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Quantum-key-distribution (QKD) protocols allow exchanging a cryptographic key between two parties. With
the development of the Internet, however, all forms of communications consume a huge number of cryptographic
keys. Improving the secure key rate of QKD is becoming increasingly important. Quantum compression and key
expansion are two ways to increase the secure key rate. In this paper, we propose a quantum-key-expansion
(QKE) protocol. A series of singlet states are compressed by number-state-entanglement-preserving tensors
and disentanglers to obtain a compressed two-body-entangled state. The cryptographic key is expanded by the
number-state-entanglement-preserving tensor network. The advantages of the proposed QKE protocol over the
classical-key-expansion algorithm in the key-expansion method, the key length, and the security are discussed
in this study. Moreover, due to the structure of the number-state-preserving compression tensor network, our
protocol can resist the intercept-resend attack, entanglement-and-measurement attack, and coherent attack.
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I. INTRODUCTION

There are two classes of quantum-key-distribution (QKD)
protocols. The first class is prepare-and-measure protocols,
such as the Bennett-Brassard 1984 (BB84) QKD [1], the
Bennett 1992 (B92) QKD [2], the decoy-state QKD [3],
the measurement-device-independent (MDI) QKD [4,5], the
round-robin differential phase shift (RRDPS) QKD [6], and
the twin-field (TF) QKD [7] in which the present farthest
distance is up to 833 km [8]. For the general prepare-and-
measure protocols, a sender, Alice, prepares quantum states
and sends them to a receiver, Bob, who performs the mea-
surement on his received quantum states. While Bob can
avoid performing the measurements [9], the second class
is entangle-based protocols, such as the Ekert 1991 (E91)
QKD [10] and the Bennett-Brassard-Mermin 1992 (BBM92)
QKD [11]. For the general entangle-based protocols, a pair of
entangled photons is prepared by Alice or a third party [12].
One photon is kept by Alice and the other is sent to Bob. Then
Alice and Bob measure their photons. The entangle-based pro-
tocols have recently attracted more attention from the research
community. Zhang et al. [13] have proposed a QKD protocol
based on two Bell entangled states. Tchoffo et al. [14] have
designed a novel QKD protocol based on entangled photons
with a pseudorandom basis. Works [15–17] have shown how
to use high-dimensional entangled states to construct QKD
protocols.

With the development of the Internet, a large amount of
data is generated and communicated in a pretty short time.
Thus it is critical in modern digital technology to compress
data into the smallest possible space [18]. In the quantum
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domain, storing large amounts of data in the smallest possible
space is urgent because of the high cost of storing data and
the requirement for sophisticated error correction techniques,
due to limited quantum storage resources [19]. However,
quantum compression can effectively utilize valuable quan-
tum resources while reducing quantum memory [18], which
is important for both quantum computing and quantum
communication [20]. In particular, in quantum communica-
tion, quantum compression can reduce the quantum memory
requirements of quantum networks and facilitate the commu-
nication between nodes in the network [21,22].

On the other hand, all forms of communication consume a
huge number of secret keys in reality [23]. As a result, key
expansion is an effective means of increasing the key rate
in the communication process. Key expansion is commonly
used in classical cryptography to improve security [24]. The
expanded key is used to encrypt the same piece of plain
text in algorithms such as the advanced encryption standard
(AES) [25]. The disadvantage of this method is that, if a
specific round key is known, all round keys become easier to
crack [26]. Quantum key expansion (QKE) can overcome this
disadvantage. The general QKE protocol used the standard
QKD protocol to generate a short secure seed key, which
is then used to complete the key expansion. Thus QKE can
provide higher security than AES [27,28]. Hwang et al. [29]
proposed a QKD protocol without public announcement of
bases (PAB), which can be seen as a QKE scheme. This
protocol first uses a BB84 protocol to share a secure key as the
encoding base between Alice and Bob. Then, Alice prepares
the signal state and sends it to Bob, who measures the received
signal state by the shared base sequence. As long as Eve does
not know the base, Alice and Bob can use this base sequence
to repeatedly complete the key-distribution process. However,
the disadvantage is that the eavesdropper Eve can obtain
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the key information by fixing a base to measure the signal
state and inferring the base information from the information
transferred between Alice and Bob [23]. Based on the QKD
without PAB protocol, Ji et al. [30] showed that the QKE pro-
tocol is a powerful tool for enhancing the maximum distance
of key distribution. Likewise, Wang [31] proposed a QKE
protocol without measurement mismatch, which costs almost
zero classical communication and consumes fewer qubits than
that in the standard protocols. Vlachos et al. [27] prepared the
seed key as the initial state of the quantum cellular automata
and obtain a larger key by changing the period of quantum
cellular automata states. Luo et al. [32] and Hsu et al. [33]
used the seed key to the postprocessing of the standard QKD
protocol, in order to produce a larger key. Recently, Arrazola
et al. [24] and Tahmasbi et al. [34] consumed the seed key to
generate the expansion key from the covert communication,
respectively.

In this paper, we investigate quantum compression and its
application for a design of more efficient QKE protocols. In
particular, we focus our attention on singlet states, which can
be compressed by a tensor network (TN). There are several
TN models that include the matrix product state (MPS) [35],
tree tensor network (TTN) [36], projected entangled pair state
(PEPS) [37], and multiscale entanglement renormalization
ansatz (MERA) [38]. TN models are a key component of
current quantum physics [39]. They provide an effective and
accurate way to simulate strongly correlated quantum sys-
tems.

Note that, due to their good compression features, quantum
tensor networks have been recently used in machine learn-
ing [40–42]. Using a minimal number of parameters, TN can
get close to or even beat classical machine learning. This is
achieved by reducing the dimension of data from exponential
to polynomial. Bai et al. [21] have used a local compression
protocol to build a TTN model that may theoretically perform
lossless compression of the AKLT state [43]. Evenbly [44]
has suggested a number-state-preserving tensor network with
a MERA structure.

In this paper, we extend number-state-preserving tensor
network into number-state-entanglement-preserving tensor
network with quantum compression. Our TN model is then
applied to singlet states. A resulting entangled photon pair is
used to perform the QKD protocol. We verify theoretically
that our compression model has a matching number-state-
entanglement-preserving tensor so a compression process for
singlet states can be completed. We demonstrate that our
compression model scales well.

The rest of the paper is organized as follows. Section II in-
troduces necessary background. Section III provides details of
number-state-entanglement-preserving tensor networks. Sec-
tion IV describes our QKE protocol. Section V presents the
security analysis. Section VI concludes the paper and dis-
cusses future research.

II. PRELIMINARIES

A. Number-state-preserving compression tensors

Consider a lattice with L sites, where each site is de-
scribed by a local Hilbert space of dimension 2. The base

FIG. 1. Illustration of the number-state-preserving compression
tensor w.

state of every site is denoted as |z〉 ∈ {|0〉, |1〉}, where |0〉 =
[1, 0]T, |1〉 = [0, 1]T. Then, the number state is defined as [44]

|ZL〉 =
L−1⊗
k=0

|zk〉, (1)

where k = 0, 1, . . . , L − 1 is the lattice position.
A number-state-preserving compression tensor can be re-

garded as a mapping from one number state to another [44].
For example, the number-state-preserving compression tensor
w is defined as follows:

w =
[

1 0 0 1
0 1 1 0

]
. (2)

Then, applying w to a number state |Z2〉 = |z0〉 ⊗ |z1〉, we
obtain

|0〉 ⊗ |0〉, |1〉 ⊗ |1〉 w−→ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉 w−→ |1〉.
(3)

A number-state-preserving compression tensor w can al-
ternatively be expressed as a direction-determined tensor (see
Fig. 1), where the index contains the input and output edges.
The lattice L represents the input side, while the lattice L′
representsthe output side.

B. Disentangler

Vidal [38] has proposed the concept of disentangler. It is
a unitary transformation that removes short-range entangle-
ment [45]. For example, given a disentangler u as follows:

u =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 − 1√
2

⎤
⎥⎥⎥⎥⎦,

where uu† = u†u = I , then, for the state 1/
√

2(|00〉 + |11〉),
we obtain

1√
2

(|00〉 + |11〉)
u−→ |00〉. (4)

This means that u disentangles 1/
√

2(|00〉 + |11〉) into a prod-
uct state |00〉.

III. NUMBER-STATE-ENTANGLEMENT-PRESERVING
TENSOR NETWORK

A number-state-preserving compression tensor input is
kept as a direct product state as indicated in Sec. II A. We will
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now expand it to cover a case of an entangled state. For exam-
ple, given an input state that consists of one singlet state and
two spin-1/2 photons, i.e., |L〉 ⊗ 1/

√
2(|01〉 − |10〉) ⊗ |R〉,

where |L〉, |R〉 ∈ {|0〉, |1〉}. Similar to Eqs. (2) and (3), we
define number-state-preserving tensors w1 and w2 as follows:

w1 =
[

1 0 0 1
0 1 1 0

]
, w2 =

[
0 1 1 0
1 0 0 1

]
, (5)

where

|0〉|0〉, |1〉|1〉 w1−→ |0〉, |0〉|1〉, |1〉|0〉 w1−→ |1〉,
|0〉|0〉, |1〉|1〉 w2−→ |1〉, |0〉|1〉, |1〉|0〉 w2−→ |0〉. (6)

We define W1 := w1 ⊗ w1 and W2 := w2 ⊗ w2. They output
entangled states. For |L〉 = |0〉, we choose W1 and obtain

|0〉 ⊗ 1√
2

(|01〉 − |10〉) ⊗ |0〉 W1−→ 1√
2

(|01〉 − |10〉),

|0〉 ⊗ 1√
2

(|01〉 − |10〉) ⊗ |1〉 W1−→ 1√
2

(|00〉 − |11〉). (7)

For |L〉 = |1〉, we use W2 and get

|1〉 ⊗ 1√
2

(|01〉 − |10〉) ⊗ |0〉 W2−→ 1√
2

(|01〉 − |10〉),

|1〉 ⊗ 1√
2

(|01〉 − |10〉) ⊗ |1〉 W2−→ 1√
2

(|00〉 − |11〉). (8)

Next, we apply different numbers of single states as an
initial input. We explore ways we can design a number-state-
entanglement-preserving tensor network using number-state-
compression-preserving tensors and disentanglers.

Example 1. Eight-particle input states composed of three
singlet states. Suppose |L〉 = 0 and |R〉 = 0; the initial input
state is defined as

|�I〉 = |0〉 ⊗
3⊗

i=1

|�−
i 〉 ⊗ |0〉

= 1√
2

[
1√
2

(|0010〉 − |0100〉) ⊗ 1√
2

(|1010〉 − |1100〉)

− 1√
2

(|0011〉 − |0101〉) ⊗ 1√
2

(|0011〉 − |0101〉)

]
.

(9)

According to |L〉 = |0〉 and Eqs. (6) and (7), we first apply a
tensor w1 layer (see Fig. 2) to |�I〉. The output is

|�o
1〉 = W1|�I〉

= 1√
2

[
1√
2

(|01〉 − |10〉) ⊗ 1√
2

(|11〉 − |00〉)

− 1√
2

(|00〉 − |11〉) ⊗ 1√
2

(|01〉 − |10〉)

]
, (10)

where the index o of |�o
1〉 means the output and W1 =⊗4

i=1 w1 is the tensor product of all w1 in the first layer.

FIG. 2. Three layer number-state-entanglement-preserving ten-
sor network. The choice of W1 is determined by state |L〉; if |L〉 = |0〉,
then W1 = ⊗4

i=1 w1; otherwise, W1 = ⊗4
i=1 w2. The layer U1 disen-

tangles the output of W1 and produces a result that we want. Finally,
WF outputs the compressed entangled state.

Similar to Eq. (4), we define disentanglers

u1 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦ (11)

and

u2 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0

− 1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦, (12)

and obtain the product state

1√
2

(|01〉 − |10〉)
u1−→ |01〉, 1√

2
(|00〉 − |11〉)

u1−→ |00〉,

1√
2

(|01〉 − |10〉)
u2−→ |01〉, 1√

2
(|11〉 − |00〉)

u2−→ |11〉.
(13)

Using U1 = u1 ⊗ u2, we remove short-range entanglement of
|�o

1〉 and get

|�o
2〉 = U1|�o

1〉 = 1√
2

(|0111〉 − |0001〉)

= |0〉 ⊗ 1√
2

(|11〉 − |00〉) ⊗ |1〉. (14)

At last, we apply a final tensor WF = w1 ⊗ w1 and obtain a
compressed entangled state

|�F 〉 = WF |�o
2〉 = 1√

2
(|10〉 − |01〉). (15)

A three layer number-state-entanglement-preserving tensor
network is shown in Fig. 2.
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Example 2. 16-particle input states composed of seven singlet states. We set |L〉 = |0〉 and |R〉 = |0〉 and the initial input is
|�I〉 = |0〉 ⊗ ⊗7

i=1 |�−
i 〉 ⊗ |0〉. As |L〉 = |0〉 and according to Eqs. (6) and (7), we first apply a tensor w1 layer to |�I〉. The

result is

|�o
1〉 = W1|�I〉

= 1√
2

(|01〉 − |10〉) ⊗ 1√
2

(|11〉 − |00〉) ⊗ 1√
2

(|11〉 − |00〉) ⊗ 1√
2

(|11〉 − |00〉) − 1√
2

(|01〉 − |10〉) ⊗ 1√
2

(|11〉 − |00〉)

× ⊗ 1√
2

(|10〉− |01〉)⊗ 1√
2

(|01〉− |10〉)− 1√
2

(|01〉− |10〉)⊗ 1√
2

(|10〉− |01〉) ⊗ 1√
2

(|01〉− |10〉) ⊗ 1√
2

(|11〉− |00〉)

+ 1√
2

(|01〉− |10〉) ⊗ 1√
2

(|10〉− |01〉) ⊗ 1√
2

(|00〉− |11〉) ⊗ 1√
2

(|01〉− |10〉) − 1√
2

(|00〉− |11〉) ⊗ 1√
2

(|01〉 − |10〉)

× ⊗ 1√
2

(|11〉− |00〉)⊗ 1√
2

(|11〉− |00〉)+ 1√
2

(|00〉− |11〉)⊗ 1√
2

(|01〉− |10〉) ⊗ 1√
2

(|10〉− |01〉) ⊗ 1√
2

(|01〉− |10〉)

+ 1√
2

(|00〉− |11〉) ⊗ 1√
2

(|00〉− |11〉) ⊗ 1√
2

(|01〉− |10〉) ⊗ 1√
2

(|11〉− |00〉)− 1√
2

(|00〉− |11〉) ⊗ 1√
2

(|00〉 − |11〉)

× ⊗ 1√
2

(|00〉 − |11〉) ⊗ 1√
2

(|01〉 − |10〉), (16)

where W1 = ⊗8
i=1 w1. Similar to Example 1, we set disentanglers as

u3 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 1√
2

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0

− 1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦ (17)

and

u4 =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤
⎥⎥⎥⎥⎦. (18)

We obtain a product state

1√
2

(|10〉 − |01〉)
u3−→ |10〉, 1√

2
(|11〉 − |00〉)

u3−→ |11〉, 1√
2

(|10〉 − |01〉)
u4−→ |10〉, 1√

2
(|00〉 − |11〉)

u4−→ |00〉. (19)

Combining Eqs. (13) and (19) and applying U1 = u1 ⊗ u2 ⊗ u3 ⊗ u2 for |�o
1〉, we get

|�o
2〉 = U1|�o

1〉 = 1√
2

[
1√
2

(|0111〉 − |0001〉) ⊗ 1√
2

(|1111〉 − |1001〉) − 1√
2

(|0101〉 − |0011〉) ⊗ 1√
2

(|1011〉 − |1100〉)

]
.

(20)

Further, we use W2 = ⊗4
i=1 w1 to compress |�o

2〉 again and we obtain

|�o
3〉 = W2|�o

2〉 = 1√
2

[
1√
2

(|10〉 − |01〉) ⊗ 1√
2

(|00〉 − |11〉) − 1√
2

(|11〉 − |00〉) ⊗ 1√
2

(|10〉 − |01〉)

]
. (21)

We use U2 = u3 ⊗ u4 to remove a short-range entanglement of |�o
3〉. We get

|�o
4〉 = U2|�o

2〉 = |1〉 ⊗ 1√
2

(|00〉 − |11〉) ⊗ |0〉. (22)

Finally, we apply the tensor WF = w1 ⊗ w1 and obtain a compressed entangled state |�F 〉 = WF |�o
4〉 = 1/

√
2(|10〉 − |01〉). A

five layer number-state-entanglement-preserving tensor network is shown in Fig. 3. Now we are ready to discuss a generic case.
Proposition 1. The internal entangled state in |�I〉 is unaffected by the boundary state choices |L〉 and |R〉.
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Proof. If there are n single states, the initial input state is defined as

|�I〉 = |L〉 ⊗
n⊗

i=1

|�−
i 〉 ⊗ |R〉

= 1

2

{[
|L〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |0〉

]
⊗

[
|1〉 ⊗

n−3⊗
i=3

|�−
i 〉 ⊗ |0〉

]
⊗

[
|1〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |R〉

]

−
[
|L〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |0〉

]
⊗

[
|1〉 ⊗

n−3⊗
i=3

|�−
i 〉 ⊗ |1〉

]
⊗

[
|0〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |R〉

]

−
[
|L〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |1〉

]
⊗

[
|0〉 ⊗

n−3⊗
i=3

|�−
i 〉 ⊗ |0〉

]
⊗

[
|1〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |R〉

]

+
[
|L〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |1〉

]
⊗

[
|0〉 ⊗

n−3⊗
i=3

|�−
i 〉 ⊗ |1〉

]
⊗

[
|0〉 ⊗ 1√

2
(|01〉 − |10〉) ⊗ |R〉

]}
. (23)

Obviously, while different choices for |L〉 and |R〉 affect
the result of |L〉 ⊗ 1/

√
2(|01〉 − |10〉) ⊗ |0〉 and number-

state-preserving tensors, they have no effect on the internal
entanglement state such as |1〉 ⊗ ⊗n−3

i=3 |�−
i 〉 ⊗ |0〉. This

proves the proposition.
Proposition 2. Given n = 2� − 1 singlet states, then there

is a collection of disentanglers.
Proof (by induction for �). (1) Assume that � = 1. Then

the input state is |L〉 ⊗ 1/
√

2(|01〉 − |10〉) ⊗ |R〉. After the ac-
tion of W , a compressed entanglement state is 1/

√
2(|L′R′〉 −

|L̄′R̄′〉) and there is a disentangler u that satisfies

1√
2

(|L′R′〉 − |L̄′R̄′〉)
u−→ |L′R′〉.

(2) Assume that � = 2 and n = 3. This case is an eight-
particle input state composed of three singlet states (Example
1). Thus there is an appropriate disentangler.

(3) Assume � = k, n = 2k − 1, and the input state is
|L〉 ⊗ ⊗2k−1

i=1 |�−
i 〉 ⊗ |R〉. After the action of the number-

state-preserving W , there is a disentangler that meets the
proposition.

When � = k + 1, the input state is |L〉 ⊗ ⊗2k+1−1
i=1 |�−

i 〉 ⊗
|R〉, which could be represented as follows:

|L〉 ⊗
2k+1−1⊗

i=1

|�−
i 〉 ⊗ |R〉

= |L〉 ⊗ |�L〉 ⊗ 1√
2

(|01〉 − |10〉) ⊗ |�R〉 ⊗ |R〉

= 1√
2

[(|L〉 ⊗ |�L〉 ⊗ |0〉) ⊗ (|1〉 ⊗ |�R〉 ⊗ |R〉)

−(|L〉 ⊗ |�L〉 ⊗ |1〉) ⊗ (|0〉 ⊗ |�R〉 ⊗ |R〉)], (24)

where |�L〉 = ⊗2k−1
i=1 |�−

i 〉 and |�R〉 = ⊗2k+1−1
i=2k+1 |�−

i 〉. Due
to the fact that the disentangler exists when the input state is
|L〉 ⊗ ⊗2k−1

i=1 |�−
i 〉 ⊗ |R〉, the matching disentanglers can also

be found when the input state is |L〉 ⊗ ⊗2k−1
i=1 |�−

i 〉 ⊗ |0〉(|1〉)

or (|1〉)|0〉 ⊗ ⊗22k−1
i=2k+1 |�−

i 〉 ⊗ |R〉. This indicates that Propo-
sition 2 is correct.

According to Propositions 1 and 2, we theoretically prove
that our model is scalable. Algorithm. 1 shows details of
compression.

FIG. 3. Five layer number-state-entanglement-preserving tensor network. The choice of W1 and W2 is determined by state |L〉; if |L〉 = |0〉,
then W1 = ⊗8

i=1 w1 and W2 = ⊗4
i=1 w1. Otherwise, if |L〉 = |1〉, then W1 = ⊗8

i=1 w2 and W2 = ⊗4
i=1 w2. The layers U1 and U2 disentangle

the output of W1 and W2. Finally, WF outputs the compressed entangled state.
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IV. QUANTUM-KEY-EXPANSION PROTOCOL

A. Our protocol

In this section, we design a QKE protocol that applies our
compression algorithm. We assume that an eavesdropper, Eve,
knows everything about the key preparation except the initial
state |�I〉 and the structure of the number-state-entanglement-
preserving tensor network. Further, suppose that Alice and
Bob have agreed on n singlet states, |L〉, and |R〉.

Step 1. Initial-state compression. Assume that an agreed
initial state is

|�I〉 = |L〉 ⊗
n⊗

i=1

|�−
i 〉 ⊗ |R〉, (25)

where |�−
i 〉 = 1/

√
2(|01〉 − |10〉). Alice compresses the |�I〉

using Algorithm. 1 and obtains the compressed entangled
state

|�F 〉 = 1√
2

(|LF 〉|RF 〉 − |L′
F 〉|R′

F 〉), (26)

where |LF 〉(|RF 〉) = |0〉(|1〉) and |L′
F 〉(|R′

F 〉) = |1〉(|0〉).
Step 2. Key generation. Using the compressed entangled

state |�F 〉, Alice and Bob complete the QKD. For example,
the first photon in Eq. (26) is kept by Alice and the second
photon is sent to Bob via a quantum channel. Alice and Bob
choose one of two bases randomly to measure each photon
they receive. After measurement, they tell each other what
basis they have used. This is done via a classical channel. As

FIG. 4. Illustration of key generation. Assume the measurement
result of Eq. (15) is |10〉. Then, use |10〉 as the input of W †

F and output
the entangled state (|01〉 + |10〉) ⊗ (|00〉 + |11〉). U †

1 disentangles
the state into a product state |0100〉. The state as the input for w†

1

of W †
1 at the odd site decodes |0〉(|1〉) into |00〉(|01〉) and decodes

|0〉(|1〉) into |11〉(|10〉) at the even site. Finally, according to the site
of w†

1 at the W †
1 layer, we determine the generated key bits 00100011.

in the BB84 and BBM92 protocols, Alice and Bob keep the
measurement result if it matches the correct basis. Otherwise,
they discard it [1,11].

Next, Alice publishes a small number of photons chosen at
random. This allows Bob to determine an error rate of quan-
tum channel. If the error rate is lower than a predetermined
threshold, they conclude that communication is reliable and
free from outside interference. Finally, Alice informs Bob
about the number of layers in this tensor network, |L〉, |R〉
and the rule for decompressing the compressed entangled
state. The communication is done over a classical channel.
Example 1 from Sec. III shows how to extract a secure cryp-
tographic key from the compressed entangled state |�F 〉 =
1/

√
2(|10〉 − |01〉) [see Eq. (15)].

Assume that the measurement result is |10〉. First, we con-
sider |10〉 as the input of the final tensor W †

F := w
†
1 ⊗ w

†
1 as

follows:

W †
F |10〉 = w

†
1|1〉 ⊗ w

†
1|0〉 = (|01〉 + |10〉) ⊗ (|00〉 + |11〉).

(27)

Next, we take (|01〉 + |10〉) ⊗ (|00〉 + |11〉) as the input of
U † = u†

1 ⊗ u†
2 and obtain

U †[(|01〉 + |10〉) ⊗ (|00〉 + |11〉)]

= u†
1(|01〉 + |10〉) ⊗ u†

2(|00〉 + |11〉)

= |01〉 ⊗ |00〉. (28)

Finally, we consider |01〉 ⊗ |00〉 as the input of W †
1 = w

†
1 ⊗

w
†
1 ⊗ w

†
1 ⊗ w

†
1 and obtain

W †
1 |0100〉 = w

†
1|0〉 ⊗ w

†
1|1〉 ⊗ w

†
1|0〉 ⊗ w

†
1|0〉

= (|00〉 + |11〉) ⊗ (|01〉 + |10〉)

× ⊗(|00〉 + |11〉) ⊗ (|00〉 + |11〉). (29)

We assume the following encoding for w
†
1 of W †

1 at the
odd site (see Fig. 4). We encode |00〉(|01〉) into |0〉(|1〉),
respectively. Likewise, encoding for w

†
1 of W †

1 at the even
site is |0〉(|1〉) for |11〉(|10〉), respectively. Consequently, both
Alice and Bob can establish a common cryptographic key
00100011. Key generation is shown in Fig. 4.
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TABLE I. Efficiency of different protocols.

Protocol Q R b E (%)

BB84 [1] 0.5 1 1 25%
BBM92 [11] 1 1 1 50%
Example 1 8 8 1 88.9%
Example 2 16 16 1 94.1%
QKD without PAB [29] 1 1 0 100%

B. Information transmission efficiency

From the point of view of information theory, the informa-
tion transmission efficiency E of a QKD protocol is defined as
follows [46]:

E = Q
R + b

, (30)

where Q is the number of bits in the key, R is the number
of qubits, and b is the number of classical bits interchanged
between communication parties. In the BB84 protocol, Q =
0.5, R = 1, and b = 1. b = 1 is used to indicate whether
Alice and Bob use the same measuring base [47]. Thus the
efficiency of BB84 is 25%. In the BBM92 protocol, Q = 1,
R = 1, and b = 1. The efficiency is 50%. Theoretically, the
QKE protocol (i.e., QKD without PAB) proposed by Hwang
et al. [29] is capable of reaching 100% efficiency [23] with
Q = 1 and R = 1. Due to the elimination of the measurement
base announcement, b = 0.

However, while the protocol we proposed compresses |�I〉
into |�F 〉, and the QKD process of |�F 〉 can be done in the
same way as the BBM92 protocol, this does not imply that
our protocol’s efficiency is comparable to the BBM92 proto-
col. For example, in the case of Example 1, the initial state
|�I〉 contains eight photons, R = 8. Then, decompressing the
compressed entangled state can generate eight bits secure key,
Q = 8. Alice and Bob need one bit to indicate the information
of the base, b = 1. Thus the efficiency of our protocol is
88.9%. Likewise, in the case of Example 2, the efficiency
is 94.1%. The efficiency E of different protocols is shown
in Table I. As the number of photons in |�I〉 increases, the
efficiency of our protocol tends to 100%.

To compare the length of generated security keys among
different protocols, we ran simulations on QuVis [48] for
BB84, BBM92, QKD without PAB, and Example 1. The ex-
periment setup is as follows. (1) Alice sends polarized photons
to Bob at random. (2) Eve uses random bases to eavesdrop
the quantum channel between Alice and Bob, except for the
QKD protocol without PAB. (3) The experiment is completed
by “fast forward 100 photons” (i.e., a fast simulation of 100
single-photon sending processes). (4) The number of photons
in the experiment is 100 to 1000. (5) The experiment of
Example 1 is completed by decompressing the key obtained
from BBM92. (6) Parameters measured in this experiment
are the value of N key (Nk) for each protocol. The result
of experiments shows that our protocol can generate larger
security keys than BB84, BBM92, and QKD without PAB.
The result is shown in Fig. 5.

FIG. 5. Length of the secure key generated by different proto-
cols. The results show that our protocol can generate larger security
keys compared to the traditional BB84, BBM92, or QKE protocol,
i.e., QKD without PAB.

C. Distinction between classical-key expansion and our protocol

Compared with the classical-key-expansion method, such
as the AES key-expansion algorithm, our protocol has advan-
tages in terms of the key-expansion method, the key length,
and the security. The details are as follows.

Key-expansion method. The method for AES key expan-
sion is to use the initial key to generate the round key
for the process of encryption and decryption by mathe-
matical computation [49]. The extended round key can be
used timely in encryption. However, the disadvantage is
that, if a specific round of keys is known, all round keys
become easier to crack [26]. In contrast, the quantum com-
pression method used in our protocol can improve this
problem, because the secure key generated by our protocol is
random.

Key length. If the key can be extended to any length,
the key-extension approach is more effective [50]. The AES
key-expansion method has three different lengths of keys,
namely AES-128, AES-192, and AES-256 [25]. As a result,
the length of each round of key expansion is also 128, 192,
and 256, respectively. In contrast, the key generated by our
protocol satisfies the power of 2 which tends more to this
requirement.

Security. When executing the subkey expansion, AES
performs the three operations SubBytes, ShiftRows, and Mix-
Columns [25,26]. Key cracking becomes more complex as
a result of these operations. Thus the security of the AES
key-expansion method comes from the computational com-
plexity. Theoretically, however, this complexity can be broken
by quantum computers [49]. In contrast, the security of our
protocol is guaranteed by the quantum compression and the
number-state-entanglement-preserving tensor network, which
we discuss in Sec. V.

We display the distinction between classical-key expansion
and our protocol in Table II.
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TABLE II. Comparison between the classical-key-expansion method in AES algorithm and our protocol.

Features Classical-key expansion Our protocol

Method Mathematical computation Quantum compression and quantum entanglement
Key length 128,192,256 The power of 2
Security Computational complexity Quantum compression and the tensor network

V. SECURITY ANALYSIS

As we have discussed in Sec. IV A, Alice and Bob use
compressed entangled states to complete the standard QKD
process, such as BBM92. We can obtained the secure key
by decompressing the measured result. Thus the BBM92
protocol ensures the security of the compressed state in the
communication process. In this section, we focus on the
security analysis of the proposed number-state-entanglement-
preserving tensor network and discuss three types of attack:
intercept-resend attack, entanglement-and-measurement at-
tack, and coherent attack. Eve has no knowledge about
the initial state |�I〉 and the structure of the number-state-
entanglement-preserving tensor network.

Intercept-resend attack. In this attack, Eve measures each
photon on a randomly chosen basis. Then, she resends the
resulting state to Bob. For the case of Example 1, the com-
pressed state is |�F 〉 = 1/

√
2(|10〉 − |01〉). Alice holds the

first photon and sends the second photon to Bob. Eve in-
tercepts the second photon and measures it. Assume her
measurement result is |0〉. However, without the knowledge
of the initial state and the structure of the tensor network,
she cannot be sure whether the result is |10〉 or |00〉. As we
have discussed in Sec. IV A, the measurement result between
Alice and Bob is |10〉. If the result of Eve is |00〉, she cannot
obtain any information about the cryptographic key. If the
result of Eve is |10〉, without the knowledge about the tensor
network, she also cannot obtain any information about the
cryptographic key.

Entanglement-and-measurement attack. In this attack, Eve
prepares ancillary state |ε〉 to entangle with each photon she
intercepts. For the case of Example 1, Eve entangles the
ancillary state |ε〉 with the sent photon using a unitary trans-
formation UBε , and she obtains the combined state as follows:

|�C〉 = UBε |�F 〉|ε〉 = UBε

1√
2

(|1A0B〉 − |0A1B〉)|ε〉. (31)

For example, if UBε is a CNOT (controlled-NOT) trans-
formation, the ancillary state |ε〉 = |0ε〉 and then the
combined state |�C〉 = 1/

√
2(|1A0B0ε〉 − |0A1B1ε〉).

However, without the knowledge about the initial state
and the structure of the tensor network, the combined
states Eve can guess are 1/

√
2(|0A0B0ε〉 + |1A1B1ε〉),

1/
√

2(|0A0B0ε〉 − |1A1B1ε〉), 1/
√

2(|1A0B0ε〉 + |0A1B1ε〉),
and 1/

√
2(|1A0B0ε〉 − |0A1B1ε〉). Considering the measure-

ment result of Eve is |0ε〉, she cannot be sure whether the
result between Alice and Bob is |1A0B〉 or |0A0B〉. If she
chooses |0A0B〉, she cannot obtain any information about
the cryptographic key. If she chooses |1A0B〉, without the
knowledge about the tensor network, she cannot obtain any
information about the cryptographic key.

Coherent attack. In this attack, Eve can prepare an ar-
bitrary joint state |εE 〉 of the ancilla, which then interacts
with the photons before being measured jointly. Consider
Alice and Bob share n pairs of compressed entangled states.
Eve treats n photons that Alice sent to Bob as a single
quantum system, denoted as |SAB〉. Then, Eve interacts the
joint state |εE 〉 with |SAB〉 by a unitary transformation UBE .
The combined state is UBE |SAB〉|εE 〉. Assuming that Eve
can obtain the encoded information of all n photons by a
single joint measurement, she has a certain probability to
get the correct structure of the number-state-entanglement-
preserving tensor network. Consider an initial state |�I〉
contains 2n + 2 = 2� particles and the number of compres-
sion layers is log2(2n + 2) − 1 = � − 1. Assume that Eve can
guess the number of compression layers with a probability
of 1/(� − 1).

Let |L〉 = |0〉 and all number-state-preserving tensors are
w1. Eve can guess a number-state-preserving tensor with a
probability of 1/2. She successfully guesses a single disen-
tangler with a probability of 1/4. As the total number of
disentanglers is 2�/2 − 2, Eve is able to guess all of them
with a probability of (1/4)2�/2−2. Summing up, Eve is able to
get the correct number-state-preserving-tensor network with
a probability of 1/[22�−3(� − 1)]. Further, as we discuss in
Sec. IV, a cryptographic key generation process in our QKD
protocol is controlled by tensor positions ( odd or even in
Fig. 4) in compression layers W †

1 . The probability that Eve
obtains the correct rule of w

†
1 in W †

1 is 2log2 2�/2 = 2�−1.
Hence Eve can get a cryptographic key with a probability
of

P = 1

22�−3(� − 1)2�−1
. (32)

The larger �, the smaller probability of Eve’s guesses. For
the Example 1, the initial state |�I〉 contains eight parti-
cles, and � = 3. The probability that Eve can obtain the
cryptographic key is P = 1/28 = 1/128. Likewise, for the
Example 2, |�I〉 contains 16 particles, and � = 4. The prob-
ability that Eve can obtain the cryptographic key is P =
1/(3 × 216) = 1/196608. Hence the larger the initial state,
the exponentially decreasing probability of success of Eve’s
guess.

VI. CONCLUSION

In this paper, we have proposed a QKE protocol that ap-
plies number-state-entanglement-preserving tensor networks
with quantum compression. In this protocol, we have ex-
ploited different choices for |L〉 and |R〉 that allow us to
construct randomized number-state-preserving tensors and
disentanglers. As a result, we can obtain various number-state-
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entanglement-preserving tensor networks with randomized
compression. The compression model is scalable as it works
for the cases, where the number of input photons is a
power of 2. Compared with the traditional BB84, BBM92,
and the QKE protocol, our protocol can generate longer
secure keys using a smaller number of entangled photons,
which can increase the cryptographic key generation rate.
Further, we compared the distinction between the classical
AES key expansion algorithm and our protocol on key ex-
pansion method, key length, and security. The result shows
that our protocol has a better performance than the classical-
key-expansion method. In addition, we discussed the security
of our protocol in intercept-resend attack, entanglement-
and-measurement attack, and coherent attack. Due to the
structure of the number-state-entanglement-preserving tensor
network, our protocol can resist intercept-resend attack and
entanglement-and-measurement attack. For coherent attack,

the larger the initial state, the exponentially decreasing proba-
bility of success of Eve’s guess.
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