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By introducing four-phase modulations into round-robin-differential-phase-shift (RRDPS) quantum key dis-
tribution (QKD) protocol, the round-robin-differential-quadrature-phase-shift (RRDQPS) protocol is proposed.
According to the security proof of RRDQPS protocol, it is able to tolerate a higher error rate of key bits. However,
its performance with a practical weak coherent source is still unknown since that security proof only applies to
a single photon source. In this article, we give the security proof for the general n-photon RRDQPS protocol, by
which RRDQPS with a practical weak coherent source becomes feasible in the experiment. Through numerical
simulation, it is verified that RRDQPS protocol has an advantage over RRDPS protocol on transmission distance,
especially when the pulse number is small.
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I. INTRODUCTION

Quantum key distribution (QKD) promises proven uncon-
ditional secure key distribution between two distant parties
(usually called Alice and Bob). Since the first QKD pro-
tocol BB84 protocol [1] was proposed by Bennett and
Brassard, a lot of ingenious protocols [2–9] have been put for-
ward. Among them, the round-robin-differential-phase-shift
(RRDPS) protocol [8] has attracted attention because of its
distinctive characteristics. First, signal disturbance monitoring
is not indispensable in RRDPS. Due to this characteris-
tic, decoy states [10–12] and even error-rate monitoring
are not needed, which may reduce some potential loop-
holes of intensity modulators. The simplification of devices
and postprocessing could reduce the practical difficulty of
implementing real-life QKD systems. Second, as a high-
dimensional protocol [13], RRDPS may tolerate a higher
error rate compared to the well-known BB84 protocol, which
can be useful in some particular channels. For instance, the
well-known BB84 cannot generate any secret key if the error
rate is larger than 11% [14], while this value in RRDPS can
be substantially increased. Since the invention and the first
security proof given in [8], improved security proofs [15–19]
have been given to further enhance its performance. Several
experimental realizations [20–23] showed its practicability.

It is beneficial to briefly review the flow of RRDPS. Alice
first prepares packets of L (3 � L � 100 typically) coherent
pulses and the phase of each pulse is encoded from {0, π}
randomly corresponding to her raw key bit. Then the packets
are sent from Alice to Bob through an insecure channel. Bob
will randomly select two pulses in each packet and conduct

*yinzq@ustc.edu.cn

a phase differential measurement on them to acquire his key
bit. Through authentic classical communications, Bob tells the
indices of the pulses he selected to Alice, who can determine
her sifted key then. One can see the main difference between
RRDPS and the well-known phase-encoding BB84 is that the
former prepares L-pulse states instead of 2-pulse states in
BB84. Indeed, the random selection of two pulses among the
L pulses made by Bob plays an essential role in the security
of RRDPS. On the other hand, BB84 modulates four phases,
i.e., {0, π

2 , π, 3π
2 }, while RRDPS just employs {0, π}. So an

intuitive idea to improve the security of RRDPS is introducing
four-phase modulation like BB84 into RRDPS, which is the
very idea of the round-robin-differential-quadrature-phase-
shift (RRDQPS) protocol [24]. In the RRDQPS protocol,
Alice sends packets of L pulses to Bob like RRDPS. Differ-
ently, the phase of each pulse is modulated randomly from
{0, π

2 , π, 3π
2 } like phase-encoding BB84. Then Bob will per-

form a differential phase measurement on X -basis {0, π} or
Y -basis {π

2 , 3π
2 } uniformly at random, which is also quite like

phase-encoding BB84 except that the two pulses are randomly
chosen from the L pulses. RRDPS can be seen as an X -basis
case of RRDQPS. More interestingly, the phase-encoding
BB84 can be viewed as a special case of RRDQPS with L = 2.
In [25], the security proof for the RRDQPS protocol in the
single-photon case was given and significant improvement
on error tolerance compared to single-photon RRDPS can
be seen. However, without a security proof for the general
n-photon case, the RRDQPS protocol cannot be applied to
weak coherent-state pulse (WCP) sources.

In this article, we will give an asymptotic security proof
for the n-photon RRDQPS protocol, and then we apply our
result to RRDQPS with WCP source to see its improvement
in practice. Numerical simulation shows that, when the bit
error rate is monitored, larger error rates can be tolerated
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by the RRDQPS protocol than the RRDPS protocol. More
importantly, a longer transmission distance can be achieved.
This article is organized as follows. In Sec. II, the flow of the
RRDQPS protocol is listed. In Sec. III, we give the sketch of
the security proof (see a detailed proof in the Appendixes).
Some discussions of our result and a comparison between
RRDQPS and RRDPS with WCP sources are given in Sec. IV.
Finally, we come to the conclusion in Sec. V.

II. PROTOCOL DESCRIPTION

The RRDQPS protocol with a WCP source is described
below.

(1) Alice prepares packets of L pulses and the phase of
each pulse is modulated from {0, π

2 , π, 3π
2 } randomly. Since

the pulses are produced from a WCP source and phase ran-
domization is conducted between packets, the quantum state
of each packet is a mixed state of pure Fock states, and the
mixed state ratios follow a Poisson distribution. So the state
of a packet is shown as

|ψ〉 〈ψ | =
∞∑

n=0

(Lμ)ne−Lμ

n!
|ψn〉 〈ψn| , (1)

where μ is the average photon number per pulse and |ψn〉 is
the state when there are n photons in a packet. For example,
we have

|ψ1〉 = 1√
L

L∑
m=1

ikm |m〉 , (2)

|ψ2〉 = 1

L

(
L∑

m=1

i2km |mm〉 +
√

2
∑

1�m<p�L

ikm+kp |mp〉
)

, (3)

where i is the imaginary unit, km ∈ {0, 1, 2, 3} means that
Alice modulates phase kmπ/2 for the mth pulse in this packet,
and |m〉 means that the single photon in this packet is in the
mth pulse. Similarly, |mp〉 means that there are two photons in
the packet and they are in the mth and pth pulses, respectively.

(2) Packets of pulses are sent from Alice to Bob through
an insecure channel where the eavesdropper (usually called
Eve) can conduct attacks. Bob selects a pulse delay value r ∈
{1, 2, . . . , L − 1} and detects the X basis or Y basis randomly
for each packet. When the X basis is selected, Bob conducts
the detection projecting to (|a〉 ± |b〉)/

√
2, where b − a = r

for all a, b ∈ {1, 2, . . . , L}. When the Y basis is selected, Bob
projects the state into (|a〉 ± i |b〉)/

√
2, (b − a = r). In exper-

imental realization, this kind of detection can be realized by
a Mach-Zehnder interferometer with a phase modulator and a
variable delay [24]. We assume that the detectors of Bob could
discriminate between single-photon clicks from two or more
photon clicks. Only when there is one single-photon click in
a packet can the detecting result be recorded as a successful
click.

(3) After the transmission of sufficient packets, Bob pub-
licly discloses the two time-bins a, b and the detecting bases
for each packet with successful click. Alice also claims the
X (Y ) basis if |ka − kb| is even (odd). Then Alice and Bob
discard the events with mismatched encoding and detecting
bases. Encoding and detecting events associated with (|a〉 +

|b〉)/
√

2 and (|a〉 + i |b〉)/
√

2 are recorded as bit 0, while
(|a〉 − |b〉)/

√
2 and (|a〉 − i |b〉)/

√
2 are recorded as bit 1.

Finally, classical postprocessing is conducted to obtain the
final key.

III. SECURITY PROOF

The essential of the security proof is to bound Eve’s in-
formation on the key bits. In the main text, we only give
the sketch of the proof, but leave the detailed proof in our
Appendixes. To sketch the security proof for the n-photon
case, we begin from the single-photon case for the ease of
reading, though a proof for this case has been given in [25].
In the single-photon case the state sent from Alice is |ψ1〉 =∑L

m=1 ikm |m〉. The general collective attack can be given as
UEve |m〉 |e0|0〉 =∑L

j=1 cm| j | j〉 |em| j〉, where the state of Eve’s
ancilla |em| j〉 corresponds to Eve’s transformation from |m〉
to | j〉 which will be sent to Bob. After Bob’s projection to
the ath and bth pulses, the terms of |em| j〉 ( j �= a, b) become
irrelevant for guessing the key bit. It is worth noting that Eve
cannot get any information from the terms of |em|a〉 (|em|b〉) for
m �= a, b because the phase encoding bits km �=a,b ∈ {0, 1, 2, 3}
are randomly selected and never disclosed by Alice. After the
disclosing of bases, Eve’s information can be estimated by a
Holevo bound for the X and Y bases, respectively. Then the
average information Eve can get is the mean of the informa-
tion for the X and Y bases, which is

IAE � ϕ[(L − 1)x1, x2]/(L − 1), (4)

where ϕ(x, y) = −x log2 x − y log2 y + (x + y) log2(x + y).
Here x1 =∑m c2

m|m, x2 =∑m �=n c2
m|n satisfying 0 � x1 � 1,

0 � x2 � 1 and x1 + x2 = 1. x1 and x2 depend on the attack
Eve conducts. So for all attacks we have the upper bound of
Eve’s information IU

AE = maxx1,x2 ϕ[(L − 1)x1, x2]/(L − 1).
Furthermore, the bit error rate of key bits E can also be related
to x’s, namely E � 1

2 x2. Then we can get the information of
Eve at the condition of error rate E . The detailed security
proof can be seen in Appendix A.

With a similar method we can get the security proof of
the two-photon case, which is present in Appendix B. The
key point is that the variables cm| j in the single-photon case
become cmn| j because we must analyze Eve’s transformation
from |mn〉 to | j〉 in the two-photon case. Of course, this leads
to a complicated form of IAE , namely,

IAE � ϕ[(L − 1)x1 + x2, x3] + ϕ[(L − 2)x3, 2x4]

L − 1
, (5)

E � (
√

(L − 1)x1 − √
x3)

2 + (L − 1)x2 + (L − 1)x4

2(L − 1)
. (6)

Here x1 =∑m c2
mm|m, x2 =∑m �=n c2

mm|n, x3 =∑m �=n c2
mn|m,

and x4 =∑m<n;p�=m,n c2
mn|p. The nonnegative x’s satisfy x1 +

x2 + x3 + x4 = 1.
According to the examples of the single-photon and two-

photon cases, it is easy to see that IAE and E can be fully
characterized by a set of variables x’s, and its size becomes
larger when the photon number increases. Actually, in Ap-
pendix C we give the security proof for the three-photon case
and seven x’s should be used.
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Finally, we give the security proof for the n-photon case in
Appendix E. The result is complex and we only give the form
here, which is shown as

IAE � 1

L − 1

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 < n

fϕ (M, n), (7)

E � 1

2(L − 1)

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

fE (M, n). (8)

Here fϕ and fE are expressions about the x’s (please see Ap-
pendix E for details). M = [M1, M2, M3] means that there are
Mi pulses containing i + 4p (p = 0, 1, 2, . . . ) photons in the
L − 2 pulses (the ath and the bth pulses are excluded). Though
the photon number nj of the jth pulse can be larger than 3,
the phase modulation in j k j equals i(n j−4)k j . So the behaviors
of 5, 9, 13, . . . photon pulses are the same as the behavior of
the one-photon pulses. Therefore, the three elements of M are
enough to represent the pulses of any photon number.

To calculate the upper bound of Eve’s information, one can
refer to Eqs. (E37) and (E51) in Appendix E to see the expres-
sion of fϕ and fE . Then, for a given photon number n, Eqs. (7)
and (8) become expressions about x’s. The parameters named
as x have three restrictions. First, the summation of all x’s
equals 1. Second, for a given error rate E , Eq. (8) should be
satisfied. Third, the x’s are all nonnegative. Under these three
restrictions, one can find a group of x’s reaching the maximum
of Eq. (7).

IV. DISCUSSION

In this discussion, we first compare our results with the
existing security proof to check the validity of the results and
then focus on the performance of RRDQPS with practical
WCP.

As a generalized security proof, it is natural to com-
pare our results with the existing proof for the single-photon
case in [25]. Eve’s information and the bit error rate ob-
tained in [25] are shown as IAE � maxx1,2,3,4 [ϕ(x1, x2/(L −
1)] + ϕ[x3/(L − 1), x4)] and E = (x2 + x3)/2 + x4 for the
single-photon case. Here nonnegative x1, x2, x3, and x4 satisfy
x1 + x2 + x3 + x4 = 1. Though our result has different forms,
these results are equivalent because the maximum of IAE ,
i.e., IU

AE always holds when x3 = x4 = 0 (if E is involved)
or x2/x3 = x1/x4 (if E is not involved or E is large enough
to have no restriction on the x’s). When x2/x3 = x1/x4, IAE

in [25] is given by

ϕ[x1, x2/(L − 1)] + ϕ[x3/(L − 1), x4]

= ϕ[x1 + x4, (x2 + x3)/(L − 1)]

= ϕ[(L − 1)(x1 + x4), x2 + x3]/(L − 1), (9)

which equals our result when E is not involved. When E is
involved, we have x3 = x4 = 0, so our results are also the
same.

In the following, with our security proof, a detailed com-
parison between RRDPS and RRDQPS can be made.

First, when E is not used to get IAE , our result shows that
RRDPS and RRDQPS protocols have a same upper bound IU

AE .

TABLE I. Maximum error rate when only n-photon packets are
used and L = 8.

n RRDPS without E RRDPS with E RRDQPS with E

1 17.63% 19.13% 19.93%
2 8.58% 9.69% 10.56%
3 3.92% 4.73% 6.08%
4 1.51% 2.02% 3.80%

So there is no advantage for RRDQPS protocol without error
monitoring. In the following, we will discuss the difference
when E is involved.

Let us begin with the maximum tolerable error rate
Emax, defined by IU

AE (Emax) = 1 − H2(Emax), where H2(x) =
−x log2 x − (1 − x) log2(1 − x) is the binary Shannon en-
tropy function. In Table I, we list Emax for each protocol when
only n-photon packets are used and when L = 8. We can see
the RRDQPS protocol has an advantage over the RRDPS
protocol, especially when photon number n is large.

Then we will use our result on the WCP source QKD
scheme to show its improvement. For a WCP source with
phase randomization between packets, the probability of pro-
ducing an n-photon packet is shown as

p(n) = (Lμ)ne−Lμ

n!
, (10)

where μ is the average photon number of a pulse.
When the pulse delay r is selected, only (L − r) detecting

windows are opened, so the counting rate is

Q(r) = (1 − d )2(L−r)−1e−(L−r)ημ[(L − r)ημ + 2(L − r)d],
(11)

where d is the dark counting rate of two detectors of Bob. η is
the transmission efficiency from Alice to Bob, and the detect-
ing efficiency is also included in it. For all r ∈ {1, 2, . . . , L −
1}, the total counting rate is Q =∑L−1

r=1 Q(r)/(L − 1).
The bit error rate E is shown as

EQ =
L−1∑
r=1

1

L − 1
(1 − d )2(L−r)−1e−(L−r)ημ

× [(L − r)ημemis + (L − r)d], (12)

where emis is the probability that an incident photon clicks an
erroneous detector due to interferometer misalignment.

If Bob knows the ratio of his clicks from single-photon
packets, from two-photon packets, and so on, the secret key
rate per pulse R is given by

2RL = Q[1 − H2(E )] − [Q1IU
AE1

(E1) + Q2IU
AE2

(E2) + . . . ],

(13)

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
Shannon entropy function. Qn is the counting rate and En is the
error rate for the n-photon packet. IU

AEn
means the maximum

of IAE when the photon number is n. However, Qn and En are
unknown to Alice and Bob.

We assume that when the photon number is larger than νth,
no security key can be produced, so the optimal attack for Eve
is that all packets with photon number larger than νth are sent
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FIG. 1. The simulation results of secret key rate when emis = 0.015, d = 10−6. And for (a), (b) and (c), L = 4, 8, 16 separately.

to Bob without attenuation, which means

∞∑
k=1

Qνth+kIU
AEνth+k

(Eνth+k ) � esrc, (14)

where esrc = 1 −∑νth
n=0

e−Lμ(Lμ)n

n! . When the equality holds we
have

νth∑
n=0

Qn = Q − esrc. (15)

Then we can obtain
∞∑

n=1

QnIU
AEn

(En) �
νth∑

n=1

QnIU
AEn

(En) + esrc

�
νth∑

n=0

QnIU
AEνth

(En) + esrc

�
(

νth∑
n=0

Qn

)
IU
AEνth

(∑νth
n=0 QnEn∑νth

n=0 Qn

)
+ esrc

� (Q − esrc)IU
AEνth

(
QE

Q − esrc

)
+ esrc. (16)

Here we used the concavity of IU
AEνth

(E ), which is proven in

Appendix F. When m � n, IU
AEm

(E ) � IU
AEn

(E ) is obvious.
So we have

2RL � Q[1 − H2(E )] − esrc − (Q − esrc)IU
AEνth

(
QE

Q − esrc

)
.

(17)

Then we can optimize μ and νth to get the largest R.
We simulated the key rates (per pulse) when L = 4, 8, 16,

which are shown in Fig. 1. We use the method in [16] to
calculate the key rates of the RRDPS protocol. The key rates
for phase-encoding BB84 are also simulated for comparison.
In the simulation, we set emis = 0.015 and d = 10−6. When
attenuation is small, the RRDQPS protocol has no advan-
tage because of the 1/2 coefficient from bases correcting.
But when attenuation is large, the RRDQPS protocol over-
whelms RRDPS and has a longer transmission distance. We
can see that RRDQPS protocol has more advantage when L is
small.

We also simulated the key rate under high error rate, which
is shown in Fig. 2. The parameters are set to be L = 8,
emis = 0.175, and d = 10−6. No keys can be produced un-
der this error rate by the BB84 protocol, while RRDPS and
RRDQPS can still work. Larger key rates can be achieved
by the RRDQPS protocol on this condition, which means
the RRDQPS protocol has a higher error tolerance than the
RRDPS protocol.

Compared with the well-known BB84 protocol, we can
see that higher error tolerance is a distinct advantage for the
RRDQPS protocol. The BB84 protocol must use decoy states
to have a long transmission distance. However, decoy states
are not needed in the RRDQPS protocol. Thus high speed
intensity modulators are not needed. Some potential loopholes
might be avoided. Therefore, in some high noise channels, the
RRDQPS protocol can be a good alternative.

Finally, we must stress that it is not restrictive to extend
the proof to be against coherent attack, though it is present at
the condition of collective attack. Indeed, with the quantum
de Finetti theorem [26,27] or postselection technique [28], the
security proof for a discrete-variable QKD protocol against
collective attack can also hold when coherent attacks are
conducted, provided an additional reduction of the key size
is performed.

FIG. 2. The simulation results of secret key rate when L = 8,
emis = 0.175, and d = 10−6. BB84 protocol and RRDPS protocol
without monitoring error rate cannot work on this condition.
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V. SUMMARY

To summarize, we give a security proof for the RRDQPS
protocol and conduct a simulation to show its improvement.

The RRDQPS and RRDPS protocols can run without mon-
itoring error rates, but RRDQPS has no advantage on this
condition. When error rate is considered, the RRDQPS and
RRDPS protocols can also run without decoy states. On this
condition, a longer transmission distance can be achieved by
the RRDQPS protocol.

In our simulation, we show that at long distance, the
RRDQPS protocol has a higher key rate than RRDPS. The
advantage is more notable when L is small. While in exper-

iment RRDPS or RRDQPS protocols with large L are hard
to realize and the phase modulation from two phases to four
phases is easy to achieve, RRDQPS could be a good method
to improve transmission distance.
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APPENDIX A: SECURITY PROOF IN THE SINGLE-PHOTON CASE

Alice randomly prepares the single photon state |ψ〉 =∑L
m=1 ikm |m〉, where i is the imaginary unit, km ∈ {0, 1, 2, 3} is

Alice’s random phase modulation, and |m〉 (m ∈ {1, . . . , L}) represents that a single photon is in the mth time bin. Eve’s general
collective attack can be given by

UEve |m〉 |e0|0〉 =
L∑
j

cm| j | j〉 |em| j〉 =
L∑
j

C̃m| j | j〉 , (A1)

where |em| j〉 is the quantum state of Eve’s ancilla. We denote cm| j |em| j〉 as C̃m| j .
After the measurement of Bob, Bob’s state will be projected to (|a〉 ± |b〉)/

√
2 (X basis) or (|a〉 ± i |b〉)/

√
2 (Y basis). Eve

can know Bob’s basis information which is disclosed after Bob’s measurement. Thus we can analyze the X -basis and Y -basis
cases separately.

If Bob projects the state into the ath and bth time bins, the state of Eve’s ancilla and Bob’s photon will become

UEve |ψ〉 |e0|0〉 −→ika (C̃a|a |a〉 + C̃a|b |b〉) + ikb (C̃b|a |a〉 + C̃b|b |b〉) +
∑

m �=a,b

ikm (C̃m|a |a〉 + C̃m|b |b〉). (A2)

If Bob projects to the X basis, the state of Eve is a mixed state of two states when Alice prepares (|a〉 + |b〉)/
√

2
or (|a〉 − |b〉)/

√
2. Eve’s state of (|a〉 + |b〉)/

√
2 is from the state Eq. (A2) when ka = kb and we calculate the mean for

km = 0, 1, 2, 3 (m �= a, b), which are randomly selected and unknown to Eve:

ρxs =
[

P{C̃a|a + C̃b|a} +
∑

m �=a,b

P{C̃m|a}
]

+
[

P{C̃a|b + C̃b|b} +
∑

m �=a,b

P{C̃m|b}
]

= P{C̃a|a + C̃b|a} +
∑

m �=a,b

P{C̃m|a} + Part{b}.

(A3)

We see two similar parts with the only difference of the last subscript a and b of C̃. So we denote the second part with subscript
b as Part{b}. We also define P{|a〉} = |a〉 〈a|.

Eve’s state of (|a〉 − |b〉)/
√

2 is

ρxd = P{C̃a|a − C̃b|a} +
∑

m �=a,b

P{C̃m|a} + Part{b}. (A4)

For the Y basis, Eve’s state of (|a〉 + i |b〉)/
√

2 is

ρys = P{C̃a|a + iC̃b|a} +
∑

m �=a,b

P{C̃m|a} + Part{b}. (A5)

In addition, Eve’s state of (|a〉 − i |b〉)/
√

2 is

ρyd = P{C̃a|a − iC̃b|a} +
∑

m �=a,b

P{C̃m|a} + Part{b}. (A6)

Without compromising the security, we assume that 〈ek|m| |el|n〉 = δklδmn. Then Eve’s information of the X basis can be given
by the Holevo bound, which is

Q(a,b)
x I (a,b)

AEx
� S

(
1

2
ρxs + 1

2
ρxd

)
−
(

1

2
S(ρxs) + 1

2
S(ρxd )

)

= −c2
a|a log2 c2

a|a − c2
b|a log2 c2

b|a + (c2
a|a + c2

b|a
)

log2

(
c2

a|a + c2
b|a
)+ Part{b}

= ϕ
(
c2

a|a, c2
b|a
)+ ϕ

(
c2

a|b, c2
b|b
)
, (A7)
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where S(ρ) is the von Neumann entropy of state ρ and ϕ(x, y) = −x log2 x − y log2 y + (x + y) log2(x + y). Q(a,b)
x is the yield

when Bob uses the X basis and projects to the ath and bth time bins.
Similarly, we have Q(a,b)

y I (a,b)
AEy

� ϕ(c2
a|a, c2

b|a) + ϕ(c2
a|b, c2

b|b) and here 1
2 (Q(a,b)

x + Q(a,b)
y ) =∑m(c2

m|a + c2
m|b).

Then we can get the ratio of Eve’s information,

IAE =
1
2

∑
a<b

(
Q(a,b)

x I (a,b)
AEx

+ Q(a,b)
y I (a,b)

AEy

)
1
2

∑
a<b

(
Q(a,b)

x + Q(a,b)
y
) �

∑
a<b

[
ϕ
(
c2

a|a, c2
b|a
)+ ϕ

(
c2

a|b, c2
b|b
)]

∑
a<b

∑
m

(
c2

m|a + c2
m|b
)

�
ϕ
(∑

a<b

(
c2

a|a + c2
b|b
)
,
∑

a<b

(
c2

b|a + c2
a|b
))

∑
a<b

∑
m

(
c2

m|a + c2
m|b
) = ϕ[(L − 1)x1, x2]

L − 1
. (A8)

Here we used the inequality ϕ(a, b) + ϕ(c, d ) � ϕ(a + c, b + d ), which is because ϕ(x, y) = (x + y)H2( x
x+y ) where H2(x) =

−x log2 x − (1 − x) log2(1 − x) is the binary entropy function and H2 is concave. Because ϕ(ax, ay) = (ax + ay)H2( x
x+y ) =

aϕ(x, y), we can set
∑L

m,n c2
m|n = 1 without loss of generality.

Here x1 =∑m c2
m|m, x2 =∑m �=n c2

m|n, x1 + x2 = 1. The x’s are nonnegative. The x’s are also restricted by the error rate of the
sifted keys. Then we give the error rate.

From Eq. (A2), we can obtain the rates that Bob gets (|a〉 − |b〉)/
√

2 when ka = kb and gets (|a〉 + |b〉)/
√

2 when ka = kb + 2
mod 4. They are errors of the X basis, which are

Q(a,b)
xs E (a,b)

xs = 1

2

(
|C̃a|a − C̃a|b + C̃b|a − C̃b|b|2 +

∑
m �=a,b

|C̃m|a − C̃m|b|2
)

, (A9)

Q(a,b)
xd E (a,b)

xd = 1

2

(
|C̃a|a + C̃a|b − C̃b|a − C̃b|b|2 +

∑
m �=a,b

|C̃m|a + C̃m|b|2
)

. (A10)

Here we calculated the mean for km = 0, 1, 2, 3 (m �= a, b).
We can also get the errors that Bob gets (|a〉 − i |b〉)/

√
2 when kb = ka + 1 mod 4 and gets (|a〉 + i |b〉)/

√
2 when kb =

ka + 3 mod 4. They are

Q(a,b)
ys E (a,b)

ys = 1

2

(
|C̃a|a + iC̃a|b + iC̃b|a − C̃b|b|2 +

∑
m �=a,b

|C̃m|a + iC̃m|b|2
)

, (A11)

Q(a,b)
yd E (a,b)

yd = 1

2

(
|C̃a|a − iC̃a|b − iC̃b|a − C̃b|b|2 +

∑
m �=a,b

|C̃m|a − iC̃m|b|2
)

. (A12)

The overall error is the mean from Eqs. (A9) to (A12) for all a and b, which is

EQ =
∑
a<b

1

2

[
|C̃a|a − C̃b|b|2 + |C̃a|b|2 + |C̃b|a|2 +

∑
m �=a,b

(|C̃m|a|2 + |C̃m|b|2
)]

� 1

2
[0 + x2 + (L − 2)x2] = 1

2
(L − 1)x2. (A13)

Here Q = 1
2

∑
a<b(Q(a,b)

x + Q(a,b)
y ) = L − 1, so we can get

E � 1
2 x2. (A14)

Finally, we can get a bound of IAE with Eq. (A8), Eq. (A14), and x1 + x2 = 1, x1 � 0, x2 � 0.

APPENDIX B: SECURITY PROOF IN THE TWO-PHOTON CASE

Alice randomly prepares the two-photon state |ψ〉 =∑L
m=1(−1)km |mm〉 +∑1�m<n�L ikm+kn |mn〉, where km, kn ∈ {0, 1, 2, 3}

are Alice’s random phase modulations and |mn〉 represents that there are two photons in a packet; they are in the mth and nth
time bins, respectively. Eve’s general collective attack can be shown as

UEve |mn〉 |e00|0〉 =
L∑

l=1

cmn|l |l〉 |emn|l〉 =
L∑

l=1

C̃mn|l |l〉 . (B1)

Note that the realistic state should be |ψ〉 =∑L
m(−1)m |mm〉 + √

2
∑

1�m<n�L ikm+kn |mn〉. But the constant coefficients can be
absorbed into cmn|l s, so we just ignore them (the same for our three-photon case and the n-photon case).
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If Bob projects the state into the ath and bth time bins, the state of Eve’s ancilla and Bob’s photon will become

UEve |ψ〉 |e00|0〉 −→ (−1)ka (C̃aa|a |a〉 + C̃aa|b |b〉) + (−1)kb (C̃bb|a |a〉 + C̃bb|b |b〉)

+
∑

m �=a,b

(−1)km (C̃mm|a |a〉 + C̃mm|b |b〉) + ika+kb (C̃ab|a |a〉 + C̃ab|b |b〉)

+
∑

m<n;m,n �=a,b

ikm+kn (C̃mn|a |a〉 + C̃mn|b |b〉) +
∑

m �=a,b

ikm
[
ika (C̃ma|a |a〉 + C̃ma|b |b〉) + ikb (C̃mb|a |a〉 + C̃mb|b |b〉)

]
.

(B2)

If Bob projects to the X basis, the state of Eve is a mixed state of two states when Alice prepares (|a〉 + |b〉)/
√

2 or (|a〉 −
|b〉)/

√
2. Eve’s state of (|a〉 + |b〉)/

√
2 is

ρxs = P{C̃aa|a + C̃bb|a + C̃ab|a} +
∑

m �=a,b

P{C̃mm|a} +
∑

m<n;m,n �=a,b

P{C̃mn|a} +
∑

m �=a,b

P{C̃ma|a + C̃mb|a} + Part{b}. (B3)

Here we calculated the mean for km = 0, 1, 2, 3 (m �= a, b).
Eve’s state of (|a〉 − |b〉)/

√
2 is

ρxd =P{C̃aa|a + C̃bb|a − C̃ab|a} +
∑

m �=a,b

P{C̃mm|a} +
∑

m<n;m,n �=a,b

P{C̃mn|a} +
∑

m �=a,b

P{C̃ma|a − C̃mb|a} + Part{b}. (B4)

For the Y basis, Eve’s state of (|a〉 + i |b〉)/
√

2 is

ρys =P{C̃aa|a − C̃bb|a + iC̃ab|a} +
∑

m �=a,b

P{C̃mm|a} +
∑

m<n;m,n �=a,b

P{C̃mn|a} +
∑

m �=a,b

P{C̃ma|a + iC̃mb|a} + Part{b}. (B5)

Also Eve’s state of (|a〉 − i |b〉)/
√

2 is

ρyd =P{C̃aa|a − C̃bb|a − iC̃ab|a} +
∑

m �=a,b

P{C̃mm|a} +
∑

m<n;m,n �=a,b

P{C̃mn|a} +
∑

m �=a,b

P{C̃ma|a − iC̃mb|a} + Part{b}. (B6)

For the X basis, the Holevo bound of Eve’s information is

Q(a,b)
x I (a,b)

AEx
� ϕ

(|C̃aa|a + C̃bb|a|2, |C̃ab|a|2
)+ ϕ

(|C̃aa|b + C̃bb|b|2, |C̃ab|b|2
)+

∑
m �=a,b

[
ϕ
(|C̃ma|a|2, |C̃mb|a|2

)+ ϕ
(|C̃ma|b|2, |C̃mb|b|2

)]
.

(B7)

In addition, for the Y basis, the Holevo bound of Eve’s information is

Q(a,b)
y I (a,b)

AEy
�ϕ
(|C̃aa|a − C̃bb|a|2, |C̃ab|a|2

)+ ϕ
(|C̃aa|b − C̃bb|b|2, |C̃ab|b|2

)+
∑

m �=a,b

[
ϕ
(|C̃ma|a|2, |C̃mb|a|2

)+ ϕ
(|C̃ma|b|2, |C̃mb|b|2

)]
.

(B8)

Then Eve’s information is

QIAE =
∑
a<b

1

2

(
Q(a,b)

x I (a,b)
AEx

+ Q(a,b)
y I (a,b)

AEy

)

�
∑
a<b

(
ϕ
(
c2

aa|a + c2
bb|a + c2

aa|b + c2
bb|b, c2

ab|a + c2
ab|b
)+

∑
m �=a,b

ϕ
(
c2

ma|a + c2
mb|b, c2

mb|a + c2
ma|b
))

� ϕ

(∑
a<b

c2
aa|a + c2

bb|a + c2
aa|b + c2

bb|b,
∑
a<b

c2
ab|a + c2

ab|b

)
+ ϕ

(∑
a<b

∑
m �=a,b

c2
ma|a + c2

mb|b,
∑
a<b

∑
m �=a,b

c2
mb|a + c2

ma|b

)

= ϕ[(L − 1)x1 + x2, x3) + ϕ((L − 2)x3, 2x4]. (B9)

Here we have

x1 =
∑

m

c2
mm|m, x2 =

∑
m �=n

c2
mm|n, x3 =

∑
m �=n

c2
mn|m, x4 =

∑
m<n;p�=m,n

c2
mn|p. (B10)

And here

Q =
∑
a<b

∑
m�n

(
c2

mn|a + c2
mn|b
) = (L − 1)(x1 + x2 + x3 + x4) = L − 1. (B11)
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We have

IAE � ϕ[(L − 1)x1 + x2, x3] + ϕ[(L − 2)x3, 2x4]

L − 1
. (B12)

Then we give the error rate from Eq. (B2).
We can get the rates that Bob gets (|a〉 − |b〉)/

√
2 when ka = kb and gets (|a〉 + |b〉)/

√
2 when ka = kb + 2 mod 4, which

are

Q(a,b)
xs E (a,b)

xs = 1

2

{
|C̃aa|a − C̃aa|b + C̃bb|a − C̃bb|b + C̃ab|a − C̃ab|b|2 +

∑
m �=a,b

|C̃mm|a − C̃mm|b|2

+
∑

m<n;m,n �=a,b

|C̃mn|a − C̃mn|b|2 +
∑

m �=a,b

|C̃ma|a − C̃ma|b + C̃mb|a − C̃mb|b|2
}

, (B13)

Q(a,b)
xd E (a,b)

xd = 1

2

{
|C̃aa|a + C̃aa|b + C̃bb|a + C̃bb|b − C̃ab|a − C̃ab|b|2 +

∑
m �=a,b

|C̃mm|a + C̃mm|b|2

+
∑

m<n;m,n �=a,b

|C̃mn|a + C̃mn|b|2 +
∑

m �=a,b

|C̃ma|a + C̃ma|b − C̃mb|a − C̃mb|b|2
}

. (B14)

Here we calculated the mean for km = 0, 1, 2, 3 (m �= a, b).
We can also get the errors that Bob gets (|a〉 − i |b〉)/

√
2 when kb = ka + 1 mod 4 and gets (|a〉 + i |b〉)/

√
2 when kb =

ka + 3 mod 4, which are

Q(a,b)
ys E (a,b)

ys = 1

2

{
|C̃aa|a + iC̃aa|b − C̃bb|a − iC̃bb|b + iC̃ab|a − C̃ab|b|2 +

∑
m �=a,b

|C̃mm|a + iC̃mm|b|2

+
∑

m<n;m,n �=a,b

|C̃mn|a + iC̃mn|b|2 +
∑

m �=a,b

|C̃ma|a + iC̃ma|b + iC̃mb|a − C̃mb|b|2
}

. (B15)

Q(a,b)
yd E (a,b)

yd = 1

2

{
|C̃aa|a − iC̃aa|b − C̃bb|a + iC̃bb|b − iC̃ab|a − C̃ab|b|2 +

∑
m �=a,b

|C̃mm|a − iC̃mm|b|2

+
∑

m<n;m,n �=a,b

|C̃mn|a − iC̃mn|b|2 +
∑

m �=a,b

|C̃ma|a − iC̃ma|b − iC̃mb|a − C̃mb|b|2
}

. (B16)

The overall error is the mean from Eqs. (B13) to (B16) for all a and b, which is

EQ = 1

2

∑
a<b

{
|C̃aa|a − C̃ab|b|2 + |C̃bb|b − C̃ab|a|2 + |C̃bb|a|2 + |C̃aa|b|2

+
∑

m �=a,b

(|C̃mm|a|2 + |C̃mm|b|2
)+

∑
m<n;m,n �=a,b

(|C̃mn|a|2 + |C̃mn|b|2
)

+
∑

m �=a,b

(|C̃ma|a − C̃mb|b|2 + |C̃ma|b|2 + |C̃mb|a|2
)}

. (B17)

Then we use the inequalities that |ã − b̃|2 + |x̃ − ỹ|2 � (
√

a2 + x2 −
√

b2 + y2)2 and (
√

a − √
b)2 + (

√
x − √

y)2 �
(
√

a + x − √
b + y)2. We have

EQ � 1

2

⎧⎨
⎩
⎛
⎝√∑

a<b

(
c2

aa|a + c2
bb|b
)−

√∑
a<b

(
c2

ab|b + c2
ab|a
)⎞⎠

2

+
∑
a<b

(
c2

bb|a + c2
aa|b
)

+
∑
a<b

∑
m �=a,b

(
c2

mm|a + c2
mm|b

)+
∑
a<b

∑
m<n;m,n �=a,b

(
c2

mn|a + c2
mn|b
)+

∑
a<b

∑
m �=a,b

(
0 + c2

ma|b + c2
mb|a
)}

= 1

2
[(
√

(L − 1)x1 − √
x3)2 + x2 + (L − 2)x2 + (L − 3)x4 + 2x4]

= 1

2
[(
√

(L − 1)x1 − √
x3)2 + (L − 1)x2 + (L − 1)x4]. (B18)
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Then

E � (
√

(L − 1)x1 − √
x3)

2 + (L − 1)x2 + (L − 1)x4

2(L − 1)
. (B19)

APPENDIX C: SECURITY PROOF IN THE THREE-PHOTON CASE

Alice randomly prepares the three-photon state |ψ〉 =∑L
m=1 i3km |mmm〉 +∑1�m,n�L;m �=n i2km+kn |mmn〉 +∑

1�m<n<p�L ikm+kn+kp |mnp〉, where km, kn, kp ∈ {0, 1, 2, 3} are Alice’s random phase modulations and |mnp〉 represents
that there are three photons in a packet, and they are in the mth, nth, and the pth time bins, respectively. Eve’s general collective
attack can be shown as

UEve |mnp〉 |e000|0〉 =
L∑

l=1

cmnp|l |l〉 |emnp|l〉 =
L∑

l=1

C̃mnp|l |l〉 . (C1)

If Bob projects the state into the ath and bth time bins, the state of Eve’s ancilla and Bob’s photon will become

UEve |ψ〉 |e000|0〉 −→ i3ka (C̃aaa|a |a〉 + C̃aaa|b |b〉) + i3kb (C̃bbb|a |a〉 + C̃bbb|b |b〉) +
∑

m �=a,b

i3km (C̃mmm|a |a〉 + C̃mmm|b |b〉)

+ i2ka+kb (C̃aab|a |a〉 + C̃aab|b |b〉) + ika+2kb (C̃abb|a |a〉 + C̃abb|b |b〉)

+
∑

m �=a,b

i2km [ika (C̃amm|a |a〉 + C̃amm|b |b〉) + ikb (C̃bmm|a |a〉 + C̃bmm|b |b〉)]

+
∑

m �=a,b

ikm [i2ka (C̃aam|a |a〉 + C̃aam|b |b〉) + i2kb (C̃bbm|a |a〉 + C̃bbm|b |b〉)]

+
∑

m,n �=a,b;m �=n

i2km+kn (C̃mmn|a |a〉 + C̃mmn|b |b〉) +
∑

m �=a,b

ikm+ka+kb (C̃mab|a |a〉 + C̃mab|b |b〉)

+
∑

m,n �=a,b;m<n

ikm+kn [ika (C̃mna|a |a〉 + C̃mna|b |b〉) + ikb (C̃mnb|a |a〉 + C̃mnb|b |b〉)]

+
∑

m<n<p;m,n,p�=a,b

ikm+kn+kp (C̃mnp|a |a〉 + C̃mnp|b |b〉). (C2)

If Bob projects to the X basis, the state of Eve is a mixed state of two states when Alice prepares (|a〉 + |b〉)/
√

2 or (|a〉 −
|b〉)/

√
2. Eve’s state of (|a〉 + |b〉)/

√
2 is

ρxs = P{C̃aaa|a + C̃bbb|a + C̃aab|a + C̃abb|a} +
∑

m �=a,b

P{C̃mmm|a} +
∑

m �=a,b

P{C̃amm|a + C̃bmm|a}

+
∑

m �=a,b

P{C̃aam|a + C̃bbm|a + C̃mab|a} +
∑

m,n �=a,b;m �=n

P{C̃mmn|a}

+
∑

m<n;m,n �=a,b

P{C̃mna|a + C̃mnb|a} +
∑

m<n<p;m,n,p�=a,b

{C̃mnp|a} + Part{b}. (C3)

Here we calculated the mean for km = 0, 1, 2, 3 (m �= a, b).
And Eve’s state of (|a〉 − |b〉)/

√
2 is

ρxd = P{C̃aaa|a − C̃bbb|a − C̃aab|a + C̃abb|a} +
∑

m �=a,b

P{C̃mmm|a} +
∑

m �=a,b

P{C̃amm|a − C̃bmm|a}

+
∑

m �=a,b

P{C̃aam|a + C̃bbm|a − C̃mab|a} +
∑

m,n �=a,b;m �=n

P{C̃mmn|a}

+
∑

m<n;m,n �=a,b

P{C̃mna|a − C̃mnb|a} +
∑

m<n<p;m,n,p�=a,b

{C̃mnp|a} + Part{b}. (C4)
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For the Y basis, Eve’s state of (|a〉 + i |b〉)/
√

2 is

ρys = P{C̃aaa|a − iC̃bbb|a + iC̃aab|a − C̃abb|a} +
∑

m �=a,b

P{C̃mmm|a} +
∑

m �=a,b

P{C̃amm|a + iC̃bmm|a}

+
∑

m �=a,b

P{C̃aam|a − C̃bbm|a + iC̃mab|a} +
∑

m,n �=a,b;m �=n

P{C̃mmn|a}

+
∑

m<n;m,n �=a,b

P{C̃mna|a + iC̃mnb|a} +
∑

m<n<p;m,n,p�=a,b

{C̃mnp|a} + Part{b}. (C5)

And Eve’s state of (|a〉 − i |b〉)/
√

2 is

ρyd = P{C̃aaa|a + iC̃bbb|a − iC̃aab|a − C̃abb|a} +
∑

m �=a,b

P{C̃mmm|a} +
∑

m �=a,b

P{C̃amm|a − iC̃bmm|a}

+
∑

m �=a,b

P{C̃aam|a − C̃bbm|a − iC̃mab|a} +
∑

m,n �=a,b;m �=n

P{C̃mmn|a}

+
∑

m<n;m,n �=a,b

P{C̃mna|a − iC̃mnb|a} +
∑

m<n<p;m,n,p�=a,b

{C̃mnp|a} + Part{b}. (C6)

For the X basis, the Holevo bound of Eve’s information is

Q(a,b)
x I (a,b)

AEx
� ϕ

(|C̃aaa|a + C̃abb|a|2, |C̃bbb|a + C̃aab|a|2
)+

∑
m �=a,b

ϕ
(
C̃2

amm|a, C̃2
bmm|a

)

+
∑

m �=a,b

ϕ
(|C̃aam|a + C̃bbm|a|2, C̃2

mab|a
)+

∑
m<n;m,n �=a,b

ϕ
(
C̃2

mna|a, C̃2
mnb|a

)+ Part{b}. (C7)

And for the Y basis, the Holevo bound of Eve’s information is

Q(a,b)
y I (a,b)

AEy
� ϕ

(|C̃aaa|a − C̃abb|a|2, |C̃bbb|a − C̃aab|a|2
)+

∑
m �=a,b

ϕ
(
C̃2

amm|a, C̃2
bmm|a

)

+
∑

m �=a,b

ϕ
(|C̃aam|a − C̃bbm|a|2, C̃2

mab|a
)+

∑
m<n;m,n �=a,b

ϕ
(
C̃2

mna|a, C̃2
mnb|a

)+ Part{b}. (C8)

Then Eve’s information is

QIAE =
∑
a<b

1

2

(
Q(a,b)

x I (a,b)
AEx

+ Q(a,b)
y I (a,b)

AEy

)

�
∑
a<b

[
ϕ
(
c2

aaa|a + c2
bbb|b + c2

abb|a + c2
aab|b, c2

bbb|a + c2
aaa|b + c2

aab|a + c2
abb|b

)+
∑

m �=a,b

ϕ
(
c2

amm|a + c2
bmm|b, c2

bmm|a + c2
amm|b

)

+
∑

m �=a,b

ϕ
(
c2

aam|a + c2
bbm|b + c2

bbm|a + c2
aam|b, c2

mab|a + c2
mab|b

)+
∑

m<n;m,n �=a,b

ϕ
(
c2

mna|a + c2
mnb|b, c2

mnb|a + c2
mna|b

)]

� ϕ[(L − 1)x([0,0,1],3) + x([1,1,0],1), x([0,0,1],0) + x([1,1,0],2)] + ϕ[(L − 2)x([1,1,0],1), x([1,1,0],0)]

+ ϕ[(L − 2)x([1,1,0],2) + x([1,1,0],0), 2x([3,0,0],1)] + ϕ[(L − 3)x([3,0,0],1), 3x([3,0,0],0)]. (C9)

Here we have

x1 =
∑

m

c2
mmm|m = x([0,0,1],3), x2 =

∑
m �=n

c2
mmm|n = x([0,0,1],0), x3 =

∑
m �=n

c2
mmn|n = x([1,1,0],1),

x4 =
∑
m �=n

c2
mmn|m = x([1,1,0],2), x5 =

∑
p�=q;m �=p,q

c2
pmm|q = x([1,1,0],0), x6 =

∑
m<n;p�=m,n

c2
mnp|p = x([3,0,0],1),

x7 =
∑

m<n<p;q �=m,n,p

c2
mnp|q = x([3,0,0],0). (C10)

The subscripts will be explained in Appendix D.
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We have

IAE � 1

L − 1
(ϕ[(L − 1)x([0,0,1],3) + x([1,1,0],1), x([0,0,1],0) + x([1,1,0],2)] + ϕ[(L − 2)x([1,1,0],1), x([1,1,0],0)]

+ ϕ[(L − 2)x([1,1,0],2) + x([1,1,0],0), 2x([3,0,0],1)] + ϕ[(L − 3)x([3,0,0],1), 3x([3,0,0],0)]). (C11)

Then the error rate can also be given, which is

E � 1

2(L − 1)
[(
√

(L − 1)x([0,0,1],3) − √
x([1,1,0],1))

2 + (
√

(L − 2)x([1,1,0],2) −√2x([3,0,0],1))
2

+ (L − 2)x([0,0,1],0) + (L − 1)x([1,1,0],0) + (L − 1)x([3,0,0],0)]. (C12)

APPENDIX D: EXPLANATION OF SYMBOLS

In the next Appendix, we will give the security proof in the n-photon case. This section will describe the symbols we will
use.

(1) We used the forms “
∑

m<n;p�=m,n c2
mn|p” in Appendix B and “

∑
m �=n c2

mmn|m” in Appendix C. We can forecast that we will use
something like “

∑
p<q;p,q �=a c2

ppqq|a” in the four-photon case. We denote “cmmn|m” as “cm2n|m”. Then we define M = [M1, M2, M3],
where Mi means there are Mi pulses containing i photons. We define that

∑
M/a,b means the summation of cases that the Mi’s

traverse all combinations of L pulses except the ath and bth pulses. For example,

L∑
q < r

p �= q, r, s
s �= q, r

c2
p3q2r2s|a =

∑
M

c2
M|a, (M = [1, 2, 1]), (D1)

L∑
q < r

p, q, r, s �= a, b
p �= q, r, s
s �= q, r

c2
p3q2r2s|a =

∑
M/a,b

c2
M|a, (M = [1, 2, 1]), (D2)

and, for example,

L∑
p < q < r

p, q, r, s �= a, b
s �= p, q, r

c2
p2q2r2sa2b|a =

∑
M/a,b

c2
Ma2b|a, (M = [1, 3, 0]). (D3)

Similarly, we define

L∑
p<q<r;s �=p,q,r

i2kp+2kq+2kr+ks |ppqqrrs〉 =
∑

M

iKM |M〉 , (M = [1, 3, 0]). (D4)

(2) We find that in the state vector the phase of C̃p5|a is i5kp = ikp , where kp ∈ {0, 1, 2, 3} is Alice’s phase modulation. It has a
same phase as C̃p1|a because i4 = 1. So we use C̃p j |a, j ∈ {0, 1, 2, 3} representing all C̃p j+4∗l |a, l = 0, 1, 2, 3 . . . states. It is also
the reason that we only define M1, M2, and M3 three elements in M.

(3) We used some x’s as some summation of c2’s such as Eq. (B10), and now we rename them. We define

x[(M+mk ),k] =
∑
M/q

∑
q

c2
Mqk |q, (D5)

where the summation
∑

M/q means Mi’s traverse all combinations of L pulses except the qth pulse. M ′ = (M + mk ) means
M ′

k = Mk + 1 and M ′
i = Mi (i �= k), i.e., mk = [δ1k, δ2k, δ3k].

For example, see Eq. (C10) which is

x1 =
∑

m

c2
mmm|m = x([0,0,1],3), x2 =

∑
m �=n

c2
mmm|n = x([0,0,1],0), x3 =

∑
m �=n

c2
mmn|n = x([1,1,0],1),

x4 =
∑
m �=n

c2
mmn|m = x([1,1,0],2), x5 =

∑
p�=q;m �=p,q

c2
pmm|q = x([1,1,0],0), x6 =

∑
m<n;p�=m,n

c2
mnp|p = x([3,0,0],1),

x7 =
∑

m<n<p;q �=m,n,p

c2
mnp|q = x([3,0,0],0). (D6)
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(4) Define z = n − (M1 + 2M2 + 3M3), where n is the number of photons in a packet of L pulses.

APPENDIX E: SECURITY PROOF IN THE n-PHOTON CASE

First, we give the state Alice prepares, which is

|ψ〉 =
∑

M1, M2, M3 � 0
M1 + 2M2 + 3M3 � n

n − (M1 + 2M2 + 3M3 ) = 0 mod 4

∑
M

iKM |M〉 . (E1)

Here M = [M1, M2, M3]. There are (L − M1 − M2 − M3) pulses containing no photons or their photon numbers are multiples
of 4.

Then we give the state of Eve’s ancilla and Bob’s photon after Eve’s attack and Bob’s projecting to the ath and bth time bins,
which is

UEve |ψ〉 |e0|0〉 −→
∑

M1, M2, M3 � 0
M1 + 2M2 + 3M3 � n

∑
M/a,b

iKM

3∑
t = 0

z − t � 0

itka+(z−t )kbC̃Mat bz−t |a |a〉 + Part{b}. (E2)

Here z = n − (M1 + 2M2 + 3M3).
For example, when n = 2, we have

M = [0, 0, 0], t = 0 : i2kb (C̃bb|a |a〉 + C̃bb|b |b〉), M = [0, 0, 0], t = 1 : ika+kb (C̃ab|a |a〉 + C̃ab|b |b〉),

M = [0, 0, 0], t = 2 : i2ka (C̃aa|a |a〉 + C̃aa|b |b〉), M = [1, 0, 0], t = 0 :
∑
p�=a,b

ikp ikb (C̃pb|a |a〉 + C̃pb|b |b〉),

M = [1, 0, 0], t = 1 :
∑
p�=a,b

ikp ika (C̃pa|a |a〉 + C̃pa|b |b〉), M = [0, 1, 0], t = 0 :
∑
p�=a,b

i2kp (C̃pp|a |a〉 + C̃pp|b |b〉),

M = [2, 0, 0], t = 0 :
∑

p<q;p,q �=a,b

ikp+kq (C̃pq|a |a〉 + C̃pq|b |b〉), (E3)

which is the same as Eq. (B2).

1. IAE

We can see that the M1 + 2M2 + 3M3 = n terms have no contributions to IAE because no information about the ath and bth
pulses is included in these terms. For example, from Eqs. (B3) to (B6), the terms “C̃mm|a” and “C̃mn|a” are not shown in IAE . So
we use an abbreviation in the following, which is∑

M1, M2, M3 � 0
M1 + 2M2 + 3M3 � n

−→
∑

M1, M2, M3 � 0
M1 + 2M2 + 3M3 < n

≡
∑
C(M )

. (E4)

If Bob declares that his photon has been projected to the X basis, Eve’s ancilla state is a mixed state of two states when Alice
prepares (|a〉 + |b〉)/

√
2 or (|a〉 − |b〉)/

√
2. They are

∑
C(M )

∑
M/a,b

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3∑
t = 0

z − t � 0

C̃Mat bz−t |a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Part{b}, (E5)

and

∑
C(M )

∑
M/a,b

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3∑
t = 0

z − t � 0

(−1)z−tC̃Mat bz−t |a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Part{b}. (E6)

Here we have gotten the mean for all KM . So the cross terms are not shown in the two equations above.
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Similarly in the Y basis, Eve’s ancilla is a mixed state of the following two states:

∑
C(M )

∑
M/a,b

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3∑
t = 0

z − t � 0

iz−tC̃Mat bz−t |a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Part{b}, (E7)

∑
C(M )

∑
M/a,b

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3∑
t = 0

z − t � 0

(−i)z−tC̃Mat bz−t |a

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Part{b}. (E8)

Then we can get the Holevo bound of Eve’s information. For the X basis, it is

Q(a,b)
x I (a,b)

AEx
�
∑
C(M )

∑
M/a,b

ϕ
[(

C̃Mazb0|a + C̃Maz−2b2|a
)2

,
(
C̃Maz−1b1|a + C̃Maz−3b3|a

)2]+ Part{b}. (E9)

For the Y basis, it is

Q(a,b)
y I (a,b)

AEy
�
∑
C(M )

∑
M/a,b

ϕ
[(

C̃Mazb0|a − C̃Maz−2b2|a
)2

,
(
C̃Maz−1b1|a − C̃Maz−3b3|a

)2]+ Part{b}. (E10)

The overall information Eve can get is the mean of Q(a,b)
x I (a,b)

AEx
and Q(a,b)

y I (a,b)
AEy

. It is

Q(a,b)I (a,b)
AE �

∑
C(M )

∑
M/a,b

ϕ
[
c2

Mazb0|a + c2
Maz−2b2|a, c2

Maz−1b1|a + c2
Maz−3b3|a

]+ Part{b}. (E11)

So

QIAE �
∑
a<b

∑
C(M )

∑
M/a,b

ϕ
[
c2

Mazb0|a + c2
Maz−2b2|a, c2

Maz−1b1|a + c2
Maz−3b3|a

]+ Part{b} �
∑
C(M )

fϕ (M, n). (E12)

We will give fϕ below.
(1) If z = 1,∑

a<b

∑
M/a,b

ϕ
[
c2

Mazb0|a + c2
Maz−2b2|a, c2

Maz−1b1|a + c2
Maz−3b3|a

]+ Part{b}

=
∑
a<b

∑
M/a,b

ϕ
(
c2

Ma1|a, c2
Mb1|a

)+ ϕ
(
c2

Ma1|b, c2
Mb1|b

)
� ϕ

(∑
a<b

∑
M/a,b

c2
Ma1|a + c2

Mb1|b,
∑
a<b

∑
M/a,b

c2
Mb1|a + c2

Ma1|b

)

= ϕ
(
(L −

∑
M − 1)x[(M+m1 ),1], (M1 + 1)x[(M+m1 ),0]

)
. (E13)

Here
∑

M = M1 + M2 + M3.

x[(M+m1 ),1] =
∑
M/q

∑
q

c2
Mq|q, (E14)

x[(M+m1 ),0] =
∑
M ′/q

∑
q

c2
M ′ |q (M ′ = M + m1). (E15)

(2) If z = 1 mod 4 and z �= 1,∑
a<b

∑
M/a,b

ϕ
(
c2

Ma1|a + c2
Ma3b2|a, c2

Mb1|a + c2
Ma2b3|a

)+ ϕ
(
c2

Ma1|b + c2
Ma3b2|b, c2

Mb1|b + c2
Ma2b3|b

)

� ϕ

(∑
a<b

∑
M/a,b

c2
Ma1|a + c2

Mb1|b + c2
Ma3b2|a + c2

Ma2b3|b,
∑
a<b

∑
M/a,b

c2
Mb1|a + c2

Ma1|b + c2
Ma2b3|a + c2

Ma3b2|b

)

= ϕ
[(

L −
∑

M − 1
)
x[(M+m1 ),1] + (M2 + 1)x[(M+m2+m3 ),3], (M1 + 1)x[(M+m1 ),0] + (M3 + 1)x[(M+m2+m3 ),2]

]
. (E16)

Here,

x[(M+m2+m3 ),3] =
∑
M ′/q

∑
q

c2
M ′qqq|q (M ′ = M + m2), (E17)

x[(M+m2+m3 ),2] =
∑
M ′/q

∑
q

c2
M ′qq|q (M ′ = M + m3). (E18)
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(3) If z = 2, ∑
a<b

∑
M/a,b

ϕ
(
c2

Ma2|a + c2
Mb2|a, c2

Ma1b1|a
)+ ϕ

(
c2

Ma2|b + c2
Mb2|b, c2

Ma1b1|b
)

� ϕ

(∑
a<b

∑
M/a,b

c2
Ma2|a + c2

Mb2|b + c2
Mb2|a + c2

Ma2|b,
∑
a<b

∑
M/a,b

c2
Ma1b1|a + c2

Ma1b1|b

)

= ϕ
[(

L −
∑

M − 1
)
x[(M+m2 ),2] + (M2 + 1)x[(M+m2 ),0], (M1 + 1)x[(M+m1+m1 ),1]

]
. (E19)

Here,

x[(M+m2 ),2] =
∑
M/q

∑
q

c2
Mqq|q, (E20)

x[(M+m2 ),0] =
∑
M ′/q

∑
q

c2
M ′ |q (M ′ = M + m2), (E21)

x[(M+m1+m1 ),1] =
∑
M ′/q

∑
q

c2
M ′q|q (M ′ = M + m1). (E22)

(4) If z = 2 mod 4 and z �= 2,∑
a<b

∑
M

ϕ
(
c2

Ma2|a + c2
Mb2|a, c2

Ma1b1|a + c2
Ma3b3|a

)+ ϕ
(
c2

Ma2|b + c2
Mb2|b, c2

Ma1b1|b + c2
Ma3b3|b

)

� ϕ
[(

L −
∑

M − 1
)
x[(M+m2 ),2] + (M2 + 1)x[(M+m2 ),0], (M1 + 1)x[(M+m1+m1 ),1] + (M3 + 1)x[(M+m3+m3 ),3]

]
. (E23)

Here,

x[(M+m3+m3 ),3] =
∑
M ′/q

∑
q

c2
M ′qqq|q (M ′ = M + m3). (E24)

(5) If z = 3 mod 4,∑
a<b

∑
M

ϕ
(
c2

Ma3|a + c2
Ma1b2|a, c2

Ma2b1|a + c2
Mb3|a

)+ ϕ
(
c2

Ma3|b + c2
Ma1b2|b, c2

Ma2b1|b + c2
Mb3|b

)

� ϕ
[(

L −
∑

M − 1
)
x[(M+m3 ),3] + (M2 + 1)x[(M+m1+m2 ),1], (M1 + 1)x[(M+m1+m2 ),2] + (M3 + 1)x[(M+m3 ),0]

]
. (E25)

Here,

x[(M+m3 ),3] =
∑
M/q

∑
q

c2
Mqqq|q, (E26)

x[(M+m1+m2 ),1] =
∑
M ′/q

∑
q

c2
M ′q|q (M ′ = M + m2), (E27)

x[(M+m1+m2 ),2] =
∑
M ′/q

∑
q

c2
M ′qq|q (M ′ = M + m1), (E28)

x[(M+m3 ),0] =
∑
M ′/q

∑
q

c2
M ′ |q (M ′ = M + m3). (E29)

(6) If z = 0 mod 4 and z �= 0,∑
a<b

∑
M

ϕ
(
c2

M|a + c2
Ma2b2|a, c2

Ma3b1|a + c2
Ma1b3|a

)+ ϕ
(
c2

M|b + c2
Ma2b2|b, c2

Ma3b1|b + c2
Ma1b3|b

)

� ϕ
[(

L −
∑

M − 1
)
x(M,0) + (M2 + 1)x[(M+m2+m2 ),2], (M1 + 1)x[(M+m1+m3 ),3] + (M3 + 1)x[(M+m1+m3 ),1]

]
. (E30)

Here,

x(M,0) =
∑
M/q

∑
q

c2
M|q, (E31)

x[(M+m2+m2 ),2] =
∑
M ′/q

∑
q

c2
M ′qq|q (M ′ = M + m2), (E32)

x[(M+m1+m3 ),3] =
∑
M ′/q

∑
q

c2
M ′qqq|q (M ′ = M + m1), (E33)

x[(M+m1+m3 ),1] =
∑
M ′/q

∑
q

c2
M ′q|q (M ′ = M + m3). (E34)
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The yield Q is

Q =
∑
a<b

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n
n − (M1 + 2M2 + 3M3 ) = 0 mod 4

∑
M

(
c2

M|a + c2
M|b
) = (L − 1)

∑
x = L − 1. (E35)

So we get

IAE = QIAE

Q
� 1

L − 1

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 < n

fϕ (M, n), (E36)

fϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ[(L −∑M − 1)x[(M+m1 ),1], (M1 + 1)x[(M+m1 ),0])
z = 1,

ϕ[(L −∑M − 1)x[(M+m1 ),1] + (M2 + 1)x[(M+m2+m3 ),3], (M1 + 1)x[(M+m1 ),0] + (M3 + 1)x[(M+m2+m3 ),2]]
z = 1 mod 4, and z �= 1,

ϕ[(L −∑M − 1)x[(M+m2 ),2] + (M2 + 1)x[(M+m2 ),0], (M1 + 1)x[(M+m1+m1 ),1]]
z = 2,

ϕ[(L −∑M − 1)x[(M+m2 ),2] + (M2 + 1)x[(M+m2 ),0], (M1 + 1)x[(M+m1+m1 ),1] + (M3 + 1)x[(M+m3+m3 ),3]]
z = 2 mod 4, and z �= 2,

ϕ[(L −∑M − 1)x[(M+m3 ),3] + (M2 + 1)x[(M+m1+m2 ),1], (M1 + 1)x[(M+m1+m2 ),2] + (M3 + 1)x[(M+m3 ),0]]
z = 3 mod 4,

ϕ[(L −∑M − 1)x(M,0) + (M2 + 1)x[(M+m2+m2 ),2], (M1 + 1)x[(M+m1+m3 ),3] + (M3 + 1)x[(M+m1+m3 ),1]]
z = 0 mod 4, and z �= 0.

(E37)

Here z = n − (M1 + 2M2 + 3M3).

2. Error

In this part we will give the relationship between the error rate and x’s.
The errors when Alice sends (|a〉 + |b〉)/

√
2 can be given by multiplying (〈a| − 〈b|)/√2 to Eq. (E2) and getting its square,

which is

Qa,b
xs Ea,b

xs = 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

∑
M/a,b

∣∣∣∣∣∣∣∣∣
3∑

t = 0
z − t � 0

(C̃Mat bz−t |a − C̃Mat bz−t |b)

∣∣∣∣∣∣∣∣∣

2

. (E38)

Here sending (|a〉 + |b〉)/
√

2 means ka = kb, and we have calculated the mean for all KM . So the cross terms are not shown.
Then we can get the errors when Alice sends (|a〉 − |b〉)/

√
2, which is

Qa,b
xd Ea,b

xd = 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

∑
M/a,b

∣∣∣∣∣∣∣∣∣
3∑

t = 0
z − t � 0

(−1)z−t (C̃Mat bz−t |a + C̃Mat bz−t |b)

∣∣∣∣∣∣∣∣∣

2

. (E39)

Here sending (|a〉 − |b〉)/
√

2 means kb = ka + 2 mod 4, and we have gotten the mean for all KM .
When Alice sends (|a〉 + i |b〉), errors can be obtained by multiplying ((|a〉 − i |b〉)/

√
2)† = (〈a| + i 〈b|)/√2 to Eq. (E2) and

getting its square, which is

Qa,b
ys Ea,b

ys = 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

∑
M/a,b

∣∣∣∣∣∣∣∣∣
3∑

t = 0
z − t � 0

iz−t (C̃Mat bz−t |a + iC̃Mat bz−t |b)

∣∣∣∣∣∣∣∣∣

2

. (E40)

Here sending (|a〉 + i |b〉)/
√

2 means kb = ka + 1 mod 4.
When Alice sends (|a〉 − i |b〉), the errors are

Qa,b
yd Ea,b

yd = 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

∑
M/a,b

∣∣∣∣∣∣∣∣∣
3∑

t = 0
z − t � 0

(−i)z−t (C̃Mat bz−t |a − iC̃Mat bz−t |b)

∣∣∣∣∣∣∣∣∣

2

. (E41)
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Here sending (|a〉 − i |b〉)/
√

2 means kb = ka + 3 mod 4.
We calculate the mean of these four cases from Eqs. (E38) to (E41) and get its summation for a and b. We get

QE = 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

∑
a<b

∑
M/a,b

{|C̃Mazb0|a − C̃Maz−1b1|b|2 + |C̃Maz−2b2|a − C̃Maz−3b3|b|2

+ |C̃Maz−1b1|a − C̃Maz−2b2|b|2 + |C̃Maz−3b3|a − C̃Mazb0|b|2
}

� 1

2

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

fE (M, n). (E42)

Then we will give fE . And in the following we will use the inequalities that |ã − b̃|2 + |x̃ − ỹ|2 � (
√

a2 + x2 −
√

b2 + y2)2

and (
√

a − √
b)2 + (

√
x − √

y)2 � (
√

a + x − √
b + y)2.

(1) If z = 1, ∑
a<b

∑
M/a,b

{|C̃Ma1|a − C̃Mb1|b|2 + |C̃Mb1|a|2 + |C̃Ma1|b|2
}

� (M1 + 1)x[(M+m1 ),0]. (E43)

(2) If z = 1 mod 4 and z �= 1,∑
a<b

∑
M/a,b

{|C̃Ma1|a − C̃Mb1|b|2 + |C̃Ma3b2|a − C̃Ma2b3|b|2 + |C̃Mb1|a − C̃Ma3b2|b|2 + |C̃Ma2b3|a − C̃Ma1|b|2
}

�

⎛
⎜⎜⎜⎜⎝
√√√√√
∑
a < b
M/a, b

(c2
Mb|a + c2

Ma|b) −
√√√√√
∑
a < b
M/a, b

(c2
Ma2b3|a + c2

Ma3b2|b)

⎞
⎟⎟⎟⎟⎠

2

= (√(M1 + 1)x[(M+m1 ),0] −√(M3 + 1)x[(M+m2+m3 ),2]
)2

.

(E44)

(3) If z = 2, ∑
a<b

∑
M/a,b

{|C̃Ma2|a − C̃Ma1b1|b|2 + |C̃Mb2|a|2 + |C̃Ma1b1|a − C̃Mb2|b|2 + |C̃Ma2|b|2
}

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
√√√√√
∑
a < b
M/a, b

(
c2

Ma2|a + c2
Mb2|b

)−
√√√√√
∑
a < b
M/a, b

(
c2

Ma1b1|a + c2
Ma1b1|b

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

+
∑
a < b
M/a, b

(c2
Mb2|a + c2

Ma2|b)

=
(√(

L −
∑

M − 1
)
x[(M+m2 ),2] −√(M1 + 1)x[(M+m1+m1 ),1]

)2

+ (M2 + 1)x[(M+m2 ),0]. (E45)

(4) If z = 2 mod 4 and z �= 2,∑
a<b

∑
M/a,b

{|C̃Ma2|a − C̃Ma1b1|b|2 + |C̃Mb2|a − C̃Ma3b3|b|2 + |C̃Ma1b1|a − C̃Mb2|b|2 + |C̃Ma3b3|a − C̃Ma2|b|2
}

�

⎛
⎜⎜⎜⎜⎝
√√√√√
∑
a < b
M/a, b

(
c2

Ma2|a + c2
Mb2|b

)−
√√√√√
∑
a < b
M/a, b

(
c2

Ma1b1|a + c2
Ma1b1|b

)
⎞
⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎝
√√√√√
∑
a < b
M/a, b

(
c2

Mb2|a + c2
Ma2|b

)−
√√√√√
∑
a < b
M/a, b

(
c2

Ma3b3|a + c2
Ma3b3|b

)
⎞
⎟⎟⎟⎟⎠

2

=
(√

(L −
∑

M − 1)x[(M+m2 ),2] −√(M1 + 1)x[(M+m1+m1 ),1]

)2

+ (√(M2 + 1)x[(M+m2 ),0] −√(M3 + 1)x[(M+m3+m3 ),3]
)2

.

(E46)
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(5) If z = 3 mod 4,∑
a<b

∑
M/a,b

{|C̃Ma3|a − C̃Ma2b1|b|2 + |C̃Ma1b2|a − C̃Mb3|b|2 + |C̃Ma2b1|a − C̃Ma1b2|b|2 + |C̃Mb3|a − C̃Ma3|b|2
}

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
√√√√√
∑
a < b
M/a, b

(
c2

Ma3|a + c2
Mb3|b

)−
√√√√√
∑
a < b
M/a, b

(
c2

Ma1b2|a + c2
Ma2b1|b

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

=
(√

(L −
∑

M − 1)x[(M+m3 ),3] −√(M2 + 1)x[(M+m1+m2 ),1]

)2

. (E47)

(6) If z = 0, ∑
a<b

∑
M/a,b

{|C̃M|a|2 + |C̃M|b|2
} = (L −

∑
M − 1)x(M,0). (E48)

(7) If z = 0 mod 4 and z �= 0,∑
a<b

∑
M/a,b

{|C̃M|a − C̃Ma3b1|b|2 + |C̃Ma2b2|a − C̃Ma1b3|b|2 + |C̃Ma3b1|a − C̃Ma2b2|b|2 + |C̃Ma1b3|a − C̃M|b|2
}

�

⎛
⎜⎜⎜⎜⎝
√√√√√
∑
a < b
M/a, b

(
c2

M|a + c2
M|b
)−

√√√√√
∑
a < b
M/a, b

(
c2

Ma1b3|a + c2
Ma3b1|b

)
⎞
⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎝
√√√√√
∑
a < b
M/a, b

(
c2

Ma2b2|a + c2
Ma2b2|b

)−
√√√√√
∑
a < b
M/a, b

(
c2

Ma3b1|a + c2
Ma1b3|b

)
⎞
⎟⎟⎟⎟⎠

2

=
(√

(L −
∑

M − 1)x(M,0) −√(M3 + 1)x[(M+m1+m3 ),1]

)2

+ (√(M2 + 1)x[(M+m2+m2 ),2] −√(M1 + 1)x[(M+m1+m3 ),3]
)2

.

(E49)

So we get

E = QE

Q
� 1

2(L − 1)

∑
M1, M2, M3 � 0

M1 + 2M2 + 3M3 � n

fE (M, n). (E50)

fE =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M1 + 1)x[(M+m1 ),0]

z = 1,

(
√

(M1 + 1)x[(M+m1 ),0] −√(M3 + 1)x[(M+m2+m3 ),2])2

z = 1 mod 4, and z �= 1,

(
√

(L −∑M − 1)x[(M+m2 ),2] −√(M1 + 1)x[(M+m1+m1 ),1])2 + (M2 + 1)x[(M+m2 ),0]

z = 2,

(
√

(L −∑M − 1)x[(M+m2 ),2] −√(M1 + 1)x[(M+m1+m1 ),1])2 + (
√

(M2 + 1)x[(M+m2 ),0] −√(M3 + 1)x[(M+m3+m3 ),3])2

z = 2 mod 4, and z �= 2,

(
√

(L −∑M − 1)x[(M+m3 ),3] −√(M2 + 1)x[(M+m1+m2 ),1])2

z = 3 mod 4,

(L −∑M − 1)x(M,0)

z = 0,

(
√

(L −∑M − 1)x(M,0) −√(M3 + 1)x[(M+m1+m3 ),1])2 + (
√

(M2 + 1)x[(M+m2+m2 ),2] −√(M1 + 1)x[(M+m1+m3 ),3])2

z = 0 mod 4, and z �= 0.

(E51)
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APPENDIX F: PROOF FOR THE CONCAVITY OF IU
AE

In this section, we will give the proof that IU
AE is a concave function for variable E . From Eqs. (E36) and (E37), we can see

that IU
AE has a form like

IAE � ϕ(k1x1 + k2x2, k3x3 + k4x4) + . . . . (F1)

We assume that if error rate is E , IAE gets its maximum IU
AE when the x’s are x1, x2, . . . , and if the error rate is E ′, IAE gets its

maximum IU
AE when the x’s are x′

1, x′
2, . . . , which means

IU
AE (E ) = ϕ(k1x1 + k2x2, k3x3 + k4x4) + . . . , (F2)

IU
AE (E ′) = ϕ(k1x′

1 + k2x′
2, k3x′

3 + k4x′
4) + . . . . (F3)

Then we have

αIU
AE (E ) + (1 − α)IU

AE (E ′) = αϕ(k1x1 + k2x2, k3x3 + k4x4) + (1 − α)ϕ(k1x′
1 + k2x′

2, k3x′
3 + k4x′

4) + . . .

� ϕ{k1[αx1 + (1 − α)x′
1] + k2[αx2 + (1 − α)x′

2], k3[αx3 + (1 − α)x′
3]

+ k4[αx4 + (1 − α)x′
4]} + . . . . (F4)

Here α ∈ [0, 1]. Then if we can prove that IU
AE [αE + (1 − α)E ′] � αIU

AE (E ) + (1 − α)IU
AE (E ′), the concavity will be proven.

We define that Xi = αxi + (1 − α)x′
i for i = 1, 2, . . . . Then we can get that

∑
i Xi = α

∑
i xi + (1 − α)

∑
i x′

i = 1 and Xi � 0.
So the X ’s are a legitimate group of variables for IAE . From Eq. (F4) we can see IAE [αE + (1 − α)E ′, X ] � αIU

AE (E ) + (1 −
α)IU

AE (E ′) if the X ’s meet the error rate requirement of αE + (1 − α)E ′, which will be proven in the following.
From Eq. (E50), E has a form like

E � t1x1 + t2x2 + (
√

w1x1 − √
w2x2)2 + . . . . (F5)

So we have

E ′ �t1x′
1 + t2x′

2 + (
√

w1x′
1 −

√
w2x′

2)2 + . . . (F6)

αE + (1 − α)E ′ �t1X1 + t2X2 + w1X1 + w2X2 − 2α
√

w1x1w2x2 − 2(1 − α)
√

w1x′
1w2x′

2 . . . . (F7)

What we should prove is

αE + (1 − α)E ′ �t1X1 + t2X2 + (
√

w1X1 − √
w2X2)2 + · · · = t1X1 + t2X2 + w1X1 + w2X2 − 2

√
w1X1w2X2 . . . . (F8)

Here −√
w1X1w2X2 � −α

√
w1x1w2x2 − (1 − α)

√
w1x′

1w2x′
2 is easy to prove. So Eq. (F8) is correct.

To summarize, the X ’s is a group of variables satisfying IAE [αE + (1 − α)E ′, X ] � αIU
AE (E ) + (1 − α)IU

AE (E ′). And
IU
AE [αE + (1 − α)E ′] � IAE [αE + (1 − α)E ′, X ]. So the function IU

AE is concave.
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