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The decoherence phenomenon has been widely studied in different types of quantum walks. In this work we
show how to model decoherence inspired by percolation on staggered quantum walks. Two models of unitary
noise are described: breaking polygons and breaking vertices. The evolution operators subject to these noises
are obtained, and the equivalence to the coined quantum walk model is presented. Further, we numerically
analyze the effect of these decoherence models on the two-dimensional grid of 4-cliques. We examine how these
perturbations affect the quantum walk based search algorithm in this graph and how expanding the tessellation
intersection can make it more robust against decoherence.
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I. INTRODUCTION

As the quantum counterparts of classical random walks,
quantum walks have been defined in different ways in both
discrete time and continuous time [1–3]. They are a powerful
tool in the development of efficient quantum algorithms [4–6]
and in the simulation of complex physical systems [7,8]. More
recently, Portugal et al. [9] described a model of quantum
walks on arbitrary graphs called the staggered quantum walk
(SQW) model. This model was initially defined by covering
the graph with tessellations. Each tessellation is a partition of
the vertex set into polygons (or cliques). The relation of the
SQW with other quantum walk models was studied in [9–13].
It has also been applied in the development of quantum
algorithms [14–16] and in physical implementations [17].

It is known that when implementing quantum systems we
can face decoherence problems. Quantum walk implemen-
tations are also affected by decoherence. It is important to
understand, for example, when the classical behavior emerges
and the quantum effect disappears. The quantum coherence
is affected by the influence of random events which can be
modeled in different ways. Refer to [18] for different methods
of simulating decoherence in quantum walks. Decoherence
inspired by percolation involves randomly removing or creat-
ing vertices or edges in the graph. This type of decoherence
was analyzed in many research papers, using the discrete-
time coined model [19–23], Szegedy’s model [24], and the
continuous-time quantum walk model [25–27].

Therefore, it is crucial to understand how decoherence
affects the SQW model as well. In this paper, we analyze
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decoherence inspired by percolation on the SQW model.
We describe two models of unitary noise: one that results
from breaking vertices of the graph and another inherent in
the SQW that results from breaking polygons. The latter is
equivalent to breaking some edges of the graph, such that
no additional tessellations are necessary. We describe how
to obtain the evolution operators subject to these noises, and
we show the equivalence to the coined quantum walk when
the SQW can be obtained from the coined model. Moreover,
we numerically study how decoherence affects the SQW on
the two-dimensional grid of 4-cliques. We analyze the be-
havior of the quantum walk in terms of the displacement of
the walker over time, and we examine how the perturbations
affect the search for a marked vertex in this graph. Addi-
tionally, we observe how the search algorithm can be more
robust against decoherence when we expand the tessellation
intersection of the graph.

This paper is organized as follows. In Sec. II, we describe
the SQW model. In Sec. III, we introduce the models of de-
coherence inspired by percolation and their equivalence to the
coined model. In Sec. IV, we numerically analyze the effect
of decoherence on the SQW on the two-dimensional grid of
4-cliques. Conclusions and further discussions are drawn in
Sec. V.

II. THE STAGGERED QUANTUM WALK MODEL

The SQW model is defined by obtaining a tessellation
cover of the graph. A tessellation T of a graph G is a partition
of G into cliques. A clique of a graph G is a complete subgraph
of G. A clique of size d is called a d-clique. Each clique in a
tessellation is called a polygon. We say that an edge belongs
to a tessellation if both end points of the edge belong to the
same polygon. We denote by E (T ) the set of edges belonging
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FIG. 1. Examples of SQWs on the two-dimensional grids of
4q-cliques with two tessellations, green and red. (a) Two-
dimensional grid. (b) Two-dimensional grid of 4-cliques. (c) Two-
dimensional grid of 8-cliques. (d) Two-dimensional grid of 12-
cliques. The SQW in (b) is the equivalent of the flip-flop coined
quantum walk on the two-dimensional grid in (a).

to T . Notice that a tessellation does not cover all the edges of
a graph in general. A tessellation cover is a set {T1, . . . , Tn}
of tessellations of a graph G such that the union

⋃k
i=1 E (Ti )

is the edge set of G. The minimum number of tessellations
required to cover a graph G is the tessellation number, denoted
by T (G). If a graph G is such that T (G) � t , for a fixed integer
t , we say that G is t-tessellable.

Let us define a SQW on a connected simple graph G.
Suppose G is �-tessellable and the set {T1, . . . , T�} is a tes-
sellation cover of G. Let V (G) denote the set of vertices of
G and |V (G)| = N . The N-dimensional Hilbert space HN of
the SQW is spanned by {|v〉 : v ∈ V (G)}. Each basis state
|v〉 is associated with a vertex v of the graph. Suppose each
tessellation Tk has |Tk| polygons denoted by Pk

i . Each polygon
is associated with a unit vector∣∣Pk

i

〉 =
∑

v∈V (Pk
i )

αvik |v〉 , (1)

with ∑
v∈V (Pk

i )

|αvik|2 = 1. (2)

Each tessellation Tk is associated with a Hermitian operator

UTk = 2
|Tk |∑
j=1

∣∣Pk
j

〉 〈
Pk

j

∣∣ − I. (3)

The evolution operator of the SQW is given by

U = UT�
· · ·UT2UT1 . (4)

For example, let us consider a SQW on two-dimensional
grids of 4q-cliques with periodic boundary conditions, as
depicted in Fig. 1.These graphs will be used throughout the
paper. Figures 1(b)–1(d) depict the cases where q = 1, 2, 3,
respectively.

TABLE I. Converting a vertex v of degree d (v) into a d (v)-
clique with the associated green polygon belonging to the coin
tessellation TC .

d (v) v d (v)-clique

1
2

3

The graph is composed of n2 4q-cliques linked by 2n2 2q-
cliques with a toruslike topology. The Hilbert space associated
with the graph has dimension 4qn2. The vectors associated
with the green polygons are

|αxy〉 = 1

2
√

q

4q−1∑
k=0

|x, y, k〉 , (5)

and the vectors associated with the red polygons are

∣∣β (0)
xy

〉 = 1√
2q

q−1∑
k=0

(|x, y, k〉 + |x + 1, y, 2q + k〉), (6)

∣∣β (1)
xy

〉 = 1√
2q

q−1∑
k=0

(|x, y, q + k〉 + |x, y + 1, 3q + k〉) (7)

for 0 � x, y � n − 1. The arithmetic with the labels of |x, y〉
is performed modulo n.

The evolution operator is U = U1U0, where

U0 = 2
n−1∑

x,y=0

|αxy〉 〈αxy| − I (8)

and

U1 = 2
n−1∑

x,y=0

∣∣β (0)
xy

〉 〈
β (0)

xy

∣∣ + ∣∣β (1)
xy

〉 〈
β (1)

xy

∣∣ − I. (9)

FIG. 2. (a) Graph G. (b) Graph G′ with the coin tessellation in
green. (c) Graph G′ with the coin tessellation in green and shift
tessellation in red. Notice that graph G′ in (b) is obtained from G in
(a) by substituting each vertex v ∈ V (G) with a d (v)-clique, which
belongs to a green polygon of the coin tessellation TC . In (c) the shift
tessellation TS in red is obtained for each pair of connected vertices
from different green polygons.
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FIG. 3. Search for the 4q-clique in position (0,0). The green
polygon containing the clique in position (0,0) is removed, and we
have a SQW with a partial tessellation. (a) q = 1. (b) q = 2.

A. Equivalence to the coined model

Consider a flip-flop coined quantum walk (FCQW) on a
graph G. The Hilbert space of the walk is H2|E |, where |E |
is the number of edges of G. The basis state |u, v〉 represents
the state of the walker at vertex u pointing in the direction
of vertex v. This walk is driven by the unitary operator U =
SC, where C is the coin operator that modifies the internal
coin state of the walker and S is the flip-flop shift which is
responsible for moving the walker between adjacent vertices,
S |u, v〉 = |v, u〉. Reference [28] gives a detailed description
of the coined quantum walk model. It is possible to obtain the
equivalent SQW of the FCQW, as we briefly describe here.
For more details, see [10].

The SQW takes place in a space with the dimension equal
to the number of vertices of the graph, whereas the FCQW
uses a bigger dimension space. In order to obtain the SQW
equivalent of an FCQW, first, we should create a new graph
G′, so the dimensions will be equivalent. In this new graph,
we convert each vertex v ∈ V (G) into a d (v)-clique, where
d (v) is the degree of vertex v.

Each created clique will belong to the coin tessellation
TC , as we can see in Table I. The 2-clique formed by the
connection between vertices of two different polygons in TC

will belong to the shift tessellation TS . See Fig. 2 for an
example. The coin tessellation is represented in green, and the
shift tessellation is shown in red. Notice also that Fig. 1(b)
is the SQW equivalent of the FCQW on the two-dimensional
grid [Fig. 1(a)].

We can obtain exactly the shift and coin operators from
the operators generated by each tessellation, that is, UTC ≡ C
and UTS ≡ S, as long as the coin operator is an orthogonal
reflection. This condition is required in order to obtain the
equivalent SQW. See [10] for a complete description of what
an orthogonal reflection is and the whole equivalence process.

FIG. 4. Example of breaking polygons in the SQW model. (a) A
two-tessellable graph with green and red tessellations. (b) Breaking
a red polygon. (c) Breaking a green polygon into a 1-clique polygon
and a 3-clique polygon. (d) Breaking a green polygon into two
2-clique polygons. (e) Breaking a green polygon into four 1-clique
polygons.

The most used Grover and Hadamard coin operators are or-
thogonal reflections.

B. Search with SQWs

The implementation of spatial search on SQWs can be
done by using partial tessellations. This is simply done by
removing polygons from the tessellation. The vertices in the
missing polygons will be the marked ones [9].

Consider the example for the two-dimensional grid of
4q-cliques presented earlier. Suppose that the 4q-clique in
position (0,0) is the marked one, as depicted in Fig. 3 for q = 1
and q = 2. We remove the polygon which induces the state

FIG. 5. Example of breaking a vertex in the SQW model. (a) A
two-tessellable graph with green and red tessellations. (b) Removing
vertex 0 in position (0,0).
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FIG. 6. Example of breaking an edge in the coined version and
its equivalent in the staggered model. (a) The two-dimensional grid
with a broken edge. (b) Two vertices removed in the SQW equivalent
of the FCQW version.

|α00〉 in order to obtain the search operator U ′ = U1U ′
0, where

U ′
0 = 2

n−1∑
x,y=0

(x,y)�=(0,0)

|αxy〉 〈αxy| − I.

The initial state |ψ (0)〉 is the uniform superposition of all
vertices of the graph, and the state at time t is given by
|ψ (t )〉 = U ′t |ψ (0)〉.

Portugal et al. [9] showed that searching for a marked
vertex using FCQW with coin −I on the marked vertex is
equivalent to searching for a missing polygon in the equiv-
alent SQW. This means that searching with SQW for a
missing green polygon in the two-dimensional grid of 4-
cliques [Fig. 3(a)] is equivalent to searching for a marked
vertex in the two-dimensional grid using FCQW.

Recently, Santos [29] showed that by a process called in-
tersection expansion (reduction) we can add (remove) vertices

FIG. 7. Probability distribution of the two-dimensional grid for
the SQW on the two-dimensional grid of 4-cliques with n = 100 at
t = 50. The initial state is given by Eq. (23).

FIG. 8. Average of the probability distribution over 100 runs for
the SQW on the two-dimensional grid of 4-cliques with n = 100.
(a) Breaking vertices, p = 0.001. (b) Breaking polygons, p = 0.001.
(c) Breaking vertices, p = 0.01. (d) Breaking polygons, p = 0.01.
(e) Breaking vertices, p = 0.1. (f) Breaking polygons, p = 0.1.

to some tessellation intersection of the SQW. The dynamics of
the resulting SQW on the new graph will be equivalent to the
dynamics on the original graph if some assumptions are made
for the vertices in the intersection. The two-dimensional grids
of 4q-cliques can be obtained from each other by a process of
tessellation intersection or reduction. Searching for a clique
on the green polygons in any of these graphs is equivalent
[29]. The number of steps of the algorithm is O(

√
N log N ),

and the success probability is O(1/ log N ), where N = n2 and
n is the width of the grid. The total cost of the algorithm after
applying the amplitude amplification method is O(

√
N log N ).

III. DECOHERENCE INSPIRED BY PERCOLATION

Decoherence inspired by percolation allows removing ver-
tices and/or edges in the graph. What happens when we break
edges and/or vertices in the SQW model? Is it possible to
“break” polygons as well? The staggered model is described
by a graph tessellation cover in order to obtain the evolution
operator. The tessellations and its polygons follow some strict
properties, as we mentioned before. In order to model this
kind of decoherence we should take care with the tessellation
structure so that its properties are satisfied and the evolution
continues to be unitary. In the following, we describe some
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FIG. 9. Standard deviation for the SQW on the two-dimensional grid of 4-cliques with n = 100 considering the decoherence model of
(a) breaking vertices and (b) breaking polygons in the cases with p = {0.0, 0.001, 0.01, 0.1, 0.2}. The solid (lower) brown curve depicts the
classical case on the two-dimensional grid.

possible models of decoherence inspired by percolation af-
fecting the SQWs. The models are valid for general graphs
despite the tessellation number.

A. Breaking polygons

A polygon can be broken or divided into many polygons
(as many as the number of vertices of the clique). Breaking a
polygon is associated with breaking some edges of the clique,
as we can see from the example in Fig. 4. A polygon in
the green tessellation can be broken in different ways [see
Figs. 4(c)–4(e)], whereas a red polygon can be broken only
into two 1-clique polygons [see Fig. 4(b)]. That is because
each red polygon is a 2-clique in this case.

Let us assume that polygon P j
� was broken into m ∈

{2, . . . , |P j
� |} polygons. Each new polygon P j

�i(i = 1, . . . , m)
is a clique formed by a subset of vertices of the origi-
nal polygon P j

� . The set {V (P j
�i ) : i = 1, . . . , m} is mutually

disjoint, and

V
(
P j

�

) =
m⋃

i=1

V
(
P j

�i

)
. (10)

In the state associated with each new polygon P j
�i, the prob-

ability flux that was going to the vertices in P j
� \P j

�i should
be diverted into the vertices in P j

�i so that the state remains
unitary, that is, ∣∣P j

�i

〉 =
∑

v∈V (P j
�i )

αv� j

β�i j
|v〉 , (11)

where

β�i j =
√ ∑

v∈V (P j
�i )

|αv� j |2 (12)

is the normalization factor. The reflection operator associated
with tessellation T j has now become

UT j = 2

⎛
⎜⎝ |T j |∑

k=1
k �=�

∣∣P j
k

〉 〈
P j

k

∣∣ +
m∑

i=1

∣∣P j
�i

〉 〈
P j

�i

∣∣
⎞
⎟⎠ − I. (13)

The evolution operator of the SQW is given by (4).

Let us see an example for the two-dimensional grid of
4-cliques [Fig. 1(b), q = 1]. Assume that the polygon in po-
sition (0,0) is broken into four 1-clique polygons, as depicted
in Fig. 4(e). That is, the polygon which is associated with the
quantum state

|α00〉 = 1

2

3∑
k=0

|x, y, k〉 (14)

is broken into the polygons

|α00v〉 = |v〉 , v ∈ {0, 1, 2, 3}. (15)

The reflection operator associated with the green tessellation
is now described as

U0 = 2

⎛
⎜⎜⎝ ∑

x,y=0
(x,y)�=(0,0)

|αx,y〉 〈αx,y| +
3∑

v=0

|α00v〉 〈α00v|

⎞
⎟⎟⎠ − I.

(16)

The operator associated with the red tessellation is unchanged.

Equivalence to the flip-flop coined QW model

Now consider we have the staggered model obtained from
the coined model. In this case, there are two types of tessella-
tions. One tessellation is associated with the coin action, and
the other is associated with the shift action. For example, in
Fig. 1(b), if we consider that the graph is obtained from a
flip-flop coined QW on the two-dimensional grid, the green
tessellation is associated with the coin operator, and the red
tessellation is associated with the shift operator.

Remember that the polygons of the shift tessellation con-
sist of 2-cliques. The only way to break a polygon in this case
is to break it into two 1-clique polygons. Therefore, breaking
a polygon of the shift tessellation will be equivalent to not
applying the shift operator to the related edge in the FCQW
version. We can think of it as removing an edge in the FCQW,
but recall that the coin operator will still act as if there is an
edge in this case.

Breaking polygons of the coin tessellation will be equiv-
alent to modifying the coin in the associated vertex of the
FCQW version. For example, if we break the polygon into
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FIG. 10. The average success probability for n = 10, 20, . . . , 100 (N = n2). The solid red curve is for p = 0, the dashed blue curve is for
p = 0.001, the dotted orange curve is for p = 0.01, and the dot-dashed green curve is for p = 0.1. The light area around the curves shows the
confidence bands. (a) Breaking vertices. (b) Breaking polygons into 1-clique polygons.

1-clique polygons, then it will be equivalent to not applying
the coin operator in the related vertex of the FCQW version
(or the coin is the identity).

B. Breaking vertices

Now suppose we remove a vertex from the graph. In this
case, we have to make arrangements in all the tessellations
(since a tessellation covers all vertices in the graph). We
should remove the vertex from the polygons which contains it.
Since each polygon is a clique, by removing one of its vertices
it will continue to be a clique (not breaking any properties).
Let us suppose vertex v is removed. Then, the probability flux
that was going to the removed vertex should be diverted to the
other vertices. For every polygon P j

i that contains vertex v,
the state associated with the polygon becomes∣∣P j

i

〉 =
∑

w∈V (P j
i )\{v}

αwi j

βi j
|w〉 , (17)

where βi j is the normalization factor so that the state can
remain unitary, that is,

βi j =
√ ∑

w∈V (P j
i )\{v}

|αwi j |2. (18)

For the example shown in Fig. 5(b), the state associated with
the green polygon, which contains the removed vertex (0,0,0),

|α00〉 = 1

2

3∑
k=0

|0, 0, k〉 (19)

becomes

|α00〉 = 1√
3

3∑
k=1

|0, 0, k〉 , (20)

and the state associated with the red polygon, which contains
the removed vertex (0,0,0),

∣∣β (0)
00

〉 = 1√
2

(|0, 0, 0〉 + |1, 0, 2〉) (21)

becomes ∣∣β (0)
00

〉 = |1, 0, 2〉 . (22)

The operators U0 and U1 associated with each tessellation are
obtained as before, considering the new states given by (20)
and (22).

Equivalence to the flip-flop coined QW model

Consider the staggered model obtained from the coined
model. Removing a vertex in the SQW model affects the
shift and coin tessellations. If the removed vertex belongs to
a 1-clique polygon of the coin tessellation, then it will be
equivalent to removing the associated vertex in the coined
model. Otherwise, it will be equivalent to modifying the ac-
tion of the coin and shift operators in the vertex of the FCQW
associated with the clique which contains the removed vertex.
Removing a vertex in the SQW model also affects the shift
action on the neighbor vertex of the FCQW associated with its
direction. We can think of it almost as removing an edge in the
coined version. Only if we remove the clique which belongs
to the polygon in the shift tessellation will it be equivalent to
removing an edge in the coined version, as depicted in Fig. 6.

IV. NUMERICAL SIMULATIONS

Consider the SQW on the two-dimensional grid of
4-cliques [Fig. 1(b)]. This graph is the equivalent of the
FCQW on the two-dimensional grid. Let the initial state of the
SQW be

|ψ (0)〉 = 1

2

3∑
k=0

|0, 0, k〉 , (23)

which means we are starting at position (0,0). The probability
of obtaining the position (x, y) at time t after measurement in
the computational basis is given by

Pt (x, y) = 〈ψ (t )| (|x, y〉 〈x, y| ⊗ I4) |ψ (t )〉 ; (24)

that is, we sum the probability at each vertex of the clique in
position (x, y) from the state at time t .

From (24), we can obtain the probability distribution of the
walk on the two-dimensional grid as depicted in Fig. 7 for
n = 100, t = 50, and initial state (23). We can observe that
the walk is symmetric and delocalized. The same behavior can
be observed for the non-flip-flop coined QW with Grover and
other coins [20].
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Now we analyze what happens to the SQW when it is
affected by the decoherence models described in Sec. III. Let
p be the probability of breaking each polygon or vertex of
the graph before step t of the quantum walk; that is, we con-
sider a model of dynamic percolation. In the case of breaking
polygons, we break them into 1-clique polygons. Figure 8
shows the behavior of the probability distribution for p ∈
{0.001, 0.01, 0.1}. The quantum behavior of delocalization is
still quite present for p = 0.001 [Figs. 8(a) and 8(b)]. The
classical behavior starts to develop as we increase the value
of p. For the breaking-polygon case, it seems the classical
behavior emerges a little bit slower than the breaking-vertex
case. For p = 0.1 both plots [Figs. 8(e) and 8(f)] present a
fully developed classical behavior.

The transition from the quantum to the classical behavior
can be better observed with the plot of the standard deviation
σ , as depicted in Fig. 9 for n = 100. Figure 9(a) shows the
standard deviation for the breaking-vertex case, and Fig. 9(b)
shows the case for the breaking-polygon case. The solid (up-
per) blue curve is the quantum case without decoherence
(p = 0). Notice that there is an inclination of the curve when
reaching t = 100, which happens because we have periodic
bounded conditions of the grid. The solid (lower) brown curve
shows the classical case. We can observe how the walk loses
its quantum behavior when the value of p increases. A similar
behavior can be seen for the coined QW with the Grover coin
on the two-dimensional grid with broken links [20].

How decoherence affects searching

Suppose we are searching for a missing green polygon on
the two-dimensional grid of 4-cliques. This is equivalent to
searching for a marked vertex in the two-dimensional grid
using the FCQW model, as mentioned before. We analyze
the decoherence models described in Sec. III. Let p be the
probability of breaking each polygon or vertex of the graph
before step t of the quantum walk. In the case of breaking
polygons, we break them into 1-clique polygons. We run
the simulations for p ∈ {0.001, 0.01, 0.1} until the maximum
number of steps is achieved. According to some simulations,
the maximum number of steps of 1.5

√
N log N is enough

to obtain the maximum peak of the success probability. We
obtain the average over 100 runs for each value of p. The
results are compared with the simulation without decoherence
(p = 0).

Figure 10 shows the average probability of finding the
marked vertex, that is, the success probability, for n =
10, 20, . . . , 100. The case of breaking vertices is depicted in
Fig. 10(a), and the case of breaking polygons is shown in
Fig. 10(b). The solid red curve represents p = 0, the dashed
blue curve shows p = 0.001, the dotted orange curve shows
p = 0.01, and the dot-dashed green curve represents p = 0.1.
The confidence bands for each simulated probability are de-
picted by the light area around each curve. As expected, the
value of the success probability decreases as the value of p
increases. All curves for p ∈ {0.001, 0.01, 0.1} are below the
curve for p = 0.

Figure 11 shows the average running time, i.e., the num-
ber of steps to reach the maximum of the average success
probability divided by the square root of the average success

FIG. 11. The average running time for n = 10, 20, . . . , 100
(N = n2) in logarithmic scale. The solid red curve is for p = 0, the
dashed blue curve is for p = 0.001, the dotted orange curve is for
p = 0.01, and the dot-dashed green curve is for p = 0.1. (a) Breaking
vertices. (b) Breaking polygons into 1-clique polygons.

probability, which is due to the complexity of the ampli-
tude amplification algorithm [30]. The breaking-vertex and
breaking-polygon cases are depicted in Figs. 11(a) and 11(b),
respectively. The dashed blue curve (p = 0.001) is quite close
to the case without decoherence. The running time increases
as the value of p increases. For p = 0.01 the curve starts to
have a higher inclination than the case for p = 0. The behavior
for p = 0.1 is already quite erratic since for this value of prob-
ability the walk has already developed its classical behavior,
as shown before.

Expanding the tessellation intersection

As mentioned before, searching for a clique on the green
polygons in any of the two-dimensional grids of 4q-cliques
is equivalent [29]. Let us analyze how robust against deco-
herence the SQW can be as we increase the value of q. We
analyze the decoherence model of breaking polygons. For
this case, we consider that each polygon has probability p of
being broken into two polygons: one with a 1-clique and the
other containing a (4q − 1)-clique. The vertices in each of the
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FIG. 12. The average success probability for n = 10, 20, . . . , 100 (N = n2). The dashed blue curve is for q = 1, the dotted orange curve
is for q = 2, the dot-dashed green curve is for q = 3, and the solid red line if for p = 0. (a) The case for p = 0.001. (b) The case for p = 0.01.

two polygons are chosen at random. We run the simulations
for p ∈ {0.001, 0.01} and q ∈ {1, 2, 3}. We obtain the average
over 100 runs.

Figure 12 shows the average probability of finding the
marked vertex, that is, the success probability, for n =
10, 20, . . . , 100. The case for p = 0.001 is depicted in
Fig. 12(a), and the case for p = 0.01 is shown in Fig. 12(b).
The dashed blue curve represents q = 1, the dotted orange
curve shows q = 2, and the dot-dashed green curve shows
q = 3. The confidence bands for each simulated probability
are depicted by the light area around each curve. We can
compare them with the solid red curve for p = 0. The value of
the success probability is closer to the red curve as q increases.

Figure 13 shows the average running time. For p = 0.001
[Fig. 13(a)] the curves coincide with the solid red curve for
p = 0. As p increases, we observe that the bigger q is, the
closer we are to the case without decoherence. This can be
seen for p = 0.01 in Fig. 13(b) and in Fig. 14, where we fix
n = 50 and consider the range q = 1, . . . , 10. Figures 14(a)
and 14(b) depict the average success probability and the aver-
age running time, respectively, for p ∈ {0.001, 0.01, 0.1}.

V. CONCLUSIONS

We have analyzed decoherence inspired by percolation in
the SQW model. We have presented two models of unitary
noise by randomly breaking vertices or polygons of the graph.
The evolution operators subject to these noises were obtained.

The breaking-polygon model is equivalent to breaking some
edges of the graph, as it allows us to break edges in a way
that the tessellation number of the graph is not increased.
On the other hand, breaking an arbitrary edge of the graph
may not be that simple. Each polygon is a clique. By re-
moving an edge, the polygon may not be a clique anymore.
In order to fulfill the required properties of the SQW model
additional tessellations may be needed. This makes the pro-
cess nontrivial and strictly dependent on the structure of the
graph.

Additionally, we have shown the equivalence to the coined
quantum walk model when the SQW is obtained from the
FCQW model. Breaking vertices can be seen almost as break-
ing an edge in the coined model. Breaking polygons can be
equivalent to modifying the coin or shift operator depend-
ing on which tessellation the broken polygon belongs to.
Therefore, breaking polygons introduces a different type of
decoherence in the coined model.

We have numerically analyzed the effect of breaking ver-
tices and polygons on the SQW on the two-dimensional grid
of 4-cliques, which is equivalent to the FCQW on the two-
dimensional grid. For both models of decoherence, we have
considered a dynamic process in which at each time step a
vertex or polygon can be broken according to a constant prob-
ability p. The standard deviation of the quantum walk under
decoherence was analyzed for different probabilities, and it
presents a behavior similar to what happens with the coined
quantum walk on the two-dimensional grid with broken links.

FIG. 13. The average running time for n = 10, 20, . . . , 100 (N = n2). The dashed blue curve is for q = 1, the dotted orange curve is for
q = 2, the dot-dashed green curve is for q = 3, and the solid red curve is for p = 0. (a) The case for p = 0.001. (b) The case for p = 0.01.
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FIG. 14. (a) The average success probability with confidence bands and (b) the average running time for q = 1, . . . , 10 and n = 50. The
solid red curve is for p = 0, the dashed blue curve is for p = 0.001, the dotted orange curve is for p = 0.01, and the dot-dashed green curve is
for p = 0.1.

The quantum walk loses its quantum behavior as we increase
the value of the probability.

The quantum-walk-based search algorithm under the effect
of these noises has also been analyzed on the two-dimensional
grid of 4-cliques. The plots for the breaking-vertex and
breaking-polygon cases are quite similar. The average success
probability decreases quite fast as we increase the value of
the decoherence probability p. When the probability is quite
small, say, p = 0.001, the behavior of the decoherent algo-
rithm is still quite close to the algorithm without decoherence.
Moreover, we have shown that the algorithm can be more
robust against decoherence by expanding the tessellation in-
tersection.

For future research, it would be interesting to analyze
decoherence on the SQW on the two-dimensional grid of
4q-cliques by looking at the probability of finding the walker
at single vertices. In this case, we are considering the graph
as it is, and it will not be equivalent to the FCQW on the two-
dimensional grid. It would also be interesting to investigate
other types of decoherence on SQWs.
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