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The landmark Grover algorithm for amplitude amplification serves as an essential subroutine in various types
of quantum algorithms, with guaranteed quantum speedup in query complexity. However, there has been no
proposal to realize the original motivating application of the algorithm, i.e., the database search or more broadly
the pattern matching in a practical setting, mainly due to the technical difficulty in efficiently implementing
the data loading and amplitude amplification processes. In this paper, we propose a quantum algorithm that
approximately executes the entire Grover database search or pattern matching algorithm. The key idea is to
use the recently proposed approximate amplitude encoding method on a shallow quantum circuit, together with
the easily implementable inversion-test operation for realizing the projected quantum state having similarity to
the query data, followed by the amplitude amplification operation that is independent to the target data index.
We provide a thorough demonstration of the algorithm in the problem of image pattern matching.
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I. INTRODUCTION

The Grover algorithm, or the amplitude amplification al-
gorithm, is a landmark quantum subroutine that theoretically
promises a computational advantage over any classical one,
for several problems such as the satisfiability problem [1],
quantum machine learning [2], the constrained polynomial
binary optimization [3], and quantum amplitude estimation
[4]. In this paper, we focus on the database search [5], which
is in fact the first application of the Grover algorithm. The
search problem is included in the following pattern matching
problem. That is, we are given a set of data, i.e., a database,
where each data has its own index; the task is to find out the in-
dex of a database component that has the highest similarity to
a given query data. When the database contains the query data
and the task is to find the corresponding unique index, then
the problem is called the search. In the original Grover paper,
he studied a simplified problem such that only the indices are
focused, and provided the seminal amplitude amplification
method that enables us to find the answer with

√
n queries

while any classical one needs n queries, where n is the number
of data; that is, the quadratic speedup is guaranteed.

In fact, we find many studies for implementing the original
Grover algorithm. However, to our best knowledge, those are
not practical ones in the above sense; that is, there has been no
proposal to implement the “practical Grover algorithm” that
gives the solution (index) for the search or pattern matching
problem for a realistic database, with guaranteed quadratic
speedup in the number of queries. This is because, in our
view, there are two obstacles. The first issue is the difficulty to
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prepare the quantum states of database and query. In general,
to load a data vector onto a n-qubit quantum state, O(2n)
quantum gates are required [6–9]. That is, the number of gates
required for the data loading increases exponentially with the
number of qubits, which might destroy the quantum advan-
tage. To address this issue, sometimes the quantum random
access memory (QRAM) is assumed [10,11], from which an
arbitrary quantum state is loaded, but realization of QRAM
seems to be difficult. The second issue, which is thought less
serious than the first one, is that the operator for amplitude
amplification often boils down to an “Oracle” operator. This
is clearly an obstacle for the practical use of the Grover al-
gorithm [3], because Oracle is the operator constructed with
the answer to the problem; hence many previous studies treat
Oracle as a black-box function [12,13].

In this paper, we propose a coherent method for realizing
the Grover algorithm for search or pattern matching problems,
which circumvents the above-mentioned two issues. As for
the first issue, we employ the method of approximate ampli-
tude encoding (AAE) that uses a constant-depth parametrized
quantum circuit (PQC) for the data loading onto a quantum
state [14]; in our case, we use AAE to prepare both the
database state and the query state. Secondly, we formulate the
amplitude amplification process such that the operators in the
algorithm can be implemented without using the oracle, or in
other words without knowing the index of the query state (i.e.,
the answer). The key of our algorithm is to use the so-called
inversion-test technique to realize projection of the database
state onto a subspace of states that have overlap with the
query state; the amplitude of components of the projected state
can then be amplified by the operator that does not contain
the answer index. This framework may also be applicable to
recently proposed shallow Grover algorithms [12,15], which

2469-9926/2022/105(3)/032440(14) 032440-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8572-4272
https://orcid.org/0000-0002-3501-5734
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032440&domain=pdf&date_stamp=2022-03-24
https://doi.org/10.1103/PhysRevA.105.032440


TEZUKA, NAKAJI, SATOH, AND YAMAMOTO PHYSICAL REVIEW A 105, 032440 (2022)

make the diffusion operator shallower and thus preferable in
noisy intermediate-scale quantum (NISQ) [16] devices. Of
course, it is also beneficial for future fault-tolerant quantum
computers (FTQC).

We demonstrate our algorithm in the framework of quan-
tum image processing (QIMP) [17] in numerical simulations;
particularly the error analysis of the circuit without ampli-
tude amplification is experimentally conducted using the IBM
superconducting quantum device. In QIMP, by embedding
an image information onto a quantum state, we can process
various tasks efficiently with much less number of bits and
queues compared to the classical case. The pattern match-
ing, which has various applications such as real-time object
recognition, is one such task [18–23]. However, they did not
discuss the issue of state preparation, but rather assumed that
both the database and query image data are perfectly loaded
onto quantum states. Moreover, most of those works em-
ploy an inefficient classical strategy that compares the query
quantum state with each data quantum state in the database
one by one. Clearly, we may develop the quantum strategy
that prepares a single quantum state representing the whole
database and further uses the Grover algorithm for amplifying
the hitting probability. In fact, Ref. [19] employs the ampli-
tude amplification operation, which is used to only enhance
the above-mentioned classical strategy. Our proposed method
resolves all these issues; both the query and database quantum
states are prepared via AAE, and the Grover operator is con-
structed without knowing the target indices, for realizing the
entire quantum image pattern matching algorithm applicable
for a realistic image data set. In this sense, the demonstration
itself is a contribution to the area of QIMP.

The rest of the paper is organized as follows. In Sec. II, we
describe our enhanced pattern matching algorithm composed
of the amplitude amplification (Sec. II B) and AAE (Sec. II C).
Section III demonstrates the application of the algorithm to the
image pattern matching problem, via the numerical simulation
and the experiment with a real quantum device. Section IV
concludes this paper and discusses possible directions of fu-
ture research.

II. QUANTUM PATTERN MATCHING ALGORITHM

A. Basic algorithm

1. Problem setting

Our problem is described as follows. First, we have a
database composed of ND-dimensional real data vectors ak =
[a0,k, . . . , aND−1,k]�, where k = 0, . . . , NI − 1 denotes the in-
dex of data; that is, the database contains NI data vectors. Then
we are given a query data b = [b0, . . . , bND−1]�, which is
also an ND-dimensional real vector. They will be encoded into
quantum states and for this reason assumed to be normalized,
i.e.,

∑
j a2

jk = 1 and
∑

j b2
j = 1. Our goal is to identify the

index, which we call the target index, of the database compo-
nents that has the largest overlap (similarity) to the query b;
that is, k∗ = argmaxk|a�

k b|.

2. Preparation of database and query quantum states

To execute the above-mentioned pattern matching task on
a quantum device, we first need to load the data onto quantum

states. That is, we prepare the database state |database〉 and
the query state |query〉 as follows:

|database〉 = A|0〉⊗(nD+nI ) (1)

= 1√
NI

ND−1∑
j=0

NI −1∑
k=0

a jk| j〉D|k〉I (2)

≡ 1√
NI

∑
k

|data(k)〉 ⊗ |k〉I , (3)

|query〉 = B|0〉⊗nD (4)

=
ND−1∑

j=0

b j | j〉D. (5)

Here {| j〉D} and {|k〉I} are the orthogonal computational basis
set in the data Hilbert space HD and the index Hilbert space
HI , respectively. For simplicity, we assume that these spaces
are identical to those of nD and nI qubits, meaning that ND =
2nD and NI = 2nI . In Eq. (3), we define the quantum state cor-
responding to the kth data vector |data(k)〉 = ∑ND−1

j=0 a jk| j〉D;
that is, the database state |database〉 is realized as a super-
position of all data vectors accompanied with their indices.
The database operator A and the query operator B are unitary
operators for generating the corresponding quantum states.
Note that, in the above expression, A and B are assumed to
realize the perfect data encoding, in which case, however, an
exponential number of gate operations have to be contained
in the corresponding quantum circuits [6–9]. In Sec. II C, we
will introduce the constant-depth circuits that approximate A
and B.

Before moving to the next step, we remark that, instead of
the above amplitude encoding, we can use the following basis
encoded state:

|database〉 = 1√
NI

ND−1∑
j=0

NI −1∑
k=0

â jk| j〉D|k〉I , (6)

|query〉 = 1√
NBE

ND−1∑
j=0

b̂ j | j〉D. (7)

Here â jk and b̂ j are binary (i.e., 0 or 1) variables
that are determined from the original information a jk

and b j . Also â has NI nonzero components and NBE

is the normalization constant for the query data en-
coded in the basis encoding. For instance, under nI =
nD = 2, b̂ = [b̂0, b̂1, b̂2, b̂3]� = [0, 1, 0, 0]� if the query
data is |1〉D and â = [â00, â10, â20, â30, . . . , â23, â33]� =
[0, 1, 0, 0, . . . , 0, 0]� if the database contains |1〉D at the index
|0〉I .

3. Basic algorithm for computing the similarity

The inner product of the classical data vectors ak and b is
now, in terms of quantum states, represented as the fidelity

〈query|data(k)〉 = 〈0nD |B†|data(k)〉,
where we used the simplified notation |0n〉 = |0〉⊗n. This can
be represented as the fidelity between

|query′〉 = |0〉⊗n (8)
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FIG. 1. Entire quantum circuit for pattern matching, composed
of the AAE circuit A and B, followed by the Grover circuit G.

and B†|data(k)〉. Our algorithm uses the inversion test tech-
nique to evaluate this quantity; that is, naively, the fidelity
can be computed as the probability to obtain |query′〉 when
measuring the state B†|data(k)〉 in the computational basis.

Now, each |data(k)〉 is not directly given to us, but rather
we have |database〉 = A|0〉⊗(nD+nI ). Hence the state for the
inversion test is given by

|�〉 ≡ (B† ⊗ 1I )A|0〉⊗(nD+nI )

= 1√
NI

∑
k

B†|data(k)〉 ⊗ |k〉I ,

where 1I is the identity operator on HI . Now we make the
computational-basis measurement on the first nD qubits of |�〉
and postselect the state when the result is all zeros. The entire
quantum circuit for executing this task is illustrated in Fig. 1
(G is the Grover operator described later). The resultant state
is given by

|R〉 = 1

CR

∑
k

rk|k〉I , (9)

where

rk = 〈query|data(k)〉, CR =
√∑

k

|〈query|data(k)〉|2.

Thus, by further measuring the state (9) in the computational
basis of HI , we are likely to obtain the index k with relatively
large probability proportional to |〈query|data(k)〉|2, which is
indeed the goal of the pattern matching task.

However, the above approach has the critical issue that the
success probability of the postselection and as a result the
probability of hitting the target index are severely suppressed,
when the number of database components NI is large. More
precisely, the probability that the postselection succeedS and
subsequently the target index k∗ is identified is calculated as

P(index = k∗) = |I〈k∗|〈0nD |�〉|2

= 1

NI
|〈query|data(k∗)〉|2

� 1

NI
.

This means that we need O(NI ) measurements for identifying
the target index, which is the same computational complexity

as that of classical algorithms. This is indeed the motivation to
introduce the Grover algorithm; that is, we may use the Grover
algorithm to amplify the amplitude of |0〉⊗nD |k〉I in the state
|�〉 for any k. The next subsection is devoted to describing the
scheme in detail.

B. Amplitude amplification

First, we explain the point of the algorithm. The purpose
of amplitude amplification is to amplify the amplitude of state
components of |database〉 = A|0〉⊗nD+nI , which have an over-
lap with |query〉 = B|0〉⊗nD . This is equivalent to amplifying
the amplitude of states of |�〉 = (B† ⊗ 1)A|0〉⊗nD+nI that have
an overlap with |query′〉 = |0〉⊗nD ; this simple trick brings a
big benefit in view of the implementation that, as shown later,
the projection part (the oracle part) contained in the Grover
operator is simply that on the computational basis |0〉⊗nD

rather than that on the entangled state |query〉. This is called
the inversion test technique, which can be now employed
thanks to the explicit construction of the encoding process
B; note also that the resulting Grover operator is not any-
more an oracle, but is what can be explicitly implementable
without knowing the target index. Once the Grover operator
is constructed, it efficiently amplifies the amplitudes that are
proportional to the similarity between the database component
and the query, which corresponds to all nonzero rk in Eq. (9).
This is an extended framework of the conventional Grover
algorithm; that is, the target states are distributed [24], rather
than given as one of the basis states of the initial state. Below
we apply this theory to our problem; see Appendix A for the
detailed calculation.

First, the initial state |�〉 and the target state |q〉 are defined
as

|�〉 = (B† ⊗ 1I )A|0〉⊗(nD+nI ), (10)

|q〉 ≡ (|0nD〉〈0nD | ⊗ 1I )|�〉√〈�|(|0nD〉〈0nD | ⊗ 1I )|�〉 . (11)

Recall the notation |0n〉 = |0〉⊗n. That is, the target state |q〉
is the component of |�〉 that has an overlap with |query′〉 =
|0〉⊗nD in the data Hilbert space HD. More specifically, |�〉
can be expressed as

|�〉 = sin θ |q〉 + cos θ |q⊥〉, (12)

where |q⊥〉 is the state orthogonal to |q〉 and sin θ = 〈q|�〉.
Also, because the state in our scenario is distributed in the
basis states, it is convenient to have the expression of the
above states in terms of the basis vectors as follows:

|�〉 =
N−1∑
x=0

ψx|x〉, |q〉 =
N−1∑
x=0

qx|x〉, (13)

where N = NDNI is the dimension of the entire Hilbert space
HD ⊗ HI and {|x〉} is the set of basis states of this space.
Then {bx} has at most NI nonzero components, which can be
explicitly represented as follows:

qx =
{
ψx/〈q|ψ〉 if x ∈ C,

0 if x /∈ C,
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where C is the set of numbers defined as

C = {x|〈x|(|0nD〉〈0nD | ⊗ 1I )|x〉 �= 0}.
Note that 〈q|�〉 = [〈�|(|0nD〉〈0nD | ⊗ 1I )|�〉]1/2.

The goal of amplitude amplification is to amplify the
coefficient sin θ via applying the Grover operator, which is
decomposed of the following oracle operator Go and the dif-
fusion operator Gd :

|� (t+1/2)〉 = Go|� (t )〉
= (1 − 2|0nD〉〈0nD | ⊗ 1I )|� (t )〉,

|� (t+1)〉 = Gd |� (t+1/2)〉
= U (2|0nD+nI 〉〈0nD+nI | − 1DI )U †|� (t+1/2)〉
= (2|�〉〈�| − 1DI )|� (t+1/2)〉,

where U = (B† ⊗ 1I )A is the unitary operator producing the
initial state, i.e., |� (0)〉 = |�〉 = U |0〉⊗nD+nI . That is, the am-
plified state |� (t )〉 is generated by t applications of the Grover
operator G = Gd Go on the initial state |�〉. The oracle oper-
ator Go flips the phase of the target state |q〉, while it does
not change any state orthogonal to |q〉. The diffusion operator
Gd inverts the amplitudes around their averaged value. Note
that, although Go is called the oracle by convention, it can
be composed without any information about the target index
(the answer). The entire circuit composed of the encoding and
amplitude amplification operators is depicted in Fig. 1.

Following the general theory given in Appendix A, the
state after t Grover operations is explicitly calculated as

|� (t )〉 = Gt |�〉 = sin[(2t + 1)θ ]|q〉 + cos[(2t + 1)θ ]|q⊥〉,
showing that the amplitude of |q〉 can be amplified by
appropriately choosing the number of operations. Also, cor-
responding to Eq. (13), the transformed state is expressed as

|� (t )〉 =
∑

x

ψ (t )
x |x〉, ψ (t )

x = Ax sin (ωt + δx ),

where ω, Ax, and δx (i.e., the frequency, the amplitude, and the
phase of the initial state, respectively) are given by

ω = 2 arcsin 〈q|�〉, (14)

Ax =
√

q2
x − 2〈q|�〉ψxqx + ψ2

x

1 − 〈q|�〉2

=
{
ψx/〈q|�〉 if x ∈ C,

ψx/
√

1 − 〈q|�〉2 if x /∈ C,
(15)

δx = arccos

(
qx − 〈q|�〉ψx√

q2
x − 2〈q|�〉ψxqx + ψ2

x

)

=
{

arccos
√

1 − 〈q|�〉2 if x ∈ C,

arccos (−〈q|�〉) if x /∈ C,
(16)

where 〈q|�〉 = [〈�|(|0nD〉〈0nD | ⊗ 1I )|�〉]1/2. Note that the
phases of ψ (t )

x for the case x ∈ C and that for the case x /∈ C
are shifted just π/2 with each other.

Based on these results, we obtain the analytic expression of
the amplified probability of hitting the matched indices; that

is, for the index x ∈ C, the hitting probability after t Grover
iterations is given by

P(t )
x = {

ψ (t )
x

}2

= ψ2
x

2〈q|�〉2
[1 − cos 2(ωt + arccos

√
1 − 〈q|�〉2)]

� ψ2
x

〈q|�〉2
. (17)

From Eq. (17), we can determine the optimal number of it-
eration t∗ that gives the highest hitting probability Px for any
index x ∈ C as follows:

t∗ = CI

(
arccos〈q|�〉

2 arcsin〈q|�〉
)

, (18)

where CI (z) returns the closest integer of a real number z by
rounding down.

The above result (18) shows that the optimal opera-
tions number t∗ depends on the initial overlap 〈q|�〉 =
[〈�|(|0nD〉〈0nD | ⊗ 1I )|�〉]1/2. That is, for the precise treat-
ment of the problem, we need to estimate 〈q|�〉. As indicated
by this expression, this task can be conducted by estimating
the success probability of projecting |�〉 onto |0〉⊗ND ; but this
strategy is inefficient in the sense that it needs to prepare
|�〉 for O(1/ε2) times, where ε denotes the given estima-
tion error. Instead, we could take the sophisticated amplitude
estimation method [4,25,26]. With the use of this technique,
the parameter ω and accordingly 〈q|�〉 can be estimated via
O(1/ε) operations of Grover. However, in a practical case
where the number of database, NI , is enough large and the
database contains only few data similar to the query, we have
a rough estimate ω  〈q|�〉  1/

√
NI . In this case we obtain

t∗  √
NI and further P(t∗ )

x  NIψ
2
x  1 if ψ2

x → 1/NI . This
clearly means the quadratic speedup in the number of opera-
tions necessary to achieve the pattern matching, similar to the
conventional Grover search algorithm.

Lastly, we remark on the implementation of the circuit. In
our framework, the oracle operator Go is simple, and it can
be composed of one nD-controlled Toffoli gate; as a result,
the depth of the oracle part is O(n2

D) [27]. In contrast, the
diffusion operator Gd contains U † and U , which consist of the
database operator A and the query operator B. If we naively
implement the perfect version of those data loading operators,
the number of gates increases exponentially in the system
size, i.e., O(2nD+nI ). This is severe to implement on NISQ,
and might spoil the quantum advantages even on FTQC. To
overcome this difficulty, we introduce AAE, as described in
the next subsection.

C. Approximate amplitude encoding (AAE)

AAE [14] is an algorithm that trains a PQC that realizes
approximate data loading. Given a target n-qubit state with
real amplitudes as |d〉, a PQC U (θ) with parameters θ is
trained so that U (θ)|0〉⊗n approximates eiα|d〉, where eiα is
the global phase. AAE runs different algorithms depending
on two cases: case 1 and case 2. Case 1 is the case where
the amplitudes of a target quantum state represented in the
computational basis are all non-negative or nonpositive. Oth-
erwise (i.e., for case 2), AAE offers a different algorithm. The
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numerical experiment shown in Sec. III corresponds to case 1,
and, therefore, we review only case 1 here.

The goal of AAE is to find U (θ) that ideally satisfies

eiαU (θ)|0〉⊗n = |d〉 ≡
N−1∑
j=0

d j | j〉, (19)

where N = 2n and d j is the jth element of the N-element nor-
malized real vector d. To formulate a problem of finding such
U (θ), we need a simple yet equivalent condition to Eq. (19);
the important point is that each element of eiαU (θ)|0〉⊗n has
to identify not only the absolute value but also the sign of dj .
Actually Ref. [28] proposed the method to (approximately)
load only the absolute value of the coefficients by utilizing
the generative adversarial network (GAN). In contrast, it was
shown in [14] that Eq. (19) is equivalent to the following
conditions:

|〈 j|U (θ)|0〉⊗n|2 = d2
j , (20)

|〈 j|H⊗nU (θ)|0〉⊗n|2 =
(

N−1∑
k=0

dk〈 j|H⊗n|k〉
)2

≡ (
dH

j

)2
. (21)

Note that dH
j is classically computable from |data〉 with com-

plexity O(N log N ), by using the Walsh-Hadamard transform
[29].

The training is performed so that the following cost func-
tion L is minimized by utilizing the gradient descendant
algorithm:

L = L1 + L2

2
, (22)

where

L1 = LMMD
({|〈 j|U (θ)|0〉|2}, {d2

j

})
,

L2 = LMMD
({|〈 j|H⊗nU (θ)|0〉|2}, {(dH

j

)2})
.

Here, LMMD({q( j)}, {p( j)}) is the maximum mean discrep-
ancy (MMD) between two discrete probability distributions
q( j) and p( j) [30,31]:

LMMD({q( j)}, {p( j)}) ≡ γMMD({q( j)}, {p( j)})2,

γMMD({q( j)}, {p( j)}) =
∣∣∣∣∣
N−1∑
j=0

q( j)�( j) −
N−1∑
j=0

p( j)�( j)

∣∣∣∣∣,
where �( j) is a function that maps the discrete random vari-
able j to a feature space. It is shown that, as long as we
choose �(k) so that the kernel function κ ( j, k) ≡ �( j)�(k)
is a Gaussian kernel, the condition LMMD({q( j)}, {p( j)}) = 0
is equivalent to q( j) = p( j) for all j. In this paper, we choose
Gaussian kernel functions in both L1 and L2; hence the con-
dition L = 0 is equivalent to (20) and (21), which implies the
validity of minimizing the cost function L.

By using AAE, the database state |database〉 and the query
state |query〉 are approximately generated as follows:

|database〉  A(θa)|0〉⊗nD+nI (23)

= 1√
NI

ND−1∑
j=0

NI −1∑
k=0

ã jk| j〉D|k〉I (24)

= 1√
NI

∑
k

|data(k)〉 ⊗ |k〉I , (25)

|query〉  B(θb)|0〉⊗nD (26)

=
ND−1∑

j=0

b̃ j | j〉D. (27)

Here, A(θa) and B(θb) are parametrized unitary operators for
generating the database state and the query state, respectively;
θa and θb are the optimal parameter vectors that minimize the
cost function (22) for each case. Also, ã jk and b̃ j are the coef-
ficients of the generated states by PQCs A and B, respectively.
The notation  in (23) and (26) represents the approximate
encoding, meaning that some error may be contained. These
AAE operators are followed by the Grover operator, as shown
in Fig. 2, where a detailed gate structure of the AAE part is
depicted.

Lastly note that AAE can be applied to the basis encoded
states (6) and (7) as well as the above amplitude encoded
one. One may employ the exact basis encoding method using
Toffoli gates, because the construction is logically straight-
forward and actually some efficient encoding schemes have
been proposed, such as [32]. However, the total number of
gates may be drastically reduced by finding an approximating
encoding circuit with the use of AAE, although the learning
process of the parameters will bring some encoding error. One
may choose the encoding technique, the exact encoding, or
AAE, depending on the situation.

III. APPLICATION TO IMAGE PATTERN MATCHING

In this section, we provide a thorough numerical demon-
stration of our algorithm applied to the image pattern
matching problem. A set of toy image data is considered,
with and without the amplitude amplification. In particular,
the error analysis of the circuit for AAE and the inversion test
is experimentally conducted using the IBM superconducting
quantum device.

A. General quantum states for database and query image data

An image data consists of NP pixels, where each pixel
has respective color intensity represented by the integer in
the range of [0, NC − 1]. This means that the data vector is
of ND = NPNC dimension. To encode this image data onto
a quantum state, we take the basis encoding representation
called novel enhanced quantum representation (NEQR); see
Appendix B for the detailed description. Note that, as ex-
plained in Sec. II C, the basis encoding scheme can be handled
via AAE.
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FIG. 2. Detailed schematic of the entire quantum circuit for pattern matching, in the case (nD, nI ) = (3, 3).

First, we take nC and nP qubits to represent the variable
of color intensity and the pixel position, i.e., NC = 2nC and
NP = 2nP ; then the total number of qubits of the quantum
state corresponding to this image data is nD = nC + nP. Now,
let gj be the binary-represented integer that denotes the color
intensity at the jth pixel of the query data; then in the NEQR
format the corresponding quantum state is assigned as

|query〉 = 1√
NP

NP−1∑
j=0

|g j〉C | j〉P.

Note that this state can be expressed in the form (7), where
b̂ j takes 1 only when | j〉D in Eq. (7) coincides with the
above |g j〉C | j〉P. Figure 3 depicts the case where NP = 4. The
database quantum state is constructed in the same way. That
is, denoting f jk the color intensity at the jth pixel of the kth
image data, the quantum correspondence is given by

|data(k)〉 = 1√
NP

NP−1∑
j=0

| f jk〉C | j〉P.

This is also a nD = nC + nP qubit state. The database state
|database〉 is the superposition of the above |data(k)〉, as
defined in Eq. (3). Figure 3 depicts an example of such
|database〉. Note that

∑NP−1
j=0 | f jk〉C and

∑NP−1
j=0 |g j〉C are nor-

malized. Our goal is to identify the index of the elements in
|database〉 that has the highest similarity with |query〉. Note
that the probability to hit the index k, without the amplitude

FIG. 3. Database state (left) and the query state (right).

amplification, is calculated as
P(index = k) = |I〈k|〈0nD |�〉|2

= 1

NI
|〈query|data(k)〉|2

= 1

NI

[
NP−1∑
j=0

〈g j | f jk〉
NP

]2

� 1

NI
. (28)

B. Problem formulation

The query data is a four-pixel binary image data, meaning
that nC = 1 and nP = 2. (Note that, in this binary image set-
ting, the NEQR is equivalent to the FRQI; see Appendix B.)
Then, the set of all possible data quantum state is given by
{|0h〉, |1h〉, . . . , |Fh〉} in the hexadecimal representation, as
illustrated in Fig. 4. Here, the database is chosen as the fol-
lowing subset composed of eight image data (hence nI = 3):

{|data(0)〉, |data(1)〉, |data(2)〉, |data(3)〉,
|data(4)〉, |data(5)〉, |data(6)〉, |data(7)〉}

= {|0h〉, |2h〉, |4h〉, |6h〉, |8h〉, |Ah〉, |Ch〉, |Eh〉}.
Therefore, the database quantum state |database〉 is a six-qubit
quantum state, composed of nC = 1 qubit for the color in-
tensity, nP = 2 qubits for the pixel position (X ∈ {0, 1} and
Y ∈ {0, 1}), and nI = 3 qubits for the index.

In this demonstration, we consider the following three dif-
ferent settings: (i) QASM simulator on Qiskit [33] is used to
simulate AAE and the pattern matching part, (ii) the optimal
parameters θa and θb obtained in the setup (i) are used to
run the circuit for pattern matching on the superconducting

FIG. 4. Four pixel-binary data. “h” means the hexadecimal
representation.
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FIG. 5. Result of the pattern matching test without amplitude amplification. The vertical axis is the index (data) of the database (index
0,1,2,3,4,5,6,7) = (data 0h,2h,4h,6h,8h,Ah,Ch,Eh). The bars represent the probability P(index = k) = |I〈k|〈0nD |�〉|2; the blue (upper), gray
(middle), and orange (lower) bars correspond to the cases (i), (ii), and (iii), respectively. “Others” in the vertical axis means the failure
probability, i.e., the total probability of projection of |�〉 onto the states other than |0〉⊗nD . “Match” represents the index of the database
component that coincides with the query with highest probability. “Closest” represents the index of the database component that does not
exactly match but is the closest to the query. The square images in each figure are the query data.

quantum processor (ibm_kawasaki), and (iii) the data encod-
ing process is executed via the perfect encoding algorithm
containing Toffoli gates, rather than AAE; the pattern match-
ing process is then operated using the QASM simulator.

We executed AAE to encode the image data as follows.
The PQC for encoding the database state, A(θa), is a six-
layers hardware efficient ansatz (HEA) and that for the query
state, B(θb), is a three-layers HEA. Each layer is composed
of the parametrized single-qubit Y -rotational gate Ry(θr ) =
exp(−iθrσy/2) and controlled-NOT (CNOT) gate that connect
adjacent qubits, as shown in Fig. 2, where θr is the rth
parameter and σy is the Pauli Y operator [hence A(θa) and
B(θb) are real matrices]. We randomly initialized all θr , at
the beginning of each training. As for the kernel function,
κ (x, y) = exp[−64(x − y)2] is used. To compute the rth gra-
dient of the loss function, we generate 400 samples for each
q+

θ , q−
θr

, qH+
θr

, and qH−
θr

for training B(θb) and 10 000 samples
for the case of A(θa). As the optimizer, Adam [34] is used; the
learning rate is 0.1 for the first 100 epochs and 0.01 for the
other epochs. The number of iterations (i.e., the number of the
updates of the parameters) for training the PQC is set to 300
for B(θb) and 500 for A(θa).

After the training process of AAE, we run the pattern
matching algorithm. Both with and without the amplitude am-
plification via Grover operation, we construct the probability
distribution P(index = k), for all k ∈ {0, 1, . . . , 7} in Eq. (28),
to estimate the set of indices of the data that has significant
similarity to the query. The number of samples (or the shot) is
chosen depending on a specified precision, but it is 512 for all
the results displayed in what follows.

C. Results and discussion

The probability distribution of the index variable, with-
out amplitude amplification (i.e., t = 0), is shown in Fig. 5;
that is, the empirical probability value of P(index = k) =
|I〈k|〈0nD |�〉|2 given in Eq. (28) is calculated by sam-
pling and then horizontally displayed, while the indices of
the database component (index: 0,1,2,3,4,5,6,7) = (data:
0h,2h,4h,6h,8h,Ah,Ch,Eh) are shown in the vertical axis.
“Others” in the vertical axis means the failure probability,
i.e., the total probability of projection of |�〉 onto the states
other than |0〉⊗nD . The blue (upper), gray (middle), and or-
ange (lower) bar corresponds to the cases (i), (ii), and (iii),
respectively; see Sec. III B for the meaning of these cases.
Each subfigure shows the result with respect to the different
query data, e.g., 0h in the top left.

This result shows that the algorithm works well; for both
simulation (i) and the experiment (ii), the AAE followed by
the inversion test circuit produces the outcomes that agree well
with the theoretical prediction (iii). In particular, the database
component obtained with highest probability actually coin-
cides with the query, as indicated by “match” in the figure.
This makes sense because, as shown in Eq. (28), the probabil-
ity value with respect to the index corresponds to the overlap,
or the fidelity, between the database component and the query
data, which has the maximum value 1/NI . Note that those
probability values reflect the Hamming distance between two
images in this case. Hence, as a practical use case, a user
may set a threshold value of the similarity score based on
the Hamming distance and apply the result to identify some
candidate patterns that have the above-threshold overlap with
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FIG. 6. Result of the pattern matching test using amplitude amplification, with the number of Grover iterations t = 5. The blue (upper) and
orange (lower) bars correspond to the cases (i) and (iii), respectively. “Match” represents the index of the database component that coincides
with the query with highest probability. “Closest” represents the index of the database component that does not exactly match but is the closest
to the query. Note that the oracle operator is the same in all cases.

the query, e.g., (0h, 2h, 6h, Ah) for the query 2h. Moreover,
even if the database does not contain exactly the same data
as the query (hence there is no “match” index), this idea of
posing the candidates works; “closest” in the figure represents
the index of database component that is not exactly a match
with but the closest to the query. Note that, though the ex-
perimental result (ii) agrees with the theory (iii) as mentioned
above, we can clearly see that the quantum noise (decoher-
ence) degrades the performance of the encoding performance,
as shown in Fig. 5. That is, many of the hitting probabilities
of the database states decrease and the probability of “others”
(the failure probability) becomes higher, compared to the case
of the ideal simulation result (i). This total degradation of the
hitting probabilities is presumably due to the depolarization
noise, which uniformly decreases the amplitudes of state.

We now turn our attention to the case with amplitude
amplification, under the same setting as above. We take the
number of Grover iterations to be t = 5. The result is shown
in Fig. 6, where the quantities in the graph have the same
meaning as those in Fig. 5, although in this case we have
not conducted the experiment with a real quantum device.
Clearly, the amplitude amplification works well, since the
failure probability of “Others” is drastically reduced and,
equivalently, the success probability of the postselection is
effectively enhanced. As a result, all success probabilities are
amplified, while keeping the relative ratio due to Eq. (17)
showing that all the coefficients ψx are scaled with the same
factor of 1/〈q|�〉. Overall, the result obtained with the use
of AAE (represented by the blue upper bars) and that with
the ideal encoder (orange lower bars) show good agreement,
but some deviations are observed. This is mainly because of
the sampling and encoding errors of AAE. In fact, AAE is a
machine learning technique to find the approximate encoder,

so a nonzero error is in general inevitable. The impact of such
errors on our pattern matching algorithm will be investigated
in another example, demonstrated in Appendix B 3.

Let us now discuss the relation between the number of
Grover iterations, t , and the probability (17) to hit the index k
of the database component, for the case where the query data
is 0h or 1h. The result is plotted in Figs. 7 and 8. Clearly, the
scaling factor and the frequency of magnification ratio are dif-
ferent depending on the query data, reflecting the term 〈q|�〉.
As mentioned in Sec. II B, to exactly specify the optimal num-
ber of iteration t∗, we need to estimate the value of 〈q|�〉. This
task seems to be severe when the frequency of the oscillation

FIG. 7. Amplified probability versus the number of iterations.
The plots represent the result obtained by the numerical simulation
with ideal encoding scheme. The dashed lines represent the analyt-
ical expression (17). The database is shown in Fig. 5 and the query
data is “0h.”
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FIG. 8. Amplified probability versus the number of iterations.
All lines are generated in the same way explained in Fig. 7. The query
data is taken here as “1h.”

ω = 2 arcsin 〈q|�〉 given in Eq. (14) is high. However, for a
practical database where NI is large, ω becomes small and as
a result the probability (17) becomes a monotonically increas-
ing function with respect to t , meaning that a rough choice of t
might work to amplify the target probability. Another notable
point is that eight indices are categorized to four groups. These
groups reflect the Hamming distance (HD) between the query
data and each database component, namely HD = 0,1,2,3 in
Fig. 7 and HD = 1,2,3,4 in Fig. 8, from top to bottom. This
result shows that our algorithm is quite natural in the context
of pattern matching, although this clear relationship is due to
the fact that the data are given by the binary images.

D. Depth and the number of multiqubit gate

Here we discuss the size of the circuit for implementing
our algorithm. First recall that AAE drastically reduces the
circuit depth and the number of multiqubit gates for imple-
menting a data loading circuit, compared to the conventional
encoding scheme. Actually, in the previous subsection, we
demonstrated that the six-qubits database quantum state can
be well prepared with a six-layer HEA, which contains 30
CNOT gates. This is in stark contrast to the conventional exact
encoding circuit that requires 32 six-qubit Toffoli gates, which
is decomposed to 128 CNOT gates and 96 auxiliary qubits
[35]. One can take a more efficient method [32] that allows
us to generate an arbitrary n-qubit state from |0 · · · 0〉 using
2n − n − 1 CNOT gates (including long-range gates), i.e., at
most 57 CNOT gates for the case n = 6. However, if we are
allowed to use only the nearest-neighbor interaction of qubits
like the current superconducting quantum devices, the number
of CNOT gates is estimated as follows [35]:

10

3
2n + 2n2 − 12n +

{
14/3, n even,

10/3, n odd,

meaning that at most there are 218 CNOT gates in the case n =
6. Summarizing, the above exact encoding methods need an
exponential number of CNOT gates, which is quite challenging.

In contrast, with PQC, the depth and the number of mul-
tiqubit gates seem not to increase so fast, i.e., O(poly(n))
in depth and O(n) of multiqubit gates for n-qubits systems,

although in general a PQC does not guarantee a precise state
preparation. Therefore, we focus on problems that do not
require a highly precise encoding of the database; in fact,
the pattern matching problem needs only a relative fidelity
between the query data and the database components, and
in this case a shallow encoding circuit may still work as
demonstrated in the simulation. In this direction, though in
this paper we took a simple HEA, it is important to develop
a designing theory of an O(poly(n)) depth PQC that can
prepare the database state with the necessary precision. For
instance, we may incorporate the database structure to the
ansatz design, to which some existing techniques (see, e.g.,
Refs. [36,37]) could be applied. Also, care should be taken
to mitigate the so-called gradient vanishing (barren plateau)
issue [38] for designing the variational ansatz; we could apply
some proposals such as the circuit initialization technique
[39], use of a special structured ansatz [40], and the parameter
embedding method [41].

Lastly, in our demonstration we naively implemented the
diffusion operator Gd , but there are several implementation
schemes which reduce the number of elementary gates and
the circuit depth to compose the diffusion operator [12,15,42],
which were recently demonstrated [43–45]. Application of
those methods will enable us to demonstrate the amplitude
amplification process executed on a real quantum device.

IV. CONCLUSIONS

In this paper, we proposed a method for approximately
executing the database search or more broadly the pattern
matching algorithm, i.e., the algorithm that Grover originally
considered as a practical application of quantum computation.
The key idea is to implement the data loading process on a
shallow parametrized quantum circuit and the pattern match-
ing function on the inversion-test based circuit, followed by
the amplitude amplification operation that can be constructed
without using the target index. The data-loading circuit needs
much fewer multiqubit entangling gates than the conventional
one; introducing the recent technique to implement the diffu-
sion operator with small blocks [15] may reduce the difficulty
to implement the amplitude amplification part as well. Our
proposed framework will then be totally beneficial for NISQ
but also for FTQC devices. The demonstration of algorithm in
the problem of image pattern matching, with both numerical
simulations and partially a real quantum device, contributes to
the field of quantum image processing.

Lastly we discuss the possible quantum advantage of the
proposed method, where of course the computational over-
head in the variational part of AAE should be carefully taken
into account. First, note that the computational complexity in
the entire algorithm need not include the cost for preparing the
database quantum state as in the classical case. Therefore, the
core of complexity lies in the overhead to prepare the query
quantum state; if the number of repetition of the AAE circuit
B(θ) becomes dominant over the number of Grover opera-
tions, the quantum advantage will vanish. Thus it is important
to limit each data vector to a low-dimensional one such as
that of a telephone number or a low-resolution image used
for object recognition, which can be represented with, e.g.,
up to six qubits. In this case we expect that AAE would take
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roughly hundreds of iterations of B(θ) to encode the query
data with enough precision, or even the quantum circuit for
exact encoding could be implementable nearly perfectly. The
point is that, in this scenario, the complexity for preparing the
quantum query data state does not scale with the number of
database, NI , which is usually quite big; the size of a phone
book is much bigger than the dimension of each data of phone
number. Hence our view is that, when ND � NI and a very
precise preparation of the database state is not required, the
proposed algorithm for search or pattern match may have a
practical quantum advantage both in memory and query com-
plexities. Surely the hardness of near-perfect implementation
of the Grover operator remains, which yet might be attacked
via several recent proposals [12,15] together with possible
circumvention via exploiting the specific structure of A and
B. These important problems, along with customizing our
framework for other applications, will be presented elsewhere.
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APPENDIX A: GROVER ALGORITHM

Here we show the Grover algorithm, in a generalized form
where the target state (the query state in our language) is not
limited to an eigenstate of the initial state. See, e.g., Ref. [24]
for a more detailed description.

We first define an initial state |�〉 as follows:

|�〉 ≡ sin θ |q〉 + cos θ |q⊥〉,

|q〉 ≡ 1

N
P|�〉, (A1)

|q⊥〉 ≡ 1

N ′ (1 − P)|�〉.
That is, |�〉 is decomposed to a given target state |q〉 and
its orthogonal state |q⊥〉, where N = √〈�|P|�〉 and N ′ =√〈�|(1 − P)|�〉 are the normalization constants. P is a pro-
jection matrix, which defines the component(s) of |�〉 to be
searched. Also note that sin θ = 〈q|�〉. The goal is to amplify
the coefficient of the target state, i.e., sin θ , via acting on the
Grover operator

G ≡ Gd Go,

where Go and Gd are the oracle operator and the diffusion
operator defined as

Go ≡ 1 − 2P,

Gd ≡ 2|�〉〈�| − 1.

Actually, by combining the above equations, we have

G

[ |q〉
|q⊥〉

]
=

[
cos(2θ ) − sin(2θ )
sin(2θ ) cos(2θ )

][ |q〉
|q⊥〉

]
.

This represents that G induces a rotation by 2θ in the space
spanned by |q〉 and |q⊥〉. As a result, we found that |� (t )〉 ≡
Gt |�〉 is given by

|� (t )〉 = sin[(2t + 1)θ ]|q〉 + cos[(2t + 1)θ ]|q⊥〉. (A2)

Hence certainly the amplitude of |q〉 is amplified, by appro-
priately choosing the number of operations.

Next, let us express |�〉 and |q〉 in terms of the basis states
{|x〉} as follows:

|�〉 ≡
∑

x

ψx|x〉, (A3)

|q〉 ≡
∑

x

qx|x〉. (A4)

For simplicity, we assume ψx and qx are real numbers for all x.
Correspondingly, |� (t )〉 can also be expressed using the basis
states {|x〉}:

|� (t )〉 ≡
∑

x

ψ (t )
x |x〉.

We now derive the explicit representation of ψ (t )
x , to see how

each coefficient ψx of |�〉 is amplified. From Eqs. (A1), (A3),
and (A4), we have

|q⊥〉 = 1

cos θ
|�〉 − sin θ

cos θ
|q〉

=
∑

x

[
ψx

cos θ
− sin θ

cos θ
qx

]
|x〉

≡
∑

x

q⊥
x |x〉. (A5)

Then, by substituting Eqs. (A4) and (A5) into Eq. (A2), we
have

|� (t )〉 =
∑

x

[sin[(2t + 1)θ ]qx + cos[(2t + 1)θ ]q⊥
x ]|x〉.

Therefore,

ψ (t )
x = sin[(2t + 1)θ ]qx + cos[(2t + 1)θ ]

ψx − qx sin θ

cos θ

= 1

cos θ
[qx sin(2tθ ) + ψx cos(2tθ + θ )]

= 1

cos θ
[(qx − ψx sin θ ) sin(2tθ ) + ψx cos θ cos(2tθ )]

=
√

ψ2
x − 2〈q|�〉ψxqx + q2

x

1 − 〈q|�〉2
sin(2tθ + φx ), (A6)

where

θ = arcsin〈q|�〉,

φx = arccos

(
qx − 〈q|�〉ψx√

ψ2
x − 2〈q|�〉ψxqx + q2

x

)
.

Hence the phase φx determines the amplification gain as a
function of x. Note that, in the original Grover algorithm,
|�〉 is the superposition of equiprobable basis states, i.e.,
ψ0 = · · · = ψN−1 = 1/

√
N , and the target state is one of

them, meaning that P = |y〉〈y| and accordingly |q〉 = |y〉 and
qx = δx,y. In this case, sin θ = 〈q|�〉 = 1/

√
N , which leads to

ψ (t )
y = sin(2tθ + φy), φy = arccos

√
1 − 1/N = θ,

and for x �= y

ψ (t )
x = sin(2tθ + φx )√

N − 1
, φx = arccos

1√
N

= θ + π

2
.
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FIG. 9. Result of the pattern matching test when using FRQI. The vertical axis is index (data) of the database (index 0,1,2,3,4,5,6,7) = (digit
0,1,2,3,4,5,6,7). The horizontal axis is the probability PFRQI(index = x). “Match” represents the index of database component that coincides
with the query with highest probability. The gray (top) bar is the case of ideal encoding. The blue, orange, green, and yellow (the second from
top to bottom) bars are the cases where the encoding noise are 5%, 10%, 30%, and 50% (corresponding fidelity values are 0.99, 0.98, 0.86,
and 0.72, respectively). The single data is represented using seven qubits (one qubit for the color intensity and the others for position) and the
database is represented using 10 qubits since it has eight indices.

This coincides with the formula given in the original Grover
algorithm [46].

In our context, the initial state is |�〉 = ∑
x ψx|x〉 with

{|x〉} the set of basis states of HD ⊗ HI . The target state |q〉
is characterized by the projection P = |0nD〉〈0nD | ⊗ 1I ; that is,
|q〉 is the state having the query data state |query′〉 = |0〉⊗nD

for any index component. Then we have

|q〉 = 1

N

∑
x

ψxP|x〉 = 1

N

∑
x∈C

ψx|x〉,

where C is the set of numbers defined as

C = {x|〈x|(|0nD〉〈0nD | ⊗ 1I )|x〉 �= 0}.
Note that N = 〈q|�〉 = [〈�|(|0nD〉〈0nD | ⊗ 1I )|�〉]1/2. As a
result,

qx =
{
ψx/〈q|�〉 if x ∈ C,

0 if x /∈ C.

Then the state after t Grover operations, |� (t )〉 = Gt |�〉 =∑
x ψ (t )

x |x〉, can be specified as follows: that is, from Eq. (A6),
we find that ψ (t )

x = Ax sin(ωt + δx ), where ω = 2θ , Ax, and
δx are given by Eqs. (14), (15), and (16), respectively. Also
the hitting probability P(t )

x = {ψ (t )
x }2 can also be readily cal-

culated and given by Eq. (17).

APPENDIX B: QUANTUM IMAGE REPRESENTATIONS

Various quantum image representation frameworks have
been proposed [47]. They are categorized to the amplitude-
encoding-based format and the basis-encoding-based format.
The basic idea of the former is summarized by flexible
representation for quantum images (FRQI) and the latter
is summarized by novel enhanced quantum representation
(NEQR). In this section, these two representations are re-
viewed; note that both representations can be taken in our
proposed algorithm.

1. Flexible representation for quantum images (FRQI)

In general, quantum image representation is a method for
expressing the pixel positions and the corresponding color in-
tensities, as a quantum superposition state. In the FRQI format
[48], a grayscale image on Np = 2n×2n pixels is encoded in a
quantum state as follows:

|IFRQI〉 = 1√
Np

Np−1∑
z=0

(cos θz|0〉 + sin θz|1〉)|z〉

= 1√
Np

Np−1∑
z=0

| fz〉|z〉, (B1)

where |0〉 and |1〉 are the computational basis states of a single
qubit, while {|z〉} is the computational basis state of log Np =
2n qubits representing the coordinate of the corresponding
pixel. θ = (θ0, θ1, . . . , θ22n−1), θi ∈ [0, π/2] is the vector of
angles encoding the colors; that is, | fz〉 = cos θz|0〉 + sin θz|1〉
is a qubit on which the color at the pixel coordinate z is
encoded. That is, a grayscale 2n×2n pixel image is represented
by the 2n + 1 qubit state (B1).

The point of FRQI is that it needs only the minimum
number of qubits in which one can encode the absolute value
of color information with arbitrary precision. This is advanta-
geous to amplitude encoding frameworks such as [49], where
the color information is directly encoded into the amplitude
of state vectors representing the pixel position. Actually, the
scheme [49] cannot represent the absolute color value but only
the relative value, in contrast to FRQI and NEQR; this induces
an undesirable change of amplitude information depending
on the other pixel’s one, which happens even if the absolute
intensities are the same, e.g., in the case where only one pixel
has maximum intensity and others are zero or the case where
two pixels have the maximum intensity.
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FIG. 10. Result of the pattern matching test when using NEQR. The vertical axis is index (data) of the database (index 0,1,2,3,4,5,6,7) =
(digit 0,1,2,3,4,5,6,7). The horizontal axis is the probability PNEQR(index = x). The gray (top) bar is the case of ideal encoding. The blue,
orange, green, and yellow (the second from top to bottom) bars are the cases where the encoding noise are 5%, 10%, 30%, and 50%
(corresponding fidelity values are 0.96, 0.86, 0.41, and 0.20, respectively). The single data is represented using 10 qubits [four qubits for
the color intensity (16 levels) and the others for position] and the database is represented using 13 qubits since it has eight indices.

On the other hand, FRQI has the following disadvantage:
that is, an exponential number of measurement is needed to
restore the exact image since one has to identify all the state
amplitudes. However, if we are interested only in the interme-
diate process rather than retrieving the complete image infor-
mation, this measurement issue is not crucial, as pointed out
in [17]. Actually, our pattern matching problem does not need
such an exact information retrieval, and the user can adjust the
sampling cost only depending on the required accuracy.

Finally, in this FRQI representation, the probability distri-
bution with respect to the index variable, Eq. (28), is explicitly
given by

PFRQI(index = x) = 1

NI

(
NFRQI

p (x)

Np

)2

,

NFRQI
p (x) =

Np−1∑
j=0

(cos θ j cos θ jx + sin θ j sin θ jx ),

(B2)

where θ j and θ jx correspond to the color intensity of the jth
pixel in the query data and the color intensity of the jth pixel
of the xth image in the database, respectively.

2. Novel enhanced quantum representation (NEQR)

NEQR proposed in [50] is used for encoding a digital
image, meaning that the color intensity is represented by a
binary code. In this scheme, the color information represented
by the discrete variable taking the 2q values can be stored in a
q-qubit system. If the image is created on Np = 2n×2n pixels,
it is encoded into the quantum state of the form

|INEQR〉 = 1√
Np

Np−1∑
z=0

⊗q−1
i=0

∣∣ci
z

〉|z〉

= 1√
Np

Np−1∑
z=0

| f (z)〉|z〉, (B3)

where ci
z ∈ {0, 1} is a bit information and f (z) = ⊗q−1

i=0 ci
z ∈

[0, 2q − 1] is a bit string representing the pixel color infor-
mation at the coordinate z. Clearly, the total number of qubit
depends on the level of quantization of the color information,
and fine encoding needs much more qubits than FRQI. On
the other hand, one can restore an Np-pixel quantum image
exactly with O(Np) measurement, thanks to the orthogonality
of the states. In this NEQR representation, the probability
distribution with respect to the index variable, Eq. (28), is
given by

PNEQR(index = x) = 1

NI

(
NNEQR

p (x)

Np

)2

,

NNEQR
p (x) =

Np−1∑
j=0

⊗q−1
i=0

〈
ci

j |ci
jx

〉
, (B4)

where ci
j and ci

jx represent the ith bit of the color intensity bit
string of the jth pixel in the query data and the ith bit of the
color intensity bit string of the jth pixel of the xth image in
the database, respectively.

3. Impact of the encoding error for the case
of handwritten digit data

Here we show the result of the analysis on the impact of the
encoding error, depending on the encoding schemes; that is,
we will display the two probability distributions (B2) and (B4)
under some errors. We use the “Handwritten Digits” data set
[51] composed of 10 handwritten digits from numbers 0 to 9;
each data is an 8×8 pixels image with 16 level color assigned
by the amplitude variable ux ∈ [0, 1], where x denotes the
position index of the image. We suppose that the amplitude
ux is affected by the noise εx generated from the normal
distribution N (0, σ ), σ = max({ux})σ0. Then we make the
normalized amplitude vector {ux + εx|x ∈ all basis} divided
by

√∑
x(ux + εx )2. The above procedures are conducted for
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all the database components and a query data. Then we cal-
culate the probability distributions (B2) and (B4) for several
noise deviations σ0 ∈ {0.05, 0.1, 0.3, 0.5} to see the impact
of noise. Note that we consider the case without amplitude
amplification. In the case with amplitude amplification, the
amplitudes are magnified the factor of 1/〈q|�〉 while keeping
the relative amplitude.

Results are shown in Figs. 9 and 10. Both FRQI and NEQR
work appropriately, giving the correct indices with highest
score. In terms of distinguishability, NEQR seems better, be-
cause of the clear difference between the matched state and the
others. However, this also means that we cannot see well the
similarity degree between each component. In other words,
FRQI is appropriate for fuzzy matching and NEQR for exact
matching. For example, we can see in Fig. 9 that “3” and “5”
are similar, since those scores are higher than others (Index 5
in Query 3 and Index 3 in Query 5). Thus one should choose
the data format depending on the purpose.

In terms of error tolerance, FRQI is better. When the noise
magnitude is less than 10%, it does not largely affect the
similarity score in FRQI. On the other hand, in NEQR, some
non-negligible impact is observed even with 5% error and,
moreover, the score drastically becomes small with 30% error.
These behaviors are explained by their representation formats.
In FRQI, the color intensity is expressed by a single qubit,
cos θ |0〉 + sin θ |1〉, which is independent to the color-level
precision, and most substates have nonzero amplitude with
ordinary images (highlight or shadow clipping are rare). If
the encoding error occurs randomly on each state, the effects
can compensate each other. However, in NEQR, the data is
encoded in a sparse space, or equivalently the substate is
expressed by a one-hot vector; e.g., for the case of four qubit
with 16 color levels, only one substate has nonzero amplitude
and the other 15 substates have zero amplitude. Since the
similarity score directly relates to the inner product of the
noised one-hot vectors, it is susceptible to the encoding error.
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[8] M. Plesch and Č. Brukner, Quantum-state preparation with
universal gate decompositions, Phys. Rev. A 83, 032302 (2011).

[9] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis
of quantum-logic circuits, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 25, 1000 (2006).

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for
a quantum random access memory, Phys. Rev. A 78, 052310
(2008).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Random
Access Memory, Phys. Rev. Lett. 100, 160501 (2008).

[12] J. Liu and H. Zhou, Hardware efficient quantum search algo-
rithm, arXiv:2103.14196.

[13] V. Kasirajan, Quantum algorithms, in Fundamentals of Quan-
tum Computing: Theory and Practice, edited by V. Kasirajan
(Springer International Publishing, Cham, 2021), pp. 267–363.

[14] K. Nakaji, S. Uno, Y. Suzuki, R. Raymond, T. Onodera, T.
Tanaka, H. Tezuka, N. Mitsuda, and N. Yamamoto, Approx-

imate amplitude encoding in shallow parameterized quantum
circuits and its application to financial market indicator,
arXiv:2103.13211.
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