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Selective quantum state tomography for continuous-variable systems
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We present a protocol that allows the estimation of any density matrix element for continuous-variable
quantum states, without resorting to the complete reconstruction of the full density matrix. The algorithm
adaptatively discretizes the state and then, by resorting to controlled squeezing and translation operations, which
are the main requirements for this algorithm, measures the density matrix element value. Furthermore, we show
how this method can be used to achieve full quantum state tomography for continuous-variable quantum systems,
alongside numerical simulations.
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I. INTRODUCTION

Quantum information processing tasks always rely on
preparing, manipulating, and measuring states. In order to
perform such tasks, it is essential to have a tool to characterize
quantum states. The protocols to characterize quantum states
are usually referred to as quantum state tomography (QST)
[1–7].

When it comes to one-dimensional continuous-variable
systems, the state density matrix in position representation
ρ(x, x′) contains all the information on the state of the system.
In this article we will focus on measuring ρ(x, x′) for any
given x and x′. The proposed protocol is selective since it
allows one to choose any x and x′ and then estimate the
associated density matrix element.

Our protocol builds upon [2] and resorts to controlled
translation and squeezing operations in order to make it suit-
able for continuous-variable systems. Even though currently
the implementation of a controlled squeezing gate is not easy,
there are proposals for such a task, as shown in [8].

This article is organized as follows. First we review the
protocol from [2]. Then we present our protocol for selective
measurement of continuous-variable density matrices. Finally,
we show some numerical simulations of how our protocol
behaves on different states, and how it can be used for full
state tomography.

II. QUANTUM STATE TOMOGRAPHY IN
FINITE DIMENSION

We will now review the quantum state tomography proto-
col for finite dimensional systems from [2], upon which we
build the continuous-variable one.

Let H be the Hilbert space for the system we want to ana-
lyze, and D its dimension. And let us consider an orthonormal
basis B = {|ψa〉, a = 1, ..., D} for H. Then, the state ρ can be

written as

ρ =
D∑

a,b=1

αab|ψa〉〈ψb|. (1)

The protocol for selective and efficient quantum state to-
mography will be able, then, to measure any given coefficient
αab efficiently (i.e., with resources that scale polynomially
with log D).

Consider the circuit from Fig. 1, where the operators Vk are
preparation operators for the basis B such that Vk|ψ0〉 = |ψk〉.
It is straightforward to see that

Tr(ρout|ψ0〉〈ψ0| ⊗ σx ) = Reαab, (2)

Tr(ρout|ψ0〉〈ψ0| ⊗ σy) = Imαab, (3)

where ρout is the composite output state for the system and
auxiliary qubit. This means that, by measuring σx conditioned
to having |ψ0〉 on the first register, one has the real part of αab,
and by doing the same but with σy one gets the imaginary part.

Finally, it is shown in [2] that the number M of experimen-
tal runs in order to have an uncertainty ε with a probability p
of success is bounded, using a Chernoff bound [9], by

M �
2 ln

(
2
p

)
ε2

, (4)

proving the efficiency of the method.

III. SELECTIVE QUANTUM STATE TOMOGRAPHY FOR
CONTINUOUS VARIABLE

As an extension of the protocol just reviewed, in this sec-
tion we introduce a new protocol for the case of continuous
variables, that allows to selectively measure an estimate of the
density matrix element ρ(x, x′), for any x and x′.
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FIG. 1. Quantum circuit for selective and efficient quantum state
tomography.

The proposed quantum circuit makes use of a control state
and relies on controlled and anticontrolled translation T and
squeezing S gates, as depicted in Fig. 2.

The translation operator T (x) acts on a position eigenstate
|y〉 as

T (x)|y〉 = |x + y〉. (5)

The squeezing operator [10–12] is represented by S(r),
with r a real parameter. The action of this operator on a
position eigenstate |y〉 gives a state proportional to the position
eigenstate |e−ry〉 [13]. Since S is unitary,

S(r)|y〉 = e−r/2|e−ry〉. (6)

The input state (system and control state) to the circuit is
ρSA

0 = ρ ⊗ |0〉〈0|. A Hadamard gate is applied on the control
state, yielding

ρSA
1 = 1

2ρ ⊗ (|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|). (7)

A controlled operation CU acts on the combined
state |ψ〉|0〉 as CU(|ψ〉|0〉) = |ψ〉|0〉 and on |ψ〉|1〉 as
CU(|ψ〉|1〉) = U |ψ〉|1〉, while for the anticontrolled oper-
ation, U only acts on |ψ〉 when the control state is |0〉.
Therefore, for our circuit 2, the controlled operations T †(x′)
and S†(r′) act when the control state is |1〉, while the anticon-
trolled gates T †(x) and S†(r) are applied when the state is |0〉.
After the action of the controlled and anticontrolled gates, the
combined state is given by

ρSA
2 = 1

2 (S†(r)T †(x)ρT (x)S(r) ⊗ |0〉〈0|
+ S†(r′)T †(x′)ρT (x′)S(r′) ⊗ |1〉〈1|
+ S†(r)T †(x)ρT (x′)S(r′) ⊗ |0〉〈1|
+ S†(r′)T †(x′)ρT (x)S(r) ⊗ |1〉〈0|).

(8)

Taking into account that for continuous-variable systems
a projection measurement cannot be carried out with infinite
precision, we define the projection operator around the origin

FIG. 2. Quantum circuit for continuous-variable selective quan-
tum state tomography.

as

�δ =
∫ δ/2

−δ/2
|y〉〈y|dy, (9)

where the parameter δ is set by the measurement device.
The measured average value of the operator �δ ⊗ σx is

Tr

(
ρSA

2

∫ δ/2

−δ/2
|y〉〈y|dy ⊗ σx

)

= 1

2

∫ δ/2

−δ/2
〈y|S†(r)T †(x)ρT (x′)S(r′)|y〉dy

+ 1

2

∫ δ/2

−δ/2
〈y|S†(r′)T †(x′)ρT (x)S(r)|y〉dy

= e− 1
2 (r+r′ )Re

[∫ δ/2

−δ/2
ρ(e−ry + x, e−r′

y + x′)dy

]
. (10)

Considering the action of the translation and squeezing
operators on a position eigenstate, that is, (5) and (6), we
obtain

〈y|S†(r)T †(x)ρT (x′)S(r′)|y〉
= 〈e−ry|T †(x)ρT (x′)|e−r′

y〉 = 〈e−ry + x|ρ|e−r′
y + x′〉,

(11)

and

〈y|S†(r′)T †(x′)ρT (x)S(r)|y〉 = 〈e−r′
y + x′|ρ|e−ry + x〉.

(12)
Therefore (10) gives

Tr

(
ρSA

2

∫ δ/2

−δ/2
|y〉〈y|dy ⊗ σx

)

= e− 1
2 (r+r′ )Re

[∫ δ/2

−δ/2
ρ(e−ry + x, e−r′

y + x′)dy

]
.

(13)

The squeezing parameters r and r′ allow one to select a
rectangular region,

Rxx′ = [x − 	x/2, x + 	x/2] × [x′ − 	x′/2, x′ + 	x′/2],
(14)

where 	x = e−rδ and 	x′ = e−r′
δ [Fig. 3(a)]. The integration

in (13) is done over the diagonal of Rxx′ , which includes the
density matrix element ρ(x, x′) we want to estimate.

Assuming that the density matrix elements do not exhibit
meaningful fluctuations over Rxx′ , ρ(x, x′) can be approxi-
mated as

ρest (x, x′) = 1

δ

∫ δ/2

−δ/2
ρ(e−ry + x, e−r′

y + x′)dy. (15)

Hence we can derive directly from our measurement an
estimate for the real part of ρ(x, x′).

Replacing the σx measurement by σy, we obtain an estimate
for the imaginary part of the density matrix element ρ(x, x′),
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(a)

(b)

FIG. 3. (a) Region Rxx′ (14) over which the density matrix ele-
ment ρ(x, x′) is estimated. The squeezing parameters r and r′ allow
one to select Rxx′ and it is assumed that the density matrix elements
do not exhibit meaningful fluctuations over this region. (b) The
region Rxx′,0, defined setting r = r′ = 0, is subdivided into smaller
regions until conditions (18) and (19) are attained and the region Rxx′

determined.

namely

Tr

(
ρSA

2

∫ δ/2

−δ/2
|y〉〈y|dy ⊗ σy

)

= e− 1
2 (r+r′ )Im

[∫ δ/2

−δ/2
ρ(e−ry + x, e−r′

y + x′)dy

]
. (16)

In order to select the aforementioned region Rxx′ , in other
words select the squeezing parameters r and r′, we define
the weight ε and seek to determine 	x and 	x′ such that the
condition, ∫ xi+	xi /2

xi−	xi /2
ρ(y, y)dy � ε (17)

is verified for xi = x, x′.
The integral we bounded represents the probability of find-

ing the system in the region [xi − 	xi/2, xi + 	xi/2].
The above condition can be tested for xi = x by measuring

|0〉〈0| instead of σx on the auxiliary qubit and for xi = x′ by

measuring |1〉〈1| on the auxiliary qubit. Thus, we choose the
parameters r and r′ in a manner such that the conditions,

Tr
(
ρSA

2 �δ ⊗ |0〉〈0|) � ε

2
, (18)

and

Tr
(
ρSA

2 �δ ⊗ |1〉〈1|) � ε

2
, (19)

are verified.
A possible way to proceed is to start by setting the squeez-

ing parameters r = r′ = 0, that is, we will work only with
the detector precision δ to define a region Rxx′,0. If 	x (	x′)
does not verify the condition (18) [(19)], then it is divided by
two and the condition retested. The procedure is repeated until
the aimed conditions are attained and our region Rxx′ defined
[Fig. 3(b)].

It is worthy of note that, since ρ is positive semidefi-
nite, the off-diagonal density matrix elements are bounded
by |ρ(x, x′)|2 � ρ(x, x)ρ(x′x′), consequently the condition in
(17) also imposes a restriction of the form,∣∣∣∣

∫∫
Rxx′

ρ(x, x′)dxdx′
∣∣∣∣ � ε, (20)

where the integral is done over the region Rxx′ . Although this
does not mean that there could not exist meaningful fluctu-
ations over Rxx′ , it does guarantee an upper bound for the
weight of the cell.

Each time we test condition (18) or condition (19), the
number of experimental runs N required to obtain a result
having an error equal or greater than ε with a probability p
or less can be determined by means of a Chernoff bound [9].
Taking into consideration that each experimental run gives
two possible results, corresponding to a click or no click
of the detector, and that each of these results is detected at
random with its corresponding probability, the number N of
experimental runs is bounded by

N �
ln

(
2
p

)
2ε2

. (21)

Once the squeezing parameters r and r′ are set, the number
of experimental runs required to obtain a resulting ρest (x, x′)
having an error equal or greater than ε with a probability p or
less depends on the detector precision δ and the parameters
r and r′. For the estimation of ρest (x, x′), we need to take
into consideration that each experimental run gives one of
three possible results, that can be labeled as +1, −1, and 0.
The results 1 and 0 correspond to a click of the detector of
the system state and a ±1 result for the measurement of σx

(σy) on the auxiliary one. Each of the results is detected at
random with its corresponding probability. After M runs of
the experiment, the average values can be determined and the
density matrix element ρ(x, x′) can be estimated by ρest (x, x′).
Therefore, this is a similar scenery as the one seen in [2]
and the number of experimental repetitions M is once again
bounded by a Chernoff bound, satisfying

M �
2 ln

(
2
p

)
ε2δ2e−(r+r′ ) . (22)

032453-3



VIRGINIA FELDMAN AND ARIEL BENDERSKY PHYSICAL REVIEW A 105, 032453 (2022)

FIG. 4. (a) Theoretical ρ(x, x′) for the harmonic oscillator state with n = 3. (b) Reconstructed ρ(x, x′) for the harmonic oscillator state
with n = 3, for ε = 0.01. For the reconstructed function, the mesh delimiting the regions Rxix j in which ρ(x, x′) is taken as constant is shown.
The detector precision was set equal to δ = 0.1.

The number of experimental repetitions scales polynomi-
ally with the uncertainty ε.

For this protocol to be implemented we also require an
efficient implementation of the controlled squeezing and
translation gates. This implementation is fundamental for
quantum computation with continuous variable [14–17] and

there had been advances towards this end in recent years,
for instance [8], proposes the implementation of a controlled
squeezing gate for the squeezing of trapped ions. It is also
worth highlighting that displacement and squeezing gates,
along with other operations, can form a universal gate set for
continuous-variable quantum computation [15,18].

FIG. 5. Theoretical and reconstructed ρ(x, x′) for a squeezed state with 〈x〉 = 0, 〈p〉 = 0.5, and σ = 0.1. (a) Real part of ρ(x, x′).
(b) Reconstructed real part of ρ(x, x′), for ε = 0.01. (c) Imaginary part of ρ(x, x′). (d) Reconstructed imaginary part of ρ(x, x′), for ε = 0.01.
For the reconstructed functions, the mesh delimiting the regions Rxix j in which ρ(x, x′) is taken as constant is shown. The detector precision
was set equal to δ = 0.1.
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IV. FULL QUANTUM STATE TOMOGRAPHY FOR
CONTINUOUS VARIABLE

The protocol introduced in the last section can also be
used to achieve full QST of ρ. To that end, we will take
a discretization approach, building the estimated function
ρest (x, x′) : R2 → C as a piecewise constant function. The
regions in which the function will be considered as a constant
are not fixed and will be refined based on our measurement
results.

In order to determine the aforementioned regions, we de-
fine the weight ε and seek to obtain a partition of R such
that any subinterval [xi − 	xi/2, xi + 	xi/2] of the partition
verifies the condition (17).

The desired partition can be achieved by starting from an
interval for which the integral in (17) is approximately one,
then dividing it into two subintervals of equal length. If a
subinterval does not verify the condition, then it is likewise
subdivided. The process can be repeated until the condition is
attained for each subinterval.

Hence, we have defined rectangular regions Rxix j of the
form (14), that is,

Rxix j = [
xi − 	xi/2, xi + 	xi/2

]
× [

x j − 	x j /2, x j + 	x j /2
]
, (23)

and we can now set

ρest (x, x′) = ρest (xi, x j ), (24)

for any (x, x′) in Rxix j , with ρest (xi, x j ) as defined in (15).
As pointed out in the previous section, this procedure guar-

antees an upper bound for the weight of each of the cells Rxix j .
To test our protocol, we numerically simulated its behavior

for different pure states. In order to simulate the reconstructed
states we proceeded as follows.

(1) An initial interval was chosen so that the bounded
integral in (17) is approximately one for this interval.

(2) In each step, intervals which did not verify (17) for
our chosen weight ε were subdivided into two subintervals
of equal length and the condition (17) retested for each new
subinterval. This subdivision procedure stops when condition
(17) is verified for each subinterval, thus obtaining the regions
Rxix j [Eq. (23)].

(3) The simulated reconstructed states were then obtained
by setting the value of ρest (x, x′) constant in each region Rxix j ,
as specified in (24).

Taking into consideration that for pure states ρ(x, x′) =
ψ (x)ψ (x′), with ψ (x) the pure state wave function, we stud-
ied squeezed coherent states whose wave functions can be
expressed as

ψsq(x) = Csqexp

[
− (x − 〈x〉)2

2σ 2
+ i〈p〉x

]
, (25)

where Csq is a normalization constant, 〈x〉 the expected value
of the position, 〈p〉 the expected value of the momentum, and
σ 2 the variance, which specifies the degree of squeezing, with
σ 2 = 1 corresponding to a nonsqueezed state.

TABLE I. Fidelity for different reconstructed squeezed quantum
states as a function of ε. The degree of squeezing is given by the
standard deviation σ , the expected value of the position is 〈x〉 = 0
and the expected value of the momentum is 〈p〉 = 0.5. The detector
precision was set equal to δ = 0.1.

Fidelity

σ ε = 0.01 ε = 0.05 ε = 0.1

0.1 0.992 0.987 0.948
0.4 0.987 0.982 0.945
0.9 0.981 0.976 0.940

We also analyzed the states of the quantum harmonic os-
cillator with wave functions of the form,

ψn(x) = Cne− x2

2 Hn(x). (26)

The energy level is denoted by n, Cn is a normalization con-
stant and Hn(x) are the Hermite polynomials.

The results obtained for two states of the form (26) and (25)
are presented in Figs. 4 and 5, respectively. Even though the
experimentally reconstructed states could be not physical, our
results are numerically simulated, so we can use the fidelity
as a measure of the distance between the state ρ and our
simulated estimate of it. The fidelity between the pure state
ρ = |ψ〉〈ψ | and our estimate ρest is given by

F (ρ, ρest ) = 〈ψ |ρest|ψ〉
=

∑
Rxix j

ρest (xi, x j )
∫∫

Rxix j

ρ(x′, x)dx′dx, (27)

where the sum is done over all the regions Rxix j .
The computed fidelities for different states of the form (25)

and (26) are shown in Tables I and II.

V. DISCUSSION

In this paper we proposed a protocol that allows one to di-
rectly estimate any density matrix element of a quantum state

TABLE II. Fidelity for the reconstructed quantum harmonic os-
cillator states as a function of ε for the first 10 energy levels. The
detector precision was set equal to δ = 0.1.

Fidelity

n ε = 0.01 ε = 0.05

1 0.992 0.906
2 0.984 0.818
3 0.981 0.953
4 0.958 0.846
5 0.957 0.736
6 0.957 0.748
7 0.919 0.853
8 0.952 0.820
9 0.944 0.775
10 0.928 0.743
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for one-dimensional continuous-variable systems. This proto-
col is selective and works without requiring the reconstruction
of the full quantum state or of a quasiprobability distribution,
such as the Wigner function [19], and without relying on in-
verse linear transform techniques or statistical inference tech-
niques for such reconstruction, procedures commonly used in
the most conventional QST schemes for continuous-variable
systems [7].

We also showed how this protocol can be employed to
achieve full QST. The numerical simulations for different
states showed that continuous-variable quantum states could
be reconstructed with high fidelity, although the cases in

which the density matrix elements fluctuate significantly in
small regions remain a limitation found as well in other QST
protocols.

ACKNOWLEDGMENTS

This work was partially supported by Programa de Desar-
rollo de Ciencias Básicas (PEDECIBA, Uruguay), Comisión
Académica de Posgrado (CAP, UdelaR, Uruguay), and the
ANPCyT project PICT 2018-04378. V.F. would like to thank
Arturo Lezama (Facultad de Ingeniería, UdelaR) for his help-
ful insights.

[1] M. A. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge,
2002).

[2] A. Bendersky and J. P. Paz, Selective and efficient
quantum state tomography and its application to
quantum process tomography, Phys. Rev. A 87, 012122
(2013).

[3] M. Paris and J. Rehacek, Quantum State Estimation, Vol. 649
(Springer Science & Business Media, Berlin/Heidelberg, 2004).

[4] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Quantum State Tomography via Compressed Sensing, Phys.
Rev. Lett. 105, 150401 (2010).

[5] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu,
Efficient quantum state tomography, Nat. Commun. 1, 149
(2010).

[6] C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and
C. Negrevergne, Interpretation of tomography and spectroscopy
as dual forms of quantum computation, Nature (London) 418,
59 (2002).

[7] A. I. Lvovsky and M. G. Raymer, Continuous-variable op-
tical quantum-state tomography, Rev. Mod. Phys. 81, 299
(2009).

[8] M. Drechsler, M. B. Farías, N. Freitas, C. T. Schmiegelow, and
J. P. Paz, State-dependent motional squeezing of a trapped ion:
Proposed method and applications, Phys. Rev. A 101, 052331
(2020).

[9] H. Chernoff, A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations, The Annals of
Mathematical Statistics 23, 493 (1952).

[10] J. Zhao, K. Liu, H. Jeng, M. Gu, J. Thompson, P. K. Lam, and
S. M. Assad, A high-fidelity heralded quantum squeezing gate,
Nat. Photonics 14, 306 (2020).

[11] K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J.-I.
Yoshikawa, and A. Furusawa, Experimental realization of a
dynamic squeezing gate, Phys. Rev. A 90, 060302(R) (2014).

[12] J.-I. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck,
U. L. Andersen, and A. Furusawa, Demonstration of determin-
istic and high fidelity squeezing of quantum information, Phys.
Rev. A 76, 060301(R) (2007).

[13] P. Kok and B. W. Lovett, Introduction to Optical Quantum In-
formation Processing (Cambridge University Press, Cambridge,
2010).

[14] N. C. Menicucci, Fault-Tolerant Measurement-Based Quantum
Computing with Continuous-Variable Cluster States, Phys. Rev.
Lett. 112, 120504 (2014).

[15] S. Lloyd and S. L. Braunstein, Quantum computation over
continuous variables, in Quantum Information with Continuous
Variables (Springer, Berlin/Heidelberg, 1999), pp. 9–17.

[16] S. L. Braunstein and P. Van Loock, Quantum information with
continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[17] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van
Loock, Quantum computing with continuous-variable clusters,
Phys. Rev. A 79, 062318 (2009).

[18] T. Hillmann, F. Quijandría, G. Johansson, A. Ferraro, S.
Gasparinetti, and G. Ferrini, Universal Gate Set for Continuous-
Variable Quantum Computation with Microwave Circuits,
Phys. Rev. Lett. 125, 160501 (2020).

[19] E. Wigner, On the quantum correction for thermodynamic equi-
librium, Phys. Rev. 40, 749 (1932).

032453-6

https://doi.org/10.1103/PhysRevA.87.012122
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/nature00801
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/PhysRevA.101.052331
https://doi.org/10.1214/aoms/1177729330
https://doi.org/10.1038/s41566-020-0592-2
https://doi.org/10.1103/PhysRevA.90.060302
https://doi.org/10.1103/PhysRevA.76.060301
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevA.79.062318
https://doi.org/10.1103/PhysRevLett.125.160501
https://doi.org/10.1103/PhysRev.40.749

