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Dissipative search of an unstructured database
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The search of an unstructured database amounts to finding one element having a certain property out of N
elements. The classical search with an oracle checking one element at a time requires on average N/2 steps. The
Grover algorithm for the quantum search and its unitary Hamiltonian evolution analog accomplish the search
asymptotically optimally in O(

√
N ) time steps. We reformulate the search problem as a dissipative, incoherent

Markov process acting on an N-level system weakly coupled to a thermal bath. Assuming that the energy levels
of the system represent the database elements, we show that, with a proper choice of the spectrum and long-range
but bounded transition rates between the energy levels, the system relaxes to the ground state, corresponding to
the sought element, in time O(ln N ).

DOI: 10.1103/PhysRevA.105.032447

I. INTRODUCTION

In a classical search of an unstructured set of N elements,
finding an element with a specific feature—verified by some
function (oracle) applied to each element at a time—involves
on average N/2 steps [1]. One of the hallmarks of quantum
computation is the Grover search algorithm, which yields
quadratic speedup of the search time τ = O(

√
N ) [2,3]. The

quantum search can be formulated as a Hamiltonian evo-
lution of an analog quantum system [4]. The N elements
of the set are associated with the orthonormal basis states
{|wk〉}N

k=1, one state |w�〉 corresponding to the sought ele-
ment having the energy ε �= 0, while the energies of all the
other states |wk �=�〉 are zero. The Hamiltonian of the system
is then

H0 = ε |w�〉 〈w�| , (1)

where ε is a known constant, but � is not known. To find
�, and thereby |w�〉, one prepares the system in the equally
weighted superposition state |ψ (0)〉 = |s〉 ≡ 1√

N

∑N
k=1 |wk〉

[5] and adds to H0 the interaction Hamiltonian V = ε |s〉 〈s|
that couples all the basis states,

〈wl |V |wk〉 = ε

N
∀ l, k. (2)

The system evolution is governed by the Schrödinger equa-
tion, and at time τ = π h̄

2|ε|
√

N the system attains the desired
state |ψ (τ )〉 = |w�〉 [4]. The time τ does not depend on �,
and the evolution should be terminated immediately thereafter
in order for the target state |w�〉 to be correctly identi-
fied. The asymptotic scaling of the search time τ = O(

√
N )

is optimal for the coherent quantum evolution [3], and it
can also be deduced from the time-energy uncertainty re-
lation [6] applied to the Hamiltonian H0 + V acting on
|ψ (0)〉.

Here we demonstrate an exponential speedup of the search
by using, instead of the coherent Schrödinger dynamics that
generates unitary evolution, a dissipative Markov dynamics
with long-range but bounded transition rates between the en-
ergy levels. This system differs from the standard quantum
computation paradigm in terms of computational resources
(see Appendix A 2). We begin again with the Hamiltonian
(1), assuming that ε < 0 and therefore |w�〉 is the ground
state of H0. We then add an auxiliary (known) Hamilto-
nian H1 which lifts the degeneracy of all the energy levels
|wk〉, but still leaves |w�〉 as a ground state of H = H0 + H1

for any �, with some energy gap ��. We next couple the
system to a thermal bath at a temperature T = 1/β (kB =
h̄ = 1) and let it relax to the Gibbsian (equilibrium) state
described by the density operator ρ ∝ e−βH . If T is suffi-
ciently low, such that ��β > 1 for any � = 1, 2, . . . , N , then
ρ ≈ |w�〉 〈w�|, and this approximation can be made arbitrarily
precise by increasing the energy gap �� or decreasing the
temperature T .

The working time of our dissipative analog device τrlx is
proportional to the inverse relaxation rate α−1 of the sys-
tem towards the equilibrium state ρ, and our main goal is
to estimate this time, given the spectrum of the system and
its coupling to the thermal reservoir, as detailed below. In
contrast to the coherent quantum search, however, we need
not demand that τrlx be independent on the unknown index
�, because once the system reaches the equilibrium state ρ ≈
|w�〉 〈w�|, it will remain in that state thereafter. We can then
take the search time as τrlx = max�[1/α(�)].

II. THE SYSTEM

We now turn to a more quantitative description of the
system. The Hamiltonian H1 that shifts the energy levels |wk〉
should leave |w�〉 as a unique ground state of H = H0 + H1

for any �. Assuming for simplicity that H1 commutes with H0,
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we therefore require that spectrum[H1] = {ηk}N
k=1 satisfies the

condition

ηN − η1 < |ε|, (3)

where ηN = max{ηk} and η1 = min{ηk}. We thus have
spectrum[H] = {εk}N

k=1 = {ε + η�, {ηk}k �=�} with the smallest
energy gap between state |w�〉 and all the other states |wk〉
being �N = η1 − (ηN + ε) > 0.

The (incoherent) Markov dynamics of the system weakly
coupled to a thermal bath is governed by the rate equations for
the populations pk of states |wk〉 (see Appendix A):

ṗk =
N∑

l=1

vkl pl − pk

N∑
l=1

vlk, (4)

where vkl � 0 (vkk = 0) are the transition rates between the
energy levels induced by the thermal bath at temperature T .
Hence, we have the detailed balance condition

vkl e
−βεl = vlke−βεk , (5)

which implies that there is a unique stationary state of the
system determined by the Gibbs (equilibrium) probabilities
pk = Z−1e−βεk for k = 1, 2, . . . , N , with Z = ∑N

k=1 e−βεk . In
view of the spectrum of the Hamiltonian H , the probability of
the ground state is

p(eq)
1 =

[
1 − eβε

(
eβη�

N∑
k=1

e−βηk − 1

)]−1

, (6)

and Perr = 1 − p(eq)
1 is then the error probability of our dissipa-

tive search. Obviously, the smallest ground-state probability in
the stationary state, and thus the largest error, would occur for
� = N with the ground state having the largest possible energy
ε + ηN , see Eq. (3). To ensure the ground-state dominance, we
therefore require that eβ|ε| 
 (eβηN

∑N
k=1 e−βηk − 1).

We are interested in the dependence of the relaxation time
to the equilibrium state on N . We therefore demand that the
total transition rate from any state |wk〉 be bounded,

γk ≡
N∑

l=1

vlk � v ∀ k, (7)

where v is some constant independent on N [see Eq. (9)
below]. This condition determines the physically acceptable
transition rates vkl and excludes parallel relaxation processes
that would lead to a trivial acceleration of the dynamics.

Condition (7) automatically holds for short-range transi-
tions: vkl ∼ v �= 0 only for |k − l| � r with some fixed range
r that does not depend on N . But then, starting from any
arbitrary state |wk〉, we will reach the desired ground state
|w�〉, where the population accumulates, via diffusive trans-
port, and the relaxation time will scale as τrlx = O(N2) [7,8].
This is worse than using either ballistic transport or classical
search with the τ = O(N ) scaling. We shall therefore consider
long-range but bounded (7) transition rates vkl > 0 ∀ k �= l .

We can rewrite Eq. (4) for the vector p = [p1, p2, . . . , pN ]T

in a matrix form,

ṗ = A p, Akl ≡ vkl − δklγk, (8)

where Ak �=l � 0 and
∑N

k=1 Akl = 0. If follows from Eq. (5)

that Ãkl = Akle− β

2 (εl −εk ) = Ãlk is a symmetric matrix that has
the same eigenvalues as Akl . Hence the eigenvalues of A are
real. Assuming that A is imprimitive, [Am]k �=l > 0 for a suffi-
ciently large integer m, we can employ the Perron-Frobenius
theorem [8–10] to argue that the largest eigenvalue α1 of A is
zero and nondegenerate. Hence, all the other eigenvalues are
negative, α1 = 0 > α2 � α3, . . .. Note that 0 � α2 � α3, . . .

follows directly from the much simpler Gershgorin’s circle
theorem [10]. The largest nonzero eigenvalue α2 of A defines
the (exponential) relaxation time τrlx = 1/|α2| of the master
equation (8) (see Appendix B).

The detailed balance condition (5) and the requirement
that A be imprimitive still leaves some freedom in choosing
the transition rates vkl . A well-known phenomenological ap-
proach is to use the Glauber rates [11] widely employed in
statistical mechanics [12,13]. We thus assume

vkl = v

max(nk, nl )
(1 + e−βεl +βεk )−1, (9)

where v is the bare relaxation rate that depends on the strength
of the system-bath coupling, but does not depend on N and
on the number of levels nk with energies not larger than
εk . The physical meaning of Eq. (9) is that transitions from
higher to lower energy levels are facilitated, while the reverse
transitions are suppressed, with the condition (5) obviously
satisfied. The Glauber rates are usually written without the
factor 1/ max(nk, nl ), but since we allow transitions between
all energy levels, this factor is needed to satisfy condition
(7). The Glauber rates can be deduced from the Born-Markov
treatment of weak system-bath coupling with an appropriate
bath spectrum (see Appendix A 1).

Consider first the trivial case of H1 = 0, i.e., all states have
the same energy equal to zero, and the ground-state energy is
ε < 0. From Eqs. (4) and (9), we obtain for the ground-state
population

ṗ1 = v

N (1 + eβε )
− p1

τrlx
,

1

τrlx
= v

N

1 + (N − 1)eβε

1 + eβε
,

which leads to the equilibrium population p(eq)
1 = [1 + (N −

1)eβε]−1 attained exponentially for times t 
 τrlx. Thus the
ground-state dominance, p(eq)

1 � 1 for (N − 1)eβε  1, leads
to τrlx = O(N ), which is the expected result for the classical
search of an unstructured set.

To obtain more interesting results, consider the auxiliary
Hamiltonian H1 with a nondegenerate spectrum

ηk = a ln(k), k = 1, . . . , N, (10)

where a > 0. Hence, the energies ηk grow only slowly (log-
arithmically) with index k, which justifies the possibility of
long-range coupling between the energy levels. We then set
ε = −b ln(N ) with the parameter b > a, to satisfy the condi-
tion (3). In Appendix C we present explicit expressions for the
Glauber rates for the logarithmic spectrum (10) and show that
condition (7) also holds. The ground-state dominance, p(eq)

1 �
1, now requires that Nbβ 
 (Naβ

∑N
k=1 k−aβ − 1), which for

N 
 1 is satisfied if bβ > max[1, aβ]; see Eq. (6). Indeed,
for aβ > 1 we have Naβ

∑N
k=1 k−aβ = O(Naβ ), while for
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FIG. 1. Dynamics of population of the ground state p1 (time t is
in units of v−1) for various N = 500, 1000, . . . , 3500 (progressively
lower curves), as obtained from the numerical solution of Eq. (4)
for the system with logarithmic spectrum (10) and the corresponding
Glauber rates (9), with the parameters aβ = 1.2 and bβ = 2. The
initial populations are pk = 1/N ∀ k ∈ [1, N], the sought index is
� = N , i.e., the ground-state energy is ε1 = (a − b) ln N , and the dy-
namics is terminated once p1 � 0.95. The inset shows the transition
rates γk of Eq. (7). For each curve, the index k runs from 1 to the
corresponding N . Curves from top to bottom in the main figure have
the same value of N as curves from left to right in the inset, e.g., the
top curve on the main figure and the leftmost curve on the inset refer
to N = 500.

aβ < 1 we have Naβ
∑N

k=1 k−aβ = O(N ). The error probabil-
ity

Perr = 1 − p(eq)
1 � N−(b−a)β

N∑
k=1

k−aβ (11)

can be arbitrarily small, Perr ≈ N−(b−a)β , when aβ > 1.
In Fig. 1 we show the dynamics of population of the ground

state p1, as obtained from numerical solutions of the rate
equations (4), with the initial population equally distributed
among all the energy levels, while the sought index is � = N
corresponding to the smallest energy gap �N = (b − a) ln N .
We observe that the time at which the ground-state population
exceeds some threshold value, e.g., p1 � 0.95, grows very
slowly with increasing the system size N . In the inset of Fig. 1
we show the total transition rates γk from levels k, which
remain bounded for any N as per condition (7).

In Fig. 2 we show the relaxation time τrlx = 1/|α2| as a
function of N , obtained from the diagonalization of matrix A
in Eq. (8). For aβ > 1, b > a and large N 
 1, the relaxation
time grows logarithmically with N :

τrlx = O(ln N ). (12)

Note that τrlx depends only weakly on the sought index �,
which determines the energy gap �� but also the spectrum
of the excited states and its bandwidth, especially for small
�. But once the ground-state dominance condition is satisfied,
the relaxation time does not change upon increasing (b − a).

The relaxation time τrlx increases for smaller values of aβ,
since then the transition rates between excited levels tend
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FIG. 2. Relaxation time τrlx = 1/|α2| (in units of v−1) vs N ,
as obtained from diagonalization of matrix A in Eq. (8) for
the system with logarithmic spectrum (10) and the correspond-
ing Glauber rates (9), with aβ = 1.2 and bβ = 2. For � = N 
 1
(solid line) the relaxation time is well approximated by τrlxv ≈
1.82 ln N − 2.3 and for � = 1 (dashed line) by τrlxv ≈ 1.92 ln N −
1.34. Nearly indistinguishable curves are obtained for (aβ, bβ ) =
(3, 4), (1.2, 4), (1.2, 5). The inset shows ln(τrlxv) vs ln(N/100) for
smaller values of aβ (red solid lines) and bβ = 2, with each line
approximated by const + κ ln(N/100) (black dashed lines) corre-
sponding to a power-law behavior τrlx ∝ Nκ with κ = 0.64, 0.45, 0.3
for aβ = 0.3, 0.6, 0.9, respectively.

to equalize, e.g., for � = N we have vkl/vlk = (l/k)aβ for
l > k > 1 (see Appendix C). In other words, for smaller aβ,
the system wanders longer among the excited levels before
relaxing to the ground state.

For aβ sufficiently smaller than 1, the relaxation time fol-
lows a power law [14]

τrlx = O(Nκ ), (13)

with the exponent κ < 1 that depends on a; see the inset
of Fig. 2. For a → 0, we approach κ → 1 of the classical
search time, while the error probability is Perr ∼ N−(b−1)β .
The transition from the logarithmic (12) to the power-law (13)
dependence of τrlx on N is gradual taking place in the vicinity
of aβ � 1. We emphasize that κ < 0.5, as shown in the inset
of Fig. 2, already signifies better scaling of the dissipative
search time with N than that of the unitary (Grover) search.

III. CONCLUSIONS

To summarize, we have shown that a dissipative Markov
dynamics in a system with a weakly nondegenerate spectrum
of N 
 1 states can result in the relaxation of the system
to the (unknown) ground state during time τrlx = O(ln N ).
The system can be viewed as an analog of an unstructured
database of N elements, for which the classical search time
scales as O(N ) while the optimal quantum search time scales
as O(

√
N ). We can identify the relaxation time of our system

with the search time that has exponentially better scaling with
the system size N than either the classical or the fully quantum
search.
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The necessary condition for achieving the short relaxation
times of the system, apart from the (weakly) nondegenerate
spectrum, is that the Markov process involves transitions be-
tween arbitrary energy levels. We should ensure, however,
that these long-range interactions are bounded for any N ,
since otherwise decreasing the search time with increasing
N would be trivial. Note that long-range coupling between
energy levels (2) is also present in the Hamiltonian analog of
quantum search [4].

Since the Markov dynamics of Eqs. (4) is described in
terms of classical probabilities, it is natural to ask whether
the considered dissipative search can be implemented on a
classical computer using, e.g., Monte Carlo simulations to
reach the equilibrium state dominated by the ground state.
It can of course be done, but will require a large amount
of calculations and computer memory. Indeed, the N = 2n

energy levels may correspond to different configurations of n
bits or spins {σi = ±1}n

i=1. Recall that the energy levels in our
dissipative analog device should be (weakly) nondegenerate,
which means that we need to realize a weakly interacting
n-spin system. We will then have to calculate ∼N different
energies for 2n different configurations and store them in
the memory, in order to determine the transition probabilities
between the different energy levels. These transitions may in-
volve up to n simultaneous spin-flips (σi → −σi). In contrast,
in the usual Monte Carlo simulations only one spin is flipped
at a time, and the energy difference between the old and new
configurations is easy to calculate at each time step.

In our study, we assumed weak system-bath coupling and
employed the Glauber rates [11–13] for the transitions be-
tween the energy levels. But our results equally hold for
other similar coupling schemes, e.g., Arrhenius rates often
employed in chemical physics [8,14]. We note that master
equations with long-range transition rates are frequently em-
ployed for describing glassy systems and amorphous materials
[14,15]. Such models often produce results that agree with
the experiments, but the relaxation times scale polynomially
with N . A proof of principle demonstration of dissipative
search can be realized with multilevel molecular systems with
incoherently coupled subset of rovibrational levels [16] or
with atomic Rydberg systems [17] with a properly tailored
broadband (microwave) field that induces transitions between
a number of Rydberg energy levels, with rates that mimic
those in Eq. (9). Finally, our results may have important
and interesting implications for protein folding and similar
problems, where macromolecules attain the target (minimal
energy) conformations very fast, despite the available huge
energy landscape [18,19].
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APPENDIX A: DERIVATION OF THE MARKOVIAN
MASTER EQUATION FOR A SYSTEM WEAKLY

COUPLED TO A THERMAL BATH

We consider a system with Hamiltonian HS, a thermal
bath with Hamiltonian HB, and their interaction described by
Hamiltonian VI. We assume that the initial state of the system
ρS(0) is diagonal in the energy representation, and we are
interested only in the dynamics of populations of its energy
eigenstates {|εk〉}. We further assume that the bath is initially
in the thermal equilibrium (Gibbsian) state ρB(0) = 1

Z e−βHB ,
Z = tr[e−βHB ], at inverse temperature β = 1/T , and we set
for brevity kB = h̄ = 1. The system and the bath are initially
uncorrelated, and their combined state is

ρSB(0) = ρS(0) ⊗ ρB(0). (A1)

We can represent the time evolution generated by the Hamil-
tonian of the composite system H = HS + HB + VI as

e−itH = T ∗e−i
∫ t

0 dt ′ ṼI (−t ′ ) e−it (HS+HB ), (A2a)

ṼI(−t ′) ≡ e−it ′(HS+HB )VI eit ′(HS+HB ), (A2b)

Ut ≡ T ∗e−i
∫ t

0 dt ′ ṼI (−t ′ ), (A2c)

where T ∗ denotes the time antiordering.
Given the eigenresolution of the system Hamiltonian HS =∑N
k=1 εk|εk〉〈εk| with 〈εk|εl〉 = δkl , and using the assumed

commutative initial states

[HS, ρS] = 0, [HB, ρB] = 0, (A3)

we deduce from ρSB(t ) = e−itHρSB(0) eitH that

pk (t ) ≡ 〈εk|ρS(t )|εk〉 =
N∑

l=1

Qkl (t )pl (0), (A4)

where

Qkl (t ) = 〈εk|trB[Ut |εl〉〈εl | ⊗ ρB(0)U †
t ]|εk〉 (A5)

is a stochastic, i.e., probability, matrix: Qkl (t ) � 0 and∑N
k=1 Qkl (t ) = 1. Hence, Eqs. (A4) and (A5) describes a clas-

sical (though generally non-Markovian) process.
Note that during the evolution the nondiagonal compo-

nents (coherences) of the system density matrix 〈εk|ρS(t )|εl〉
may in general be nonzero, even though they were as-
sumed 〈εk|ρS(0)|εl〉 = 0 (k �= l) for t = 0. Yet the coherences
〈εk|ρS (t )|εl〉 do not explicitly enter Eq. (A4) [their contribu-
tion is contained in Qkl (t )]. We therefore need not invoke
the rotating-wave approximation [20–22], which would be
inapplicable for a system having many densely spaced energy
levels.

To make the Markov approximation for the transition prob-
abilities Qkl (t ), we first expand Ut in Eq. (A2c) to second
order in ṼI :

Ut = 1 − i
∫ t

0
dt ′ ṼI (−t ′) −

∫ t

0
dt1

∫ t1

0
dt2 ṼI (−t2)ṼI (−t1).

(A6)
We now consider the interaction Hamiltonian

VI = gS ⊗ B, (A7)
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with a weak coupling g between the system S and bath B operators, and assume trB[B ρB(0)] = 0. We then obtain

Qkl (t ) = δkl + qkl (t ), (A8)

qkl (t ) ≡ −g2δkl

∫ t

0
dt1

∫ t1

0
dt2[〈εk|S(−t2)S(−t1)|εk〉K (t1 − t2) + 〈εk|S(−t1)S(−t2)|εk〉K (t2 − t1)]

+ g2
∫ t

0

∫ t

0
dt1 dt2 〈εk|S(−t1)|εl〉〈εl |S(−t2)|εk〉K (t1 − t2), (A9)

where for the bath correlation function K (t ) we used its stationary property K (t − t ′) = trB[B(t )B(t ′) ρB(0)] = K∗(t ′ − t ). We
can collect back the matrix exponent writing Eq. (A8) as

Q(t ) = eq(t ). (A10)

We then calculate

q̇kl (t ) = −δklg
2

N∑
m=1

[〈εk|S|εm〉〈εm|S|εk〉κ (+)
km + 〈εk|S|εm〉〈εm|S|εk〉κ (−)

mk ]

+g2[〈εk|S|εl〉〈εl |S|εk〉κ (−)
kl + 〈εk|S|εl〉〈εl |S|εk〉κ (+)

lk ], (A11)

κ
(±)
kl =

∫ t

0
dt ′ eit ′(εk−εl )K (±t ′). (A12)

We next assume that the bath correlations K (t ) decay with
time t sufficiently quickly. Indeed, the characteristic time
h̄/(kBT ) for K (t ) can be much smaller than the time τrlx over
which the populations pk change significantly (see below).
This is due to that τrlx contains a large prefactor g−2 and, in
general, increases with the number of states N . Hence, we can
make the Markov approximation by extending in Eq. (A12)
the limit of integration t → ∞,

κ
(±)
kl ≈

∫ ∞

0
dt ′ eit ′(εk−εl )K (±t ′). (A13)

This means that in Eq. (A10) q(t ) is approximately a linear
function of time t . Eventually, in the considered Markov limit
Eqs. (A4) and (A5) are reduced to the master equation

ṗk =
N∑

l=1

vkl pl − pk

N∑
l=1

vlk, (A14)

vkl = g2|〈εk|S|εl〉|2κkl , (A15)

κkl =
∫

dt ′ K (t ′)e−it ′(εk−εl ). (A16)

Hence, the transition rates vkl are proportional to a symmetric
(over k and l) factor |〈εk|S|εl〉|2 multiplied by κkl that depends
only on the energy difference εk − εl . In the main text, we
employ, at a phenomenological level, the master equation (4)
of the same form.

Introducing the eigenresolution for the bath Hamiltonian,
HB = ∑

i EiPi, where Pi are eigenprojectors, PiP j = δi j and∑
i Pi = 1̂, we find from Eq. (A16) that

κkl = 1

Z

∑
i j

trB(PiBP jBPi ) e−βEiδ[Ei − Ej − (εk − εl )],

(A17)

which clearly shows that κkl � 0 and satisfies the detailed
balance condition of Eq. (5):

κkl = κlkeβ(εl −εk ). (A18)

We note that Eqs. (A17) and (A18) can also be derived from
the Bochner’s theorem and Kubo-Martin-Schwinger condi-
tions [21].

1. Glauber rates

In the main text, we use the Glauber transition rates [see
Eq. (9)]

vkl ∝ (1 + e−βεl +βεk )−1. (A19)

Assuming that in Eq. (A15) |〈εk|S|εl〉|2 only weakly depend
on the level indexes k, l , we can use Eq. (A16) to determine
the necessary form of the bath correlator to obtain the Glauber
rates,

K (t ) =
∫

dω

2π

e−iωt

1 + e−ω/T

=
∫

dω

2π

e−iω(t−iζ )

1 + e−ω/T
= T

2i

1

sinh(πtT − iζ )

= 1

2
δ(t ) + T

2i
P 1

sinh(πtT )
, (A20)

where on the second line ζ → +0 serves to regularize the
integral for t → 0, and we employed the Sokhotski-Plemelj
formula with P denoting the principal value. Equation (A20)
shows that the real part of the bath correlator K (t ) relaxes very
quickly (i.e., during time t ∼ ζ → 0), while the imaginary
part relaxes with a characteristic time h̄/(kBT ); see [13] for
further details on the microscopic realization of the Glauber
transition rates.

The quantity ζ−1 corresponds to the bandwidth (or the cut-
off frequency) of the bath spectrum, which is normally large in
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the thermodynamic limit [21]. In particular, it should be much
larger than the energy differences of the levels of the system
coupled to the bath. In the main text, we employ a logarithmic
spectrum of the system with the largest energy difference
being proportional to a ln(N ). We then get from aζ ln(N ) 
1 the following limitation on the number of energy
level N :

N  e1/(aζ ). (A21)

Given a sufficiently small value of aζ , there is large room for
satisfying (A21). This is the advantage of using the logarith-
mic spectrum.

2. Stinespring theorem

Given nontrivial conditions needed to derive a dissipative
Markovian dynamics from the weak-coupling system-bath
approach, one may want to compare the dissipative dynamics
of a system with a global unitary evolution. To this end, we
recall the Stinespring theorem [21,23]: dissipative dynamics
that operate on diagonal density matrices correspond to a com-
pletely positive map (CPM). Any CPM on an N-dimensional
Hilbert space HN can be represented as a partial trace of a
unitary operator U acting on an N3-dimensional Hilbert space
HN3 = HN ⊗ HN2 .

The Stinespring theorem provides a finite-dimensional en-
vironment for unitary modeling of a CPM. This conforms to
the standard set-up of quantum computation [23] and contrasts
with the system-bath approach that generally involves infinite-
dimensional (due to the thermodynamic limit) bath models.

The Stinespring theorem, however, cannot be applied to
our dissipative search procedure to compare its complexity to
that of the unitary Grover search. Indeed, if a unitary evolution
U is to be related to the search problem, the Hamiltonian
HStin that generates U in HN3 should be of form HStin =
HS + HE + VI, where both the environment Hamiltonian HE

living in HN2 and the interaction Hamiltonian VI living in HN3

should not depend on the unknown state |w�〉 and thereby the
Hamiltonian HS = H0 + H1 of the system. Otherwise, if the
system Hamiltonian, and thereby its ground state |w�〉, were
known, there is nothing to search, and if a unitary transfor-
mation should be designed to rotate the state vector from an
initial well-defined state, such as, e.g., |s〉 = 1√

N

∑N
k=1 |wk〉,

to the (known) final state |w�〉, it can be done optimally with
a complexity O(1) for any given N . Hence, the problem in
applying U is that it is not generated by a legitimate search
Hamiltonian.

Another hindrance is that HStin(t ) is generally not
time-independent [24]. Moreover, we cannot implement
HStin(t ) via external sources, because it would have
to depend on the unknown state |w�〉. In contrast,
the system-bath approach employs a time-independent
Hamiltonian.

Hence, the Stinespring theorem does not allow one to con-
clude that the dissipative search described by a Markovian
dynamics should be computationally less efficient than the
unitary Grover search in HN .

APPENDIX B: FORMAL SOLUTION
OF THE MASTER EQUATION

We write the master equation for the vector |p〉 of popula-
tions of states {|wk〉}N

k=1 using the Dirac notation,

∂t |p〉 = A |p〉 , (B1)

where the matrix elements Akl ≡ vkl − δkl
∑N

j=1 v jk , with
vkk = 0, satisfy Ak �=l � 0 and Akk = −γk < 0. Note that, due

to the detailed balance condition, Ãkl = Akl e− β

2 (εl −εk ) = Ãlk

is a symmetric matrix that has the same eigenvalues as Akl .
Hence, Akl is a diagonalizable matrix with properly defined
(orthonormal) left and right eigenvectors. The right eigen-
vector |R1〉 of A with eigenvalue α1 = 0 coincides with the
stationary Gibbsian probability [8]:

∑N
l=1 Akl e−βεl = 0. The

corresponding left eigenvector 〈L1| has all its components
equal to 1, as seen from

∑N
k=1 Akl = 0. Writing the eigenres-

olution of A as

A =
N∑

k=1

αk |Rk〉 〈Lk| , 〈Lk|Rl〉 = δkl , (B2)

A |Rk〉 = αk |Rk〉 , 〈Lk| A = αk 〈Lk| , (B3)

where {|Rk〉}N
k=1 and {〈Lk|}N

k=1 are the right and left
eigenvectors, we can formally solve Eq. (B1) via eAt =∑N

k=1 eαkt |Rk〉 〈Lk| with α1 = 0 > α2 � α3, . . ., leading to [8]

|p(t )〉 = eAt |p(0)〉
� |p(st)〉 + e−|α2|t 〈L2|p(0)〉 |R2〉 + O(e−|α3|t ), (B4)

where |p(st)〉 = Z−1 ∑N
k=1 e−βεk |wk〉 〈wk|, with Z =∑N

k=1 e−βεk , is the stationary state. We can therefore define
the relaxation time as τrlx = 1/|α2|.

Spectral features of Markov matrices are needed in many
applications and have been extensively studied; see, e.g., [25].

APPENDIX C: GLAUBER RATES
FOR THE LOGARITHMIC SPECTRUM

In the main text, we employ the Glauber rates

vkl = v

max(nk, nl )
(1 + e−βεl +βεk )−1, (C1)

for the transitions between the states with energies εk and εl ,
and here we present the corresponding explicit expressions for
the logarithmic spectrum ηk = a ln(k) of the auxiliary Hamil-
tonian H1. Consider first the case of the ground state of H0 at
� = 1 with energy ε = −b ln(N ). The energy levels of H =
H0 + H1 are (ε1, ε2, . . . , εN ) = (−b ln N, a ln 2, . . . , a ln N ),
and the transition rates (C1) are

v1l = 1

l (1 + l−aβN−bβ )
, l > 1, (C2a)

vl1 = 1

l (1 + laβNbβ )
, l > 1, (C2b)

v1l

vl1
= laβNbβ, l > 1, (C2c)

vk<l = 1

l[1 + (k/l )aβ]
, l > 1, k > 1, (C2d)
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vl>k = 1

l[1 + (l/k)aβ]
, l > 1, k > 1, (C2e)

vk<l

vl>k
=

(
k

l

)−aβ

, l > 1, k > 1 (C2f)

Note that for high temperatures aβ < 1 the transition rate
vlk from a state with lower energy εk to a state with higher
energy εl is smaller, but comparable with the reverse transition
rate vkl , which leads to longer relaxation times τrlx as is also
confirmed numerically. The total transition rate from state
|wl〉 is then

γ1 =
N∑

s=1

vs1 =
N∑

s=2

s−1(1 + Nbβsaβ )−1, (C3a)

γl =
N∑

s=1

vsl = 1

l
(1 + N−bβ l−aβ )−1 + 1

l

l−1∑
s=2

[1 + (s/l )aβ]−1

+
N∑

s=l+1

s−1[1 + (s/l )aβ]−1, l > 1, (C3b)

and γl � 1 holds for any aβ > 0, as required.
The same conclusions hold for other values of �, e.g.,

for � = N the energy levels are (ε1, ε2, . . . , εN ) = [(a −
b) ln N, 0, a ln 2, . . . , a ln(N − 1)] and the transition rates are

v1l = 1

l[1 + (l − 1)−aβN−(b−a)β ]
, l > 1, (C4a)

vl1 = 1

l[1 + (l − 1)aβN (b−a)β ]
, l > 1, (C4b)

v1l

vl1
= (l − 1)aβ N (b−a)β, l > 1, (C4c)

vk<l = 1

l{1 + [(k − 1)/(l − 1)]βa} , l > 1, k > 1,

(C4d)

vl>k = 1

l{1 + [(l − 1)/(k − 1)]βa} , l > 1, k > 1,

(C4e)

vk<l

vl>k
=

(
k − 1

l − 1

)−βa

, l > 1, k > 1, (C4f)

and for εk < εl we again have vlk < vkl , provided b > a which
is always assumed. The total transition rate from any state |wl〉
is

γ1 =
N∑

s=1

vs1 =
N∑

s=2

s−1[1 + N (b−a)β (s − 1)aβ]−1, (C5a)

γl =
N∑

s=1

vsl = 1

l
[1 + N (a−b)β (l − 1)−βa]−1

× 1

l

l−1∑
s=2

[
1 +

(
s − 1

l − 1

)aβ]−1

+
N∑

s=l+1

1

s

[
1 +

(
s − 1

l − 1

)aβ]−1

. (C5b)
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