the distinguishability of generalized Bell states under local operations and classical communication.
We introduce the concept of a maximally commutative set (MCS), a subset of generalized Pauli matrices whose
elements are mutually commutative, and there is no other generalized Pauli matrix that commutes with all the
elements of this set. We find that MCS can be considered a detector for the local distinguishability of a set S
of generalized Bell states. In fact, we get an efficient criterion. That is, if the difference set �S of S is disjoint
with or completely contained in some MCS, then the set S is locally distinguishable. Furthermore, we give a
useful characterization of MCS for arbitrary dimensions, which provides great convenience for detecting the
local discrimination of generalized Bell states. Our method can be generalized to more general settings which
contain the lattice qudit basis. The results of Fan [Phys. Rev. Lett. 92, 177905 (2004)], Tian et al. [Phys. Rev.
A 92, 042320 (2015)], and a recent work Yuan et al. [arXiv:2109.07390] can be deduced as special cases of our
result.
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I. INTRODUCTION

Quantum state discrimination is a fundamental task in
quantum information processing. The most general task is to
identify a quantum state chosen randomly from a known set of
states via a positive operator-valued measurement (POVM).
It is well known that a set of quantum states can be per-
fectly distinguished by global measurement if and only if the
states of the given set are mutually orthogonal [1]. However,
quantum states are usually distributed in composite systems
with long distances, so only local operations and classical
communication (LOCC) are allowed. In such a setting, a state
is chosen from a known orthogonal set of quantum states in a
composite systems, and the task is to identify the state under
LOCC. If the task can be accomplished perfectly, we say that
the set is locally distinguishable; otherwise, it is locally indis-
tinguishable. If an orthogonal set is locally indistinguishable,
we also say that the set presents some kind of nonlocality [2]
in the sense that more quantum information could be inferred
from global measurement than that from local operations. Any
two orthogonal multipartite states are shown to be locally dis-
tinguishable [3]. Bennett et al. [2] presented the first example
of orthogonal product states that are locally indistinguish-
able, which revealed the phenomenon of quantum nonlocality
without entanglement. Results for the local distinguishability
of quantum states have been practically applied in quantum
cryptography primitives such as data hiding [4,5] and secret
sharing [6–8].

For general orthogonal sets of quantum states, it is dif-
ficult to give a complete characterization of whether they
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are locally distinguishable or not. Therefore, most studies
(see [2,3,9–56] for an incomplete list) focus on two extreme
cases: sets of product states or sets of maximally entangled
states. In this paper, we restrict ourselves to the settings of
maximally entangled cases.

Bell states are the most famous maximally entangled states,
and their local distinguishability has been well understood. In
fact, any two Bell states are locally distinguishable, but any
three or four are not [10]. Nathanson [17] showed that any
three maximally entangled states in C3 ⊗ C3 can be locally
distinguished. Moreover, any l > d maximally entangled
states in Cd ⊗ Cd are known to be locally indistinguishable
[17]. Therefore, it is interesting to consider whether a set
of maximally entangled states with cardinality l � d can be
locally distinguishable or not. Interestingly, using the fact that
applying a local unitary operation does not change the local
distinguishability, Fan [16] showed that any l generalized Bell
states (GBSs) in Cd ⊗ Cd are locally distinguishable pro-
vided that (l − 1)l � 2d and d is a prime number. Fan’s result
was extended by Tian et al. to the prime-power-dimensional
quantum system in [57], where they restricted themselves
to the mutually commuting qudit lattice states. Since Fan’s
result, many works [57–64] have paid attention to the locally
distinguishability of GBSs. Ghosh et al. [15] found a sufficient
condition for a set of GBSs to be one way locally distin-
guishable. Such a condition was also proven to be necessary
by Bandyopadhyay et al. [24]. However, the condition itself
seems to be difficult to verify for a general set of GBSs.
Therefore, it is a very interesting problem to find an easy
check sufficient condition for a set of GBSs to be locally
distinguishable.

In this work, we introduce the concept of a maximally
commutative set (MCS) of GBSs. Using MCSs, we provide
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a sufficient criterion for a set of GBSs to be one way locally
distinguishable. Finally, we characterize the MCS of GBSs,
which is crucial for studying the property of distinguishability
for the mentioned states.

The rest of this paper is organized as follows. In Sec. II,
we introduce the matrix representation of generalized Bell
states. Then we give a brief review of some known results
of the sufficient conditions of a locally distinguishable set of
GBSs. In Sec. III, we present the definition of a maximally
commutative set and show that it is useful for judging the
local distinguishability. After that, we present some examples
of MCSs and study the properties of general MCSs. Finally,
we draw a conclusion and present some questions in Sec. IV.

II. REVIEW OF THE LOCAL DISTINGUISHABILITY
OF GBSs

Throughout this paper, we use the following notations. Let
d � 2 be an integer. Zd denotes the ring which is defined
over {0, 1, . . . , d − 1} with the sum operation + [here i + j
should be equal to the element (i + j) mod d] and the
multiplication operation (computing the usual multiplication
first, then taking modulus d). Consider a bipartite quantum
system HA ⊗ HB with both local dimensions equal to d . Sup-
pose that {|0〉, |1〉, . . . , |d − 1〉} is the computational basis of
a single qudit. Under this computational basis, the standard
maximally entangled state in this system can be expressed
as |�00〉 = 1√

d

∑d−1
i=0 |ii〉. Generally, any maximally entangled

state can be written in the form |�U 〉 = (I ⊗ U )|�00〉 for
some unitary matrix U of dimension d . We often call U the
defining unitary matrix of the maximally entangled state |�U 〉.
To define the generalized Bell states, we define the following
two operations:

Xd =
d−1∑
i=0

|i + 1 mod d〉〈i|, Zd =
d−1∑
i=0

ωi|i〉〈i|,

where ω = e
2π

√−1
d . Then the following d2 orthogonal max-

imally entangled states (MES) are called generalized Bell
states:

{|�m,n〉 = (
I ⊗ X m

d Zn
d

)|�00〉|m, n ∈ Zd}. (1)

Matrices in {X m
d Zn

d | m, n ∈ Zd} are called the generalized
Pauli matrices [16] (GPMs; they are also known as Weyl
operators [65,66]). For simplicity, we also use X and Z to
represent Xd and Zd when the dimension is known. Due to
the one-to-one correspondence of MESs and their defining
unitary matrices, for convenience, we will treat the following
three sets equally without distinction:

S := {|�mi,ni〉}l
i=1 = {X mi Zni}l

i=1 = {(mi, ni )}l
i=1.

Our aim in this paper is to provide some sufficient condition
such that the set S is locally distinguishable. Now we give a
brief review of some relative results.

Fan [16] noted that if all mi (i = 1, . . . , l) are distinct, the
set S can be locally distinguished, and those sets with this
property are called F type [64]. For each α ∈ Zd , we define
Hα as the matrix whose jk entry is w− jk−αsk /

√
d for j, k =

1, . . . , d − 1 and sk := ∑d−1
i=k i. Then Hα is a unitary matrix,

and Hα ⊗ Ht
α transfers |�mi,ni〉 to |�αmi+ni,−mi〉. Fan found that

if d is a prime number and (l − 1)l � 2d , an α exists such that
Hα ⊗ Ht

α can transfer S to a set of F type.
In addition, there is a useful necessary and sufficient con-

dition (see Refs. [15,24] for more details) for one-way local
distinguishability of generalized Bell states (in fact, it may
be extended to a more general setting whose local unitary
operators follow a particular property). S denotes the defining
unitary matrix set if some nontrivial vector |v〉 ∈ Cd exists
such that

〈v|U †V |v〉 = 0 (2)

for all different U,V ∈ S; then the set of maximally entangled
states corresponding to S is one way distinguishable (hence
locally distinguishable) [15,28]. If the set S is F type, the
vector |v〉 can be chosen as any vector of the computational
basis, i.e., |i〉, i ∈ Zd . We define the set difference �S of
S := {Ui|i = 1, 2, . . . , l} as

�S = {U †
i Uj | 1 � i < j � l}. (3)

Note that

(X mi Zni )†X mj Znj = ω−(mj−mi )ni X mj−mi Znj−ni .

Up to a phase, we can identify �S as the set {(mj − mi, n j −
ni )|1 � i < j � l}. In order to find some nonzero vector |v〉
such that Eq. (2) is satisfied, the following lemma is important
(see also Ref. [67]).

Lemma 1. For two unitary matrices U and V , if they sat-
isfy UV = zVU , where z is a complex number, and are not
commutative, i.e., z �= 1, then each eigenvector |v〉 of V sat-
isfies 〈v|U |v〉 = 0. In fact, suppose that V |v〉 = λ|v〉, where
λλ = 1. We also have 〈v|V † = λ〈v|. Therefore, 〈v|U |v〉 =
〈v|λUλ|v〉 = 〈v|V †UV |v〉 = z〈v|U |v〉. Hence, 〈v|U |v〉 = 0
as z �= 1. A pair of unitaries that satisfy the first condition are
called Weyl commutative.

Fortunately, any pair of generalized Pauli matrices is Weyl
commutative. In fact, for two pairs of (mi, ni ) and (mj, n j ) in
Zd × Zd , we always have

X mi Zni X mj Znj = ωmj ni−min j X mj Znj X mi Zni .

Moreover, X mi Zni and X mj Znj are commutative if and only if
mjni − min j ≡ 0 mod d . This condition can be formulated as
the determinant equation

∣∣∣∣mi ni

mj n j

∣∣∣∣ ≡ 0 mod d. (4)

The pairs (mi, ni ) and (mj, n j ) are also called commutative if
Eq. (4) is satisfied.

For any set S of GBSs, if there is a generalized Pauli
matrix V which is not commutative for every GPM U ∈ �S ,
following Eqs. (2) and (3) and Lemma 1, each eigenvector |v〉
of V satisfies 〈v|U |v〉 = 0, and therefore, the set S is locally
distinguishable.

Let m, n ∈ Zd ; S(m, n) denotes the solution set of the fol-
lowing congruence equation:

nx − my = 0 mod d. (5)
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Therefore, S(m, n) denotes the set of elements in Zd × Zd that
commute with (m, n). The authors of Ref. [67] defined the set

D(S ) � (Zd × Zd ) \
⋃

(m,n)∈�S
S(m, n)

which is significant to check whether there is any GPM V that
do not commuting with all the elements in �S. By definition,
D(S ) denotes the set of all elements in Zd × Zd that do not
commute with all the elements in �S. Under this definition,
they proved the following results.

Theorem 1. Let S = {(mi, ni )|4 � i � l � d} be a GBS set
in Cd ⊗ Cd ; then the set S is locally distinguishable when any
of the following conditions is true (see Ref. [67]).

(1) The discriminant set D(S ) is not empty.
(2) The set �S is commutative.
(3) The dimension d is a composite number, and for each

(m, n) ∈ �S , m or n is invertible in Zd .
The nonemptyness of D(S ) implies the local distin-

guishability of S . Therefore, the set D(S ) can be called a
discriminant set of S .

III. DETECTOR FOR THE LOCAL DISTINGUISHABILITY
OF GBSs

In the first case in Theorem 1, the nonemptyness of the dis-
criminant set D(S ) is equivalent to there being some (s, t ) ∈
Zd × Zd such that

ms − nt �= 0 ∀(m, n) ∈ �S.

That is, X sZt does not commute with X mZn. Therefore, any
nonzero eigenvector |v〉 of X sZt satisfies

〈v|X mZn|v〉 = 0,

from which one can conclude that the set S is locally dis-
tinguishable. From this point, we can call X sZt a detector of
the local discrimination of GBSs. Simply, the ability of the
detector X sZt can be defined as the set

De(X sZt ) � (Zd × Zd ) \ S(s, t ). (6)

This denotes the set of all elements in Zd × Zd that do not
commute with (s, t ). Then the one-way local distinguisha-
bility of S can be detected by X sZt if and only if �S ⊆
De(X sZt ).

In fact, we can introduce a stronger detector with the
following observation. If a set of detectors {X si Zti}n

i=1 is
commutative, the detectors can share a common eigenbasis
{|v j〉}d

j=1. Therefore, if

�S ⊆
n⋃

i=1

De(X si Zti ),

we can also conclude that the set S is one way distinguish-
able. Therefore, the more elements the detected set has, the
stronger its distinguishability is. This motivates the following
definition.

A subset {X si Zti}n
i=1 of GBSs is called maximally com-

mutative if the elements of the given subset are mutually
commutative and there is no other GBS which can commute
with all the elements of the set. This can be written as the
coordinates {(si, ti )}n

i=1 ⊆ Zd × Zd such that sit j = tis j for

or

FIG. 1. Here C represents a maximally commutative set of GBSs,
and �S is the difference set of S. If �S and the detector C are in one
of the above relations, then the set S is locally distinguishable.

every i, j but there is no other coordinate (s, t ) ∈ Zd × Zd \
{(si, ti )}n

i=1 such that s jt = t js for every j.
For any maximally commutative set of GBSs C :=

{X si Zti}n
i=1, we define a detector as

De(C) :=
⋃

(s,t )∈C
De(X sZt ).

Therefore, we conclude that if �S ⊆ De(C), the set S is
one way distinguishable. On the other hand, we find that
De(C) is equal to Pd \ C, where Pd := {X mZn|m, n ∈ Zd}.
In fact, an element in Pd but outside C cannot commute
with an element X sZt in C. That is, it belongs to De(X sZt ).
This means that Pd \ C ⊆ De(C). Obviously, De(C) ⊆ Pd \
C. Thus, De(C) = Pd \ C. Therefore, �S ⊆ De(C) if and
only if �S ∩ C = ∅. Moreover, if �S ⊆ C, the elements in
�S are mutually commutative. By Theorem 1, the set S is
also locally distinguishable.

Theorem 2. Let S be a GBS set in Cd ⊗ Cd and C be a
set of maximally commutative GBSs of dimension d . If �S ∩
C = ∅ or �S ⊆ C, then the set S is locally distinguishable
(see Fig. 1 for an intuitive view of the conditions).

Note that Theorem 2 generalizes Theorem 1. If D(S ) is
nonempty (that is, the distinguishability of S can be detected
by the first condition of Theorem 1), then some maximally
commutative set C of GBSs satisfying the condition of Theo-
rem 2 must exist. In fact, the nonemptyness of the discriminant
set D(S ) is equivalent to the existence of X sZt that do not
commute with every element of �S , but such an X sZt can be
extended to be a maximally commutative set C of GBSs. As
the elements in C all commute with X sZt , �S ∩ C = ∅. More-
over, if d is a composite number, d = pq, where p, q � 2
are two integers. Clearly, X p commutes with Zq; therefore,
they can extend to a maximally commutative set of GBSs,
say, C. If s or t is invertible in Zd , we claim that X sZt /∈ C.

In fact, as ZX = ωXZ , if s is invertible, then Zq(X sZt ) =
ωsq(X sZt )Zq �= (X sZt )Zq. If t is invertible, then (X sZt )X p =
ωt pX p(X sZt ) �= X p(X sZt ). This also means that �S ∩ C = ∅.

Therefore, if �S contains only those elements (one of the two
coordinates is invertible in Zd ), then the set C can detect the
one-way distinguishability of S .
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Therefore, it is important to find all the maximally com-
mutative sets of GBSs. Now we present some examples in the
low-dimensional cases.

Example 1. There are exactly four classes of maximally
commutative sets of GBSs in C3 ⊗ C3:

C1 = {(0, 0), (0, 1), (0, 2)},
C2 = {(0, 0), (1, 0), (2, 0)},
C3 = {(0, 0), (1, 1), (2, 2)},
C4 = {(0, 0), (1, 2), (2, 1)}.

As Theorem 2 provides a sufficient condition for a set
to be locally distinguishable, a locally indistinguishable set
of GBSs implies the violation of the condition of Theo-
rem 2 immediately. For example, in C3 ⊗ C3, the set S :=
{I, X, X 2, XZ} is locally indistinguishable as |S| = 4 > 3.

The difference set �S = {(1, 0), (2, 0), (1, 1), (0, 1), (2, 1)}.

Clearly, �S �⊆ Ci for all i = 1, 2, 3, 4. Moreover, �S ∩ C1 =
{(0, 1)},�S ∩ C2 = {(1, 0), (2, 0)},�S ∩ C3 = {(1, 1)}, and
�S ∩ C4 = {(2, 1)}, which violate the condition of Theorem
2.

Example 2. There are exactly seven classes of maximally
commutative sets of GBSs in C4 ⊗ C4:

C1 = {(0, 0), (0, 1), (0, 2), (0, 3)},
C2 = {(0, 0), (0, 2), (2, 0), (2, 2)},
C3 = {(0, 0), (0, 2), (2, 1), (2, 3)},
C4 = {(0, 0), (1, 0), (2, 0), (3, 0)},
C5 = {(0, 0), (1, 1), (2, 2), (3, 3)},
C6 = {(0, 0), (1, 2), (2, 0), (3, 2)},
C7 = {(0, 0), (1, 3), (2, 2), (3, 1)}.

Example 3. There are exactly 15 classes of maximally
commutative sets of GBSs in C8 ⊗ C8. Here we do not write
out the coordinates (0,0), which belongs to all 15 sets.

C1 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)},
C2 = {(0, 2), (0, 4), (0, 6), (4, 0), (4, 2), (4, 4), (4, 6)},
C3 = {(0, 2), (0, 4), (0, 6), (4, 1), (4, 3), (4, 5), (4, 7)},
C4 = {(0, 4), (2, 0), (2, 4), (4, 0), (4, 4), (6, 0), (6, 4)},
C5 = {(0, 4), (2, 1), (2, 5), (4, 2), (4, 6), (6, 3), (6, 7)},
C6 = {(0, 4), (2, 2), (2, 6), (4, 0), (4, 4), (6, 2), (6, 6)},
C7 = {(0, 4), (2, 3), (2, 7), (4, 2), (4, 6), (6, 1), (6, 5)},
C8 = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)},
C9 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)},
C10 = {(1, 2), (2, 4), (3, 6), (4, 0), (5, 2), (6, 4), (7, 6)},
C11 = {(1, 3), (2, 6), (3, 1), (4, 4), (5, 7), (6, 2), (7, 5)},
C12 = {(1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)},
C13 = {(1, 5), (2, 2), (3, 7), (4, 4), (5, 1), (6, 6), (7, 3)},
C14 = {(1, 6), (2, 4), (3, 2), (4, 0), (5, 6), (6, 4), (7, 2)},
C15 = {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)}.

Using these MCSs, we can show that Theorem 2 is more
powerful than Theorem 1 when the dimension d = 8. Set

S := {I, Z, X, X 2Z3, X 3Z, X 3Z2, X 5Z, X 6Z6},
whose difference set �S is the set with elements

(0, 1), (1, 0), (2, 3), (3, 1), (3, 2), (5, 1), (6, 6), (1, 7),
(2, 2), (3, 0), (5, 0), (6, 5), (1, 3), (2, 1), (4, 1), (5, 6),
(1, 6), (3, 6), (4, 3), (2, 0), (3, 5), (2, 7), (3, 4), (1, 5).

We can check that D(S ) = ∅, �S is noncommutative, and
neither of the coordinates of (2,0) are invertible in Z8. There-
fore, Theorem 1 fails to detect the distinguishability of this
set. However, we find that �S ∩ C2 = ∅. That is, the local
distinguishability of S can be detected by C2. Moreover, we
can check that neither �S ∩ Ci = ∅ nor �S ⊆ Ci when i �= 2.
Therefore, among the 15 classes, C2 is the only detector that
can detect the local distinguishability of S.

More numerical results comparing the power of Theorems
1 and 2 can be seen in the Fig. 2 (we randomly generated
N sets of d-dimensional GBSs with cardinality n and found
the numbers N1 and N2 of sets whose local distinguishability
can be detected by Theorems 1 and 2, respectively; the corre-
sponding success rates are defined by N1/N and N2/N).

Proposition 1. Let p � 2 be a prime number. Then there
are exactly p + 1 classes of maximally commutative sets of
GBSs in Cp ⊗ Cp.

In fact, these sets are characterized by (0, 1)Zp, (1, 0)Zp,
and (1, i)Zp, 1 � i � p − 1, where (a, b)Zp := {(ai, bi)|i ∈
Zp}. With this proposition and Theorem 2, one would deduce
Fan’s result again. That is, if S is a set of p-dimensional
GBSs with l elements and l (l − 1)/2 � p, then S is locally
distinguishable. In fact, in this setting, the number of elements
in �S [which does not contain (0,0)] is less than or equal to
l (l − 1)/2. However, (0, 1)Zp \ {(0, 0)}, (1, 0)Zp \ {(0, 0)},
and (1, i)Zp \ {(0, 0)} (1 � i � p − 1) are p + 1 classes of
mutually disjoint sets. Therefore, some MCS C must exist
such that C ∩ �S = ∅.

Lemma 2. Each maximally commutative set of GBSs in
Cd ⊗ Cd must have cardinality less than or equal to d .

This can be obtained by observing that a commutative set
of unitary matrices can be simultaneously diagonalized and
the elements of GBSs are mutually orthogonal. Moreover, one
could easily verify the following lemma.

Lemma 3. Let C be a maximally commutative set of GBSs
in Cd ⊗ Cd . If (i, j) belongs to C, so does (ik, jk), where k ∈
Zd , i.e., (i, j)Zd ⊆ C. Moreover, if both (i1, j1) and (i2, j2)
belong to C, so does (i1 + i2, j1 + j2).
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From this lemma, one can conclude that each maximally
commutative set C can be written in the forms

C =
n⋃

k=1

(ik, jk )Zd , C =
n∑

k=1

(ik, jk )Zd . (7)

Here A + B := {a + b| a ∈ A, b ∈ B}, where A and B are sub-
sets of a group.

We find that the numbers of MCSs of GBSs are related to
an interesting function (which is known as the σ function)
in number theory. This function actually denotes the sum
of all divisors of a positive integer. For example, σ (6) =
1 + 2 + 3 + 6 = 12, and σ (16) = 1 + 2 + 4 + 8 + 16 = 31.

Generally, let d = pn1
1 pn2

2 · · · pnl
l ; then

σ (d ) =
l∏

k=1

(
1 + pk + · · · + pnk

k

)
.

Theorem 3. Structure characterization of MCSs. Let d � 3
be an integer. For each pair (i, j) in Zd × Zd , where i �= 0,

we define the following set:

Ci, j := {(x, y) ∈ Zd × Zd

∣∣ ∣∣∣∣ i j
x y

∣∣∣∣ ≡ 0 mod d, x ∈ iZd}.

Then Ci, j is a MCS of GBSs in Cd ⊗ Cd with exactly d
elements. Moreover, if we define C0,0 := {(0, y)|y ∈ Zd}, then
every MCS of GBSs in Cd ⊗ Cd must be one of Ci, j with
i �= 0 or C0,0. There are exactly σ (d ) classes of MCSs SMC,d

which can be listed as follows:

SMC,d := {Ci, j |d = ik, 0 � j � k − 1} ∪ {C0,0}.
Proof. First, we show that the cardinality of each Ci, j is

equal to d . We denote by di the greatest common divisor of
i and d . Then the set iZd := {i j ∈ Zd | j ∈ Zd} has exactly
d/di elements. More exactly,

iZd = {ik| k = 0, 1, . . . ,
d

di
− 1}.

FIG. 2. For n = 5, 6, 7, 8, 9, 10, 11, we randomly generate N =
100 000 sets of GBSs whose cardinalities are all n for d = 7–20,
respectively. The solid lines represent the success rates of Theorem
1, and the dashed lines represent the success rates of Theorem 2. The
lines from top to bottom represent sets with cardinality from 5 to 11,
respectively. Here the starting point of each curve with respect to n
has dimension d � n.

For each x = ik (k = 0, 1, . . . , d
di

− 1), there are exactly di

solutions of y ∈ Zd that satisfy∣∣∣∣ i j
x y

∣∣∣∣ ≡ 0 mod d. (8)

In fact, Eq. (8) is equivalent to i(y − k j) ≡ 0 mod d , whose
solutions can be expressed analytically as y = k j + d

di
l , where

l = 0, 1, . . . , di − 1. Therefore, the set Ci, j can be expressed
as{(

ik, k j + d

di
l

)∣∣∣∣ k = 0, 1, . . . ,
d

di
; l = 0, 1, . . . , di − 1

}
.

One can check that for two different pairs of (k1, l1) and
(k2, l2) with the above conditions, the coordinates (ik1, k1 j +
d
di

l1) �= (ik2, k2 j + d
di

l2). Therefore, the cardinality of Ci, j is
equal to d.

Now we show that the elements in Ci, j are mutually com-
mutative. In fact, for any two solutions (ik1, k1 j + d

di
l1) and

(ik2, k2 j + d
di

l2), we have

∣∣∣∣∣
ik1 k1 j + d

di
l1

ik2 k2 j + d
di

l2

∣∣∣∣∣ = i

di
(k1l2 − k2l1)d, (9)

which is always equal to 0 mod d as di divides i.
Therefore, each Ci, j is a commutative set of GBSs with

cardinality d . By Lemma 2, each Ci, j must also be maximal.
Next, we show that for every MCS C, it must be one of Ci, j

with i �= 0 or C0,0. For any maximally commutative set C of
GBSs in Cd ⊗ Cd , from Eq. (7), (xk, yk ) ∈ C (k = 1, . . . , n)
exist such that

C =
n∑

k=1

(xk, yk )Zd .

If all xk are equal to zero, one must conclude that C = C0,0. If
not, let i denote the greatest common divisor of x1, x2, . . . , xn

and d , which is not equal to zero in this case. There exist
rk ∈ Zd such that i = ∑n

k=1 rkxk (following Ref. [68], The-
orem 1.4, we have i = R0d + ∑n

k=1 Rkxk, Ri ∈ Z, then taking
modulus d). We define j = ∑n

k=1 rkyk . By Lemma 3, we have
(i, j) ∈ C. Both (xk, yk ) and (i, j) are in C. By the definition
of i, for each k, the element xk ∈ iZd . As both (xk, yk ) and
(i, j) are in C, we have iyk − jxk ≡ 0 mod d. Therefore, by
the definition of Ci, j , for each k, the element (xk, yk ) ∈ Ci, j .

From Lemma 3 again, we have C ⊆ Ci, j . However, both sets
are maximally commutative sets of GBSs. Therefore, C must
equal Ci, j .

In the following, we show that each Cx,y (x �= 0) belongs to
one of SMC,d . We denote by dx the greatest common divisor of
x and d (we might assume x = cxdx, where cx ∈ Z). So dx =
qx + rd for some integers q, r. A unique j ∈ {0, 1, . . . , kx −
1} (where kxdx = d) exists such that

qy − j ∈ kxZd .

That is, qy − j = kxlx for some lx ∈ Zd . For this j, we have
the following equation:∣∣∣∣dx j

x y

∣∣∣∣ =
∣∣∣∣dx qy − kxlx

x y

∣∣∣∣ = (dx − qx)y + lxkxx,
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FIG. 3. We consider the cases d = 20 and n = 9, 10, or 11
(which correspond to green, purple, and pink curves, respectively).
We randomly generate 100 000 sets (which are separated into 10
equal classes) of GBSs whose cardinalities are all n = 9, 10, 11, re-
spectively. Each solid curve shows the success rates for the σ (20) =
42 classes of MCSs. The dashed lines represent the success rates for
the 42 classes of MCSs such that the local distinguishability of the
samples can be detected by only one class of the MCS itself.

which is equal (ry + lxcx )d ≡ 0 under mod d. By definition,
x ∈ dxZd . Therefore, we have (x, y) ∈ Cdx, j . As the elements
in Cdx, j all commute with each other, for any (x1, y1) ∈ Cdx, j ,
we have ∣∣∣∣ x y

x1 y1

∣∣∣∣ ≡ 0 mod d.

Note that for dxZd = xZd , we have x1 ∈ xZd . Therefore,
Cdx, j ⊆ Cx,y. By the maximality, we must have Cx,y = Cdx, j .

Therefore, we conclude that every Cx,y must be one of the
elements in SMC,d

On the other hand, we need to show that the sets in SMC,d

are mutually different. Clearly, C0,0 is different from all the
other sets. Let Ci1, j1 and Ci2, j2 be any two members of SMC,d

where (i1, j1) �= (i2, j2) and i1, i2 are nonzero. As d = i1k1, if
i1 = i2, we have i1 j2 − i2 j1 = i1( j2 − j1), which lies between
−(d − 1) and d − 1 but is not equal to zero. Hence, the pairs
(i1, j1) and (i2, j2) do not commute. Therefore, Ci1, j1 �= Ci2, j2 .

If i1 �= i2, we can assume that i1 < i2 without loss of gener-
ality. As both i1 and i2 are divisors of d , we can check that
i1 /∈ i2Zd . Therefore, by definition, (i1, j1) /∈ Ci2, j2 . Hence, we
also have Ci1, j1 �= Ci2, j2 .

Each divisor i (1 � i < d ) of d contributes to d/i classes
of MCSs to SMC,d . Therefore,

|SMC,d | = 1 +
∑

i|d,1�i<d

d/i =
∑
i|d

d/i = σ (d ).

This completes the proof.
From the above theorem, we know that there are σ (d )

classes of MCSs of d-dimensional GBSs. Among these
MCSs, are there any differences in their abilities to detect the
local distinguishability of sets of GBSs? Is there any redun-
dant MCS (whose ability is strictly weaker than some other
MCS) in detecting the local discrimination of generalized
Bell sets? We present some numerical results for these two
questions.

FIG. 4. We consider the case with d = 20 and n = 10. This plot
shows the success rates for each detector [see Eq. (6)] indicated by
the coordinates (i, j) ∈ Z20 × Z20. We randomly generate 100 000
sets of GBSs whose cardinalities are all n = 10.

The three solid lines in Fig. 3 imply that the success rates of
all MCSs are almost equal to each other [one should compare
this with the detectors defined in Eq. (6); see Fig. 4]. The three
dashed lines imply that each class of MCSs is irredundant in
the sense that for each MCS C, some set S exists whose local
distinguishability can be detected only by C and not by other
MCSs.

IV. CONCLUSION AND DISCUSSION

In this paper, we studied the problem of local distinguisha-
bility of generalized Bell states. First, we provided a review of
some important methods for detecting the local distinguisha-
bility of GBSs. Motivated by a recent method derived by Yuan
et al. [67], we introduced the concept of a maximally commu-
tative set of GBSs. Surprisingly, we found that each MCS is
useful for detecting the local distinguishability of GBSs. More
exactly, given a set S of GBSs, if some MCS C exists such that
the difference set �S of S is disjoint with or contained in C,

then the set S can be one way distinguishable. This method
is stronger than that in Ref. [67], and it motivates us to find
all the MCSs of a given dimension. Indeed, we presented a
complete structure characterization of MCSs in Theorem 3.

However, a MCS gives a sufficient condition only for
local distinguishability, and it is not necessary. It would be
interesting to derive an easy to check condition for the local
distinguishability of GBSs which is both sufficient and nec-
essary. In addition, it would be interesting to check whether
Fan’s results can be extended to systems without the assump-
tion about the dimension of local systems. A weaker form is
as follows: given any integer l , does some D (which depends
on l) exist such that if d � D, then any l GBSs in Cd ⊗ Cd

are locally distinguishable? As far as we known, this problem
has been solved only for the case l = 3. We conjecture that
this holds for all other cases. It is well known that at most
d maximally entangled states can be locally distinguished.
Therefore, it would be interesting to find all the one-way
locally distinguishable sets of GBSs in Cd ⊗ Cd with cardi-
nality d .

032455-6



LOCAL DISCRIMINATION OF GENERALIZED BELL … PHYSICAL REVIEW A 105, 032455 (2022)

Note that our method here can be generalized to any max-
imally entangled basis whose defining unitary matrices B
satisfy the following: for any U,V ∈ B some W ∈ B exists
such that U †V ∝ W . The lattice qudit basis [57] is such an
example. From their proof, any locally distinguishable set of
lattice qudit bases that can be detected in Ref. [57] can always
be detected by a MCS of lattice qudit bases. Therefore, our
method can also be seen as a generalization of the one in
[57]. Therefore, it would also be interesting to give a complete
characterization of the MCS of lattice qudit bases and study
its application to local discrimination. Finally, it would be
interesting to provide some operational significance of the
MCSs introduced in our work.
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