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Quantum transport in a one-dimensional quasicrystal with mobility edges
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Quantum transport in a one-dimensional (1D) quasiperiodic lattice with mobility edges is explored. We first
investigate the adiabatic pumping between left and right edge modes by resorting to two edge-bulk-edge channels
and demonstrate that the success or failure of the adiabatic pumping depends on whether the corresponding
bulk subchannel undergoes a localization-delocalization transition. Compared with the paradigmatic Aubry-
André model, the introduction of mobility edges triggers an opposite outcome for successful pumping in the two
channels, showing a discrepancy of the critical condition, and facilitates the robustness of the adiabatic pumping
against quasidisorder. We also consider the transfer between excitations at both boundaries of the lattice, and
an anomalous phenomenon characterized by the enhanced quasidisorder contributing to the excitation transfer
is found. Furthermore, there exists a parametric regime where a nonreciprocal effect emerges in the presence
of mobility edges, which leads to a unidirectional transport for the excitation transfer and enables potential
applications in the engineering of quantum diodes.
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I. INTRODUCTION

Anderson localization [1–3], a fundamental and ubiqui-
tous phenomenon in nature, describes the absence of electron
diffusion and the nonergodicity of electronic Bloch waves
aroused by disorder, which originates from destructive quan-
tum interference and uncovers the underlying mechanism
behind metal-insulator transitions [4,5]. According to the scal-
ing theory of localization [6], while arbitrarily small random
(uncorrelated) disorder in both one and two dimensions pro-
duces spatially exponential localization for all single-particle
states, a localization-delocalization transition exists in higher
dimensions, and an energy-dependent mobility edge distin-
guishing the localized regime from the delocalized regime
appears at the phase boundary. However, this picture is altered
dramatically in quasicrystals [7–10] when the random disor-
der is replaced with a quasiperiodic potential. One of the most
celebrated examples is characterized by the one-dimensional
(1D) Aubry-André (AA) model [11–13], which displays such
an energy-independent critical behavior at a self-dual point.
Moreover, rapid developments and remarkable advances in
the manipulation of ultracold atoms loaded into incommensu-
rate bichromatic optical lattices have led to a powerful tool to
experimentally realize the AA model [4,14–17]. Interestingly,
by incorporating longer-range hopping [18–24] or appropri-
ately designing on-site modulation [25–27], some modified
AA models can also sustain energy-dependent mobility edges.
Recently, experimental observations of mobility edges were
also reported in ultracold-atom systems [28–30].

On the other hand, quasicrystals exhibit a topologi-
cally nontrivial phase [31–33] that is attributed to higher-
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dimensional systems [34]; for instance, the 1D AA model
under an open boundary geometry supports gapless end
modes spanning the bulk gaps, which are equivalent to the
edge modes in the two-dimensional quantum Hall effect [35].
With the concept of topological protection in mind, these
modes localized on the open boundary are immune to lo-
cal perturbations and disorder, such as thermal fluctuations
and defects, making them a promising candidate for exploit-
ing noise-resistant quantum information processing [36,37]
and fault-tolerant quantum computation [38,39]. More im-
portantly, from a dynamical point of view, perhaps Thouless
pumping [40–44], the quantization of the excitation transport,
which occurs if the parameters of the system are adiabatically
tuned in a cyclic manner, is the most visual reflection of the
nontrivial topology of the system since the generated quan-
tized excitation transport per cycle is in response to the topo-
logical invariants of the system. Furthermore, the topological
pumping of boundary modes [34,45–51] can be another sig-
nificant domain and has attracted intensive attention. It also
depends on an adiabatic adjustment of the parameters of the
system and dedicates excitation transport across the bulk,
which opens up avenues for robust quantum state transfer
[52–65], resilient quantum gate preparation [66], etc.

Although the investigation of these basic principles and
essential properties has led to substantial progress in their
respective realms, the interplay among them still remains less
explored. For example, the effect of Anderson localization and
mobility edges on the adiabatic pumping between boundary
modes is still not explicitly understood and has not been clar-
ified, and the way mobility edges further affect the excitation
transport has not been clearly demonstrated yet; quasicrystals
provide an ideal platform to address these problems.

Motivated by the confusion, in this work, we explore quan-
tum transport in a 1D quasiperiodic lattice with mobility
edges. First, the adiabatic pumping between left and right
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edge modes is investigated by resorting to two edge-bulk-
edge channels, which is always feasible before Anderson
localization of the corresponding bulk subchannel occurs, and
the relevant cause for the failure of the adiabatic pumping
in the localized regime is analyzed and discussed in detail.
Compared with the AA model in which successful pumping
in both channels can be achieved until the system undergoes
a localization-delocalization transition, the opposite outcome
for successful pumping in the two channels is realized after
mobility edges are introduced: while one channel can sur-
vive only under a reduced critical condition, the other can
persist beyond the constraint of the AA model, which, in
a sense, indicates the presence of mobility edges facilitates
the robustness of the adiabatic pumping against quasidisorder.
Depending on the pumping process, the transfer between exci-
tations at both boundaries of the lattice is also considered and
is found to be anomalous in the delocalized regime, showing
the enhanced quasidisorder raises the fidelity of the excitation
transfer. Moreover, there exists a parametric regime where
nonreciprocal transport manifested by the unidirectional ex-
citation transfer is captured, which is induced by the mobility
edges and cannot emerge in the AA model.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model and present the existence
of mobility edges for a sample system. In Sec. III, for both
the delocalized and localized regimes, the adiabatic pumping
between the left and right edge modes in the AA model is
first explored by resorting to two edge-bulk-edge channels,
where we analyze in detail and discuss what determines the
success or failure of the adiabatic pumping in terms of the
energy spectrum of the system. Subsequently, the adiabatic
pumping in the sample system is shown, and the effect of the
mobility edges on the adiabatic pumping in each channel is
expounded. We also quantify the pumping outcome based on
the fidelity. In Sec. IV, from the perspective of the application
of the adiabatic pumping, we consider the transfer between
excitations at both boundaries of the lattice, where some novel
transport phenomena are found. A conclusion is given in
Sec. V.

II. MODEL AND MOBILITY EDGES

We consider a 1D shallow bichromatic optical lattice where
the ratio between the periods of the primary and secondary
cosine potentials is incommensurate, so that the non-nearest-
neighbor tight-binding framework is released, and a lattice
model subject to short-range hopping can be attained [18–20].
Specifically, we focus on a lattice model characterized by
exponentially decaying hopping, and the Hamiltonian of the
system reads

H =
∑

m �=l

te−u|m−l|(a†
mal + a†

l am) +
∑

m

wma†
mam, (1)

where a†
m (am) denotes the creation (annihilation) operator of

a particle on site m. The exponentially decaying hopping is
described by hopping amplitude t and decay coefficient u > 0.
The on-site potential takes the quasiperiodic cosine modula-
tion wm = V cos(2πζm + ϕ), with parameters V > 0, ζ−1 =
(
√

5 + 1)/2, and ϕ ∈ [0, 2π ] being the modulation strength,

FIG. 1. Energy spectrum of a sample system with u = 1 versus
modulation strength V for ϕ = 0.99π . The black dashed line delin-
eates the analytical result of the mobility edge, which is validated
according to the IPR of each eigenmode, as indicated by the color bar.
The two red crosses mark the threshold Vc for the bulk subchannels
of channels A and B.

period, and phase, respectively. The lattice model is just a
simple short-range hopping counterpart of the AA model, and
if there is only the hopping term t1 = te−u, which is referred
to as the energy unit throughout the paper, the lattice model
will be reduced to the AA model. However, compared with
the AA model, which undergoes a localization-delocalization
transition determined by the self-dual condition Vc = 2, the
lattice model satisfies a generalized self-dual symmetry and
sustains energy-dependent mobility edges, which separate the
localized regime from the delocalized regime at a critical
energy Ec governed by Ec = Vc cosh(u) − t [19]. Figure 1
depicts the energy spectrum of a sample system versus V
when u = 1, and the black dashed line delineates the analyt-
ical result of the mobility edge. The presence of the mobility
edge is validated according to the inverse participation ratio
(IPR) of each eigenmode, which is defined as

RIP =
∑N

m=1 |ψm|4
( ∑N

m=1 |ψm|2)2 , (2)

where ψm stands for the probability amplitude of the corre-
sponding eigenmode at the mth site and N is the total number
of sites. One can readily confirm that RIP = 1 for the most
localized state and RIP = 1/N for the completely delocalized
state. Visibly, the abrupt change in the IPR agrees well with
the prediction of the mobility edge, which indicates that the
localization-delocalization transition is indeed dictated by the
mobility edge.

III. ROBUST ADIABATIC PUMPING FACILITATED
BY MOBILITY EDGES

It is well known that the AA model supports topologically
nontrivial edge modes that traverse the bulk gaps [34,35].
Under the open boundary condition (OBC), we present the
energy spectrum of the AA model as a function of ϕ with
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FIG. 2. Energy spectrum of the AA model with the number of sites N = 33 as a function of the modulation phase ϕ for (a1) V = 1 and
(b1) V = 3. In (a1), the system is in the delocalized regime. The green (upper) and blue (lower) lines label channel A with ϕ ∈ [0.39π, 1.59π ]
and channel B with ϕ ∈ [0.59π, 1.39π ] for an adiabatic pumping between the left and right edge modes, respectively. The arrows in each
channel guide the corresponding pumping direction. In (b1), the system is in the localized regime. Both bulk and right edge subchannels break
down in both channels, as indicated by the red (dark gray) line and arrow. (c1) Energy spectrum of the sample system as a function of the
modulation phase ϕ. Other parameters are the same as in (b1). Channel A remains intact, but channel B collapses in this case. The insets in
(a1)–(c1) display the initial left and goal right edge states used in the adiabatic evolution of each channel. The corresponding pumping process
after resorting to (a2)–(c2) channel A and (a3)–(c3) channel B. Here, � = 10−5 in all the plots.

V = 1 in Fig. 2(a1). We can observe that there are two major
gaps and gapless edge modes emerge within either gap. As
displayed in the insets of Fig. 2(a1), the edge modes inside the
upper (lower) gap are mainly concentrated on the left (right)
boundary of the system if these modes cross from bottom to
top, whereas the right (left) edge modes can be captured when
the crossing direction is the opposite. Furthermore, these edge
modes become extended gradually as they merge into the
bulk sublevels on both sides. Clearly, these left and right
edge modes inside the upper (lower) gap are bridged by a
bulk sublevel, which is at the bottom of these upper (middle)
sublevels.

Due to the existence of the gap between this bulk sublevel
and its adjacent sublevel, the system in the delocalized regime
admits an adiabatic pumping between the left and right edge

modes by engineering a relevant channel when ϕ is scanned
sufficiently slowly. As an example, if we intend to pump a left
edge mode to the right boundary of the lattice, there are two
feasible channels to implement. As shown in Fig. 2(a1), one
is labeled by the green (upper) line and called channel A, the
other is labeled by the blue (lower) line and called channel
B, and the arrows in each channel guide the corresponding
pumping direction. We can divide either channel into three
parts, namely, the left edge subchannel, bulk subchannel, and
right edge subchannel. Because the region of the bulk sub-
channel for either channel becomes wider with the increase
of V , in order to make the left and right edge subchannels
always exist for each channel in the investigated range of
V , for channel A (B), for example, ϕ is slowly swept from
0.39π (1.39π ) to 1.59π (0.59π ) with ϕ(t ) = 0.39π + �t
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[ϕ(t ) = 1.39π − �t], where t represents the evolution time
and � is the ramping frequency dominating the evolution
velocity; an adiabatic change in ϕ was experimentally realized
in ultracold-atom systems [41,42]. We can obtain the pump-
ing process by solving the Schrödinger equation numerically
(h̄ = 1),

i
d

dt
|�(t )〉 = H (t )|�(t )〉, (3)

where �(t ) is spanned by the basis {|m〉 = a†
m|0〉, 1 � m �

N}, i.e., �(t ) = ∑N
m=1 φm(t )|m〉, with φm(t ) being the proba-

bility amplitude on the mth site at time t . The corresponding
pumping processes after resorting to channels A and B are
reported in Figs. 2(a2) and 2(a3), respectively. Obviously,
for both channels, the whole pumping process undergoes
three stages manifested by left-localized intensity → extended
intensity → right-localized intensity, which means that the
pumping entirely occupies each channel all the time and
successively passes the three subchannels over the whole adi-
abatic evolution. Moreover, the left edge mode is pumped to
the desired right edge mode successfully.

The Anderson localization occurs once V > 2 and all the
bulk modes of the system become exponentially localized
[12]. The energy spectrum of the AA model as a function
of ϕ with V = 3 under the OBC is shown in Fig. 2(b1).
Different from the energy spectrum in the delocalized regime,
except for the two major gaps, the gap between each pair of
sublevels in the localized regime is squeezed and becomes
exponentially suppressed at multiple locations of ϕ, includ-
ing the gap between each bulk subchannel and the adjacent
sublevel, while the edge modes remain inside both major gaps
and are unaffected, which, in a sense, reflects the sensitivity
of a bulk mode without topological protection and the immu-
nity of a topologically protected edge mode to quasidisorder.
Moreover, the localization of these edge modes is enhanced,
as displayed in the insets of Fig. 2(b1).

If the adiabatic pumping is executed again, we find that
the pumping for both channels fails, as reported in Figs. 2(b2)
and 2(b3). The underlying mechanism behind the failure of
either pumping is attributed to the exponentially suppressed
gap leading to the Landau-Zener tunneling between sublevels,
and the tunneling probability depends on the size of the
avoided crossing and on the evolution velocity. Concretely,
the narrower the avoided crossing is or the faster the evolution
velocity is, the larger the tunneling probability is. Therefore,
the pumping completely enters into the bulk subchannel from
the left edge subchannel. Subsequently, when the pumping
first encounters the avoided crossing at an exponentially sup-
pressed gap between the bulk subchannel and its adjacent
sublevel, depending on the magnitude of both the avoided
crossing at the exponentially suppressed gap and �, it could
be subject to a partial or even whole tunneling from the bulk
subchannel to its adjacent sublevel and further to the nonadia-
batic excitation to the adjacent sublevel and thereby to the leak
into the adjacent sublevel. The pumping will hence no longer
occupy the bulk subchannel completely in later evolution. As
evolution continues, whenever the pumping encounters the
avoided crossing at an exponentially suppressed gap between
sublevels, either a partial or whole Landau-Zener tunneling

between the two sublevels will occur. After undergoing a
series of avoided crossings, there is a large possibility for
the pumping to fail to return to the right edge subchannel
perfectly, as labeled by the red (dark gray) line and arrow
for each channel in Fig. 2(b1). Furthermore, an examination
of these two pumping processes in Figs. 2(b2) and 2(b3)
reveals the observation that the left-localized intensity trans-
forms into several localized intensities at different sites of
the lattice during evolution, which implies the occurrence of
the Landau-Zener tunneling between sublevels and thus a si-
multaneous occupation of several exponentially localized bulk
modes.

It can be seen from the above analysis and discussion that
the bulk subchannel is fragile and breaks down in the localized
regime, which is responsible for the failure of either pumping.
Consequently, the adiabatic pumping between the left and
right edge modes survives until the occurrence of the Ander-
son localization, or in other words, the adiabatic pumping is
not robust against quasidisorder with disorder strength V > 2.
In order to facilitate the robustness of the adiabatic pumping
against quasidisorder, namely, achieving successful pumping
under stronger quasidisorder, a crucial factor is to prevent
the Landau-Zener tunneling from the bulk subchannel to its
adjacent sublevel. Accordingly, a resolved gap between them
should be guaranteed when V > 2, which requires raising
the threshold Vc for their localization-delocalization transi-
tion such that they can still be in the delocalized regime
after V > 2. On the other hand, with the introduction of the
mobility edge, we can find in Fig. 1 that the thresholds of
these upper (middle) sublevels are all greater (less) than 2.
More importantly, the bulk subchannel of channel A (B) is
at the bottom of these upper (middle) sublevels, whose Vc is
approximately equal to 3.042 (1.434), as marked by the red
cross. As a result, we will expect that successful pumping
can always be achieved by resorting to channel A as long
as V < 3.042, whereas the adiabatic pumping in channel B
survives only before V > 1.434.

In Fig. 2(c1), we also plot the energy spectrum of the
sample system as a function of ϕ with V = 3 under the OBC
to verify the effect of the mobility edge on both bulk sub-
channels. We can observe that while the gaps within these
middle sublevels all become exponentially suppressed and do
not persist, the mobility edge maintains a resolved gap be-
tween every two upper sublevels, which demonstrates that the
Anderson localization for these middle sublevels has already
occurred but these upper sublevels have not undergone the
localization-delocalization transition yet and are still in the
delocalized regime. As a consequence, the bulk subchannel of
channel A (B) remains intact (breaks down). Additionally, the
corresponding pumping processes after resorting to channels
A and B are reported in Figs. 2(c2) and 2(c3), respectively. As
expected, the adiabatic pumping in channel B fails; neverthe-
less, the left edge mode is successfully pumped to the desired
right edge mode by resorting to channel A, and successful
pumping is indeed achieved when V > 2, which contrasts
sharply with the case of the AA model with the same V shown
in Fig. 2(b2).

For the purpose of elucidating the effect of the mobility
edge on the adiabatic pumping more clearly, we introduce
fidelity to quantitatively characterize the pumping outcome,
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FIG. 3. Fidelity F of the adiabatic pumping between left and
right edge modes versus modulation strength V and ramping fre-
quency � via (a) channel A in the AA model, (b) channel B in the
AA model, (c) channel A in the sample system, and (d) channel B
in the sample system. The square of the minimum gap δ between the
corresponding bulk subchannel and its adjacent sublevel as a function
of modulation strength V for (e) channel A and (f) channel B of the
AA model and sample system. The white dashed or black dotted
lines in each plot delineate the threshold Vc of the corresponding bulk
subchannel extracted from Fig. 1 or V = 2.

which can be evaluated as follows:

F = |〈
g|
 f 〉|2, (4)

where |
 f 〉 and |
g〉 are the normalized final state when the
adiabatic evolution of an initial left edge state is finished
and the normalized goal right edge state, respectively, and
0 � F � 1. It is clear that F → 0 indicates the failure of the
pumping; on the contrary, the pumping is successful if F → 1.

As a comparison, we first show the fidelities F of channels
A and B versus V and � for the AA model in Figs. 3(a)
and 3(b); the fidelities F of both channels versus V and �

for the sample system are displayed in Figs. 3(c) and 3(d).
Furthermore, for the AA model and sample system, Fig. 3(e)
[Fig. 3(f)] exhibits the square of the minimum gap δ between
the bulk subchannel of channel A (B) and its adjacent sublevel
as a function of V . The white dashed or black dotted lines in
each plot delineate Vc of the corresponding bulk subchannel
extracted from Fig. 1 or V = 2. We can observe that for
the AA model, if � is small enough (corresponding to a

sufficiently adiabatic pumping process), successful pumping
in both channels can be achieved until the system undergoes
the localization-delocalization transition, viz., when V < 2.
For the sample system, by resorting to channel A, if V <

3.042, i.e., before the corresponding bulk subchannel suffers
the Anderson localization, successful pumping always per-
sists provided that the evolution velocity is sufficiently slow;
however, despite the adiabatic pumping in channel B also
surviving until the occurrence of the Anderson localization
of the corresponding bulk subchannel, we can realize it only
before V > 1.434. Moreover, as V increases, we find that the
minimum � required for successful pumping dwindles, which
is rooted in the decline of δ2 such that a longer temporal evo-
lution is necessary. In the localized regime, due to the almost
vanishing δ2, the pumping nearly fails without a very high
fidelity no matter how small � becomes. In other words, the
mobility edge plays a pivotal role in improving the fragility of
the bulk subchannel of channel A and facilitates the robustness
of the adiabatic pumping against quasidisorder.

Note that finite-time nonadiabatic excitations always exist
during evolution; therefore, it is not possible to have perfect
pumping F = 1. However, in the delocalized regime, all of
the fidelities in the region of successful pumping are greater
than 0.99, and we can thus ignore these very few nonadiabatic
excitations.

It is worth mentioning that in the delocalized regime, as
the size of the system increases, the gap between each bulk
subchannel and its adjacent sublevel gradually shrinks but
still persists, unlike the exponentially suppressed gap in the
localized regime, which leads to the fidelity of the adiabatic
pumping depending on the length of the lattice. To achieve
successful pumping in a longer lattice, despite the extended
bulk modes of the system, a slower variation of ϕ is needed to
avoid the Landau-Zener tunneling from the bulk subchannel
to its adjacent sublevel during evolution.

IV. ANOMALOUS EXCITATION TRANSFER
AND NONRECIPROCAL TRANSPORT

The adiabatic pumping between the left and right edge
modes could be potentially exploited in the transfer between
excitations at both boundaries of the lattice, namely, quantum
state transfer. To this end, we consider the initial state injected
into the leftmost (rightmost) site for channel A (B). Because
each edge mode is mainly concentrated on either side of the
sample system, both the initial states mostly contain a su-
perposition of a corresponding edge mode, and the excitation
transfer purely depends on the pumping process between the
left and right edge modes. As shown in Fig. 4(a1), for both
channels, the adiabatic evolution is in the same direction and
we slowly ramp ϕ from 0.39π to 1.39π , with ϕ = 0.39π +
�t . The corresponding evolution processes after resorting to
channels A and B are reported in Figs. 4(a2) and 4(a3), re-
spectively. It is evident that an excitation is transferred to the
other side of the sample system whether it is initially injected
from the leftmost or rightmost site, but the transfer outcome
is imperfect; in other words, the transferred excitation is not
entirely localized on the opposite boundary of the lattice.

Similarly, we quantify the transfer outcome by employing
the fidelity, Eq. (4), where the goal state |
g〉 is chosen as the
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FIG. 4. Energy spectrum of the sample system with the number
of sites N = 38 as a function of modulation phase ϕ for (a1) V = 1.4
and (b1) V = 3. For the two channels, the adiabatic evolution is in
the same direction and within the same region ϕ ∈ [0.39π, 1.39π ],
as shown between the black dashed lines. The insets in (a1) and (b1)
display the left and right edge modes at ϕ = 0.39π and 1.39π . In
(a1), both the channels remain intact, which results in a bidirectional
transfer between excitations at both boundaries of the lattice, as
reported in (a2) and (a3). In (b1), only channel A remains intact, and
channel B collapses, which brings about a nonreciprocal transport
manifested by the unidirectional excitation transfer, as reported in
(b2) and (b3). The color bar indicates the density on each site during
evolution and � = 10−5 in all the evolution processes.

state injected into the rightmost (leftmost) site for channel A
(B). Figures 5(a) and 5(b) exhibit the fidelities F of channels
A and B versus V and � for the sample system, respectively.
We can observe that for both channels, the occurrence of the
Anderson localization also has an adverse effect on the excita-
tion transfer caused by the collapse of the adiabatic pumping,
which is feasible until the corresponding bulk subchannel
undergoes the localization-delocalization transition. In the de-
localized regime, we find that with the increase of V and the
decrease of �, fidelity rises, which, in a sense, implies that the
enhanced quasidisorder is conducive to the excitation transfer.
This is unique for quasidisorder since increasing stochastic
disorder strength will gradually eliminate the relevant gap

FIG. 5. Fidelity F of the excitation transfer in the sample sys-
tem versus modulation strength V and ramping frequency � via
(a) channel A and (b) channel B. The white dashed line in both plots
delineates the threshold Vc of the corresponding bulk subchannel,
which is almost equal to that extracted from Fig. 1. (c) In channel A,
|ψ1| of the left edge mode at ϕ = 0.39π and |ψN | of the right edge
mode at ϕ = 1.39π as a function of modulation strength V . (d) In
channel B, |ψN | of the right edge mode at ϕ = 0.39π and |ψ1| of the
left edge mode at ϕ = 1.39π as a function of modulation strength V .

and is generally not beneficial to quantum state transfer. The
reason behind this phenomenon is ascribed to the fact that the
increasing quasidisorder strength V enhances the localization
of each edge mode on the corresponding boundary of the
lattice, as displayed in Fig. 5(c) [Fig. 5(d)] for |ψ1| (|ψN |) of
the left (right) edge mode at ϕ = 0.39π and |ψN | (|ψ1|) of the
right (left) edge mode at ϕ = 1.39π , so that the weight of the
left (right) edge mode in the eigenmode superposition of the
initial state for channel A (B) is elevated. As a consequence, as
V increases, although the relevant gap also gradually dimin-
ishes, when � is small enough, the pumping process between
the left and right edge modes is more and more dominant in
the whole adiabatic evolution, which contributes to receiving
a final state that is more localized on the other boundary of
the lattice and further to a higher fidelity and thus to the
anomalous excitation transfer.

Another interesting phenomenon exists in the scope of
1.434 < V < 3.042, viz., before the Anderson localization
for the bulk subchannel of channel A occurs and after the
bulk subchannel of channel B undergoes the localization-
delocalization transition. It turns out that if we initially inject
an excitation into the leftmost site, it can be adiabatically
transferred to the opposite side of the sample system by
scanning ϕ sufficiently slowly except that the transferred
excitation is output incompletely from the rightmost site;
nevertheless, when an excitation is initially injected into the
rightmost site and ϕ is slowly swept again within the same
range, it is possible for the excitation not to be output at
all from the leftmost site, which arises from the presence
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of the mobility edge triggering the opposite outcome of the
adiabatic pumping in this scope for channels A and B and can
be treated as a nonreciprocal effect, as shown in Fig. 4(b1).
The nonreciprocal effect will become more pronounced with
V approaching 3.042, as reported in Figs. 4(b2) and 4(b3)
with V = 3, and cannot emerge in the AA model. Based on
the nonreciprocal transport across the bulk induced by the
mobility edge, it is feasible to engineer a quantum diode by
viewing both the leftmost and rightmost sites as two ports.

V. CONCLUSIONS

In conclusion, we have investigated the quantum transport
in a 1D quasicrystal with a specific short-range hopping, i.e.,
the adiabatic pumping between left and right edge modes
and the transfer between excitations at both boundaries of
the lattice. The quasiperiodic lattice is described by an ex-
ponentially decaying hopping and sustains energy-dependent
mobility edges. The adiabatic pumping can be implemented
by resorting to two channels and is always feasible be-
fore the occurrence of the Anderson localization of the
corresponding bulk subchannel, which results from the ex-
ponentially suppressed gap in the localized regime leading
to the Landau-Zener tunneling between sublevels. Therefore,
for both channels, successful pumping in the AA model
can be achieved until the system undergoes the localization-
delocalization transition, viz., when V < 2. Compared with
the AA model, the introduction of mobility edges increases

(decreases) the threshold of the transition for the bulk sub-
channel of channel A (B), which brings about a different
outcome for the adiabatic pumping in the two channels. In
other words, successful pumping in channel A persists even
after V > 2, but in channel B it survives only with a reduced
critical condition. If we interpret the incommensurate on-site
potential as a highly correlated disorder, overall, it turns out
that the presence of mobility edges actually facilitates the
robustness of the adiabatic pumping against quasidisorder.
Furthermore, depending on the pumping process, we have
shown that the transfer between excitations at both boundaries
of the lattice is anomalous in the delocalized regime, which
is characterized by the enhanced quasidisorder elevating the
fidelity of the excitation transfer. Moreover, there exists a
parametric regime where a nonreciprocal effect emerges. The
nonreciprocal effect results in unidirectional transport for the
excitation transfer, which is absent in the AA model. Based
on the nonreciprocal transport, a promising application could
be the exploitation and preparation of quantum diodes.

Although the present work focused on adiabatic evolution,
we also hope that more interest can be stimulated for the
exploration of quantum transport in quasicrystals based on
active controls, such as shortcuts to adiabaticity.
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