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Device-independent secret key rates via a postselected Bell inequality
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In device-independent quantum key distribution (DIQKD) the security is not based on any assumptions about
the intrinsic properties of the devices and the quantum signals but on the violation of a Bell inequality. We
introduce a DIQKD scenario in which an optimal Bell inequality is constructed from the performed measurement
data rather than fixing beforehand a specific Bell inequality. Our method can be employed in a general way,
for any number of measurement settings and any number of outcomes. We provide an implementable DIQKD
protocol and perform finite-size security key analysis for collective attacks. We compare our approach with
related procedures in the literature and analyze the robustness of our protocol. We also study the performance of
our method in several Bell scenarios as well as for random measurement settings.
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I. INTRODUCTION

Data security concerns are prevalent in the modern world.
One of the most prominent domains of quantum communi-
cation is quantum key distribution (QKD), which allows to
distribute a secure key between two (or more) parties, namely,
Alice and Bob, where the security is only based on the laws of
quantum mechanics. Since the inception of QKD [1], a variety
of QKD protocols [2–12] have been introduced. However, the
security of these device-dependent protocols needs complete
characterization of the devices, sources, and/or the channel
between the parties. In a realistic scenario, the device can be
not completely characterized or could even be prepared by a
malicious eavesdropper (Eve). Furthermore, hacking of exist-
ing implementations that exploit experimental imperfections
was demonstrated [13–15]. To overcome these drawbacks,
device-independent (DI) QKD was introduced [16], where the
security does not require any assumptions about the inherent
properties of the devices or the dimension of the Hilbert space
of the quantum signals. The security of DI protocols is based
on the observation of a loophole-free Bell inequality violation
[17–29] which guarantees the quantum nature of the observed
data. The length of the secret key will depend on the estimated
violation of the Bell inequality.

In this article we introduce a DIQKD scenario in which
the Bell inequality is not agreed upon beforehand but will
be constructed from the observed probability distribution of
the measurement outcomes. We follow a two-step process:
From the input-output probability distribution, we construct
a Bell inequality that leads to the maximum Bell violation for
that particular measurement setting of Alice and Bob. Then
we use this optimized Bell inequality and the corresponding
violation to bound the secret key rate. Note that in [30,31],
the authors introduced an alternative approach to bound the
device-independent secret key rate via a Bell inequality and
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the corresponding violation, which is also constructed from
the full measurement statistics. We will relate and compare
our method with theirs in the Results section (Sec. VI). In
particular, we show that our procedure is advantageous in the
nonasymptotic regime.

This paper is organized as follows. We start in Sec. II by
briefly reviewing classical and quantum correlations. Then we
explain how to obtain the optimal Bell inequality from the
observed probability distribution. We lay the framework to
provide a confidence interval for the Bell expectation value
in Sec. III. We provide an implementable DIQKD protocol in
Sec. IV and calculate the finite-size secret key rate in Sec. V.
In Sec. VI we illustrate our method with several examples.

II. GENERAL FRAMEWORK

In this section we review the concept of the classical corre-
lation polytope in Sec. II A, and, based on this, we explain in
Sec. II B how to construct Bell inequalities that are maximally
violated by the measurement data.

A. Set of correlations

Consider a setup for two parties1 (namely, Alice and Bob)
connected by a quantum channel. The parties perform local
measurements on a joint quantum state. Let us assume that
Alice and Bob have ma and mb measurement settings, re-
spectively. Alice’s set of measurement settings is denoted as
X = {1, . . . , ma}, and Bob’s set of measurement settings as
Y = {1, . . . , mb}. To estimate the probability distribution from
the experimental data, we have to use the measurement device
N times in succession. We assume that the devices behave
independently and identically (i.i.d.) in each round, i.e., the
results of the ith round are independent of the past i − 1

1Note that our method can be extended in a straightforward way to
n parties.

2469-9926/2022/105(3)/032451(16) 032451-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4661-2267
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032451&domain=pdf&date_stamp=2022-03-29
https://doi.org/10.1103/PhysRevA.105.032451


DATTA, KAMPERMANN, AND BRUß PHYSICAL REVIEW A 105, 032451 (2022)

rounds. The setting of the ith round is denoted as xi ∈ X for
Alice and yi ∈ Y for Bob. Each of these measurement settings
has d outcomes, which are denoted as ai ∈ A = {1, . . . , d}
for Alice and bi ∈ B = {1, . . . , d} for Bob. We call this the
[(ma, mb), d] scenario, i.e., two parties with (ma, mb) mea-
surement settings and d outcomes each. When both parties
have an equal number of measurement settings, i.e., ma =
mb = m, we will denote this as the [m, d] scenario. The joint
probability of getting outcome a when Alice is using the
measurement setting x ∈ X and b when Bob uses the mea-
surement setting y ∈ Y is denoted as P(Aa

xBb
y ). All these joint

probabilities will be collected in a probability vector

P := [
P
(
Aa

xBb
y

)]
, (1)

where x ∈ X , y ∈ Y , a ∈ A, and b ∈ B. The associated proba-
bility space is of dimension

Dd
ma,mb

:= mambd2. (2)

The set of all probabilities that represent a classical or lo-
cally real theory forms a convex polytope [32–34]. We denote
this polytope as P . Any probability distribution which is not
contained in P shows nonclassical or quantum behavior and
can be witnessed by the violation of a Bell inequality [35].
As illustrated in [36], the polytope of classical correlations
can be characterized by its extremal points vp, where p =
{1, 2, . . . , dma+mb}, and vp has entries from the set {0,1}. The
extremal points of the polytope correspond to deterministic
strategies. Every classical correlation Pcl ∈ P can be written
as a convex combination of all the deterministic strategies as

Pcl =
dma+mb∑

p=1

λpvp, (3)

where λp � 0 and
∑dma+mb

p=1 λp = 1. This subsequently implies
that every observed probability distribution which cannot be
decomposed as shown in Eq. (3) violates at least one Bell
inequality.

B. Designing Bell inequalities

Consider the [(ma, mb), d] scenario where the parties re-
ceive the measurement data P. In order to extract a secret key
from these classical measurement data, they need to violate
a Bell inequality. As shown in [36], this scenario can be
translated to a linear separation problem. For illustration, see
Fig. 1. Bell inequalities correspond to hyperplanes in the prob-
ability space that separate the classical correlation polytope
P from the set of all genuine quantum correlations Q \ P .
Such hyperplanes are specified by a normal vector h ∈ RDd

ma ,mb

with the dimension given in Eq. (2). If P ∈ Q \ P , there exists
at least one hyperplane h that separates all the vertices vp of
P from the observed probability distribution P. We set the
objective of the linear program to find the hyperplane vector
h corresponding to the Bell inequality which is maximally vi-
olated by the measurement data P. This optimization problem
can be formulated as

max
h,c

hT P − c

subject to hT vp � c ∀ p ∈ {1, . . . , dma+mb}

FIG. 1. A sketch for the set of correlations. All classical proba-
bilities form a convex polytope P , which is embedded in the set Q of
quantum correlations, which in turn is a subset of the nonsignaling
polytope N . The Bell inequality is specified by the vector h defining
a hyperplane which separates all vertices vp from the observed prob-
ability distribution P (the black point situated outside the classical
polytope P).

hT P > c

−1 � hi � 1 ∀ i ∈ {
1, . . . , Dd

ma,mb

}
, (4)

with the classical bound c. The additional constraint imposed
on the elements of hi of the hyperplane vector h keeps the
maximization bounded. The chosen boundaries of hi do not
influence the result of the optimization problem besides being
a global scaling factor. The hyperplane found in this manner
has the form

h = [
hab

AxBy

]
, (5)

where x ∈ X , y ∈ Y , a ∈ A, and b ∈ B. Thus the Bell inequal-
ity found by the optimization and specified by the hyperplane
vector h is given as

B[P] =
∑

a,b,x,y

hab
AxBy

P
(
Aa

xBb
y

)
� c. (6)

Equation (6) represents the Bell inequality that is maximally
violated by the observed probability distribution P. Note that
if P ∈ P , the optimization problem Eq. (4) is infeasible and
no Bell inequality can be found.

III. STATISTICAL FLUCTUATIONS
AND THEIR ESTIMATION

So far, we have concentrated on the ideal asymptotic
case, that is, using the exact probabilities as entries of the
observed probability distribution P. However, in a real ex-
periment one does not have access to probabilities but only
to frequencies that are subject to statistical uncertainties and
systematic errors. Since systematic errors mostly arise from
specific experimental settings, we solely focus on the theoret-
ical framework and concentrate on statistical fluctuations, as
they lead to uncertainties in the observed Bell violation.

Let Alice and Bob perform N rounds of measurements. The
number of instances when Alice chooses measurement x ∈ X
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and Bob chooses measurement y ∈ Y is denoted by Nx,y. In
a real experiment, instead of having access to joint probabil-
ities, we estimate them by the joint frequencies P̂(Aa

xBb
y ) =

N (a,b,x,y)
Nx,y

. Here N (a, b, x, y) is the number of occurrences of
the corresponding input-output pair.

The Bell value B[P̂] is a function of the joint frequencies,

B[P̂] = hab
AxBy

P̂(Aa
xBb

y ), (7)

see also Eq. (6). Let χ (e) be an indicator function for a
particular event e, i.e., χ (e) = 1 if the event e is observed,
χ (e) = 0 otherwise. We introduce a random variable

B̂i =
∑

a,b,x,y

hab
AxBy

χ (ai = a, bi = b, xi = x, yi = y)

p̂(xi = x, yi = y)
,

where p̂(xi = x, yi = y) = Nx,y

N is the input joint frequency
distribution. We get 1

N

∑N
i=1 B̂i = B[P̂]. Defining

qmin = min
a,b,x,y

hab
AxBy

p̂(xi = x, yi = y)
,

qmax = max
a,b,x,y

hab
AxBy

p̂(xi = x, yi = y)
,

we have qmin � B̂i � qmax. We define γ := qmax − qmin. By
using Hoeffding’s inequality [37] (see Lemma 2 in Ap-
pendix A), we can bound the deviation δ of the Bell value
obtained by the frequencies from the asymptotic value by a
probability:

Pr(B[P] � B[P̂] − δ) � 1 − ε, (8)

with

ε = exp

(
− 2Nδ2

γ 2

)
. (9)

For a given ε of a DIQKD protocol, one can calculate the
confidence interval δ for the Bell value using Eq. (9).

IV. DIQKD MODEL AND PROTOCOL

Let us state the DIQKD protocol. We consider the i.i.d.
scenario where the devices will behave independently and
identically in each round. The state distributed between the
parties is also the same for each round of the protocol. Alice
has m measurement inputs x ∈ {1, . . . , m}. Each of the inputs
has d corresponding outputs a ∈ {1, . . . , d}. Bob instead has
m + 1 measurement inputs y ∈ {1, . . . , m + 1}. Each mea-
surement input of Bob also has d outputs b ∈ {1, . . . , d}.

(1) In every round of the protocol, the parties do the fol-
lowing:

(a) A state ρAB is distributed between Alice and Bob.
(b) There are two types of measurement rounds,

namely, raw key generation rounds and parameter esti-
mation rounds. According to a preshared random key T ,
Alice and Bob choose a random Ti = {0, 1} such that
Pr(Ti = 1) = ξ . If Ti = 0, Alice and Bob choose the mea-
surement input (x = 1, y = m + 1) to generate the raw key.
Otherwise, Alice and Bob choose the measurement inputs
x ∈ {1, . . . , m} and y ∈ {1, . . . , m}, respectively, uniformly

at random. These cases will be denoted as parameter esti-
mation rounds.

(c) The parties record their inputs and outputs as (xi, yi )
and (ai, bi ). After N rounds of measurement, we denote the
input bit strings as X N and Y N and output bit strings as AN

and BN for Alice and Bob, respectively.
(2) Alice and Bob publicly reveal their measurement

outcomes of the parameter estimation rounds. They divide
the parameter estimation rounds’ data randomly into three
sets (Alice specifies to which set each parameter estimation
round’s data belongs, according to a random number generator
in her possession). From the first set, Alice and Bob estimate
the frequencies P̂1 = [P̂(Aa

xBb
y )] [see Eq. (1)]. If P̂1 is inside

the classical correlation polytope P , the protocol aborts. Oth-
erwise, they construct an optimal Bell inequality by solving
the linear optimization in Eq. (4). Then Alice and Bob use
the data from the second set to calculate the Bell value B[P̂2].
They then bound the deviation of this estimated Bell value
B[P̂2] from the real Bell value B[P] by [see Eq. (8)]

Pr(B[P] � B[P̂2] − δest ) � 1 − εest, (10)

where εest = exp (− 2Nξδ2
est

3γ 2 ) and Nξ

3 are the number of mea-

surement rounds used to estimate the Bell value B[P̂2].
The parties will use the Bell inequality and corresponding

violation B[P̂2] − δest as a hypothesis in the experiment. From
the data of the third set, the parties calculate the Bell value
B[P̂3]. For an honest implementation, the protocol aborts if
the Bell value B[P̂3] is smaller than B[P̂2] − δest.

(3) Furthermore, the parties need to estimate the Quan-
tum bit error rate (QBER) Q to bound the error correction
information. Alice and Bob publicly reveal the measurement
outcomes from Nη randomly sampled key generation rounds
to estimate the QBER. The QBER of the raw key can be upper
bounded with high probability using the tail inequality (see
Lemma 1 in Appendix A):

Pr
[
Q � Q̂ + γest

(
N (1 − ξ − η), Nη, Q̂, ε

γ
est

)]
> ε

γ
est, (11)

where γest(N (1 − ξ − η), Nη, Q̂, ε
γ
est ) is the positive root of

the following equation:

ln

(
N (1 − ξ − η)Q̂ + N (1 − ξ − η)γest

N (1 − ξ − η)

)
+ ln

(
NηQ̂

Nη

)

= ln

(
(N (1 − ξ )Q̂ + N (1 − ξ − η)γest

N (1 − ξ )

)
+ ln ε

γ
est. (12)

Thus we can deduce that the QBER Q is not larger than Q̂ +
γest (estimated QBER + statistical correction) with very high
probability of 1 − ε

γ
est.

(4) Alice and Bob use an one-way error correction (EC)
protocol to obtain identical raw keys KA and KB from their
bit strings AN and BN . During the process of error correction,
Alice communicates OEC (OEC denotes all the classical com-
munication in the error correction step) to Bob such that he
can guess the outcomes AN of Alice. If EC aborts, they abort
the protocol. In an honest implementation, this happens with
probability at most εc

EC. Otherwise, they obtain error-corrected
raw keys KA and KB [12,38–40]. The probability that Alice
and Bob do not abort but hold different raw keys KA �= KB is
at most εEC. For details, see Appendix B 1.
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When the real QBER Q is greater than Q̂ + γest (which
happens with probability ε

γ
est), the hashed values of keys

belonging to Alice and Bob (which is sent from Alice to
Bob to check if the error correction is successful, see Ap-
pendix B 1 for details) are different with high probability [38].
This results in the abortion of the implemented error correc-
tion protocol. Thus we can upper bound the error correction
abortion probability εc

EC by ε
γ
est.

(5) Alice and Bob apply a privacy amplification protocol
to obtain a secure final key K̃A = K̃B of length l that is close
to be uniformly random and independent of the adversary’s
knowledge.

V. SECRET KEY RATE

To provide a lower bound on the device-independent secret
key rate, one has to estimate two terms. One is the conditional
von Neumann entropy H (A|X, E ) and the other one is the
error correction information H (A|B) of the raw key [41]. To
estimate the latter, one can follow the footsteps of [25,42]; the
detailed derivation is shown in Appendix B. For the estimation
of the conditional von Neumann entropy H (A|X, E ), we lower
bound it by the conditional min-entropy Hmin(A|X, E ) =
− log2 Pg(A|X, E ) [see Eq. (B18)] [43], where Pg(A|X, E ) is
Eve’s guessing probability about Alice’s X -measurement re-
sults conditioned on her side information E . Pg(A|X, E ) can
be upper bounded by a function Gx of the estimated Bell
violation B[P] [26] by solving a semidefinite program [44],
i.e.,

Pg(A|X, E ) � Gx(B[P]). (13)

In real-life experiments, one does not have access to the
probabilities. Instead, one has to deal with the frequencies.
In Sec. IV we discussed that the protocol will abort if the
observed Bell violation B[P̂3] in the hypothesis testing is
smaller than B[P̂2] − δest. We need to take into account that
the observed Bell violation B[P̂3] is calculated from a finite
number of rounds. To infer the real Bell violation of the i.i.d.
implementation, we make use of Hoeffding’s inequality to
define a confidence interval δcon and the associated error prob-
ability εcon. We bound the probability of wrongly accepting
the hypothesis with the error probability εcon by

Pr(B[P̂2] − δest � B[P̂3] + δcon) < εcon

⇒ Pr(B[P̂2] − δest − δcon � B[P̂3]) < εcon. (14)

Therefore given that Alice and Bob do not abort the protocol,
we infer that the Bell violation of the system under consid-
eration is higher than B[P̂2] − δest − δcon (with maximum εcon

probability of error). We consider the worst possible scenario
and use the Bell violation B[P̂2] − δest − δcon to upper bound
the guessing probability Pg(A|X, E ) via a semidefinite pro-
gram

max:
ρ,{A(a|x)},{B(b|y)}

Pg(A|X, E )

subject to: Tr(ρG) = B[P̂2] − δest − δcon.

(15)

The guessing probability Pg(A|X, E ) is bounded by using
the NPA hierarchy [45,46] up to level 2 in the optimization
problem of Eq. (15). The optimization is performed using

standard tools YALMIP [47], CVX [48–50], NCPOL2SDPA [51],
and QETLAB [52]. Here we have used the SDPT3 [53] solver
for solving the optimization problem of Eq. (15). One can use
SEDUMI [54] or MOSEK [55] as possible alternatives. G is the
Bell operator, defined as

G =
∑

a,b,x,y

hab
AxBy

A(a|x)B(b|y).

A(a|x) and B(b|y) are measurement operators for Alice and
Bob, respectively, and ρ is the state shared between Al-
ice and Bob. Hence the conditional von Neumann entropy
Hmin(A|XY E , T = 1) can be bounded by

Hmin(A|XY E , T = 1)ρ = − log2 P(A|X, E ) (16)

� − log2 Gx(B[P̂2] − δest − δcon).

The function G is defined in Eq. (13). T = 1 specifies the
outcomes of the parameter estimation rounds which are used
for the estimation of the min-entropy.

To bound the error correction information, we need to
estimate the QBER Q, i.e., the probability that Alice’s and
Bob’s measurement outcomes in the key generation rounds
differ. In Sec. IV we have discussed that we can upper bound
the QBER Q of the raw key with at least 1 − ε

γ
est probability

by Q̂ + γest. In Appendix B we show that we can upper bound
the von Neumann entropy H (A|B) [20,38]:

H (A|B) � f (Q̂ + γest ), (17)

where f (x) = h(x) + x log2(d − 1). Here d is the number of
outcomes per measurement in the Bell scenario [56] and h is
the binary entropy function.

Using the bound on the min-entropy [see Eq. (16)] and
the QBER [see Eq. (17)], we derive the finite-size secret key
rate of a εs

DIQKD-sound, εc
DIQKD-complete (see Definition 6

and Appendix B for details) DIQKD protocol for collective
attacks. The statement is as follows [42]: Either the protocol
in Sec. IV aborts with probability higher than 1 − (εcon + εc

EC)
or an (2εEC + εs + εPA)-correct-and-secret key of length

l � N (− log2 Gx(B[P̂2] − δest − δcon)

− (1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d )

−
√

N

(
4 log2(2

√
2log2 d+1)

(√
log2

8

ε′2
EC

+
√

log2
2

ε2
s

))

− log2

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
− log2

1

εEC
− 2 log2

1

2εPA
,

(18)

can be generated where εc
DIQKD � εest + ε

γ
est (for an honest

implementation) and εs
DIQKD � 2εEC + εs + εPA. The expres-

sion in Eq. (18) is derived in Appendix B. Table I lists all
parameters of the DIQKD protocol.

VI. RESULTS

In this section we illustrate the potential and the versatility
of our method with examples. We choose εc

DIQKD = 10−2,
εs

DIQKD = 10−5, εEC = 10−10 as DIQKD parameters for all the
examples shown in the following section.
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TABLE I. Parameters of the DIQKD protocol.

N Number of measurement rounds in the protocol

ξ Fraction of parameter estimation rounds for estimating the Bell violation
η Fraction of measurement rounds for estimating the QBER
εs Smoothing parameter
εEC, ε ′

EC Error probabilities of the error correction protocol
εc

EC Probability of abortion of error correction protocol
δest Width of the statistical interval for the Bell violation hypothesis test
εest Error probability of the Bell violation hypothesis test
δcon Confidence interval for the Bell test
εcon Error probability of the Bell violation estimation
γest Width of the statistical interval for the QBER estimation
ε

γ
est Error probability of the QBER estimation

εPA Error probability of the privacy amplification protocol
εc

DIQKD Completeness parameter of the DIQKD protocol
εs

DIQKD Soundness parameter of the DIQKD protocol

A. Scenario of m measurements each, two outcomes

We present the scenario with m measurement settings for
Alice and m + 1 for Bob (where the outcomes of only m mea-
surement settings are used in the parameter estimation). Each
of those measurement settings has two possible outcomes.
Let the shared state between Alice and Bob be a maximally
entangled Bell state |ψ〉 = 1√

2
(|00〉 + |11〉), mixed with white

noise of probability p, i.e.,

ρ = (1 − p)|ψ〉〈ψ | + p
1

4
, (19)

with p ∈ [0, 1]. Both parties use σz as key generation measure-
ments, resulting in the maximal possible correlation between
the outcomes of Alice and Bob.

In the case of m = 2, consider the measurement settings
of Alice and Bob that maximally violate the Clauser-Horne-
Shimony-Holt (CHSH) inequality [57], i.e.,

x = 1 ⇒ σz, x = 2 ⇒ σx,

y = 1 ⇒ σz + σx√
2

, y = 2 ⇒ σz − σx√
2

.
(20)

For the CHSH settings with different values of white noise p,
we recover the stable hyperplane stated in Table II. The secret
key rate as a function of the number of measurement rounds
for different values of white noise p is shown in Fig. 2. The
hyperplane in Table II is equivalent to the CHSH inequality
and consequently the key rate generated by our method coin-
cides with Ref. [26] that uses a predetermined standard CHSH

TABLE II. Optimized Bell inequality for the measurement set-
tings in Eq. (20), performed on a Bell state. Here the entries of the
hyperplane vector, see Eq. (5), are given in a tabular form. For their
explicit ordering see Appendix D.

1 –1 1 –1
–1 1 –1 1

1 –1 –1 1
–1 1 1 –1

inequality. Though our method finds a hyperplane equivalent
to the CHSH inequality, we identify the facet with the maxi-
mal violation which is then used in the DIQKD protocol. The
other facets (equivalent to CHSH inequality) may admit local
hidden variable models which lead to zero key.

In Refs. [30,31], the authors introduced an approach of
bounding the device-independent secret key rate (DISKR)
directly by using the measurement data. In the asymptotic
regime, this corresponds to using a Bell inequality that leads
to the maximal DISKR for the precise setup. However,
small changes in the parameters (e.g., imperfections on the
measurement directions) or on the measured probability dis-
tribution may lead to different Bell inequalities corresponding
to the optimal secret key rate. We compare our method with
Refs. [30,31] in the finite key regime. We study two different
Bell scenarios. For the [2,2] scenario, we consider the CHSH
settings [see Eq. (20)] and the noisy Bell state of Eq. (19) with
p = 0 [see graph (a) of Fig. 3] and p = 0.02 [see graph (b)
of Fig. 3]. For the [3,2] scenario (three measurement settings

FIG. 2. Secret key rate vs logarithm of the number of rounds N
using the measurement settings of Eq. (20). The state shared between
two parties is the noisy Bell state [defined in Eq. (19)], where the
noise is taken to be p = 0.0 (dashed red line), p = 0.02 (dotted blue
line), p = 0.05 (green solid line).
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FIG. 3. Achievable secret key rate as a function of the number
of measurement rounds N , comparing our method (dashed red line)
and the method of Refs. [30,31] (dotted blue line) for a noisy Bell
state with noise parameter p, see Eq. (19). Upper row: Measurement
settings of Eq. (20) for (a) p = 0 and (b) p = 0.02. Lower row:
Measurement settings of Eq. (21) for (c) p = 0 and (d) p = 0.02.

each, two outcomes per measurement), we consider the setting

x = 1 ⇒ σz,

x = 2 ⇒ sin
π

3
σx + cos

π

3
σz,

x = 3 ⇒ sin
2π

3
σx + cos

2π

3
σz,

y = 1 ⇒ sin
π

6
σx + cos

π

6
σz,

y = 2 ⇒ σx,

y = 3 ⇒ sin
5π

6
σx + cos

5π

6
σz,

(21)

and use the noisy Bell state [Eq. (19)] with p = 0, p = 0.02
[see graphs (c) and (d) of Fig. 3]. To analyze the robustness,
we incorporate fluctuations θ in the orientations in some mea-
surement settings of Eq. (21) such that

x = 1 ⇒ σz,

x = 2 ⇒ sin

(
π

3
− θ

)
σx + cos

(
π

3
− θ

)
σz,

x = 3 ⇒ sin

(
2π

3
+ θ

)
σx + cos

(
2π

3
+ θ

)
σz,

y = 1 ⇒ sin

(
π

6
+ θ

)
σx + cos

(
π

6
+ θ

)
σz,

y = 2 ⇒ σx,

y = 3 ⇒ sin

(
5π

6
− θ

)
σx + cos

(
5π

6
− θ

)
σz.

(22)

We use a noisy Bell state with p = 0.02 [see Eq. (19)]
as the shared state between Alice and Bob. We use two
approaches to compare the robustness of our method with
Refs. [30,31]. First, we set θ = π

60 [see Eq. (22)] and vary
the number N of measurement rounds (see Fig. 4). Next we

FIG. 4. Deviation of measurement direction. Secret key rate vs
logarithm of the number of rounds N for our method (dashed red line)
and the method of Refs. [30,31] (dotted blue line), with measurement
settings of Eq. (22) where θ = π

60 , using a noisy Bell state with p =
0.02 [see Eq. (19)].

compare the methods for a range of deviations θ for N = 1010

measurement rounds (see Fig. 5). We observe that the Bell
inequality derived from our approach is stable against small
fluctuations of the measurement directions or in the shared
state. Our method can also generate a nonzero secret key by
performing fewer measurement rounds in comparison with
Refs. [30,31] (see Figs. 3–5). This is because the effect of
statistical corrections in the Bell inequality violation [see
Eq. (10)] is smaller in our approach. A similar behavior is
also expected if the number of measurement settings per party
is increased. These statistical corrections become insignifi-
cant for a high number of measurement rounds, such that
the method of Refs. [30,31] yields a higher secret key in the
asymptotic regime.

We point out that our method can also have advantages
with respect to the CHSH scenario, when the DI secret key
rate is calculated via the analytical expression from Ref. [20]:
if nonoptimal measurement settings were used, we can in-

FIG. 5. Deviation of measurement direction. Secret key rate vs
deviation θ of the measurement settings in Eq. (22) for our method
(dashed red line) and the method of Refs. [30,31] (dotted blue line),
with N = 1010, using a noisy Bell state with p = 0.02 [see Eq. (19)].
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FIG. 6. Improvement for more than two measurement settings.
Secret key rate vs log N for our method with measurement settings
as given in Eq. (C1) (dashed red line) compared to the optimal subset
of two measurement settings per party (dotted blue line). Here the
secret key rate for any subset of two measurement settings per party
is calculated via the analytical expression in [20] using the CHSH
inequality. The shared state is a Bell state.

crease the key rate by employing additional measurement
settings. As an example, we consider the observed probability
distribution originating from the maximally entangled Bell
state and the set of measurement settings listed explicitly in
Appendix C, see Eq. (C1). With our method we can generate
a higher secret key rate (for certain N) than using any subset
of two measurement settings per party (and the analytical
expression of [20]). See Fig. 6 for an illustration.

If the probability distribution obtained by two nonoptimal
measurement settings per party does not lead to a nonzero
secret key, adding another measurement setting per party and
employing our strategy can be advantageous. For example,
with nonoptimal measurement settings in Eq. (C2) and the
maximally entangled Bell state, one cannot extract a secret
key, using our method or blindly using the CHSH inequality.
By adding another set of measurements for Alice and Bob, as
shown in Eq. (C3), our method leads to a nonzero secret key
rate.

B. Scenario of 2 measurements each, d outcomes

In this section we analyze the scenario where each party
has two measurement settings in the parameter estimation
rounds (Bob has an additional measurement setting which will
be used in key generation rounds), and each measurement has
d outcomes. The state shared between Alice and Bob is a max-
imally entangled state of two qudits, i.e., |ψ〉 = ∑d−1

i=0
1√
d
|ii〉,

which is affected by white noise with probability p, i.e.,

ρ = (1 − p)|ψ〉〈ψ | + p
1

d2
. (23)

We consider the measurement settings from Refs. [58,59].
The measurement is carried out in three steps. In the first
step Alice applies a unitary operation on her subsystem with
only nonzero terms in the diagonal equal to eι 
φx ( j), where x
denotes Alice’s measurement direction, i.e., x ∈ {1, 2}, and
j = 0, 1, 2, . . . , d − 1. Similarly, Bob applies a unitary opera-

TABLE III. Optimized Bell inequality for the measurement de-
scribed in the text, performed on a maximally entangled state of two
qutrits. Here the entries of the hyperplane vector, see Eq. (5), are
given in a tabular form. For their explicit ordering see Appendix D.

1 –1 0 –1 1 0
0 1 –1 0 –1 1
–1 0 1 1 0 –1

1 0 –1 1 –1 0
–1 1 0 0 1 –1
0 –1 1 –1 0 1

tion on his subsystem with only nonzero terms in the diagonal
equal to eι 
ϕy ( j), where y denotes Bob’s measurement direction,
i.e., y ∈ {1, 2, 3}. These unitary operations are denoted by
U ( 
φx ) and U (
ϕy) for Alice and Bob, respectively, where


φx ≡ [φx(0), φx(1), φx(2), . . . , φx(d − 1)],


ϕy ≡ [ϕy(0), ϕy(1), ϕy(2), . . . , ϕy(d − 1)].

The values of these phases are chosen as

φ1( j) = 0, φ2( j) = π

d
j,

ϕ1( j) = π

2d
j, ϕ2( j) = − π

2d
j, ϕ3( j) = 0,

(24)

with j = 0, 1, 2, . . . , d − 1. We use {x = 1, y = 3} for the key
generation rounds and {x ∈ (1, 2), y ∈ (1, 2)} for the pa-
rameter estimation rounds. The second step consists of Alice
carrying out a discrete Fourier transform UFT and Bob ap-
plying U ∗

FT . The matrix elements of the Fourier transform are
defined as (UFT ) jk = exp [( j − 1)(k − 1)2πι/d], (U ∗

FT ) jk =
exp [−( j − 1)(k − 1)2πι/d]. Thus the concatenated unitaries
for Alice and Bob are V ( 
φx ) ≡ UFT U ( 
φx ) and V (
ϕy) ≡
U ∗

FT U ( 
φy), respectively.
Finally, Alice and Bob carry out measurements in the com-

putational basis |i〉. For d = 3, we find via linear optimization,
see Eq. (4), the optimized Bell inequality as shown in
Table III. The details of this representation of the Bell inequal-
ity are explained in Table VII of Appendix D.

The hyperplane in Table III is equivalent to the CGLMP
inequality [59,60]. If the parties share the nonmaximally en-
tangled state

|�〉 ≡ |00〉 + 0.7923|11〉 + |22〉√
2 + 0.79232

, (25)

the CGLMP inequality is maximally violated, thus resulting in
a significantly higher secret key rate, as shown in Fig. 7. This
trend of generating a higher secret key rate using nonmaxi-
mally entangled states is also observed for higher dimensions
(i.e., d > 3).

Note that in this scenario with d outcomes the maximum
secret key rate is log2 d . For a fair comparison, we have
normalized the min-entropy [i.e., − log2 of the solution of the
optimization problem of Eq. (15)] by division with log2 d to
get a rate per qubit dimension.

Comparing the DIQKD protocol with measurement set-
tings as described around Eq. (24) for different d and the
corresponding d-dimensional maximally entangled state, see
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FIG. 7. Secret key rate vs log N when performing the measure-
ment described around Eq. (24) on a maximally entangled state of
two qutrits (dashed red line) and on the nonmaximally entangled state
given in Eq. (25) (dotted blue line).

Eq. (23), the minimum number of measurement rounds re-
quired to have a nonzero secret key rate decreases slightly
with increasing d , see Fig. 8. This follows from the fact that
the minimum number of measurement rounds required to have
a nonzero Bell violation decreases with increasing d . On the
other side, the secret key is decreasing with increasing d (see
Fig. 8) when the number of measurement rounds is sufficiently
high. The nonlocality of the resultant correlation is decreasing
with increasing d , which in turn results in the lower secret key.

C. Random measurement settings

In this section we analyze the case when Alice’s and Bob’s
devices perform random measurements. We specifically focus
on the fraction of events that leads to a nonzero secret key rate.
First consider the [m, 2] scenario, i.e., m measurement each,
with two outcomes. The state shared between the parties is the
noisy Bell state as in Eq. (19). We choose the raw key gener-

FIG. 8. Secret key rate vs log N when performing the mea-
surement described around Eq. (24) for d = 3 (dashed red line),
4 (dotted blue line), and 5 (solid green line) on a maximally en-
tangled state of two d-dimensional subsystems. The inset graph
shows a zoomed-in version in the region of low number of measure-
ment rounds, demonstrating the crossover of the curves.

TABLE IV. Approximate probability of achieving a nonzero se-
cret key rate in the [m, 2] scenario for different white noise levels
p in the noisy Bell state [see Eq. (19)]. The statistics are taken
over 105 realizations. Measurement settings of key generation rounds
are fixed to be σz for Alice and Bob. The remaining measurement
settings are performed in random orientation. For each realization,
1012 measurement rounds are used to compute the finite key.

(ma, mb) = 2 (ma, mb) = 3

p = 0% ∼28.6% ∼53.4%
p = 1% ∼18.3% ∼46.5%
p = 2% ∼10.8% ∼36.8%
p = 3% ∼6.4% ∼28.2%
p = 4% ∼3.9% ∼18.5%
p = 5% ∼2.2% ∼11.3%

ation measurement operators {x = 1 ⇒ σz, y = m + 1 ⇒ σz}
in order to achieve correlated outcomes in the key measure-
ment rounds and consequently have to exchange less error
correction information. The remaining measurement opera-
tors are chosen randomly. Alice and Bob perform general
unitary operators

U (φ,ψ, χ ) =
[

eιψ cos φ eιχ sin φ

−e−ιχ sin φ e−ιψ cos φ

]
(26)

with parameters ψ, χ ∈ [0, 2π ] and φ ∈ [0, π
2 ] and then mea-

sure in the computational basis {|0〉, |1〉}. This strategy is
equivalent to choosing a random measurement. In Table IV
we show the fraction of events that leads to a nonzero secret
key rate with random measurements. The statistics are based
on 105 realizations. For the [2,2] scenario, the optimization
in Eq. (4) will always lead to the CHSH inequality. Adding
another measurement setting per party (i.e., the [3,2] scenario)
significantly increases the probability of finding a hyperplane
that produces a nonzero secret key rate. The first explanation
of this fact is statistical. By increasing the number of settings,
we increase the probability that some of them violate a Bell
inequality even involving only two settings per party. Apart
from that, the optimization in Eq. (4) also provides some
hyperplanes for the [3,2] scenario that are independent of the
hyperplanes for the [2,2] scenario. From the higher chance
of Bell inequality violation, we obtain a higher chance of
achieving a nonzero key. This result also reverberates the

TABLE V. Approximate probability of achieving a nonzero se-
cret key rate in the [2, d] scenario for white noise of different
probability p added to the maximally entangled state of two qudits
[see Eq. (23)]. All other details are as in Table IV.

d = 3 d = 4
p = 0% ∼6.4% ∼2.5%
p = 1% ∼2.2% ∼0%
p = 2% ∼0.3% ∼0%
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results of the nonlocal volume2 in [61–66], which increases
for the pure bipartite entangled state when more measurement
settings for each party are used. We observe the same phe-
nomenon in our case, regarding the secret key rate. As the
nonlocal volume shrinks by adding noise, it also reduces the
probability of producing a nonzero key rate. Let us now
analyze the [2, d] scenario (i.e., d outcomes per measurement)
with random measurement settings. The shared state is a noisy
maximally entangled state of two qudits [see Eq. (23)]. We
compute the approximate probability for achieving a nonzero
secret key rate (see Table V). The statistics are based on 105

realizations. The measurements for key generation are in the
computational basis. The remaining measurement settings are
chosen randomly.

We observe that for d � 3, the probability to extract a
nonzero secret key is smaller compared to the case with only
two outcomes. This follows from the fact that the nonlocal
volume shrinks by increasing the dimension of the maximally
entangled state. This results in a smaller probability of gener-
ating nonlocal correlations and therefore a smaller chance of
a Bell inequality violation [65] and smaller probability of a
nonzero secret key.

VII. CONCLUSIONS

Several protocols for device-independent quantum key dis-
tribution (DIQKD) have the common feature that they rely on
the violation of a predetermined Bell inequality. We propose
a robust DIQKD procedure where a suitable Bell inequality
is instead constructed from the measurement data. This con-
structed Bell inequality leads to the maximum Bell violation
for the particular setup. Then we use the Bell inequality and its
corresponding violation to bound the secret key rate via lower
bounding the min-entropy.

We provide a finite-size key analysis of our proposed
procedure. We bound the statistical fluctuations of the Bell in-
equality violation by Hoeffding’s inequality. However, we do
not claim that our choice of concentration inequality [67–69]
is optimal for a finite number of measurement rounds. Note
that our method could also be implemented for the estimation
of global randomness in a device-independent randomness
generation protocol.

We have illustrated our method with several examples for
different numbers of measurement settings and different num-
bers of outcomes. Even though our procedure may identify
a specific Bell inequality of a known type in some cases, a
predefined version of this type of Bell inequalities would often
lead to zero key. Our procedure identifies the one Bell inequal-

2The nonlocal volume is a statistical measure of nonlocality intro-
duced in [61]. It is defined as the probability that the correlations,
generated from randomly chosen projective measurements made on a
given state |ψ〉, violate any Bell inequality (a witness of nonlocality)
by any extent. Generally, the nonlocal volume for a given state
|ψ〉 is obtained by

∫
d� f (|ψ〉, �), where one integrates over the

measurement parameters � [62]. f (|ψ〉, �) is an indicator function
that takes the value 1 if the resultant correlations, generated from
the state and measurements, are nonlocal. Otherwise, it will take the
value 0.

ity (out of all the equivalent ones) with maximal violation,
which then leads to a nonzero secret key rate.

We have also shown cases when our method yields a higher
secret key rate than using the standard CHSH inequality. In
comparison to related approaches (Refs. [30,31]), we provide
examples where our approach needs fewer numbers of mea-
surement rounds to generate a nonzero secret key. Using our
method, the typical number of measurement rounds to gener-
ate a nonzero key varies between 106 to 108 for the [m, 2] Bell
scenario and is of the order 106 for the [2, d] Bell scenario.
We further showed the performance of our method in the
case of random measurement settings. Our method employs
the observed measurement statistics, which can be affected
by inefficient detectors. In case of no-detection events, one
can follow our procedure by declaring no-detection as an
additional outcome. One could also account for detector ef-
ficiencies by using the approaches of Refs. [70–72].

Finally, future work should address the use of more sophis-
ticated methods of bounding the conditional von Neumann
entropy [73–75], which could increase the secret key rate, in
comparison to the bounds based on the min-entropy.
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APPENDIX A: DEFINITIONS

We start with the definition of some quantities that will help
us to derive the key rates for the DIQKD protocol.

Definition 1 (Min and max-entropy [76,77]). Let ρAB ∈
P (HA ⊗ HB) and σB ∈ P (HB). P (HB) is the set of positive-
semidefinite operators on the Hilbert space HB. The min-
entropy of ρAB conditioned on σB is

Hmin(ρAB|σB) := − log2 λ, (A1)

where λ is the minimum real number such that λ.(I ⊗ σB) −
ρAB � 0. The max-entropy of ρAB conditioned on σB is

Hmax(ρAB|σB) := log2 Tr
(
(I ⊗ σB)ρ0

AB

)
, (A2)

where ρ0
AB denotes the projector onto the support of ρAB.

Definition 2 (Smoothed min and max-entropy [76,78]). For
a quantum state ρAB and ε � 0, the smooth min-entropy of
system A conditioned on B is defined as

H ε
min(A|B) := max

ρ̃AB∈Bε (ρAB )
Hmin(A|B)ρ̃AB , (A3)

and the smooth max-entropy of system A conditioned on B is
defined as

H ε
max(A|B) := min

ρ̃AB∈Bε (ρAB )
Hmax(A|B)ρ̃AB . (A4)

Bε is an ε-ball of subnormalized operators around the state
ρAB defined in terms of the purified distance.
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Now we focus on the security parameters of quantum key
distribution. The security of quantum key distribution can be
split into two conditions.

Definition 3 (Correctness [5,25,42]). A DIQKD protocol
is εcorr-correct if the final key K̃A of Alice differs from the
final key K̃B of Bob with probability less than εcorr, i.e.,

Pr(K̃A �= K̃B) � εcorr. (A5)

Definition 4 (Secrecy [5,25,42]). For any εsec � 0, a
DIQKD protocol is εsec with respect to the adversary E if the
joint state satisfies

p(�) 1
2‖ρK̃AE |� − τK̃A

⊗ ρE‖1 � εsec, (A6)

where τK̃A
is the maximally mixed state on K̃A of the protocol.

Here p(�) is the probability of not aborting the protocol.
If a protocol is εcorr-correct and εsec-secret, then it is

εs
DIQKD-correct and secret for any εs

DIQKD � εcorr + εsec. The
correctness (see Def. 3) of the final key is ensured by the
error correction step. During error correction, Alice sends a
sufficient amount of information to Bob so that he can correct
his raw key. If Alice and Bob do not abort in this step, then
the probability that they end up with different raw keys is
guaranteed to be very small (below εEC). For the secrecy of the
protocol (see Def. 4) one needs to estimate how far the final
state describing Alice’s key and the eavesdropper’s system is
from the ideal one.

Definition 5 (Secret key rate [25,42]). If a protocol gener-
ates a correct and secret key of length l after n rounds, the
secret key rate is defined as

r = l

n
. (A7)

Any useful DIQKD protocol should not abort almost all the
time. This is apprehended by the concept of completeness.

Definition 6 (Security [25,42]). A DIQKD protocol is
(εs

DIQKD, εc
DIQKD, l )-secure if

(1) (Soundness) For any implementation of the protocol,
either it aborts with probability greater than 1 − εs

DIQKD or an
εs

DIQKD-correct and secret key of length l is obtained.
(2) (Completeness) There exists an honest implementation

of the protocol such that the probability of not aborting, p(�),
is greater than 1 − εc

DIQKD.
In the privacy amplification step, Alice and Bob want to

turn their equal string of bits, which may be partially known
to an eavesdropper, into a shorter completely secure string of
bits. For this step, a 2-universal family of hash functions is
needed.

Definition 7 (2-universal hash function). A family of hash
functions F = { f : {0, 1}n → {0, 1}�} is called 2-universal if
for every two strings x, x′ ∈ {0, 1}n with x �= x′ then

Pr f ∈F ( f (x) = f (x′)) = 1

2�
, (A8)

where f is chosen uniformly at random in F . The property
of 2-universality ensures a good distribution of the outputs.
For � � n there always exists a 2-universal family of hash
functions [79].

Now we will state the quantum leftover hashing lemma
[77,80]. It quantifies the secrecy of a protocol as a function of

a conditional entropy of the state before privacy amplification
and the length of the final key.

Theorem 1 (Leftover hashing lemma with smooth min-
entropy [25,42,80]). Let ρAnE be a classical quantum state. Let
F be a 2-universal family of hash functions, from {0, 1}n to
{0, 1}l , that maps the classical n-bit string An into KA. Then

‖ρKAFE − τKA ⊗ ρFE‖ � 2− 1
2 (H ε

min(An|E )ρ−l ) + 2ε,

where F is a classical register that stores the hash function f .
With the leftover hash lemma and the definition of secrecy

(see Def. 4), we express the length of a secure key as a
function of the entropy of Alice’s raw key conditioned on
Eve’s information before privacy amplification.

Theorem 2 (Key length [25,42]). Let P(�) be the proba-
bility that the DIQKD protocol does not abort for a particular
implementation. If the length of the key generated after pri-
vacy amplification is given by

l � H εs/P(�)
min (An|E )ρ|� − 2 log

1

2εPA
,

then the DIQKD protocol is εPA + εs secret.
In this paper we have considered the II D scenario (col-

lective attacks). In the assumption of collective attacks, the
distributed state and the behavior of Alice’s and Bob’s devices
are the same in every round of the protocol. Eve can carry
out arbitrary operations in her quantum side information. This
assumption implies that after n rounds of the protocol, the
state shared by Alice, Bob, and Eve is ρAnBnE = ρ⊗n

ABE . The
quantum asymptotic equipartition property [76,81] allows us
to bound the conditional smooth min-entropy of state ρ⊗

AE by
the conditional von Neumann entropy of the state ρAE .

Theorem 3 (Asymptotic equipartition property [81]). Let
ρ = ρ⊗n

AE be an IID state. Then for n � 8
5 log 2

ε2 ,

H ε
min(An|En)ρ⊗n

AE
> nH (A|E )ρAE − √

nδ(ε, χ ),

and similarly,

H ε
max(An|En)ρ⊗n

AE
< nH (A|E )ρAE + √

nδ(ε, χ ),

where δ(ε, χ ) = 4 log(χ )
√

log 2
ε2 and χ =

√
2−Hmin(A|E )ρAE +√

2Hmax(A|E )ρAE + 1.
Lemma 1 [82,83]. Let Xn+k be a random binary string of

n + k bits, Xk be a random sample (without replacement) of
m entries from the string Xn+k , and Xn be the remaining bit
string. �k and �n are the frequencies of bit value 1 in string
Xk and Xn, respectively. For any ε1 > 0, it holds the upper tail
inequality:

Pr[�n � �k + γ1(n, k,�k, ε1)] > ε1, (A9)

where γ1(a, b, c, d ) is the positive root of

ln

(
bc

b

)
+ ln

(
ac + aγ1(a, b, c, d )

a

)

= ln

(
(a + b)c + aγ1(a, b, c, d )

a + b

)
+ ln d.

For ε2 > 0, we have the lower tail inequality:

Pr[�n � �k − γ2(n, k,�k, ε2)] > ε2, (A10)

032451-10



DEVICE-INDEPENDENT SECRET KEY RATES VIA A … PHYSICAL REVIEW A 105, 032451 (2022)

where γ2(a, b, c, d ) is the positive root of

ln

(
bc

b

)
+ ln

(
ac − aγ2(a, b, c, d )

a

)

= ln

(
(a + b)c − aγ2(a, b, c, d )

a + b

)
+ ln d.

Lemma 2 [37]. Let X1, X2, . . . , Xn be independent random
variables strictly bounded by the intervals [ai, bi], i.e., ai �
Xi � bi. We define

X̄ = 1

n
(X1 + X2 + · · · + Xn).

Then Hoeffding’s inequality reads

Pr(X̄ − E [X̄ ] � t ) � exp

(
− 2n2t2∑n

i=1(bi − ai )2

)
.

Let ci := bi − ai and ci � C ∀ i. Then Hoeffding’s inequality
reads

Pr(X̄ − E [X̄ ] � t ) � exp

(
− 2n2t2

nC2

)
= exp

(
− 2nt2

C2

)
.

APPENDIX B: SECRET KEY ANALYSIS

Theorem 4 (Completeness). The DIQKD protocol stated
in Sec. IV is εest + ε

γ
est complete.

Proof. The protocol can abort in two instances. Either it
will abort if the error correction failed or if the estimated Bell
violation B[P̂3] is not high enough. The probability that the
error correction fails can only happen if the real QBER Q is
larger than Q̂ + γest, which happens with probability ε

γ
est, see

Sec. IV for details. The protocol also aborts if the estimated
Bell violation B[P̂3] is smaller B[P̂2] − δest ), see Sec. IV for
details. Thus, considering an honest implementation consist-
ing of IID rounds, we can bound the probability of abortion of
the protocol:

p(abort) = p((EC aborts) or (Bell test fails))

� p(EC aborts) + p(Bell test fails)

� p(QBER test fails) + p(Bell test fails)

= p(Q > Q̂ + γest ) + p(B[P̂3] < B[P̂2] − δest )

= ε
γ
est + εest, (B1)

where εest is defined in Eq. (10), and ε
γ
est is defined in Eq. (11).

Thus we get εc
DIQKD � εest + ε

γ
est.

For the soundness, we have to evaluate the correctness and
secrecy, defined in Def. 3 and Def. 4, respectively. In case of
correctness, if we have an error correction protocol that does
not abort, then Alice (Bob) will have the raw key KA (KB) after
the protocol. The string KB differs from KA with probability
less than εEC, and as the final keys K̃A and K̃B are equal if the
raw keys are equal, it follows that

P(K̃A �= K̃B) � P(KA �= KB) � εEC.

For secrecy, let us recall that � is defined as the event when
the protocol does not abort. This happens when the error cor-
rection protocol does not abort and achieved the required Bell
violation according to Alice’s and Bob’s outputs (and inputs).
Now define the event �̂ as the event � (protocol not aborting)
and the error correction being successful, i.e., KA = KB. Thus

‖ρK̃AE|� − τK̃A
⊗ ρE‖1 � ‖ρK̃AE|� − ρK̃AE|�̂‖1

+ ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1

� εEC + ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1. (B2)

The first inequality follows from the triangular inequality of
the trace distance [84]. ρK̃AE|� is the joint classical quantum
state of Alice and Eve if the protocol does not abort. ρK̃AE|�̂
is the joint classical quantum state of Alice and Eve if the
protocol does not abort and the error correction is successful.
When error correction succeeds, the probability of KA = KB is
higher than (1 − εEC). Conversely, the probability KA �= KB is
less than εEC. Thus the second inequality of Eq. (B2) comes
from

‖ρK̃AE|� − ρK̃AE|�̂‖1 � (1 − εEC)‖ρK̃AE|�̂ − ρK̃AE|�̂‖1

+ εEC‖ρK̃AE|�̂ − ρK̃AE|�̂c
‖1 � εEC, (B3)

where �̂c is defined as the event when the protocol does not
abort but error correction is not successful, i.e., KA �= KB.

Now we proceed to evaluate the term ‖ρK̃AE|�̂ − τK̃A
⊗ ρE‖1

of Eq. (B2). We will follow the path shown in [25,42].
Given that the protocol did not abort, the maximal length
of a secure key is determined by the smooth min-entropy
of Alice’s raw key conditioned on all information avail-
able to the eavesdropper (see the leftover hashing lemma in
Theorem. 1). In our protocol (see Sec. IV), it is given by
H εs

min(AN |X NY N T N EOEC)ρ|�̂ . Here we recall that OEC is the
information exchanged by Alice and Bob during the error
correction protocol. X N and Y N are the input bit strings (mea-
surement settings) for Alice and Bob, respectively. AN is the
output bit string of Alice. T N is the shared random key that
determines whether the round is a test or a key generation
round. �̂ is the event that the protocol does not abort and error
correction succeeds.

In order to bypass the conditioned state of
H εs

min(AN |X NY N T N EOEC)ρ|�̂ , we can start from the definition
of secrecy (see Def. 4). Then we have to bound the term

p(�)‖ρK̃AFE|� − τK̃A
⊗ ρFE‖1 = ‖ρK̃AFE∧� − τK̃A

⊗ ρFE∧�‖1,

(B4)
where ρK̃AFE∧� = p(�)ρK̃AFE|� is a subnormalized state. Here
we recall that F is the classical register that stores the hash
function f (see Def. 7).

Now using the leftover hashing lemma in Theorem 1, we
can generate an (εs + εPA)-secret key of length [42]

l � H εs
min(AN |E )ρ∧� − 2 log

1

2εPA
. (B5)
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In Ref. [85] it is proved that

H εs
min(AN |E )ρ∧� � H εs

min(AN |E )ρ. (B6)

Thus we proceed to estimate the quantity
H εs

min(AN |X NY N T N EOEC)ρ in order to bound the achievable
secret key of length l .

Using the chain rule relation for the smooth min-entropy
conditioned on classical information [76], we can write

H εs
min(AN |X NY N T N EOEC)ρ=H εs

min(AN |X NY N T N E )ρ−leakEC.

(B7)
Thus, in order to bound H εs

min(AN |X NY N T N EOEC)ρ , we have
to lower bound H εs

min(AN |X NY N T N E )ρ and upper bound
leakEC (the leakage due to the error correction).

1. Estimation of leakEC

Alice and Bob perform an EC procedure so that Bob can
compute a guess of Alice’s raw key AN . In order to verify if
EC is successful, Alice chooses a two-universal hash function
(uniformly at random) from the family of hash functions and
computes a hash of length log( 1

εEC
) from her raw keys AN .

Then she sends the chosen hash function and the hashed value
of her bits to Bob via a public channel. We denote all the
classical communication (information leaked during EC, hash
function, and the hashed value for verification) by OEC. Bob
computes the hash function on his key. If the hashed values
are equal, then Alice’s and Bob’s keys are the same with high
probability. If the hashed values are different, the parties will
abort the protocol. During this whole process the amount of
information about the key exposing to the adversary Eve is
termed as leakEC. In Ref. [77] the leakEC is bounded by

leakEC � H
ε′

EC
0 (AN |BN X NY N T N ) + log

1

εEC
, (B8)

where εc
EC = εEC + ε′

EC (see Table I). H0 is the Rényi entropy
introduced in Ref. [77]. In Ref. [76], it is denoted as H̄↑

0 .
If Alice and Bob do not abort, then their resultant bit string
is identical (KA = KB) with at least 1 − εEC probability. We

can bound the entropy H
ε′

EC
0 (AN |BN X NY N T N ) in the following

way:

H
ε′

EC
0 (AN |BN X NY N T N )

� H
ε′EC

2
max (AN |BN X NY N T N ) + log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)

� NH (A|BXY T ) + 4
√

N log(2
√

2log2 d + 1)

√
log

8

ε′
EC

2

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
. (B9)

For the definition of H ε
0 (A|B), see Ref. [77]. The first in-

equality of Eq. (B9) comes from Ref. [80] and Eq. (B11)
of Ref. [42]. The last inequality comes from the asymptotic
equipartition property (see Theorem 3), where we used the

relations

δ(ε, χ ) = 4 log(χ )

√
log

2

ε2

� 4 log(2
√

2log2 d + 1)

√
log

( 2

ε2

)
. (B10)

Here we have used χ � 2
√

2log2 d + 1, which comes from

χ =
√

2−Hmin(A|E )ρAE +
√

2Hmax(A|E )ρAE + 1

� 2
√

2Hmax(A|XY T E )ρ + 1

� 2
√

2log2 d + 1. (B11)

The first inequality of Eq. (B11) follows from the fact
that A is a classical register and therefore has positive
conditional min-entropy, which implies −Hmin(A|XY T E ) �
Hmin(A|XY T E ) � Hmax(A|XY T E ). For the second inequality
of Eq. (B11), we use Hmax(A|XY T E ) � log2 d .

Therefore, from Eqs. (B8) and (B9), we can bound the
leakage in the following way:

leakEC � NH (A|BXY T )

+ √
n(4 log(2

√
2log2 d + 1))

√
log

8

ε′2
EC

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
+ log

1

εEC
. (B12)

Now we bound the single-round von Neumann entropy
H (A|BXY T ) as

H (A|BXY T ) = p(T = 0)H (A|BXY T = 0)

+ p(T = 1)H (A|BXY T = 1)

� (1 − ξ )H (A|BXY T = 0) + ξ log2 d

� (1 − ξ − η)H (A|BXY T =0)+(ξ + η) log2 d.

(B13)

See Table I for the details of ξ , η, and γest. For the first
equality, we have used that for the conditional von Neumann
entropy it holds that H (A|BX )ρ = ∑

x p(X = x)H (A|BX =
x). We divide the measurement rounds into key generation
(specified by T = 0) and parameter estimation (specified by
T = 1), for details see Sec. IV. The first inequality comes
from the fact that parameter estimation round’s measurements
were publicly communicated to estimate the Bell inequality
and the corresponding violation. η rounds of the raw key
generation measurement were communicated through a public
channel to estimate the QBER, which leads to the last inequal-
ity.

Now our goal is to estimate H (A|BXY T = 0). For di-
chotomic observables and uniform marginals, H (A|B) can
be expressed as h(Q) [20], where h is the binary entropy
function, h(p) := −p log2 p − (1 − p) log2(1 − p). Similarly
for the [(ma, mb), d] Bell scenario, H (A|B) can be expressed
as a function of the QBER, H (A|B) = −Q log2 Q − (1 −
Q) log2(1 − Q) + Q log2(d − 1) [56].

For our specific protocol (see Sec. IV), we bound
H (A|BXY T = 0) by a function of Q̂1 + γest (observed QBER

032451-12
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TABLE VI. Bell inequality table for the [2,2] scenario.

h11
A1B1

h12
A1B1

h11
A1B2

h12
A1B2

h21
A1B1

h22
A1B1

h21
A1B2

h22
A1B2

h11
A2B1

h12
A2B1

h11
A2B2

h12
A2B2

h21
A2B1

h22
A2B1

h21
A2B2

h22
A2B2

+ estimated statistical error), see Sec. V for details:

H (A|BXY, T = 0) � f (Q̂ + γest ), (B14)

where f (x) = h(x) + x log2(d − 1) (d is the number of out-
comes per measurement in the Bell scenario) and h is the
binary entropy function. From Eqs. (B13) and (B14), it then
follows that

H (A|BXY T ) � (1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d.

(B15)
The leakage due to error correction is given by [from

Eqs. (B12) and (B15)]

leakEC � N[(1 − ξ − η) f (Q̂ + γest ) + (ξ + η) log2 d]

+
√

N

(
4 log(2

√
2log2 d + 1)

)√
log

8

ε′2
EC

+ log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
+ log

1

εEC
. (B16)

2. Estimation of min-entropy Hεs
min(AN|X NY NT NE )ρ

Finally, we lower bound H εs
min(AN |X NY N T N E )ρ . We use

the asymptotic equipartition property (see Theorem 3) to
lower bound the min-entropy of N rounds by the von Neu-
mann entropy of single rounds:

H εs
min(AN |X NY N T N E )ρ

� NH (A|XY T E )ρ − 4
√

N log(2
√

2log2 d + 1)

√
log

2

ε2
s

.

(B17)

Since Alice’s actions (and her device’s) are independent
of Bob’s choice of input, adding information about Y
(Bob’s input) does not increase (or decrease) the conditional
von Neumann entropy H (A|X, E )ρ . Since H (A|X, E )ρ and
H (A|XY E , T = 1)ρ are equivalent in our setup, we will use

both terms interchangeably. In the general scenario, the condi-
tional von Neumann entropy is hard to calculate analytically.
But the conditional von Neumann entropy can be lower
bounded by the conditional min-entropy as

H (A|XY T, E )ρ � Hmin(A|XY T, E )ρ. (B18)

The advantage of looking at the conditional min-entropy
is that we can express it as Hmin(A|XY E , T = 1)ρ =
− log2 Pg(A|X, E ) [43], where Pg(A|X, E ) is Eve’s guessing
probability about Alice’s X -measurement results A condi-
tioned on her side information E . Pg(A|X, E ) can be upper
bounded by a function Gx of the expected Bell viola-
tion B[P] [26] by solving a semidefinite program [44],
i.e., Pg(A|X, E ) � Gx(B[P]). For our specific protocol (see
Sec. IV), we will lower bound the min-entropy (via upper
bounding the guessing probability Pg(A|X, E ) using the Bell
inequality B and corresponding Bell value B[P̂2] − δest − δcon

(explained in Sec. V):

Hmin(A|XY E , T = 1)ρ � − log2 Gx(B[P̂2] − δest − δcon).
(B19)

Finally, putting Eqs. (B16) and (B19) together, we have either
the protocol mentioned in Sec. IV aborts with probability
higher than 1 − (εcon + εc

EC) or a (2εEC + εs + εPA)-correct
and secret key can be generated of length l . The length l is
bounded by

l � N[− log2 Gx(B[P̂2] − δest − δcon)

− (1 − ξ − η) f (Q̂ + γest ) − (ξ + η) log2 d]

−
√

N

(
4 log(2

√
2log2 d + 1)

(√
log

8

ε′2
EC

+
√

log
2

ε2
s

))

− log

(
8

ε′2
EC

+ 2

2 − ε′
EC

)
− log

1

εEC
− 2 log

1

2εPA
.

(B20)

TABLE VII. Bell inequality table for the [2,3] scenario.

h11
A1B1

h12
A1B1

h13
A1B1

h11
A1B2

h12
A1B2

h13
A1B2

h21
A1B1

h22
A1B1

h23
A1B1

h21
A1B2

h22
A1B2

h23
A1B2

h31
A1B1

h32
A1B1

h33
A1B1

h31
A1B2

h32
A1B2

h33
A1B2

h11
A2B1

h12
A2B1

h13
A2B1

h11
A2B2

h12
A2B2

h13
A2B2

h21
A2B1

h22
A2B1

h23
A2B1

h21
A2B2

h22
A2B2

h23
A2B2

h31
A2B1

h32
A2B1

h33
A2B1

h31
A2B2

h32
A2B2

h33
A2B2
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TABLE VIII. Bell inequality table for the [m, d] scenario.

h11
A1B1

. . . h1d
A1B1

. . . h11
A1Bm

. . . h1d
A1Bm

...
. . .

...
...

. . .
...

...
. . .

...

hd1
A1B1

. . . hdd
A1B1

. . . hd1
A1Bm

. . . hdd
A1Bm

. . . . . . . . .

...
. . .

...
...

. . .
...

...
. . .

...

. . . . . . . . .

h11
AmB1

. . . h1d
AmB1

. . . h11
AmBm

. . . h1d
AmBm

...
. . .

...
...

. . .
...

...
. . .

...

hd1
AmB1

. . . hdd
AmB1

. . . hd1
AmBm

. . . hdd
AmBm

APPENDIX C: MEASUREMENT SETTINGS

Here we list the explicit measurement settings employed in Sec. VI A.

x = 1 ⇒ σz, y = 1 ⇒
[

0.7064 −0.6632 + 0.2473i
−0.6632 − 0.2473i −0.7064

]
,

x = 2 ⇒
[ −0.1817 0.1307 + 0.9746i

0.1307 − 0.9746i 0.1817

]
, y = 2 ⇒

[ −0.6882 −0.2128 − 0.6936i
−0.2128 + 0.6936i 0.6882

]
,

x = 3 ⇒
[ −0.7746 0.6186 − 0.1315i

0.6186 + 0.1315i 0.7746

]
, y = 3 ⇒

[
0.4046 −0.1960 + 0.8932i

−0.1960 − 0.8932i −0.4046

]
.

(C1)

Using the following set of measurement settings for Alice and Bob in Eq. (C1), one can generate a higher secret key rate
employing our method than using any subset of two measurement settings per party using the standard CHSH inequality.

x = 1 ⇒ σz, y = 1 ⇒
[ −0.4091 −0.5937 + 0.6930i
−0.5937 − 0.6930i 0.4091

]
,

x = 2 ⇒
[

0.7019 0.5167 − 0.4903i
0.5167 + 0.4903i −0.7019

]
, y = 2 ⇒

[ −0.6133 −0.2514 + 0.7488i
−0.2514 − 0.7488i 0.6133

]
.

(C2)

Using the following measurement settings in Eq. (C2) and the state in Eq. (19) with no white noise, one cannot extract a
secret key using our method or blindly using the CHSH inequality.

x = 3 ⇒
[ −0.1457 −0.9777 + 0.1513i
−0.9777 − 0.1513i 0.1457

]
, y = 3 ⇒

[ −0.9020 −0.3795 − 0.2056i
−0.3795 + 0.2056i 0.9020

]
. (C3)

However, by adding another set of measurements for Alice and Bob mentioned in Eq. (C3), it is possible to achieve a nonzero
secret key rate using our method.

APPENDIX D: TABULAR REPRESENTATION OF BELL INEQUALITY

Here we introduce an alternative representation of the hyperplane vector [see Eq. (5)]. We rearrange the entries (coefficients
of the Bell inequality) in a tabular construction. For the [2,2] Bell scenario, it is represented in Table VI.

This representation is used in Table II. Similarly, we reorder the elements of the hyperplane vector for the [2,3] Bell scenario
in the following way (see Table VII):

This tabular representation is used to describe the Bell inequality in Table III. For the generalized [m, d] scenario, the
reordered hyperplane vector is represented in Table VIII.
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[66] A. Barasiński and M. Nowotarski, Volume of violation of Bell-
type inequalities as a measure of nonlocality, Phys. Rev. A 98,
022132 (2018).

[67] P. Massart, Concentration Inequalities and Model Selection,
Lecture Notes in Mathematics Vol. 6. (Springer, Berlin, 2007).

[68] S. Boucheron, G. Lugosi, and P. Massart, Concentration In-
equalities: A Nonasymptotic Theory of Independence (Oxford
University Press, Oxford, 2013).

[69] F. Chung and L. Lu, Concentration inequalities and martingale
inequalities: A survey, Internet Math. 3, 79 (2006).

[70] F. Xu, Y.-Z. Zhang, Q. Zhang, and J.-W. Pan, Device-
independent quantum key distribution with random post selec-
tion, arXiv:2110.02701.

[71] W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J.
Fan, F. Xu, Q. Zhang, and J.-W. Pan, High-speed device-
independent quantum key distribution against collective attacks,
arXiv:2110.01480.

[72] E. Y.-Z. Tan, C. C.-W. Lim, and R. Renner, Advantage Distilla-
tion for Device-Independent Quantum Key Distribution, Phys.
Rev. Lett. 124 (2), 020502 (2020).

[73] R. Schwonnek, K. T. Goh, I. W. Primaatmaja, E. Y.-Z. Tan,
R. Wolf, V. Scarani, and C. C.-W. Lim, Device-independent
quantum key distribution with random key basis, Nat. Commun.
12, 2880 (2021).

[74] P. Brown, H. Fawzi, and O. Fawzi, Computing conditional
entropies for quantum correlations, Nat. Commun. 12, 1 (2021).

[75] P. Brown, H. Fawzi, and O. Fawzi, Device-independent
lower bounds on the conditional von neumann entropy,
arXiv:2106.13692.

[76] M. Tomamichel, Quantum Information Processing with Finite
Resources: Mathematical Foundations (Springer, New York,
2015), Vol. 5.

[77] R. Renner and S. Wolf, Simple and tight bounds for informa-
tion reconciliation and privacy amplification, in Advances in
Cryptology–ASIACRYPT 2005, edited by B. Roy, Lecture Notes
in Computer Science Vol. 3788 (Springer, Berlin, Heidelberg,
2005).

[78] A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, Chain
rules for smooth min-and max-entropies, IEEE Trans. Inf.
Theory 59, 2603 (2013).

[79] J. L. Carter and M. N. Wegman, Universal classes of hash
functions, J. Comput. Syst. Sci. 18, 143 (1979).

[80] M. Tomamichel, C. Schaffner, A. Smith, and R. Renner, Left-
over hashing against quantum side information, IEEE Trans.
Inf. Theory 57, 5524 (2011).

[81] M. Tomamichel, R. Colbeck, and R. Renner, A fully quantum
asymptotic equipartition property, IEEE Trans. Inf. Theory 55,
5840 (2009).

[82] F. Grasselli, H. Kampermann, and D. Bruß, Conference key
agreement with single-photon interference, New J. Phys. 21,
123002 (2019).

[83] H.-L. Yin and Z.-B. Chen, Finite-key analysis for twin-field
quantum key distribution with composable security, Sci. Rep.
9, 17113 (2019).

[84] M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, 1st ed (Cambridge University Press,
Cambridge, 2011).

[85] M. Tomamichel and A. Leverrier, A largely self-contained and
complete security proof for quantum key distribution, Quantum
1, 14 (2017).

032451-16

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
https://doi.org/10.1145/2699464
http://qetlab.com
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1088/1367-2630/18/7/073030
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.65.052325
https://doi.org/10.1103/PhysRevLett.88.040404
https://doi.org/10.1088/0305-4470/37/5/021
https://doi.org/10.1103/PhysRevA.92.030101
https://doi.org/10.1088/1367-2630/aaca22
https://doi.org/10.1103/PhysRevA.96.012101
https://doi.org/10.1103/PhysRevA.101.012116
https://doi.org/10.1103/PhysRevA.98.042105
https://doi.org/10.1103/PhysRevA.98.022132
https://doi.org/10.1080/15427951.2006.10129115
http://arxiv.org/abs/arXiv:2110.02701
http://arxiv.org/abs/arXiv:2110.01480
https://doi.org/10.1103/PhysRevLett.124.020502
https://doi.org/10.1038/s41467-021-23147-3
https://doi.org/10.1038/s41467-020-20314-w
http://arxiv.org/abs/arXiv:2106.13692
https://doi.org/10.1109/TIT.2013.2238656
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1109/TIT.2011.2158473
https://doi.org/10.1109/TIT.2009.2032797
https://doi.org/10.1088/1367-2630/ab573e
https://doi.org/10.1038/s41598-019-53435-4
https://doi.org/10.22331/q-2017-07-14-14

