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Graph-theoretic approach to quantum error correction
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We investigate a class of quantum error-correcting codes to correct errors on both qubits and higher-state
quantum systems represented as qudits. These codes arise from an original graph-theoretic representation of sets
of quantum errors. In this framework, we represent the algebraic conditions for error correction in terms of edge
avoidance between graphs providing a visual representation of the interplay between errors and error-correcting
codes. Most importantly, this framework supports the development of quantum codes that correct against a
predetermined set of errors, in contrast to current methods. A heuristic algorithm is presented, providing steps
to develop codes that correct against an arbitrary noisy channel. We benchmark the correction capability of
reflexive stabilizer codes for the case of single-qubit errors by comparison to existing stabilizer codes that are
widely used. In addition, we present two instances of optimal encodings: an optimal encoding for fully correlated
noise, which achieves a higher encoding rate than previously known, and a minimal encoding for single-qudit
errors on a four-state system..
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I. INTRODUCTION

Error-correcting codes are essential tools in communica-
tion theory as they provide the means for the reliable delivery
of data over noisy communication channels. In classical com-
puting theory we found that the ability to correct single-bit
errors is not only fundamental, but sufficient for most pur-
poses [1]. This classical computing mindset has influenced
the current approach to quantum error correction, with the
majority of work focusing on the correction of single-qubit
flip, phase, and phase-flip errors, characterized by tensors of
Pauli-spin operators [2–6].

Among the approaches influenced by classical computing,
surface codes have made remarkable achievements, for in-
stance, proving that fault tolerance is theoretically possible
to achieve once certain levels of fidelity are reached [7–9].
However, the proof relies on the assumption that the errors
to be corrected are uncorrelated across both time and space.
Recently, the validity of this assumption has been brought
into question by the experimental observation of correlated
errors across both time and space [10]. Practically, the as-
sumption of uncorrelated errors can lead to lower rates of
error correction and fidelity [11]. For these reasons, the ability
to correct correlated errors has become increasingly relevant.
Moreover, the wealth of research in engineering a quantum
computer has resulted in a wide variety of architectures such
as superconducting qubits [12], quantum dots [13], trapped
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ions [14], photonics [15], and more [16]. Each systems’ qubit
architecture comes with an intrinsic error set, incentivizing er-
ror correcting codes that are developed to correct a predefined
set of errors.

The reflexive stabilizer codes introduced in this paper are
not only capable of correcting correlated errors, but the frame-
work allows for the development of codes that correct any
given error set. This approach to quantum error correction
uses edge avoidance in a special class of graphs to avoid
arbitrary error sets, including those correlated across space.
Furthermore, these codes are developed for qudits, allowing
for implementation when more than two energy levels are
measurable, such as the silicon-based quantum dot [17]. All
codings will be done into strings of qudits, represented by
Cd , the computational basis of dimension d . It is worth noting
that this is not the first application of graph theory in quantum
error-correcting codes, see, e.g., [18].

The paper is organized as follows. In Sec. II we recall
essential background in quantum error correction, stabilizer
codes, and graph theory. Definitions and useful properties
are presented for, among others, the Pauli error operators
and Cayley graphs. In Sec. III A we give the specific graphs
we consider to encode quantum errors. Next, in Sec. IV the
reflexive stabilizer codes are introduced alongside their graph
representation. To show the initial benefit of of these codes,
we give a minimal encoding of a single qudit on a four-state
system in Sec. VI B. Further, in Sec. VI A we consider fully
correlated noise and achieve an optimal encoding by reflexive
stabilizer codes, improving on the results of [19]. We present
a heuristic algorithm to build a reflexive stabilizer code that
corrects a given error set in Sec. V before concluding in
Sec. VII.
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II. PRELIMINARIES

We briefly review the relevant terms and notations used
throughout this paper. All codewords will be represented as
strings (or the superposition of strings) of qudits from the
quantum d-ary alphabet Cd , where d = pm such that p is
prime and m is an integer. Unlike classical computing, we
also consider codewords that are the superposition of those
strings from the computational basis. Moreover, we set ω =
exp(2π i/p) as the primitive pth root of unity.

As with other stabilizer codes (see, e.g., [6,20]), errors
will be labeled with strings from the field Fd on d = pm

elements. Given a linear subset C ⊆ Fn
d , we denote by C⊥

the orthogonal subspace with respect to the inner product
〈 a, b 〉 = ∑n

i=1 aibi, for a chosen basis {ei} of Fn
d over Fd . That

is,

C⊥ = {v ∈ Fn
d | 〈v, a〉 = 0, ∀ a ∈ C}. (1)

We define the weight of C as the minimum Hamming weight
w(c), i.e., the number of nonzero entries, across all the ele-
ments c ∈ C,

wt(C) = min{w(c) | c ∈ C \ {0}}, (2)

where 0 is the string of all zeros. We similarly denote the
string of all ones by 1.

For ease of calculation, we fix a basis for Fd over
Fp, labeled { fi : i ∈ {1, . . . , m}}, and represent elements in
terms of this basis as, for example, a = ∑m

i=1 αi fi and b =∑m
i=1 βi fi. Furthermore, given these representations, we de-

fine the inner product ∗ on Fd by

a ∗ b =
m∑

i=1

αiβi. (3)

A. Error group

Single qudit errors are defined using the generalized Pauli
matrices X (a) and Z (b) for each a, b ∈ Fd , whose action on
|x〉 ∈ Cd is given by

X (a)|x〉 = |x + a〉 and Z (b)|x〉 = ωb∗x|x〉, (4)

where ω is the primitive pth root of unity. The operators
X (a) and Z (b) are referred to as the flip and phase errors,
respectively. We will refer to the operator Y (a) = ωX (a)Z (a)
as the phase-flip error. For qubits, i.e., when p = d = 2, one
quickly notes that the standard Pauli matrices are given by

X (0) = Z (0) = 12 X = X (1) =
[

0 1
1 0

]
, (5a)

Z = Z (1) =
[

1 0
0 −1

]
, Y = iXZ =

[
0 −i
i 0

]
. (5b)

Notice that the inner product ∗, appearing in Eq. (4) and
defined in Eq. (3), is in one-to-one correspondence with a
trace operator tr∗ : Fd 	→ Fp defined by the basis { fi}m

i . Often
in the literature (see, e.g., [6]), a trace operator is used in the
definition of the generalized Pauli operators, yet the definition
is independent of the choice of trace operator (see again [6]).
For this reason, in this paper, we make use of the inner product
definition, choosing a notation similar to that in [5].

For errors on an n-qudit system, we concatenate the Pauli
operators to define the error operator

Da,b = X (a1)Z (b1) ⊗ ... ⊗ X (an)Z (bn), (6)

for each a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn
d . One will

verify that

D−1
a,b = D−a,−b and Da,bDc,d = ω−〈b,c〉Da+c,b+d . (7)

Hence, the collection of n-qudit errors generates the multi-
plicative error group

En = {
ωκDa,b

∣∣ a, b ∈ Fn
d , κ ∈ {0, . . . , p − 1} }

. (8)

We will refer to any nontrivial subset E of En as an error
set. We will assume that 1 = D0,0 is in every error set as one
should always protect against no error.

For a more thorough introduction to quantum error correc-
tion, see, e.g., [2,3,5,6,20–24]. Next we introduce the basics
of quantum stabilizer codes.

B. Stabilizer codes

Briefly, the objective of quantum stabilizer codes is to be
able to protect from any error of a commutative subgroup
of errors S and correct any error from a larger set of errors
S ⊂ E ⊂ En. The reader less familiar with stabilizer codes is
referred to [2,3,5,20].

Let S be a commutative subgroup of errors containing
the center Z . A quantum stabilizer code R is any joint
eigenspace of the operators in S. We refer to S as the stabilizer
of R. In practice, R will be represented by a collection of
orthogonal eigenvectors |�1〉, |�2〉, · · · , which we refer to
as code words. Necessary and sufficient conditions for R to
protect from any error in a given error set E were established
in [3,24] and are as follows: for any two distinct code words
|�1〉 and any two errors E1, E2 ∈ E , we must have

〈�1|E−1
1 E2|�2〉 = 0, (9a)

〈�1|E−1
1 E2|�1〉 = 〈�2|E−1

1 E2|�2〉. (9b)

Intuitively, these conditions guarantee that, regardless of the
errors that might occur to distinct code words, their perturbed
states remain distinguishable by quantum measurement and
have equal weight. It is of note that we will always assume
1 ∈ E as one should always protect from no errors occurring.

Due to its appearance in Eq. (9) and its pervasiveness in
the theory, we will refer to E−1

1 E2 as a conjugate error of E .
Furthermore, we will denote the set of conjugate errors of E
by

E 2 = {
E−1

1 E2

∣∣ E1, E2 ∈ E
}
. (10)

For the error-correction capabilities of stabilizer codes an
additional subset of errors is important, namely the central-
izer of S, which we denote by S⊥, i.e., the elements of En

which commute with all elements of S. The following theorem
follows identically to that in [5, Theorem 1] and [6, Theorem
3]. We include it for later reference and ease of the reader.

Theorem II.1. Let S be a commutative subgroup of En

which contains the center, i.e., Z ⊂ S. Further, let E ⊂ En

be an error set. Then any stabilizer code for S is an error-
correcting code which will correct any error from E if and
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only if every conjugate error E ∈ E 2 satisfies either E ∈ S or
E ∈ S⊥.

Commutativity of the error operators is characterized by
the relation

Da,bDc,d = ω(a,b)�(c,b)Dc,d Da,b, (11)

where

(a, b) � (c, d ) = 〈 b, c 〉 − 〈 a, d 〉 (12)

is the symplectic inner product on F2n
d . Explicitly, two error

operators ωκDa,b and ωκ ′
Dc,d commute if and only if (a, b) �

(c, d ) = 0.
One may recognize that these are simply a discrete form of

the commutativity relations for the Weyl operators.

C. Graph theory

Graph theory has been used both theoretically and ex-
perimentally in quantum error-correcting codes before. For
instance, graph state codes have been studied and generated
experimentally as a form of measurement-based quantum
computation [18]. In this work, we rely on graph theory as
well.

The main contribution of the current paper lies in the
graph-theoretic representation of quantum stabilizer codes
and the associated error sets. Before introducing these spe-
cialty graphs in the following section, we must first recall
some of the basic terminology of graphs.

A graph G = (V, E ) consists of a collection of vertices
V connected by a set of edges E . Throughout, we consider
only undirected graphs meaning simply that the edges are
directionless. Two vertices u and v connected by an edge
e = (u, v) are said to be adjacent, and the edge e is said to
be incident to both u and v. Whenever u = v, the edge (u, u)
is referred to as a loop; we will also refer to the looped vertex
u as a loop. Whenever u and v are distinct, we refer to the edge
(u, v) as a simple edge. A graph is complete whenever each
pair of distinct vertices is adjacent.

In what follows, it is convenient to distinguish between the
set of loops and the set of simple edges of a graph G = (V, E ).
To this end, we will decompose the edge set E into two sets:
The set of simple, or nonlooped, edges will be denoted by Ê
and will be referred to as the simple edges of G, and we denote
by LG the loop set of G. When convenient, and without risk
of confusion, we will refer to a vertex a ∈ LE as opposed to
the more accurate (a, a) ∈ LE .

The component of a vertex v ∈ V is the subgraph of G
consisting of only those vertices V ′ that can be reached from
v (via consecutive edge-traversals) and those edges incident
to the vertices in V ′. Lastly, the complement of a (simple)
graph G is the graph G⊥ on the same vertex set such that two
vertices are adjacent in G⊥ if and only if they are not adjacent
in G. For a more thorough introduction to graph theory see,
e.g., [25].

III. GRAPHS FOR QUANTUM ERROR CORRECTING

Next we develop the specialty graphs that we utilize to
assist in and visualize quantum error correction. The novel
graph-theoretic representations of both quantum stabilizer

FIG. 1. The LUC graph GC = G{0}
C with connecting set given

in Example III.1. The connecting set C = {00, 11, 22} ⊂ VC = F2
3

(shown in black) is one of exactly three complete components. Since
L{0} = F2

3, there are loops at every vertex.

codes and error sets allows one to easily identify the errors that
an encoding will correct and, more importantly, an encoding
that will correct a predetermined error set. Specifically, we
will define an error avoidance graph for an arbitrary error set,
as well as linear undirected Cayley graphs.

A. LUC graphs

In this paper, we will use Cayley graphs to represent the
encoding of our stabilizer codes. In short, Cayley graphs pro-
vide a means to represent a group action as a graph. A Cayley
graph GC = (VC, EC ) is defined by a subset C of its vertex
set known as the connecting set. We restrict our attention to
Cayley graphs whose connecting set C is a linear subgroup of
the the additive group VC = Fn

d . In this case the edge set EC is
the collection of pairs (a, a + c) for a ∈ VC and c ∈ C. Note
that, since the group identity 0 is necessarily in C, there is a
loop at every vertex. We will refer to such a GC as a linear
undirected Cayley (LUC) graph.

In what follows we will be interested in subgraphs of LUC
graphs obtained by deleting particular loops. Given a linear
subset C1 ⊆ C we set GC1

C = (V C1
C , EC1

C ) to be the subgraph of
GC with edge set EC1

C = ÊC ∪ LC1 where LC1 = C⊥
1 . That is,

the only loops remaining from GC are at the vertices in C⊥
1 .

The reason for this convention will become clear in Sec. IV.
We will also refer to any graph GC1

C as a LUC graph. No-

tice that G{0}
C = GC . We consider such a LUC graph in the

following example. For more on Cayley graphs, in their full
generality, see [26].

Example III.1. Consider a three-state quantum system
(d = 3) of two qudits (n = 2) and a connecting set C =
{00, 11, 22} ⊆ F2

3. In this case, we have the LUC graph GC =
G{0}

C with vertex set VC = F2
3 and edge set EC = ÊC ∪ L{0}

shown in Fig. 1. Note that GC consists of three complete
components and that the component containing 00 contains
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exactly those vertices in C. These observations can be gener-
alized and are made formal in the following theorem.

Theorem III.2. Let C be a linear subspace of Fn
d where

d = pm. The LUC graph GC has exactly dn−dim(C) number
of complete components. Moreover, the component which
contains 0 is exactly C.

Proof. Due to the linearity of Fn
d , it is enough to show

the connected component, H , containing 0 is complete and
contains exactly the elements from C. It is clear that 0 is
connected to exactly those c ∈ C. Moreover, if b /∈ C, then
b − a /∈ C for any a ∈ C. Hence the connected component
containing 0 contains exactly the elements of C. Lastly, by lin-
earity of C, if a, b ∈ C, then b − a ∈ C and thus (a, b) ∈ ÊC .
Thus H is complete.

B. Error avoidance graph

Next, we show how to associate a graph to the conjugate
errors of an error set. This association allows one to determine
an encoding that will correct a predetermined set of errors,
in contrast to many current quantum error-correcting codes.
Moreover, we will show that such an encoding can be found
to be relying only on graph-theoretic principles.

Fix an error set E acting on a d-state quantum system of n
qudits. We denote by GE = (VE , EE ) the graph with vertices
VE = Fn

d and edge set

EE = {(a, b) | ωκDab ∈ E 2}. (13)

In essence, EE encodes the conjugate errors E 2 by effectively
connecting codewords that would fail the necessary distinct-
ness conditions given in Eq. (9). (This idea will be made
formal in the next section.) For this reason, we refer to GE

as the error avoidance graph.
The nontrivial loops indicate the possible strings at which

flip and phase errors must occur simultaneously in E 2,
whereas the trivial loop (at 0) indicates no error occurring.

Example III.3. We consider a system of three qubits with
correlated errors from the set

E = {1, De1,e2 , De3,e3 , De2,e1}. (14)

The nonloop edges are given by

ÊE = {(010, 100), (011, 101)} (15)

and the loop set is given by

LE = {000, 110, 001}. (16)

The graph GE is shown in Fig. 2 with the loop set indicated
by dark blue nodes.

IV. REFLEXIVE STABILIZER CODES

In this section, we define a novel class of quantum sta-
bilizer codes which arise from the connecting sets of LUC
graphs. It is the interplay between the error avoidance and
LUC graphs which allows us to develop our class stabilizer
codes with error avoidance at the forefront.

Let C be a linear subspace of Fn
d and C1 ⊂ C. The reflexive

stabilizer of C with respect to C1 is the subgroup of the error
group En generated by

SC1
C = 〈Daa, Db0 : a ∈ C⊥, b ∈ C1〉. (17)

FIG. 2. (Top left) The error avoidance graph GE for the error set
E = {1, De1,e2 , De3,e3 , De2,e1}. Red nodes indicate loops from LE .
(See Example III.3.) (Top Right) The LUC graph GC1

C from Example
IV.4 with C = {000, 100, 001, 101} and C1 = 〈101〉 shown in blue.
Gray edges indicate the unused simple edges obtained from the
complement of GE . (Bottom) The two graphs GE and GC1

C drawn
together. Notice that the only edge in common is the loop at 0,
satisfying the condition of Corollary IV.3.

One quickly sees that SC1
C is commutative as (a, a) � (b, b) = 0

and (a, a) � (b, 0) = 0 by Eqs. (12) and (1). Therefore a re-
flexive stabilizer is indeed a quantum stabilizer. The following
lemma gives the form of the centralizer of a reflexive stabilizer
SC1

C .
Lemma IV.1. Let C be a linear subspace of Fn

d and C1 ⊂ C,
then the centralizer of SC1

C is given by(
SC1

C

)⊥ = 〈Dab | a − b ∈ C, and b ∈ C⊥
1 〉. (18)

Proof. This follows from Es. (11) and (12) as, for any x ∈
C⊥, we have (x, x) � (a, b) = 0 exactly when x(a − b) = 0.

Also, for any y ∈ C1, we have (y, 0) � (a, b) = 0 only when
yb = 0.

Recall that a quantum stabilizer code is any joint
eigenspace of the operators in its stabilizer. We will denote
by RC1

C the reflexive stabilizer code (RSC) with reflexive
stabilizer SC1

C . One quickly notes that an RSC RC1
C will encode

k = dim(C) − dim(C1) logical qudits into an n physical qudit
system. A constructive form of reflexive stabilizer codes is
given in Appendix A.

The following theorem summarizes the errors sets that RC1
C

can correct; it is simply a rewording of Theorem II.1 in terms
of the LUC and error avoidance graphs. The details of the
proof can be found in Appendix B.

Theorem IV.2. Let d = pm for some prime p, C1 ⊂ C ⊂ Fn
d

be linear subspaces, and let E be an error set. If the only edges
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common to both GE and GC1
C are incident to 0 or a vertex

outside C⊥
1 , then the reflexive stabilizer code RC1

C can correct
any error E . In short, if we have

EC1
C ∩ EE ⊆ {(a, b) | a ∈ C⊥

1 or a = 0}. (19)

The following corollary is a simplification of Theorem IV.2
which is easier to verify.

Corollary IV.3. Let d = pm, C1 ⊂ C ⊂ Fn
d , and let E be as

in Theorem IV.2. If

EC1
C ∩ EE = {(0, 0)}, (20)

then RC1
C can correct any single error from E .

By Corollary IV.3, finding a reflexive stabilizer code ca-
pable of correcting an error set E is as simple as finding a
connecting set C such that GC avoids the edges of GE . This is
illustrated in the following example. It is worth noting that this
condition, as opposed to that in Theorem IV.2, does not always
allow for an encoding of the maximum number of physical
qudits.

Example IV.4. Consider the error set E =
{1, De1,e2 , De3,e3 , De2,e1} on the system of three qubits
discussed in Example III.3. We must first choose a connecting
set C such that the simple edges ÊC of GC avoid those in GE .
One possible option is

C = {000, 100, 001, 101}. (21)

Next, we choose a subspace C1 ⊆ C so that the loop set, LC1 ,
of GC1

C intersects LE only at (0, 0). Thus Eq. (20) is satisfied
and we have that RC1

C will correct any single error from the
given error set E . (See Fig. 2.)

In Appendix C we benchmark reflexive stabilizer codes
against the well-known CSS codes. Specifically, we show that
reflexive stabilizer codes have the same signle-qubit error
correction capabilities as their CSS counterparts. Moreover, we
give a one-to-one correspondence between them.

V. HEURISTIC ALGORITHM

In this section we will lay out the concise steps for a heuris-
tic algorithm to build a reflexive stabilizer code which will
correct a given error set according to Theorem IV.2. Briefly,
the steps are as follows. (S0) Fix an error set E . (S1) Construct
its error avoidance graph GE . (S2) Find a C0 whose LUC
graph GC0 avoids the simple edges of GE . (S3) If possible,
extend C0 to a subspace C and simultaneously choose a sub-
code C1 ⊂ C that together satisfy Eq. (19). Theorem IV.2 then
gives confirmation that the code RC1

C can correct any single
error from E .

Step 0: Start with an error set E
One major benefit of RSCs is that they provide a means

of finding a code that correct against a predetermined error
set associated to a noisy channel. This is in contrast to most
codes in the literature where one starts with a code and then
searches for the errors it it corrects. In this paper, we choose
error sets that are either convenient for theoretical analysis or
are illustrative of the concepts we are developing. However,
future works will focus on error sets that appear in physical
quantum computers such as those found in [10].

Step 1: Build the error avoidance graph GE

The error avoidance graph GE , as defined in Sec. IV,
encodes the conjugate errors produced by a noisy channel
as edges. Besides the certain conditions outline earlier, we
wish to avoid these edges with the LUC graph of a reflexive
stabilizer code.

Step 2: Find a LUC graph GC0 which avoidsÊE

Find a maximal connecting set C0 whose LUC graph GC0

avoids the simple edges ÊE of GE . Starting with this LUC
graph, one can obtain a lower bound on the rate of error
correction by exploring possible subspaces of C0 that satisfy
Eq. (20). However, Theorem IV.2 allows for a weakening
of this condition, thereby allowing for a higher rate of error
correction. Extending C0 for this purpose is addressed in the
next step. Sometimes it is enough to not extend C0, see, e.g.,
Examples IV.4.

Step 3: Loop avoidance and extensions
We attempt to find a linear extension C ⊃ C0 and a linear

subspace C1 ⊂ C such that the conditions of Theorem IV.2
are satisfied. In particular, we need C⊥

1 ∩ LE = {0} and ÊC ∩
ÊE ⊂ {(a, b) | a ∈ C⊥

1 }.
Conclusion
Finally, the reflexive stabilizer code RC1

C can be defined
using the C1 and C from Step 3. Following Theorem IV.2, RC1

C
will correct any single error from the error set E .

We apply this heuristic algorithm in the following sec-
tion to obtain two instances of optimal encodings.

VI. OPTIMAL ENCODING

In this section we examine two instances of optimal en-
codings using reflexive stabilizer codes. The first example is
of a channel of qubits inflicted by fully correlated noise. The
second example encodes a single qudit on a four state system
into four qudits inflicted by single-qudit errors. This code is
perfect in the same sense as the PERFECT CODE developed in
[27] which embeds a single qubit into a five-qubit system.

A. Fully correlated noise

We now present our first example to illustrate the power
of this alternative approach to quantum error correction, and
we do so in the case of qubits. This first case we present will
be concerned with fully correlated noise, i.e., characterized by
the error set E = {1, D1,0, D1,1, D0,1}. For these operators

D1,0 = X ⊗n, D1,1 = Y ⊗n, and D0,1 = Z⊗n (22)

we use the term fully correlated, as whenever a flip, phase,
or phase-flip errors occurs, it does so on all qubits simulta-
neously. In [19] the authors showed that a physical system of
n > 2 qubits can protect against fully correlated noise with a
maximum number n − 1 or n − 2 logical qubits when n is odd
or even, respectively, a result which improved on the a similar
encoding from [28]. With the use of the powerful new tool of
reflexive stabilizer codes we show that this previously thought
upper limit, in the even case, of n − 2 logical qubits can be
reduced to n − 1. One argument for the physical realization of
such noise, is that on a most practical qubit chips the distance
between qubits is often measured in the micrometers, while
a likely candidate for environmental noise such as an electro-
magnetic wave has a wavelength on the order of millimeters.
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FIG. 3. Illustration of Example VI.1 when n = 3. (Top) The error
avoidance graph GE for the fully correlated error is shown in red.
Overlaid in blue is the LUC graph of GC0 where C0 = 〈e1, e2〉. The
simple edges are disjointed, as specified by Step 2 of the heuristic
algorithm. (Bottom) Following Step 3 of the heuristic algorithm, we
extend C0 to the set C = F3

2 and choose the subset C1 = 〈en〉. The
resulting LUC graph GC0

C contains edges between all eight distinct
pairs of vertices. Moreover, the only common edge is incident to
1111 which lies outside of C⊥

1 , satisfying the condition of Theorem
IV.2.

It is this disparity of distances that make it natural to assume
that all qubits on the chip are affected by the same error
simultaneously.

As our approach shows improvement on a previously
thought maximum encoding we take care to give illustrations
of the graphs involved for both odd and even n in Fig. 3. To
begin by building the avoidance graph for our fully correlated
noise, note that the conjugate errors E 2 = E , and hence the
edge set of GE , is independent of n. Importantly, the non-
looped edges and the loop set for the fully correlated error
set are given by

ÊE = {(0, 1)} and LE = {1}, (23)

respectively.
Example VI.1. We consider any integer n > 2, and to em-

phasize the application of the heuristic algorithm, we label the
individual steps.

(S0) Fix the fully correlated error set E (defined above).
(S1) We can construct the error avoidance graph GE by mak-
ing use of Eq. (23). (We illustrate GE for n = 3 qubits at
the top left of Fig. 3.) (S2) Next, our goal is to find a LUC
graph which can avoid the simple edges of GE . This can be
accomplished with the connecting set C0 = 〈e1, . . . , en−1〉.

Notice that we must extend C0 to obtain the maximal en-
coding of n − 1 logical qubits. Indeed this is true regardless
of the C0 chosen in this step, as dimension arguments would
then force C1 = {0} which violates the condition of Theorem
IV.2.

(S3) We extend C0 by adding the remaining basis vector,
i.e., setting C = Fn

2. Simultaneously, we choose C1 = 〈en〉.
Then LC1 = C⊥

1 is the set of all strings with the nth entry a
zero (shown as blue nodes in Fig. 3 for the case n = 3) and is,
moreover, disjointed from LE except at 0. Lastly, the single
nonzero endpoint of ÊE , 1, is not contained in C⊥

1 (shown
top right for n = 3 and bottom for n = 4 in Fig. 3). Thus the
desired properties of Theorem IV.2 are satisfied.

We conclude that the reflexive stabilizer code RC1
C must cor-

rect any error from the fully correlated error set E . Moreover,
RC1

C encodes n − 1 logical qubits into the system of n physical
qubits, obtaining the maximum regardless if n is odd or even.

The previous example is summarized in the following the-
orem.

Theorem VI.2. For any n > 2, there exists a reflexive sta-
bilizer code RC1

C encoding n − 1 logical qubits into n physical
qubits that protects against the fully correlated error set. The
RSC is constructed with C = Fn

2 and C1 = 〈en〉.
In Theorem VI.2 we provide constructive examples of

RSCs that protect against fully correlated error which encode
the maximum number of logical qubits as there is no way to
encode n logical qubits into n physical qubits. By surpassing
the previously thought maximum encoding in [19] and a simi-
lar result in [28], we see the true power of this graph theoretic
approach. Encoding the errors as edges that need to be avoided
a simple answer arises for a once complicated situation. Fur-
thermore, by simple inspection of the error avoidance graph
we can create a new code with the same encoding rate by
setting C1 = 〈v〉 for any v ∈ Fn

2 with the only condition that
the weight of v is odd.

B. Perfect code in a four-state system

We now construct a perfect code in a four-state system
analogous to the PERFECT CODE for qubits given in [27]. This
reflexive stabilizer code achieves the optimal encoding of a
single qudit which protects against single-qudit errors.

The basic principal in quantum error correction is the
concept that each error transforms distinct code words into
distinct orthogonal subspaces. This becomes quite restrictive
on the minimal number of physical qudits one can embed into.
For now, we present only the minimal length for a specific
example, namely the case of a four-state system (d = 4). This
topic, in its full generality, is the subject of future work.

In analogy to [27], we are interested in protecting against
single qudit flip and phase errors. This error set on n qudits is
given by

E = {1, αDei,0, αD0,ei
| 1 � i � n, 1 � α � 3}. (24)

In other words, the embedding space requires an orthogonal
subspace for each of the three flip and three phase errors on
each qudit plus one for the unperturbed state. This makes
a total of 6n + 1 errors to protect against. To encode k = 1
logical qudits, we must quadruple this to have enough space
to accommodate for each of the d = 4 embedded states. Thus,
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FIG. 4. The error avoidance graph GE for the set of all single-
qudit errors on a four-state quantum system of two qudits. The field
of four elements is denoted as F4 = {0, 1, x, x2} where x2 + x + 1 =
0. The quantity of edges makes it impossible to find an RSC to correct
against all possible errors. [See also Eq. (25).]

we require 4(6n + 1) distinct dimensions in our Hilbert space.
That is, we have the condition

4(6n + 1) � 4n. (25)

The smallest number satisfying this equation is n = 4, mean-
ing we must have four physical qudits to encode a single
logical qudit.

Before proceeding, we summarize the properties of the
error avoidance graph for single-qudit errors.

Theorem VI.3. Let E be the set of single-qudit errors on a
d-state quantum system of n qudits. Then GE has loops at all
vertices with exactly one nonzero entry and 0, and has simple
edges between 0 and the vertices of weight two and between
distinct vertices of weight one:

EE = {(a, b) | w(a) = w(b) = 1 or a = 0 and w(b) � 2}.
(26)

By plotting the error avoidance graph for small n, one
immediately sees the difficulty of avoiding all single-qudit
errors. As an example, we show GE for n = 2 in Fig. 4.

As a consequence of Theorem VI.3, we have the following
corollary. The details are expounded in Appendix C.

Corollary VI.4. Let C1 ⊂ C ⊂ Fn
d be linear subspaces such

that wt(C) � 3 and wt(C⊥
1 ) � 2. The reflexive stabilizer code

RC1
C can correct any single-qudit error.

We are now ready to construct our perfect code on a four-
state system.

Example VI.5. Let E be the set of single-qudit errors de-
scribed above. The PERFECT CODE for a four-state system will
embed a single logical qudit into the optimal four physical
qudit system, set by Eq. (25). First, set C ⊂ F4

4 to be the
two-dimensional connection set consisting of the following

vectors:

0000, 1x10, xx2x0, x21x20,

x2x201, 110x, xx0x2, x111
x2xxx, 1x2x2x2, 10x1, x0x2x,
x201x2, 0x21x, 01xx2, 0xx21.

Note that wt(C) = 3. According to Corollary VI.4, we must
find a C1 ⊂ C of dimension 1 such that wt(C⊥

1 ) � 2. The
subset C1 = {0000, x111, x2xxx, 1x2x2x2} satisfies these con-
ditions. Thus RC1

C can correct any single-qudit error.

VII. DISCUSSION

In this work, we introduced an alternative approach to
quantum error correction motivated by graph theory. We de-
veloped two graphs (error avoidance graphs and LUC graphs)
to visualize error sets and reflexive stabilizer codes, respec-
tively, and repose the algebraic conditions of error correction
in terms of edge avoidance. This approach, summarized as
a heuristic algorithm, places the error sets at the forefront
by providing a means to construct an encoding that protects
against a predetermined noisy channel. This viewpoint is at-
tractive because it allows for the development of codes that
protect errors in a variety quantum computer architectures re-
gardless of the intrinsic set of errors present. Furthermore, this
viewpoint promotes a collaborative mindset by recognizing
that the engineers tasked with developing a quantum computer
have limited control over the suppression of errors.

Another benefit to this approach is that it allows for the
correction of correlated errors directly and without additional
assumptions. For instance, it is common in the literature to
presume independence of errors. When applied to a set of
correlated errors, this presumption manifests by effectively re-
quiring for correction against a larger error set, which can lead
to lower rates of error correction and fidelity [11]. Moreover,
recent experimental observations of correlated errors bring
into question the validity of this assumption [10]. For these
reasons, the ability to correct correlated errors has become
increasingly relevant.

Lastly, we argue that RSCs are not only easy to use, but
practical as well: We benchmarked the error correction rates
for RSCs against the industry-standard CSS codes, showing
that RSCs have the same capabilities for single qubit error
correction. We developed RSCs in a framework that allows
for error correction on multistate quantum system represented
as qudits, generalizing the two-state system represented by
qubits. The relevance of this framework is supported by recent
experiments demonstrating that more than two energy levels
are measurable in a system of silicon-based quantum dots
[17]. In addition, we present two constructive instances of
optimal encodings: a maximal encoding of qubits that corrects
fully correlated noise and a perfect code which minimally en-
codes a single qudit on a four-state system against single-qudit
errors. The first example improves on the previously proven
“optimal” encoding rate shown in [19], demonstrating even
further the ease of use of the graph-theoretic representation.

This introductory work on reflexive stabilizer codes estab-
lishes the utility of the graph-theoretic approach employed,
and displays a number of practical and theoretical applica-
tions. However, with the alternative approach comes a wealth
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of unanswered questions and avenues for future research.
The connection between quantum error correcting codes and
edge avoidance in graphs has opened up a rich vein of future
research opportunities. Below we provide a small list of ques-
tions to help guide future explorations.

The first set of questions address fundamental existence
and uniqueness conditions for error sets and reflexive sta-
bilizer codes. Their wording is designed to make them
accessible to researchers in graph theory and quantum in-
formation science and to promote collaboration between the
same.

Question 1. What necessary and sufficient conditions on a
given error set E or, equivalently, an error avoidance graph
GE guarantee the existence of a RSC RC1

C or, equivalently, a
LUC graph GC1

C that corrects those errors?
Question 2. Given two error sets E and E ′ or, equivalently,

two error avoidance graphs GE and GE ′ , what properties guar-
antee a common RSC to protect against each set?

Question 3. When is it true that two given error sets E and
E ′ produce isomorphic error avoidance graphs GE and GE ′?

The last two questions are more specific in scope. First,
we look at quantum random walks. This field of study already
lies at the intersection of quantum information and algebraic
graph theory. Moreover, they were shown to be universal
for quantum computation by exploiting perfect or group-state
transfer on graphs [29–31]. The last question is an option to
incorporate graph theory techniques into the study of quantum
error correcting codes, and is related to the works [32,33].

Question 4. What LUC graphs have state transfer with
quantum random walks, continuous or discrete [34]?

Question 5. Using limiting properties of graphs or
graphons, can one find a Gilbert-Varshamov (GV) bound for
reflexive stabilizer codes?
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APPENDIX A: CONSTRUCTING REFLEXIVE
STABILIZER CODE

Here we provide a constructive form for reflexive stabilizer
codes. To do so, we must construct a joint eigenspace for the
stabilizer SC1

C .
First, we examine the eigenspaces of X (1)Z (1) in Cp,

where p is a prime. The eigenvalues for X (1)Z (1) are the pth
roots of unity ωκ , where each eigenspace is one dimensional.
The eigenvalue ωκ is spanned by the eigenstate

|ψκ〉 = 1√
d

∑
a∈Fp

αa|a〉, (A1)

where α0 = 1, αp−1 = ωκ+1 and, for 1 � i � p − 2, αi = ωT κ
i

for T κ
i = i(i−1−2κ )

2 .

Notice that, for qubits (d = 2), the eigenstates for ±ι are
exactly the conjugate (Hadamard) basis states

|ψ0〉 = 1√
2

(ι|0〉 + |1〉), (A2)

|ψ1〉 = 1√
2

(−ι|0〉 + |1〉). (A3)

For all other a ∈ Fp, Eq. (11) yields the relation

X (a)Z (a) = ω
a(a−1)

2 [X (1)Z (1)]a. (A4)

Hence the eigenstates for X (a)Z (a) are exactly those for
X (1)Z (1) given in Eq. (A1). We can then extend to a =∑m

i=1 αi fi ∈ Fd , using the alternative definition for the Pauli
operators given in [6], to obtain

X (a)Z (a) = ωτa

m⊗
i=1

[X (1)Z (1)]αi , (A5)

τa = 1

2

m∑
i=1

αi(αi − 1). (A6)

Equation (A5) is used to extend the states |�κ〉 in Eq. (A1)
to eigenstates for each a ∈ Fd . By taking tensor products,
we extend further to a ∈ Fn

d for an arbitrary n-state, d-level
quantum system.

Given a LUC G(C) and a linear subspace C1 ⊂ C we define
the reflexive quantum stabilizer code (RSC) of G(C) and C1

as

RC
C1

=
{

|�c′ 〉 = 1√|C1|
∑
c∈C1

Dc,0|�c′ 〉
∣∣∣∣∣ c′ ∈ C

}
, (A7)

where |�〉 = ⊗n
i=1 |ψci〉, for c = (c1, . . . , cn).

APPENDIX B: LEMMAS FOR
ERROR-CORRECTING THEOREM

This section contains the lemmas leading up to Theorem
IV.2. We will restate the conditions of Theorem II.1, given
again below, in terms of the edges of the LUC and error avoid-
ance graphs. The first lemma gives conditions for a conjugate
error to avoid (SC1

C )
⊥

of a reflexive stabilizer code RC1
C .

Lemma B.1. Let d = pm for some prime p, C1 ⊂ C ⊂ Fn
d

be linear subspaces, and E an error set. The set of nontrivial
conjugate errors E = ωκDa,b ∈ E 2 that lie outside of (SC1

C )
⊥

,

i.e., the set E 2 \ ((SC1
C )

⊥ ∪ 1), is characterized by the follow-
ing graph-theoretic relation on GE and GC1

C :

EC1
C ∩ EE ⊆ {(a, b) | b ∈ C⊥

1 }. (B1)

Proof. Recall the form of (SC1
C )

⊥
given in Lemma (IV.1):(

SC1
C

)⊥ = 〈Dab | a − b ∈ C, and b ∈ C⊥
1 〉. (B2)

Fix a conjugate error E = ωκDa,b ∈ E 2. First, suppose that
a = b and therefore (a, b) ∈ ÊE . Then, by Lemma IV.1, E ∈
(SC1

C )
⊥

exactly when b − a ∈ C, i.e., (a, b) ∈ EC1
C , or b ∈ C⊥

1 .
Equation (B1) is exactly this condition when restricted to the
simple edges.
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Next, suppose that a = b. Then, since 0 ∈ C, E ∈ (SC1
C )

⊥

exactly when b ∈ C⊥
1 . Equation (B1) is exactly this condition

when applied to loops.
The next lemma gives conditions for a conjugate error to

be in SC1
C of a reflexive stabilizer code RC1

C .
Lemma B.2. Let d = pm for some prime p, C1 ⊂ C ⊂ Fn

d
be linear subspaces and E an error set. The set of conjugate
errors E = ωκDa,b ∈ E 2 that lie inside of SC1

C , i.e., the set E 2 ∩
SC1

C , is characterized by the following graph-theoretic relations
on GE and GC1

C :

ÊC1
C ∩ ÊE ⊆ {(a, b) | a − b ∈ C1} (B3)

and

LE ⊆ C⊥. (B4)

Proof. Fix a conjugate error E = ωκDa,b ∈ E 2. First, sup-
pose that a = b and therefore (a, b) ∈ ÊE . Then, by Eq. (17),
E ∈ SC1

C exactly when a − b ∈ C1. Equation (B3) is exactly
this condition.

Next, suppose that a = b. Then, by Eq. (17), E ∈ SC1
C ex-

actly when a ∈ C⊥. Equation (B4) is exactly this condition.
Taking Lemma B.1 and the fact that 0 ∈ C1 from Lemma

B.1 yields Theorem IV.2. Below is the most general version
of Theorem IV.2.

Theorem B.3. Let d = pm for some prime p, C1 ⊂ C ⊂ Fn
d

be linear subspaces, and GC1
C be a LUC graph. Then RC

C1
can

correct any error from an error set E , if

ÊC1
C ∩ ÊE ⊆ {(a, b) | b ∈ C⊥

1 or a − b ∈ C1} (B5)

and

LE ∩ C⊥
1 ⊆ C⊥. (B6)

APPENDIX C: COMPARISON TO CSS CODES

Reflexive stabilizer codes and CSS codes are in one-to-one
correspondence via a change in error basis. That is, choosing
a basis for the error group which is instead generated by Y
and Z rather than X and Y from Example 5. Specifically, if we
define

D̃a,b =
n⊗

i=1

Y ai Zbi , (C1)

a natural isomorphism arises between the two codes. By main-
taining the standard basis on F2n

2 , i.e., the parameter space of
the error basis, we can build a linear isomorphism

ϕ : F2n
2 → F2n

2 , (C2)

(a, a) 	→ (a, 0), (C3)

(b, 0) 	→ (0, b), (C4)

which induces an automorhpism on En, � : En → En. It is now
a simple exercise to show that the above isomorphism takes
the stabilizer for a reflexive stabilizer code RC

C1
(with d = 2)

to a stabilizer of a CSS code. Further, one easily verifies that
〈a, b〉 = 0 if and only if 〈ϕ(a), ϕ(b)〉 = 0, and thus RC1

C , with
stabilizer S, can correct any error from E if and only if �(S)
induces a CSS code which corrects any error from �(E ) for
any error set E .

The traditional approaches of error correction for CSS codes
is that of considering t single-qubit flip, phase, or phase-flip
errors. That is, we consider the error set

E = {Dp,0, D0,p, Dp,p}, (C5)

where p = ∑
aiei where no more than t of the ai = 1 and

rest are zero, i.e., the error set of at most t-flips, t-phases,
and t-phase-flips. For this error set we note the following
relationship:

�(E ) = E , (C6)

and hence the reflexive code obtained as an image of a CSS

code under the automorphism �−1 corrects the same t single-
qubit errors. Therefore the next theorem follows directly from
the isomorphism in Eq. (C2) and Theorem 1 in [20].

Theorem C.1. Let C2 ⊂ C1 ⊂ Fn
d be linear subspaces, then

the code RC2
C1

can both correct up to t single-qubit flip, phase,
or phase-flip errors where

t = min

{⌊
wt(C1) − 1

2

⌋
,

⌊
wt (C⊥

2 \ C1) − 1

2

⌋}
. (C7)

Additionally, by the same relationship we arrive at the
following result from Theorem 2 in [5].

Theorem C.2. There exists a family of reflexive stabilizer
codes with asymptotic rate

R = 1 − 2δ log2(3) − H2(2δ), (C8)

where δ is the fraction of qubits that are subject to deco-
herence and H2(δ) = −δ log2(δ) − (1 − δ) log2(1 − δ) is the
binary entropy function.
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