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A central problem in quantum computing is the finding of an unknown target state that encodes the solution of
a certain computational task. To accomplish this goal, the evolution from a given initial state is performed with an
associated total Hamiltonian, which is a time-dependent combination of two time-independent Hamiltonians: the
problem-Hamiltonian, whose ground state is the unknown target, and a driving-Hamiltonian, whose ground state
is the initial state. Here, we analyze this computational problem in the light of optimal control theory, considering
each Hamiltonian modulated by an independent control function. For bounded controls, there is a minimum total
evolution time beyond which the target state can be exactly prepared. We show that below this minimum time a
possible optimal solution consists of both controls constantly tuned at their upper bound, provided the gradients
of the associated control Hamiltonian with respect to the controls (the switching functions) are positive. We
refer to this type of solution as the double-bang solution. We show that the double-bang solution is optimal
for a teleportation protocol up to the minimum time. Additionally, we combine the double-bang solution and
the adiabatic gate teleportation protocol to implement universal quantum computing. This approach to quantum
computing is very appealing because of its simplicity and experimental feasibility. To corroborate our analytical
results, we propose the use of a numerical quantum optimal control technique adapted to limit the amplitude
of the controls, which converges to the double-bang solution when the final evolution time is shorter than the
minimum time. We compare the fidelity of the teleported state obtained for the numerically optimized two-
control functions with the usual one-control function scheme and with the quantum approximate optimization
algorithm (QAOA). We find that the two-control approach has a better performance than the other approaches.
Moreover, we investigate the energetic cost and the robustness against systematic errors in the teleportation
protocol, considering different schemes.
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I. INTRODUCTION

Quantum computing is currently one of the most exciting
and prominent areas of physics due to its possibility of a revo-
lutionary change in present-day technologies [1–3]. However,
rather than large-scale quantum computers, we have closer at
our disposal the so-called noisy intermediate-scale quantum
(NISQ) devices, which can already, in principle, surpass the
power of classical computers [4]. In the current NISQ era, in
contrast to the standard quantum computing based on a set
of logic gates, new computational paradigms have emerged
based on the evolution of suitably designed Hamiltonians.
For instance, variational quantum algorithms can operate in
NISQ platforms to handle a variety of problems, such as
ground-state chemistry, machine learning, and combinatorial
optimization [5–10].

Variational quantum algorithms (VQAs) are typically
based on a properly parametrized time-dependent
Hamiltonian, which is applied to a register of qubits [11,12].
At the final time, the register will contain the solution for
the problem. A VQA aims to solve specific problems by
varying a set of parameters of the total Hamiltonian, which
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also parametrizes the evolution. As a special case of VQAs,
quantum approximate optimization algorithms (QAOAs)
have been developed for solving combinatorial optimization
problems [13]. QAOA consists of applying a sequence of
two unitary evolution operators originating from the so-called
problem-Hamiltonian and driving-Hamiltonian in alternation,
where the parameters correspond to the timings of these
unitary operators.

Adiabatic quantum algorithms (AQAs) are also in the
class of quantum computing approaches that are based on a
time-dependent combination of time-independent Hamiltoni-
ans [14,15]. AQAs exploit the fact that a quantum system
remains in its ground state if the evolution is made suffi-
ciently slow. In this approach, the total Hamiltonian changes
adiabatically from the driving-Hamiltonian to the problem-
Hamiltonian, whose ground state encodes the solution of the
computational problem. However, the time required to keep
the adiabatic condition valid can be too long to be useful in
practical situations. Several alternatives have been proposed
to circumvent this problem, such as the local adiabatic evo-
lution or the use of counterdiabatic drivings [16,17]. Related
to AQA, the method of quantum annealing (QA) emerged as
a quantum version of the classical optimization technique of
simulated annealing [18–21]. As in AQA, the connection of
the driving Hamiltonian to the problem Hamiltonian in QA is
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carried out through a smooth continuous function of time, but
allowing for faster, nonadiabatic dynamics.

Recently, several works explored connections of optimal
control theory with VQA and also with QA [22–25]. In
Ref. [26], it was argued that for a fixed time, square pulse
controls (bang-bang type) are optimal, giving support to the
QAOA methodology. However, from the standard form of QA
involving a single control function, the authors of Ref. [27]
showed that a more general form of the optimal solution is
of “bang-annealing-bang” type, meaning that a hybrid time-
dependent control starting at the minimum allowed value and
ending at the maximum possible value, with a smooth an-
nealing segment in between is usually optimal. In Ref. [28],
a comprehensive perspective of the possible connections be-
tween VQA with quantum control was presented. Specifically,
the authors indicated that the quantum optimal theory back-
ground can extract a rich variational structure of VQA and
provide a better understanding of variational experiments.

In this paper, we analyze the problem of finding an un-
known target state that encodes the solution of a certain
computational task in the framework of optimal control the-
ory. The evolution of the system is governed by a combination
of a driving and a problem Hamiltonians, each one modulated
by an independent control function. For bounded controls,
we find two regimes depending on the total evolution time:
(i) for sufficiently long times, optimal solutions exist such that
the target ground state can be exactly obtained; (ii) for short
times, optimal solutions cannot fully prepare the target state.
The minimum time is the least total evolution time for which
the target state can be exactly prepared. If the gradients of
the associated control Hamiltonian with respect to the controls
(switching functions) are positive and the final evolution time
is shorter than the minimum time, we demonstrate that the
optimal solution is obtained by simply setting both control
functions at their maximum values during the entire evolu-
tion. We call this kind of solution the double-bang solution.
The main difference of our findings when compared to those
obtained in Refs. [26,27] is that we explicitly formulate the
control problem considering two independent control func-
tions, which leads to the double-bang solution.

Universal quantum computer can be achieved through the
adiabatic gate teleportation (AGT) protocol [29], although the
adiabatic evolution is slow and requests a route to speed up
the time evolution [30]. By using the double-bang solution,
we show how to implement universal quantum computing by
means of AGT in the fastest way. In other words, universal
quantum computing can be performed by switching on the
driving and the problem Hamiltonians of the AGT scheme.
Particularly, the minimum time for the AGT is the time where
the mean value of the problem Hamiltonian reaches its ground
state with the double-bang solution; thereby, accomplishing
the computational task with practically full accuracy.

II. CONTROL PROBLEM

Consider that we are given two time-independent
Hamiltonians: H0 (driving) and H1 (problem), with |φ0〉 be-
ing the ground state of H0 with eigenvalue E0

0 , and |χ0〉
the ground state of H1 with eigenvalue E1

0 . Suppose that the
system is initially prepared in the ground state of H0, |ψ (t =

0)〉 = |φ0〉, and evolves according to the total time-dependent
Hamiltonian

H (t ) = ε0(t )H0 + ε1(t )H1, (1)

where ε0(t ) and ε1(t ) are two independent control functions.
We seek to find the controls ε∗

0 (t ) and ε∗
1 (t ) that maximize

the expectation value of a given observable O at the final time
t = T , expressed as a functional of the controls

J[ε0, ε1] = 〈O(T )〉 ≡ 〈ψ (T )|O|ψ (T )〉, (2)

while limiting the amplitudes of the controls such that 0 �
εk � 1, k = 0, 1. The maximum possible value of J is given
by the largest eigenvalue of O, which we simply designate
by Jmax.

We point out that in the standard versions of adiabatic
or annealing quantum computing, the controls εk are not
independent, being related by ε1(t ) = 1 − ε0(t ), while the
observable is usually the negative of the problem Hamilto-
nian O = −H1 (equivalently, the problem can be recast as the
minimization of H1). Moreover, by the adiabatic theorem, it is
known that an optimal solution to the control problem exists
for sufficiently long final times T , in which case Jmax can be
obtained.

Necessary conditions for optimal solutions to the present
control problem can be obtained by means of the calculus
of variations [31]. In this approach, an augmented functional
Ja is formed from Eq. (2), incorporating the Schrödinger
equation with the help of a Lagrange multiplier. The vanishing
of the variation of the augmented functional δJa = 0 leads to
necessary conditions for optimality. Alternatively, in the spirit
of Pontryagin’s formulation, it is also possible to obtain these
necessary conditions using the so-called control Hamiltonian
function, which can be obtained by a Legendre transformation
from the variational formalism (see Refs. [27,32] for further
details). Thus, for convenience, we consider the problem in
terms of the control Hamiltonian H [not to be confused with
the system Hamiltonian H (t )] given by [33,34],

H(ψ, λ, ε0, ε1, t ) = −i〈λ(t )|H (t )|ψ (t )〉 + c.c., (3)

where |λ(t )〉 is an auxiliary adjoint vector state. Hereafter, we
adopt h̄ = 1.

Substituting Eq. (1) into Eq. (3), we obtain

H(ψ, λ, ε0, ε1, t ) = ε0(t )�0(t ) + ε1(t )�1(t ), (4)

where the gradients with respect to the controls (also called
switching functions) are

�k (t ) ≡ 2 Im {〈λ(t )|Hk|ψ (t )〉}, k = 0, 1. (5)

According to the Pontryagin’s maximum principle, nec-
essary conditions for an optimal solution are given by the
evolution of the state and the adjoint vectors

|ψ̇ (t )〉 = −iH (t )|ψ (t )〉, |ψ (0)〉 = |φ0〉, (6a)

|λ̇(t )〉 = −iH (t )|λ(t )〉, |λ(T )〉 = O|ψ (T )〉, (6b)

along with the maximum condition of the control Hamiltonian

H(ψ∗, λ∗, ε∗
0, ε

∗
1, t ) � H(ψ∗, λ∗, ε0, ε1, t ),

∀ admissible ε0, ε1, (7)
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where the symbol ∗ refers to the dynamical quantities calcu-
lated at an optimal solution.

Considering admissible variations δεk around the optimal
solution εk (t ) = ε∗

k (t ) + δεk (t ), Eq. (7) yields

∂H(ε∗
k )

∂εk
δεk (t ) = �∗

k (t )δεk (t ) � 0, k = 0, 1. (8)

Although Eq. (8) can be viewed as a weaker form of the
Pontryagin’s principle than Eq. (7), it also furnishes the
necessary conditions for optimality. Thus, for each value of
k and for a given t , three situations can occur: (i) �∗

k (t ) = 0,
(ii) �∗

k (t ) > 0 and δεk (t ) < 0, or (iii) �∗
k (t ) < 0 and δεk (t ) >

0. Note that δεk (t ) < 0 for all admissible variations implies
ε∗

k (t ) = 1 because the variations about the maximum value
must be negative, while δεk (t ) > 0 implies ε∗

k (t ) = 0 because
the variations about the minimum must be positive. As is usu-
ally termed in optimal control theory [31], a singular interval
occurs when the gradients vanish simultaneously in a finite
interval of time, �∗

0(t ) = �∗
1(t ) = 0. As explained below, we

will tacitly assume in the following that singular intervals do
not occur by considering sufficiently short final times.

It is straightforward to verify that ε0(t )�̇0 = −ε1(t )�̇1

and, as a consequence, the time derivative of the control
Hamiltonian is given by

dH(t )

dt
= ε̇0(t )�0 + ε̇1(t )�1. (9)

For optimal solutions, either the control is constant, ε̇∗
k (t ) = 0,

or the gradient vanishes, �∗
k (t ) = 0, which implies that the

control Hamiltonian calculated at an optimum trajectory H∗
is a constant of motion. Moreover, when the amplitudes of
optimal controls are within the boundaries 0 < ε∗

k (t ) < 1, for
all t ∈ [0, T ], the situation is similar to the unbound control
problem: necessarily the gradients are null and the control
Hamiltonian vanishes identically H∗ = 0.

The necessary conditions for an optimal solution evidence
that, when the final time T is long enough, there are optimal
solutions such that the control Hamiltonian H∗ is null and the
maximum possible value of the functional Eq. (2), Jmax, can
be reached. On the other hand, below a certain minimum value
Tmin of the evolution time Jmax cannot be reached. In this case,
T < Tmin, the control Hamiltonian at the optimal solution, is
a positive constant.

To show this, following the reasoning of the authors of
Ref. [27], consider that the final time T of the control problem
is free and set a new cost functional J ′ given by

J ′[ε0, ε1, T ] = J[ε0, ε1] − αT, (10)

where α � 0 is a given positive constant. The functional to be
maximized, J ′, has a penalty term to account for increasing
the final time. We can associate the same control Hamiltonian
in Eq. (4) to this free final-time cost functional, along with
Eqs. (6) and (7), and the additional necessary condition

H∗(T ) = α. (11)

For α = 0, corresponding to a free final time with no penalty
term, the control Hamiltonian calculated at an optimal so-
lution vanishes for all times and J ′∗ assumes its maximum
possible value J ′∗ = Jmax. In this case, there will be a suffi-
ciently long final time such that we can find optimal solutions

such that the controls are within the boundaries. However,
for α 	= 0, the control Hamiltonian at an optimal solution is
a positive constant α and Jmax is not obtained. A thorough
analysis of these results was recently presented in Ref. [34].

Returning to the problem with a fixed final time, consider
the case where T < Tmin, meaning that the gradients �k (t ) do
not vanish simultaneously and H∗(T ) = constant > 0. Note
that the value of the control Hamiltonian at an optimal so-
lution depends exclusively on the final time T . Now set
O = −H1, which leads to J∗(T ) < −E1

0 = Jmax. Additionally,
from Eqs. (6a), (6b), and (5), we obtain

�∗
1(T ) = 2 Im {〈λ∗(T )|H1|ψ∗(T )〉}

= −2 Im
{〈ψ∗(T )|H2

1 |ψ∗(T )〉} = 0, (12)

and

�∗
0(0) = 2 Im {〈λ∗(0)|H0|ψ∗(0)〉}

= 2E0
0 Im {〈λ∗(0)|ψ∗(0)〉}

= −2E0
0 Im {〈ψ∗(T )|H1|ψ∗(T )〉} = 0, (13)

where we used the fact that d
dt 〈λ∗(t )|ψ∗(t )〉 = 0.

Thus, we conclude that

H∗(T ) = ε∗
0 (T )�∗

0(T ) = ε∗
1 (0)�∗

1(0). (14)

Further, since H∗(T ) is positive, �∗
0(T ) > 0 and �∗

1(0) > 0.
Consequently, from Eq. (8), we must have ε∗

0 (T ) = ε∗
1 (0) = 1

and H∗(T ) = �∗
0(T ) = �∗

1(0). We note that, differently from
the case of single control [27], the fact that ε∗

0 (T ) = 1 and
ε∗

1 (0) = 1 does not impose any condition on ε∗
0 (0) and ε∗

1 (T ).
The set of necessary conditions deduced so far helps to sin-

gle out candidates for optimal solutions. Here we select such
a candidate that we name the double-bang solution, consisting
of both controls set to their (equal) maximum values ε0(t ) =
ε1(t ) = 1 ∀t ∈ [0, T ]. Clearly, such a solution satisfies the
boundary condition just derived ε0(T ) = 1 and ε1(0) = 1.
Moreover, assuming that both gradients are positive for
ε0(t ) = ε1(t ) = 1, then the double-bang solution also meets
Eq. (8). Additionally, the control Hamiltonian is given by
H(T ) = �0(t ) + �1(t ). Noting that the time derivative of the
sum of the gradients can be written as d

dt [�0(t ) + �1(t )] =
[ε0(t ) − ε1(t )]ξ (t ), where ξ (t ) = 2 Re{〈λ(t )|[H1, H0]|ψ (t )〉},
we perceive that the control Hamiltonian is constant for the
double-bang solution. The conditions for the gradients being
nonnegative are problem-specific since they depend essen-
tially on the Hamiltonians H0 and H1. However, we will show
in the following that the gradients are nonnegative for a tele-
portation protocol, and consequently the double-bang solution
is optimal up to the minimum time, which allows for universal
quantum computing.

It is worth comparing the yield for the same final time T
obtained with two-control functions with that of the standard
QA scheme, which employs a single control function such that
ε1(t ) = 1 − ε0(t ). In particular, if an optimal solution for the
two-control case is given by the double-bang solution, then,
from Eq. (7), an optimal solution for the one-control case is,
in general, a suboptimal solution for the two-control case.
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III. TBQCP OPTIMIZATION METHOD

Numerically, the optimal controls are sought by the two-
point boundary-value quantum control paradigma (TBQCP)
[35], which we adapted to limit the amplitudes of the control
functions. The TBQCP technique was employed to study the
protocols related to standard-gate quantum computing with
great efficiency, e.g., to compute optimal controls capable of
implementing the universal set of quantum gates in double
quantum dots [36] or the permutation algorithm in hybrid
qubits [37].

The TBQCP is an iterative monotonic method able to find
optimal controls that, given an initial state |ψ (t = 0)〉 ≡ |ψ0〉,
maximize the expectation value of a physical observable O at
the final time T . Starting with some trial controls, the physical
observable is evolved backwards (from the final time t = T to
the initial time t = 0) through the following equation:

i
∂O(n)(t )

∂t
= [

O(n)(t ), H (n)(t )
]
, O(T ) → O(0), (15)

where H (n)(t ) = ∑1
k=0 ε

(n)
k (t )Hk and ε

(n)
k (t ) are the controls in

the nth iteration. The initial state |ψ0〉 is evolved forward with
the Schrödinger equation

i
∂|ψ (n+1)(t )〉

∂t
= H (n+1)(t )|ψ (n+1)(t )〉, (16)

where H (n+1)(t ) = ∑1
k=0 ε

(n+1)
k (t )Hk and ε

(n+1)
k (t ) is the (n +

1)st iteration control for k = 0, 1, which is calculated through
the following expression:

ε
(n+1)
k (t ) = ε

(n)
k (t ) + η f (n+1)

k (t ), k = 0, 1, (17)

where η is a positive constant and the control correction is
given by

f (n+1)
k (t ) = 2Im{〈ψ (n+1)(t )|O(n)(t )Hk|ψ (n+1)(t )〉}, (18)

where k = 0, 1. It was shown that, as an optimal solution is
approaching, the control correction f (n+1)

k (t ) is equivalent to
the gradient �k (t ) (Eq. (5) [35]), which establishes a close
connection between the TBQCP and the variational version of
the optimal control theory. Equations (15) to (17) are solved
in a self-consistent way, starting with trial controls ε

(0)
k (t )

(k = 0, 1) and monotonically increasing the value of the de-
sired physical observable 〈O(T )〉 = 〈ψ (T )|O(T )|ψ (T )〉, see
more details in Ref. [35]. In addition, at each iteration step, the
amplitudes of the controls are bounded to the interval [0,1] by
enforcing the value of the corresponding limit whenever the
control transcends the bounds of the interval [0,1] in Eq. (17).
In this case, if the control function ε

(0)
k (t ) (k = 0, 1) exceeds

one of the bounds 0 or 1 in a certain time interval, its value
is set equal to the crossed bound in this same time interval
during the entire self-consistent calculation.

IV. QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

To compare with the optimized solutions of the control
problem, we also consider the QAOA approach. In the spirit
of VQAs, the QAOA ansatz consists of alternately switching
on each Hamiltonian Hk (k = 0, 1) in a certain time interval,
while the other one is switched off. Thus, the time evolution

becomes

|ψ (t )〉= U (H0, βp)U (H1, γp) . . .U (H0, β1)U (H1, γ1)|ψ (0)〉,
(19)

where U (H0, β j ) = exp(−iH0β j ) and U (H1, γ j ) =
exp(−iH1γ j ) are evolution operators. β j and γ j are real
positive variational parameters that should be adjusted to
maximize the expectation value of an observable O at the
final time t = T , 〈O(T )〉. The variational parameters are
constrained such that T = ∑p

j=1(γ j + β j ), where p specifies
the quantity of shifts from one Hamiltonian to the other.
By construction, QAOA provides a solution to the control
problem such that the controls satisfy ε1(t ) = 1 − ε0(t ) and
ε0(t ) is of bang-bang type, meaning that the control is turned
on and off (possibly many times) during the evolution. We
employ the particle swarm optimization for fixed values of
p to find the set of parameters {γ j, β j} [38,39]. In the same
spirit of Ref. [27], QAOA will be used as a benchmark to
check the efficiency of other schemes.

V. TELEPORTATION PROTOCOL

We consider the teleportation protocol introduced in
Ref. [29]. In this protocol, there are three qubits under the
action of the Hamiltonian (1), where the driving-Hamiltonian
is

H0 = −ω0
(
σ 2

x σ 3
x + σ 2

z σ 3
z

)
, (20)

whose ground state is twofold degenerated |φ(1)
0 〉 = |0〉 ⊗ |�〉

and |φ(2)
0 〉 = |1〉 ⊗ |�〉, where |�〉 is a Bell state, |�〉 =

(|00〉 + |11〉)/
√

2, and σ
j

m is the Pauli spin matrix in the m
direction acting on the jth qubit.

The problem Hamiltonian is
H1 = −ω0

(
σ 1

x σ 2
x + σ 1

z σ 2
z

)
, (21)

whose ground state is also a twofold-degenerated state given
by |χ (1)

0 〉 = |�〉 ⊗ |0〉 and |χ (2)
0 〉 = |�〉 ⊗ |1〉. This protocol

aims at teleporting the information initially encoded into the
first qubit to the third qubit at the final time of evolution, which
is equivalent to a SWAP gate. The fidelity at the final time of
evolution T can be evaluated by

F (T ) = |〈ψ (T )|χ0〉|2, (22)

where |χ0〉 can be chosen as any linear combination of states
|χ1

0 〉 and |χ2
0 〉 without loss of generality [29]. As already

discussed in Ref. [29], one-qubit gates can be obtained by
the unitary transformation of the driving Hamiltonian H ′

0 =
UGH0U

†
G, where UG is the one-qubit gate acting on the third

qubit, which can be obtained by local magnetic fields. The
same idea can be generalized to implement two-qubit gates.
In this case, the Hamiltonian must be extended to a set of
six qubits because each subset of three qubits is required to
swap the information between the first and the third qubit.
Similarly to the one-qubit gates, two-qubit gates are achieved
by unitary transformations of the driving Hamiltonian. For
instance, the controlled-NOT gate (CNOT) can be accomplished
by the rotated driving Hamiltonian such as

H ′
0 = −ω0UCNOT

(
σ 2

x σ 3
x + σ 2

z σ 3
z + σ 5

x σ 6
x + σ 5

z σ 6
z

)
UCNOT,

(23)
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FIG. 1. Mean value 〈H1(T )〉 as a function of the final time of
evolution, using the first (red dotted curve), the second (black solid
curve), the third (orange dotted curve), and the fourth (blue solid
curve) time evolution schemes. The thin black horizontal line indi-
cates the smallest eigenvalue of H1.

where UCNOT is the controlled-NOT gate applied between the
third and sixth qubits. The problem Hamiltonian does not
depend on the two-qubit gate, thus

H1 = −ω0
(
σ 1

x σ 2
x + σ 1

z σ 2
z + σ 4

x σ 5
x + σ 4

z σ 5
z

)
. (24)

By setting the ground state of Eq. (23) as the initial state,
the time-evolved state up to the minimum time Tmin, un-
der the total Hamiltonian H = H ′

0 + H1, is exactly given
by |ψ (Tmin〉 = UCNOT|χ0〉. The unitary gate related to the
controlled-NOT can be obtained by evolving the Hamiltonian
HCNOT = �(σ 3

x + σ 6
z ) + �σ 3

x σ 6
z , with � and � being propor-

tional to local magnetic fields and interaction between the
third and sixth qubits, respectively. The unitary gate is simply
UCNOT = exp (−iHCNOTTmin). Furthermore, the Hamiltonian
HCNOT can be transformed into a ZZ-type interaction, which
is experimentally achievable, by applying a rotation of π/4 in
the y direction to the third qubit, so

HR
CNOT = �(σ 3

z + σ 6
z ) + Jσ 3

z σ 6
z , (25)

where the superscript R indicates the Hamiltonian in the basis
rotated by π/4 in the y direction.

VI. NUMERICAL RESULTS

To probe and compare different approaches, we imple-
ment the teleportation protocol using the following temporal
evolution schemes: (1) the two-control optimization of ε0(t )
and ε1(t ); (2) the double-bang solution ε0(t ) = ε1(t ) = 1; (3)
the one-control optimization, i.e., ε1(t ) = 1 − ε0(t ); and (4)
the QAOA approach. The linear adiabatic evolution (LAE),
where ε0(t ) = 1 − t/T and ε1(t ) = t/T , is used to initialize
the TBQCP method, see Eqs. (15) to (17).

In Fig. 1, we compare the mean value 〈H1(T )〉 =
〈ψ (T )|H1|ψ (T )〉 as a function of final time T considering
different temporal evolution schemes, where |ψ (T )〉 is the
wave function evolved up to the final time by the Hamiltonian
defined in Eq. (1). The minimum value of 〈H1(T )〉 is achieved
in the shorter time for the two-control optimization and the
double-bang solution, as shown in Fig. 1. In this case, the
mean value 〈H1(T )〉 reaches its minimum −2ω0 for the final
time T = 1.11τ0, where τ0 = ω−1

0 is the adopted timescale.
The QAOA approach and the one-control optimization essen-
tially have the same performance and achieves the minimum

FIG. 2. Panels (a) and (c) show the control ε0(t ) for 0 to 1400
iterations of the TBQCP method, with a step of 100 iterations, for
the second and third schemes, respectively. The number of iterations
increases in the direction indicated by the arrows and the color gradi-
ent. Thus, the darker the color, the higher the number of iteraction in
the TBQCP. Fidelity F (T ) as a function of the number of iterations
in the TBQCP method, using the second and the third schemes, are
shown in panels (b) and (d).

value for final times above T = 1.57τ0. As demonstrated in
Sec. II, when the final time T � Tmin, the optimal solution
is the double-bang solution. For this type of solution, the
mean value can be analytically evaluated 〈H1(T )〉 = −ω0[1 −
cos (2

√
2ω0T )], which provides the minimum time Tmin =

π

2
√

2
τ0. Thus, the mean value 〈H1(T )〉 for the double-bang and

the two-control optimization coincides up to Tmin. Although
the analytical result for 〈H1(T )〉 was obtained by the SWAP

gate, this result does not change when either a one- or a
two-qubit gate is applied to the physical qubits. Such a result
is very interesting because it provides an easy receipt to build
an universal quantum computer, which can be summarized as
follows: (i) implement the interactions of the Hamiltonians
Eqs. (20) and (21) or Eqs. (23) and (24); (ii) build the uni-
tary transformation UG or CNOT using local magnetic fields
and interactions; and (iii) evolve the total Hamiltonian H =
H ′

0 + H1 up to Tmin = π

2
√

2
τ0. For the CNOT, the parameters for

the HCNOT can be numerically found to implement the gate at
t = Tmin, which are � = 2.122ω0 and � = 0.707ω0.

Within the TBQCP method, we impose bounds on the
two-control functions by fixing the functions values in the
maximum or minimum bound whenever the functions cross
these limits. To better understand this idea, we plot ε0(t ) con-
sidering different iterations of the TBQCP in Fig. 2(a) when
the final time is T = 1.0τ0. The initial trial function (iteration
0) is ε0(t ) = 1 − t/T . After 100 iterations, the function ε0(t )
starts to bend up, yet does not cross any bound of the interval
[0,1]. On the other hand, the TBQCP method finds functions
that cross the upper bound after 200 iterations and we force
the function to the maximum value within the region where
the function found by the TBQCP would cross the upper
bound. The function ε0(t ) becomes constant and reaches the
upper bound in the whole time evolution, after 1400 iterations
of the TBQCP method. A similar behavior is found to ε1(t )
(not shown here). In Fig. 2(b), we show the fidelity F (T )
as a function of the TBQCP iterations, which converges to
0.9763 after 500 iterations. For all numerical calculations,
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FIG. 3. Optimized controls ε0(t ) (solid lines) and ε1(t ) (dashed
lines) as a function of time for all considered schemes for the final
time T = 0.6τ0. The two-control optimization, the one-control op-
timization, and the QAOA scheme are shown in panels (a) to (c),
respectively.

we use η = 5 × 10−3 in Eq. (17). In Fig. 2(c), we plot the
function ε0(t ) within the one-control optimization scheme as
a function of the iterations of the TBQCP method, which
cross the bounds after 300 iterations. After 1400 iterations,
the function ε0(t ) resembles a step function, similar to the
functions obtained in the QAOA approach. Fidelity F (T ) as
a function of the TBQCP iterations for the third scheme is
shown in Fig. 2(d), which reaches convergence of 0.729 after
1000 iterations.

In Figs. 3–5, we show the converged optimal controls ε0(t )
(solid lines) and ε1(t ) (dashed lines) obtained for different
final times. In each of these figures, panels (a) to (c) show the
controls using the two-control optimization, the one-control
optimization, and the QAOA scheme. In Fig. 3(a), we observe
that the solution for the two-control optimization using the
TBQCP method corresponding to the double-bang solution,
which is in perfect accordance to the general results obtained
in Sec. II. The one-control optimization and the QAOA pro-
vide similar solutions for the controls [Figs. 3(b) and 3(c),
which indicates that the QAOA approach with p = 1 is very

FIG. 4. Optimized fields ε0(t ) (solid lines) and ε1(t ) (dashed
lines) as a function of time for all considered schemes for the fi-
nal time T = 1.11τ0. The two-control optimization, the one-control
optimization, and the QAOA scheme are shown in panels (a) to (c),
respectively.

FIG. 5. Optimized fields ε0(t ) (solid lines) and ε1(t ) (dashed
lines) as a function of time for all considered schemes for the fi-
nal time T = 1.8τ0. The two-control optimization, the one-control
optimization, and the QAOA scheme are shown in panels (a) to (c),
respectively.

close to the optimal solution for T = 0.6τ0. It is also inter-
esting to notice that the second scheme, initialized with the
smooth linear ramp of LAE, converged to controls of opposite
behavior compared to LAE, e.g., ε0(0) > ε1(0) in the LAE
scheme, but ε1(0) > ε0(0) for the optimized solutions.

In Fig. 4, we plot the resulting controls considering the
minimum time Tmin = 1.11τ0. In Fig. 4(a), we observe that the
solution for the two-control optimization using the TBQCP is
not exactly equal to the double-bang solution, but both solu-
tions are equivalent and give the same value for 〈H1(Tmin)〉.
Again, the one-control solution [Fig. 4(b)] is similar to the
QAOA approach [Fig. 4(c)] with p = 1, where the main dif-
ference is the smoother transition between 0 and 1 for the third
scheme. Figure 5 shows the control functions for T = 1.57τ0.
In this case, the final time is longer than the minimum time,
therefore the two-control optimization converges to solutions
different from the double-bang solution. We also notice that
the one-control optimization scheme presents a smooth lin-
ear transition between the minimum and maximum values of
control functions, while the QAOA approach has a jump at
t = 0.785τ0. Although the controls obtained from different
schemes have a different temporal evolution, the fidelity is
always equal to 1 for T = 1.57τ0. This result is in agreement
with the fact that the control landscape contains infinite opti-
mal solutions [40].

We also perform the analysis of the energetic cost of im-
plementing these different temporal evolution schemes. In
Fig. 6, we plot the energy cost as a function of the final time
calculated according to Refs. [30,41]:

�(T ) = 1

T

∫ T

0
dt ||H (t )||, (26)

where ||H (t )|| =
√

Tr{H (t )2}. We note that both the QAOA
and the double-bang solution have constant energy cost for
all T shown in the Fig. 6. This behavior is due to the con-
stant form of the function for these two particular cases.
The energetic cost for the two-control optimization and the
double-bang solution are the same when T < 1.11τ0. Above
the minimum time, the first scheme presents a lower energetic
cost than the double-bang solutions. A similar behavior occurs
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FIG. 6. Energy cost as a function of the final time for the first (red
dotted curve), the second (black solid curve), the third (orange dotted
curve), and the fourth (blue solid curve) schemes of optimization.

when we compare the third and the fourth schemes, i.e., above
T = 1.57τ0, the third scheme has a lower energetic cost than
the QAOA approach. The results of Fig. 6 show that solutions
found by the TBQCP technique have a lower energy cost when
T > Tmin because optimal solutions with amplitudes less than
the maximum bound are possible in this case.

To probe the robustness of the optimization schemes
against systematic errors, we added an error Hamiltonian
given by Herr = αω0σ

j
k to Eq. (1), where α is proportional

to the magnitude of the local magnetic field. We can find
the most aggressive type of systematic error by testing all
different combinations of σ

j
k and keeping the one that most

affects the fidelity. The fidelity in Fig. 7 is evaluated using
the optimized controls, but the time evolution is calculated
including the error Hamiltonian Herr in Eq. (1). The top panel
of Fig. 7 shows the fidelity as a function of α considering T =
Tmin for the two-control optimization and the double-bang so-
lution. For the minimum time Tmin = 1.11τ0, the two-control
optimization does not exactly converge to the double-bang so-
lution (see Fig. 4), but both solutions exhibit the same fidelity
as a function of the error magnitude α [Fig. 7(a)]. Similarly,
the fidelity as a function of α considering T = 1.57τ0 for the
one-control optimization and the QAOA solution display the
same dependence of the fidelity as a function of the error
magnitude α, as shown in Fig. 7(b). Although all schemes
reach the maximum fidelity when α = 0, we find that the first
and the second schemes are more robust against systematic
errors and a 10% of error (α = 0.1) causes a reduction of 1.7%
in the fidelity.

VII. CONCLUSION

We considered the quantum computing problem of reach-
ing a target state by applying a combination of the problem
Hamiltonian and the driving Hamiltonian, each one modu-
lated by an independent control function. We demonstrated
that, when the final time is shorter than the minimum time,
the optimal solutions are the double-bang solution provided
the gradients of the associated control Hamiltonian with re-
spect to controls are nonnegative. This type of solution is
very appealing due to its simplicity and the possibility of

FIG. 7. In panel (a) we plot the fidelity as a function of the mag-
nitude α of the most aggressive type of systematic error considering
the first (red dotted curve) and the second (black solid curve) schemes
of temporal evolution when T = 1.11τ0. In panel (b), we plot the
fidelity as a function of α for the third (blue solid curve) and the
fourth (orange dotted curve) schemes of temporal evolution when
T = 1.57τ0.

achieving universal quantum computing in NISQ by means
of the AGT protocol. We believe that these findings give a
new perspective to perform quantum computation using this
architecture, which is at the same time simple and fast. The
controls were numerically obtained by the TBQCP method
and also by the QAOA approach. We also showed that the use
of two controls can generate higher yields than standard QA
and QAOA schemes for the same evolution time. Considering
the schemes with a single control, we found that QAOA and
the optimized control scheme have the same performance and
similar bang-bang shape for small final times, but are quite
distinct when the final time is sufficient to exactly prepare the
target state. Finally, we remark that the double-bang solution
is not generally optimal because the corresponding gradients
are not always positive. Moreover, there are cases where
the gradients are positive, but the double-bang solution will
not reach the desired ground state with sufficient precision.
However, for certain special systems, the ground state can
be obtained with essentially maximum efficiency by using
the double-bang solution, as demonstrated in the teleporta-
tion protocol. This type of solution, though within a different
framework, was also used previously to perform the Grover’s
algorithm [42]. We believe that the search for the structure of
Hamiltonians where the double-bang solution can reach the
desired ground state efficiently is a very interesting topic of
investigation.
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