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Quantum channels, in general, will disturb quantum states and will lead to decoherence (i.e., information
leakage to the environment). For bipartite systems, local channels often cause more decoherence for global
states than for local states due to correlations. Intuitively, the difference between these two kinds of decoherence
(i.e., global and local ones) may be regarded as a quantifier characterizing certain aspects of correlations in the
global bipartite states. Based on this idea, we introduce a quantifier of correlations (relative to a local channel)
as the coherence difference and investigate its basic properties. We probe and quantify correlations relative
to various channels including the unitary channels, the twirling channels, the projective measurements, and
the weak measurements. In particular, we show that both product states and some natural classical-quantum
states can be operationally characterized in terms of local channels: The product states are just those states with
vanishing coherence difference relative to the twirling channel induced by the unitary group, whereas these
natural classical-quantum states are just those states with vanishing coherence difference relative to the twirling
channel induced by the subgroup of the unitary group that does not disturb the local states. We further illustrate
the results by various examples.
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I. INTRODUCTION

Quantum coherence and quantum correlations, arising
from the superposition principle, are intrinsic and intriguing
features of quantum mechanics with profound implications
and applications. As important physical resources, they have
been widely applied to various quantum tasks, such as quan-
tum computation, quantum communication, quantum key
distribution, and so on [1]. In recent years, characterizations
and quantifications of coherence and correlations have at-
tracted much attention. The relationships between quantum
coherence and various quantum correlations, such as quan-
tum entanglement, quantum discord, and quantum nonlocality
have been studied extensively [2–19].

Quantum channel is a fundamental concept in quantum
mechanics and an important tool for extracting and trans-
mitting information. Many quantum resources can be char-
acterized and quantified in terms of quantum channels. For
example, quantum discord [20–26], measurement-induced
disturbance [27–29], and measurement-induced nonlocality
[30–35] are all defined in terms of local von Neumann mea-
surements, which may be regarded as particular instances of
channels. Effects on correlations caused by perturbation of
local unitary operations have been studied in Refs. [36–40].
Local quantum uncertainty as another kind of nonclassical
correlations is defined by virtue of local observables with the
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nondegenerate spectrum [41]. For continuous-variable quan-
tum systems, the corresponding issues have been investigated
in Refs. [29,42–44].

In this paper we aim to probe and quantify correlations via
channels from the perspective of coherence. For this purpose,
we will exploit the coherence of a state relative to a channel
[14,18,19], which naturally extends the coherence relative to
an orthonormal basis of the system Hilbert space [4].

To gain a quick preliminary understanding of our approach
and idea, consider a bipartite state ρab shared between two
parties a and b with reduced states ρa = Trbρ

ab on party a
and ρb = Traρ

ab on party b, respectively. A local channel Ea

on party a induces decoherence on both the local state ρa and
the global state ρab. In a dual fashion, we may regard the
decoherence after the action of the channel as the coherence of
the state relative to the channel (before the action of the
channel). In general, as a consequence of correlations in the
global state, the degree of coherence of ρab is larger than that
of ρa. Therefore, it is natural to quantify correlations (relative
to the local channel Ea) in the bipartite state ρab in terms of the
difference between the coherence of ρab and that of ρa (both
relative to Ea). This motivates us to introduce

D(ρab, Ea) = Q(ρab, Ea ⊗ Ib) − Q(ρa, Ea), (1)

as a quantifier of correlations in ρab (relative to the local chan-
nel Ea). Here Ib stands for the identity channel on party b, and
Q(ρ, E ) can be any suitable measure of coherence of state ρ

(relative to the channel E) satisfying the monotonicity relation
Q(ρab, Ea ⊗ Ib) � Q(ρa, Ea) for any state ρab and any local
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channel Ea. For example, we may take the measure of coher-
ence based on the Wigner-Yanase skew information due to
its significant information-theoretical meaning and properties
[14].

The remainder of this paper is arranged as follows. In
Sec. II, we review basic features of coherence of a state
relative to a channel (which extends that relative to an or-
thonormal basis) and introduce the notion of correlations
relative to a local channel in terms of coherence difference. In
Sec. III, we investigate correlations in bipartite states relative
to some typical channels (measurements), such as the unitary
channels, the twirling channels, the projective measurements,
and the weak measurements. We further discuss basic proper-
ties of these unconventional quantifiers of correlations. By the
way, we also show that both product states and some natural
classical-quantum states can be operationally characterized in
terms of correlations relative to specific local channels. In
Sec. IV, we evaluate the correlations of some prototypical
states, such as the Bell-diagonal states, the Werner states, and
the isotropic states. Finally, we conclude with a summary in
Sec. V.

II. CORRELATIONS IN TERMS OF COHERENCE
DIFFERENCE

In this section, we first review a measure of coherence
of a state relative to a channel studied in Ref. [14]. Then
we introduce a quantifier of correlations relative to a local
channel in terms of coherence difference and reveal its basic
properties.

A. Coherence relative to a channel

Consider a quantum system with Hilbert space H of di-
mension d . Let ρ be a state (density operator) on H and

E (ρ) =
∑

i

EiρE†
i (2)

be a channel (completely positive and trace-preserving map)
on the system with the Kraus operators Ei, i = 1, 2, . . . , m,

which satisfy
∑

i E†
i Ei = 1 (identity operator). The coherence

of ρ (relative to the channel E) via the generalized Wigner-
Yanase skew information was defined as [14]

I (ρ, E ) =
∑

i

I (ρ, Ei ), (3)

where

I (ρ, E ) = 1
2 Tr[

√
ρ, E ][

√
ρ, E ]† (4)

is the generalized Wigner-Yanase skew information of ρ

with respect to any operator E (not necessarily self-adjoint)
[14,45,46], and [X,Y ] = XY − Y X denotes the commutator
between the operators X and Y .

For later convenience, we list some basic properties of the
coherence measure I (ρ, E ) [14]:

(a) (Non-negativity) I (ρ, E ) � 0, and the equality holds
if and only if E†(

√
ρ ) = √

ρ and E†(ρ) = ρ. Here the dual
channel is defined as E†(X ) = ∑

i E†
i XEi for any operator X

on the system Hilbert space.
(b) (Convexity) I (ρ, E ) is convex in ρ.

(c) (Affineness) I (ρ, E ) is affine in channel E in the sense
that

I (ρ, c1E1 + c2E2) = c1I (ρ, E1) + c2I (ρ, E2) (5)

for any channel Ei and constants ci � 0, c1 + c2 = 1.

(d) (Unitary covariance) I (UρU †,UEU †) = I (ρ, E ),
where UEU †(ρ) = ∑

j (UEjU †)ρ(UEjU †)† for E (ρ) =∑
j E jρE†

j .
(e) (Decreasing under partial trace)

I (ρab, Ea ⊗ Ib) � I (ρa, Ea), (6)

where ρab is a bipartite state shared by parties a and b, and
Ib denotes the identity channel on party b. In particular, when
ρab = ρa ⊗ ρb is a product state, we have

I (ρa ⊗ ρb, Ea ⊗ Ib) = I (ρa, Ea), (7)

which may be interpreted as the ancillary-independence prop-
erty of coherence.

(f) (Contractivity) I (ρab, Ea ⊗ Ib) is contractive under any
channel Eb on party b in the sense that

I ((Ia ⊗ Eb)(ρab), Ea ⊗ Ib) � I (ρab, Ea ⊗ Ib). (8)

We remark that I (ρ, E ) may also be used to quantify quan-
tum uncertainty of the channel E in the state ρ [47]. For any
purification |�〉〈�| of ρ with Trb|�〉〈�| = ρ, we have

I (|�〉〈�|, E ⊗ Ib) = V (|�〉〈�|, E ⊗ Ib), (9)

where the variance of ρ with respect to E,

V (ρ, E ) = 1

2

∑
i

Trρ(Ei0E†
i0 + E†

i0Ei0) (10)

is introduced to quantify total uncertainty of the channel E in
state ρ [47]. Here Ei0 = Ei − Tr ρEi for any i. From Eq. (9),
we know that even though in general quantum uncertainty is
less than or equal to total uncertainty of E ⊗ Ib in ρab, i.e.,
I (ρab, E ⊗ Ib) � V (ρab, E ⊗ Ib), for a bipartite pure state
|�〉, the equality holds. An intrinsic relation between coher-
ence and quantum uncertainty is discussed in Ref. [48].

We emphasize that although we have employed the
Wigner-Yanase skew information in defining the quantifier of
correlations in Eq. (3), one may also consider general quantum
Fisher information, which has properties very similar to that
of the Wigner-Yanase skew information [49]. In particular,
the quantum Fisher information defined via the symmetric
logarithmic derivative is a good candidate [49,50].

B. Correlations as coherence difference relative
to a local channel

Consider a bipartite system ab with Hilbert space Ha ⊗
Hb. Let ρab be a bipartite state on Ha ⊗ Hb with reduced
states ρa on party a and ρb on party b, respectively. Let
Ea be a local channel on party a, which naturally induces a
channel Ea ⊗ Ib on the composite system ab. By property (e)
of I (ρ, E ), we know that, in general, the amount of coherence
of the global state ρab (relative to Ea ⊗ Ib) is larger than
or equal to that of the local state ρa (relative to Ea). The
difference between them indicates correlations in ρab relative
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to Ea. Hence we introduce the coherence difference,

D(ρab, Ea) = I (ρab, Ea ⊗ Ib) − I (ρa, Ea), (11)

as a quantifier of correlations in ρab (relative to Ea). By
Eq. (7), D(ρab, Ea) can be rewritten as

D(ρab, Ea) = I (ρab, Ea ⊗ Ib) − I (ρa ⊗ ρb, Ea ⊗ Ib), (12)

which implies that it can also be reinterpreted as the coher-
ence difference between ρab and the corresponding product
state ρa ⊗ ρb relative to the same product channel Ea ⊗ Ib.

Alternatively, from Eq. (11), we know that the coherence of
ρab relative to a local channel Ea can be decomposed into two
parts: the coherence of the local state ρa and the correlations
in ρab, i.e.,

I (ρab, Ea ⊗ Ib) = I (ρa, Ea) + D(ρab, Ea). (13)

It is easy to obtain the following properties of D(ρab, Ea)
from the corresponding properties of I (ρ, E ):

(i) D(ρab, Ea) � 0, and the equality holds when ρab =
ρa ⊗ ρb is a product state.

(ii) For any channel Eb on party b,

D(Ia ⊗ Eb(ρab), Ea) � D(ρab, Ea), (14)

where Ia denotes the identity channel on party a.
(iii) For any local unitary operators U a and U b on parties a

and b, respectively, it holds that

D((U a ⊗ U b)ρab(U a ⊗ U b)†, Ea) = D(ρab,U a†EaU a),
(15)

where U a†EaU a(ρ) = ∑
i(U

a†EiU a)ρ(U a†EiU a)† for
Ea(ρ) = ∑

i EiρE†
i .

We note that for a pure bipartite state ρab = |�ab〉〈�ab|
with Trb|�ab〉〈�ab| = ρa, we have

D(|�ab〉〈�ab|, Ea) = I (|�ab〉〈�ab|, Ea ⊗ Ib) − I (ρa, Ea)

= V (|�ab〉〈�ab|, Ea ⊗ Ib) − I (ρa, Ea)

= V (ρa, Ea) − I (ρa, Ea)

= C(ρa, Ea), (16)

where

C(ρa, Ea) = V (ρa, Ea) − I (ρa, Ea) (17)

quantifies the classical uncertainty of Ea in ρa [47]. Equa-
tion (16) means that the classical uncertainty of a channel
in a state is equal to the amount of correlations in the cor-
responding purified state relative to the local channel, which
is consistent with the idea illustrated in Ref. [51].

III. APPLICATIONS

In this section, we use the quantification method for corre-
lations introduced in the previous section to study correlations
relative to several important channels and investigate their ba-
sic properties. In particular, we characterize the set of bipartite
states without correlations (product states) and some natural
states without quantum discord (classical-quantum states).
We also investigate correlations in bipartite states relative to
weak measurements and prove that the amount of correlations
is increasing with the measurement strength, achieves the

maximum when the weak measurement reduces to a projec-
tive measurement, and becomes zero when it reduces to the
identity channel.

A. Correlations relative to a unitary channel

Let us begin by considering the correlations in bipartite
states relative to a unitary channel. Despite its simplicity,
unitary channels are extremely important since they not only
describe the evolution of a closed quantum system, but also
can be used as quantum gates in quantum computation [1]. It
is desirable and natural to investigate correlations in bipartite
states relative to a unitary channel.

Consider a bipartite system shared by two parties a and
b. Let U a be a unitary operator on party a, which naturally
induces a unitary channel Ua(σ ) = U aσU a† for any state σ

on party a. For any bipartite state ρab, we define a quantifier
of correlations in ρab relative to the local unitary channel Ua

as

D(ρab,Ua) = I (ρab,Ua ⊗ Ib) − I (ρa,Ua)

= I (ρab,U a ⊗ 1b) − I (ρa,U a), (18)

where 1b is the identity operator on party b.
When I (ρa,U a) = 0, which is equivalent to [ρa,U a] = 0,

we know that the local unitary channel Ua does not induce
any decoherence of the local state ρa relative to Ua. Let U a =∑m

i=1 e
√−1θi�i be the spectral decomposition of U a, where

θi ∈ [0, 2π ) for i = 1, 2, . . . , m, θi �= θ j for i �= j, and the
projectors �i constitute an orthogonal decomposition of the
identity operator 1a on Ha, i.e.,

∑
i �i = 1a. For the projec-

tive measurement �a = {�i: i = 1, 2, . . . , m}, if I (ρa,U a) =
0, then I (ρa,�a) = I (ρa,U a) = 0. This is because that the
equation U aρaU a† = ρa is equivalent to

m∑
i, j=1

e
√−1(θi−θ j )�iρ

a� j =
m∑

i, j=1

�iρ
a� j, (19)

and, thus, is also equivalent to

�a(ρa) =
m∑

i=1

�iρ
a�i = ρa. (20)

This implies that the local unitary channel Ua does not induce
any decoherence of ρa relative to Ua if and only if the cor-
responding projective measurement �a does not induce any
decoherence of ρa relative to �a. It should be emphasized
that when I (ρa,U a) > 0, in general, I (ρa,�a) �= I (ρa,U a).

In the case of I (ρa,U a) = 0, in contrast to the fact that Ua

does not induce any decoherence of the local state ρa relative
to Ua, it may induce decoherence of the global state ρab

relative to Ua, i.e., I (ρab,U a ⊗ 1b) > 0 due to the correlations
contained in ρab. In this case the amount of correlations in ρab

relative to Ua does not vanish, i.e., D(ρab,Ua) = I (ρab,U a ⊗
1b) > 0. For example, let ρab = |�ab〉〈�ab| be the maximally
entangled state on a two-qubit system with |�ab〉 = (|00〉 +
|11〉)/

√
2, and U a = |0〉〈0| + e

√−1θ |1〉〈1| with θ ∈ (0, π ),
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then ρa = 1a/2. Consequently, I (ρa,U a) = 0, but

I (ρab,U a ⊗ 1b) = sin2 θ
2 > 0. (21)

It is easy to verify that under the condition I (ρa,U a) = 0,
D(ρab,U a ⊗ 1b) = I (ρab,U a ⊗ 1b) = 0 if and only if

ρab = (�a ⊗ Ib)(ρab) ≡
m∑

i=1

(�i ⊗ 1b)ρab(�i ⊗ 1b), (22)

where �a is the projective measurement on party a corre-
sponding to the spectral decomposition of U a, and Ib denotes
the identity channel on party b.

In order to get rid of the dependence on unitary operators
and obtain some intrinsic quantities capturing correlations in
ρab, we may take the maximum, minimum, or integration over
all unitary operators on party a. Obviously,

min
U a

D(ρab,Ua) = I (ρab, 1a ⊗ 1b) − I (ρa, 1a) = 0, (23)

which is trivial. Now by taking the maximum, we define

D̄max(ρab) = max
U a

D(ρab,Ua). (24)

This quantity has the following properties:
(i) D̄max(ρab) � 0, and the equality holds if and only if

ρab = ρa ⊗ ρb.
(ii) D̄max is invariant under local unitary operations, i.e.,

D̄max((V a ⊗ V b)ρab(V a ⊗ V b)†) = D̄max(ρab) for any unitary
operators V a and V b on parties a and b, respectively.

(iii) D̄max decreases under any local quantum
operation Eb on party b, i.e., D̄max(Ia ⊗ Eb(ρab)) �
D̄max(ρab).

Now we sketch the proof of the above properties.
For item (i), if ρab = ρa ⊗ ρb is a product state, then

D(ρab,Ua) = 0 for any unitary operator U a, which im-
plies D̄max(ρab) = 0. Conversely, the desired result fol-
lows from the facts 0 � D(ρab, TU (Ha ) ) � D̄max(ρab) and
D(ρab, TU (Ha ) ) = 0 if and only if ρab = ρa ⊗ ρb is a product
state (see the next subsection).

Item (ii) follows from

D̄max((V a ⊗ V b)ρab(V a ⊗ V b)†) = max
U a

D((V a ⊗ V b)ρab(V a ⊗ V b)†,Ua)

= max
U a

{I ((V a ⊗ V b)ρab(V a ⊗ V b)†,U a ⊗ 1b) − I (V aρaV a†
,U a)}

= max
U a

{I (ρab, (V a†U aV a) ⊗ 1b) − I (ρa,V a†U aV a)}

= max
U a

D(ρab,Ua)

= D̄max(ρab). (25)

Item (iii) follows from the contractivity of D(ρab, Ea) un-
der local operations on party b.

B. Correlations relative to twirling channel induced
by unitary group

For a bipartite quantum system shared between two par-
ties a and b, the unitary group U (Ha) on party a with a
da-dimensional system space Ha naturally induces a twirling
channel,

TU (Ha )(ρ) =
∫

U (Ha )
U aρU a†dU a, (26)

where dU a is the normalized Haar measure on U (Ha). For
any bipartite state ρab, the coherence of the partial state ρa =
Trbρ

ab and that of the global state ρab relative to the local
twirling channel TU (Ha ) are defined as

I
(
ρa, TU (Ha )

) =
∫

U (Ha )
I (ρa,U a)dU a, (27)

and

I (ρab, TU (Ha ) ⊗ Ib) =
∫

U (Ha )
I (ρab,U a ⊗ 1b)dU a, (28)

respectively. The corresponding quantifier of correlations in
ρab relative to TU (Ha ) is defined as

D
(
ρab, TU (Ha )

) =
∫

U (Ha )
[I (ρab,U a ⊗ 1b) − I (ρa,U a)]dU a.

(29)
By results in Ref. [52], we know that∫

U (Ha )
U aXU a†dU a = Tr X

1a

da
(30)

for any operator X on party a, and∫
U (Ha )

(U a ⊗ 1b)T ab(U a† ⊗ 1b)dU a = 1a

da
⊗ TraT ab (31)

for any operator T ab on the bipartite system ab. From the
above equations we get

D(ρab, TU (Ha ) ) = 1

da
[(Tr

√
ρa)2 − Trb(Tra

√
ρab)2]. (32)

Let {Xi: i = 1, 2, . . . , d2
a } be an orthonormal basis of the

real Hilbert space L(Ha) of all observables with the Hilbert-

Schmidt inner product 〈A|B〉 = Tr AB, then
∑d2

a
i=1 X 2

i = da1a,
and the set of operators {Xi/

√
da: i = 1, 2, . . . , d2

a } natu-
rally constitutes a Kraus representation of the completely
depolarizing channel on party a, which is denoted as
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�a(ρ) = ∑d2
a

i=1 XiρXi/da and coincides with the twirling
channel TU (Ha ). Alternatively, it is easy to directly verify that

D(ρab,�a) =
d2

a∑
i=1

I

(
ρab,

Xi√
da

⊗ 1b

)
−

d2
a∑

i=1

I

(
ρa,

Xi√
da

)

= 1

da

d2
a∑

i=1

[I (ρab, Xi ⊗ 1b) − I (ρa, Xi )]

= D(ρab, TU (Ha ) ). (33)

Here
∑d2

a
i=1[I (ρab, Xi ⊗ 1b) − I (ρa, Xi )] is precisely the quan-

tifier of correlations in terms of the Wigner-Yanase skew
information introduced in Ref. [53]. By virtue of the result
therein, we have D(ρab, TU (Ha ) ) = D(ρab,�a) = 0 if and only
if ρab = ρa ⊗ ρb.

So far we have proven that the amount of correlations in
ρab relative to the local twirling channel TU (Ha ) vanishes if
and only if there does not exist any correlations in ρab. This
provides a characterization of product states in terms of the
local twirling channel. In the following, we will show that by
choosing a proper channel, the method of quantifying corre-
lations we introduced here can also be applied to characterize
some natural states without quantum discord. Before doing
that, we recall that a bipartite state ρab has no quantum discord
if it can be expressed as

ρab =
da∑

i=1

pi|i〉〈i| ⊗ ρb
i , (34)

with pi a probability distribution (i.e., pi � 0,
∑

i pi = 1),
{|i〉: i = 1, 2, . . . , da} an orthonormal basis of the system
Hilbert space Ha, and {ρb

i : i = 1, 2, . . . , da} a set of local
states on party b. In this instance, the state ρab is also called
classical-quantum [27].

In the next subsection, we will characterize some natural
classical-quantum states, that is, the states of the form

ρab =
m∑

i=1

λi�i ⊗ ρb
i , (35)

such that ρa = ∑m
i=1 λi�i is the canonical spectral decompo-

sition of ρa, i.e., λi �= λ j for i �= j.

C. Correlations relative to twirling channel induced by
invariant unitary group

Consider a bipartite quantum system Ha ⊗ Hb shared be-
tween parties a and b. Let ρab be a bipartite state on Ha ⊗ Hb

with reduced states ρa = Trbρ
ab and ρb = Traρ

ab. Let ρa =∑m
i=1 λi�i be the canonical spectral decomposition of the

local state ρa. Then the induced projective measurement �a =
{�i: i = 1, 2, . . . , m} satisfies �i� j = δi j�i,

∑m
i=1 �i = 1a.

Let

Hai = �iH
a, ni = dim Hai , i = 1, 2, . . . , m, (36)

then
∑m

i=1 ni = da = dim Ha. Let

U0(Ha) = {V ∈ U (Ha):V ρaV † = ρa} (37)
be the set of unitary operators which do not disturb ρa. It is
easy to verify that it is a subgroup of U (Ha). The correspond-
ing twirling channel of U0(Ha) is defined as

TU0(Ha )(ρ) =
∫

U0(Ha )
V ρV †dV, (38)

where dV is the Haar measure on the group U0(Ha). By the
definition of U0(Ha), we know that I (ρa,V ) = 0 for any V ∈
U0(Ha), which, in turn, implies that

I
(
ρa, TU0(Ha )

) =
∫

U0(Ha )
I (ρa,V )dV = 0. (39)

Hence, the amount of correlations in ρab relative to the local
twirling channel TU0(Ha ) is

D
(
ρab, TU0(Ha )

) = I
(
ρab, TU0(Ha ) ⊗ Ib) − I (ρa, TU0(Ha )

)
=

∫
U0(Ha )

I (ρab,V ⊗ 1b)dV. (40)

Actually, an explicit expression of D(ρab, TU0(Ha ) ) can be
derived as follows. Since for any V ∈ U0(Ha), [ρa,V ] = 0,
we know that for any spectral projector �i of ρa, [�i,V ] =
0, i = 1, 2, . . . , m. Then taking Vi = �iV = �iV �i, i =
1, 2, . . . , m, we have ViVj = δi jVi. Thus for any V ∈ U0(Ha),
we have the direct sum decompositions,

V =
m⊕

i=1

Vi, U0(Ha) =
m⊕

i=1

U
(
Hai

)
, (41)

and the decomposition of the Haar measure dV =
dV1dV2 · · · dVm with dVi the Haar measure on U (Hai )
(the full unitary group on Hai ). Consequently,

D
(
ρab, TU0(Ha )

) = 1 − Tr
√

ρab

∫
U0(Ha )

(V ⊗ 1b)
√

ρab(V † ⊗ 1b)dV

= 1 −
∑
i, j

Tr

(√
ρab

∫
U (Ha1 )

· · ·
∫

U (Ham )
(Vi ⊗ 1b)

√
ρab(V †

j ⊗ 1b)dV

)

= 1 −
∑

i

Tr
√

ρab

∫
U (Hai )

(Vi ⊗ 1b)
√

ρab(V †
i ⊗ 1b)dVi. (42)
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The last equality follows from [52]∫
U (Hai )

VidVi = 0, i = 1, 2, . . . , m. (43)

Furthermore, let {Xl : l = 1, 2, . . . , d2
a } and {Ym: m =

1, 2, . . . , d2
b } be orthonormal bases of L(Ha) and L(Hb),

respectively, then by letting√
ρab =

∑
l,m

almXl ⊗ Ym, (44)

we get an explicit expression of D(ρab, TU0(Ha ) ) as

D
(
ρab, TU0(Ha )

) = 1−
∑
i,l,m

almTr
√

ρab

∫
U (Hai )

ViXlV
†

i ⊗ YmdVi

= 1−
∑
i,l,m

almTr
√

ρab
Tr(�iXl�i )

Tr �i
�i ⊗ Ym

= 1−
∑

i

Trb{Tra[(�i ⊗ 1b)
√

ρab(�i ⊗ 1b)]}2

Tr �i
.

(45)

In the following, we show that D(ρab, TU0(Ha ) ) can be used
to characterize some natural classical-quantum states. Indeed,
D(ρab, TU0(Ha ) ) has the following properties:

(i) D(ρab, TU0(Ha ) ) � 0, and the equality holds if and only
if ρab = ∑m

i=1 λi�i ⊗ ρb
i is a classical-quantum state with

ρa = ∑m
i=1 λi�i being the canonical spectral decomposition

of ρa.

(ii) D(ρab, TU0(Ha ) ) is invariant under local unitary opera-
tions that do not disturb the local state ρa, i.e.,

D
(
(V a ⊗ U b)ρab(V a ⊗ U b)†, TU0(Ha )

) = D
(
ρab, TU0(Ha )

)
(46)

for any unitary operator V a ∈ U0(Ha) and U b ∈ U (Hb).
(iii) D(ρab, TU0(Ha ) ) decreases under local quantum opera-

tion Eb on party b, i.e.,

D
(
Ia ⊗ Eb(ρab), TU0(Ha )

)
� D(ρab, TU0(Ha ) ). (47)

We proceed to sketch the proof of the above properties.
For item (i) in order to prove the sufficiency, suppose that

ρab = ∑m
i=1 λi�i ⊗ ρb

i is a classical-quantum state with ρa =∑m
i=1 λi�i being the canonical spectral decomposition of ρa,

then substituting
√

ρab = ∑
i

√
λi�i ⊗

√
ρb

i into Eq. (45), we
have

D(ρab, TU0(Ha ) ) = 1 −
∑

i

Trb
[
Tra

(√
λi�i ⊗

√
ρb

i

)]2

Tr �i

= 1 −
∑

i

λiTr �i

= 0. (48)

The sufficiency is obtained. For the necessity, note that
D(ρab, TU0(Ha ) ) = 0 implies that

I (ρab,V ⊗ 1b) = I (ρa,V ) = 0, ∀V ∈ U0(Ha). (49)

Choosing V0 = ∑m
i=1 e

√−1θi�i ∈ U0(Ha) with θi ∈
[0, 2π ), i = 1, 2, . . . , m, θi �= θ j for i �= j, and �i the

spectral projectors of ρa, then by Eq. (22), we know that

ρab = �a ⊗ Ib(ρab) =
m∑

i=1

(�i ⊗ 1b)ρab(�i ⊗ 1b). (50)

Let ρaib = (�i ⊗ 1b)ρab(�i ⊗ 1b), then ρaib ∈ L(Hai ) ⊗
L(Hb) are non-negative definite operators satisfying∑m

i=1 Tr ρaib = 1, and ρab can be decomposed as

ρab =
m⊕

i=1

ρaib. (51)

Since for any V ∈ U0(Ha), V has a direct sum decompo-
sition V = ⊕m

i=1 Vi ∈ U0(Ha) with Vi ∈ U (Hai ) being any
unitary operator on Hai , substituting this into ρab = (V ⊗
1b)ρab(V † ⊗ 1b), we have

m⊕
i=1

ρaib =
m⊕

i=1

(Vi ⊗ 1b)ρaib(V †
i ⊗ 1b). (52)

Therefore,

ρaib = (Vi ⊗ 1b)ρaib(V †
i ⊗ 1b) (53)

for any Vi ∈ U (Hai ), i = 1, 2, . . . , m. Consequently,

ρaib = 1i ⊗ Zb
i , i = 1, 2, . . . , m, (54)

where 1i are the identity operators on Hai , and Zb
i ∈ L(Hb) are

non-negative definite operators satisfying
∑m

i=1 niTr Zb
i = 1.

Finally, we get

ρab =
m⊕

i=1

ρaib =
m⊕

i=1

1i ⊗ Zb
i =

m∑
i=1

λi�i ⊗ ρb
i , (55)

where λi = Tr Zb
i , ρb

i = Zb
i /λi. This completes the proof of

item (i).
Item (ii) can be obtained by direct manipulation of Eq. (45).
Item (iii) follows from the contractivity of the coherence

measure I (ρ, E ) under local operations on party b.
It should be remarked that in Sec. III A, for a bipartite

state ρab and a local unitary channel Ua satisfying I (ρab,Ua ⊗
Ib) = I (ρa,Ua) = 0, we can only conclude that

ρab =
m⊕

i=1

ρaib, (56)

where ρaib = (�i ⊗ 1b)ρab(�i ⊗ 1b) ∈ L(Hai ) ⊗ L(Hb)
with �i the spectral projectors of U a. In contrast, for
the local twirling channel TU0(Ha ), I (ρab, TU0(Ha ) ⊗ Ib) =
I (ρa, TU0(Ha ) ) = 0 implies that

ρab =
m⊕

i=1

ρaib =
m∑

i=1

λi�i ⊗ ρb
i . (57)

In other words, the condition that for all V ∈ U0(Ha),
I (ρab,V ⊗ 1b) = 0 is necessary to decouple all the correla-
tions in ρaib, i.e., to make ρaib a product state (up to a scale)
and thereby to make ρab a classical-quantum state.

D. Correlations relative to a Lüders measurement

Consider a bipartite system shared between two par-
ties a and b. Let �a

vN = {�i: i = 1, 2, . . . , da} be a
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local von Neumann measurement on party a. We quantify
correlations in ρab relative to the von Neumann measurement
�a

vN by

D
(
ρab,�a

vN

) = I
(
ρab,�a

vN ⊗ Ib
) − I

(
ρa,�a

vN

)
=

∑
i

[I (ρab,�i ⊗ 1b) − I (ρa,�i )], (58)

which is just the correlations quantifier relative a von Neu-
mann measurement discussed in Ref. [11]. Furthermore, the
minimal coherence difference,

Dmin(ρab) = min
�a

vN

D
(
ρab,�a

vN

)
, (59)

and the maximal coherence difference,

Dmax(ρab) = max
�a

vN

D
(
ρab,�a

vN

)
(60)

are studied. In particular, Dmin(ρab) = 0 if ρab is a classical-
quantum state and Dmax(ρab) = 0 if and only if ρab is a
product state.

Now consider a Lüders measurement �a = {�i: i =
1, 2, . . . , m} on party a with the projective operators �i (not
necessarily one dimensional) satisfying �i� j = δi j�i and∑

i �i = 1a. The correlations in ρab relative to the local
Lüders measurement �a may be quantified by

D(ρab,�a) = I (ρab,�a ⊗ Ib) − I (ρa,�a)

=
∑

i

[I (ρab,�i ⊗ 1b) − I (ρa,�i )]. (61)

Similar to the case of von Neumann measurements by
taking the minimum and the maximum over all Lüders mea-
surements, we may further define

D̃min(ρab) = min
�a

D(ρab,�a), (62)

D̃max(ρab) = max
�a

D(ρab,�a). (63)

Obviously,

D̃min(ρab) � Dmin(ρab), D̃max(ρab) � Dmax(ρab). (64)

Hence, we know that D̃max(ρab) = 0 if and only if ρab is a
product state, whereas D̃min(ρab) = 0 if ρab is a classical-
quantum state.

When �a is a Lüders measurement that does not disturb
the local state ρa, i.e., �a(ρa) = ρa, we have

D(ρab,�a) = I (ρab,�a ⊗ Ib) =
∑

i

I (ρab,�i ⊗ 1b). (65)

Then D(ρab,�a) = 0 if and only if ρab = �a ⊗ Ib(ρab).
By taking the minimum and the maximum over all Lüders

measurements that do not disturb the local state ρa, we may
define

D̂min(ρab) = min
�a: �a(ρa )=ρa

D(ρab,�a), (66)

and

D̂max(ρab) = max
�a: �a(ρa )=ρa

D(ρab,�a). (67)

It can be shown that D̂max(ρab) = 0 if and only if
ρab = ∑m

i=1 λi�i ⊗ ρb
i is a classical-quantum state with

ρa = ∑m
i=1 λi�i being the canonical spectral decomposition

of ρa, whereas D̂min(ρab) = 0 if and only if there exists a
Lüders measurement that does not disturb local state ρa such
that ρab = �a ⊗ Ib(ρab).

Consider the diagonal unitary group,

G(�) =
{

Uθ =
m∑

i=1

e
√−1θi�i: θ = (θ1, . . . , θm) ∈ [0, 2π )m

}

(68)
induced by the Lüders measurement � = {�i: i =
1, 2, . . . , m}. Then the twirling channel generated by the
group G(�) is

TG(�)(ρ) =
∫ 2π

0
· · ·

∫ 2π

0
UθρU †

θ

dθ

(2π )m
, (69)

with dθ = dθ1dθ2 · · · dθm. It turns out that

TG(�)(ρ) = �(ρ), (70)

with �(ρ) = ∑m
i=1 �iρ�i the decohering channel. Thus,

D(ρab, TG(�) ) = D(ρab,�), (71)

which shows that the amount of correlations induced by the
twirling channel TG(�) (associated with the diagonal uni-
tary group G(�)) is equal to that caused by the Lüders
measurement � (as generators of the diagonal unitary group
G(�)).

E. Correlations relative to a weak measurement

In this subsection, we investigate the correlations in bipar-
tite states relative to weak measurements. Recall that weak
measurements were introduced by Aharonov et al. [54], and
are universal in the sense that any generalized measurement
can be realized as a sequence of weak measurements [55]. For
x ∈ [0,∞), consider the weak measurement Mx = {Ex, E−x}
with the Kraus operators,

Ex = α�1 + β�2, E−x = β�1 + α�2, (72)

where

α =
√

1 − tanh x

2
, β =

√
1 + tanh x

2
. (73)

Here x denotes the measurement strength, �1 and �2 are
orthogonal projectors satisfying �1 + �2 = 1 with 1 the
identity operator on the system space. In particular, when
x = 0, Mx reduces to the identity channel I and when x → ∞,
Mx tends to the projective measurement � = {�1,�2}.

For a bipartite state ρab and a weak measurement Mx on
party a, we have a quantifier of correlations in ρab relative to
Mx as

D(ρab, Mx ) = I (ρab, Mx ⊗ Ib) − I (ρa, Mx ). (74)

Noting that for any operator X on party a, it holds that

X = (�1 + �2)X (�1 + �2) =
2∑

i, j=1

�iX� j, (75)

and we have
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D(ρab, Mx ) = I (ρab, Mx ⊗ Ib) − I (ρa, Mx )

= (α2 + β2)
2∑

i=1

[Tr
√

ρa�i
√

ρa�i − Tr
√

ρab(�i ⊗ 1b)
√

ρab(�i ⊗ 1b)] + 4αβ

× [Tr
√

ρa�1
√

ρa�2 − Tr
√

ρab(�1 ⊗ 1b)
√

ρab(�2 ⊗ 1b)]

= (α − β )2[I (ρab,� ⊗ Ib) − I (ρa,�)]

= (α − β )2D(ρab,�)

= (1 −
√

1 − tanh2x)D(ρab,�). (76)

It implies that the amount of correlations in ρab relative to
a local weak measurement Mx is increasing with the mea-
surement strength x. Therefore, for a given bipartite state
ρab, the amount of correlations in ρab relative to the identity
channel I is minimal, whereas that relative to the projective
measurement � is maximal, among all weak measurements
Mx. This is consistent with our intuition.

IV. ILLUSTRATING CORRELATIONS RELATIVE TO
VARIOUS CHANNELS

In this section, we evaluate explicitly correlations of var-
ious states relative to the amplitude damping channel, the
phase damping channel, and the depolarizing channel, respec-
tively. In particular, for the two-qubit Werner states and the
isotropic states, we discuss the behaviors of correlations with
respect to the parameters of states and channels. Besides, we
also calculate the correlations relative to the unitary channel,
the twirling channel induced by the full unitary group and
the twirling channel induced by the unitary group that does
not disturb the local state for the general Werner states and
isotropic states.

For convenience, we first recall some two-qubit states. Any
Bell diagonal state can be represented in the spectral decom-
position form as

ρB = λ1|+〉〈+| + λ2|−〉〈−|
+ λ3|�+〉〈�+| + λ4|�−〉〈�−| (77)

with |±〉 = (|00〉 ± |11〉)/
√

2, |�±〉 = (|01〉 ± |10〉)/
√

2,
λi � 0,

∑4
i=1 λi = 1. In particular, when

λ1 = λ2 = λ3 = 1 − x

4
, λ4 = 1 + 3x

4
, x ∈

[
− 1

3
, 1

]
,

(78)
ρB are the two-qubit Werner states [56],

w = 1 − x

4
1 ⊗ 1 + x|�−〉〈�−|. (79)

When

λ1 = y, λ2 = λ3 = λ4 = 1 − y

3
, y ∈ [0, 1], (80)

ρB are the two-qubit isotropic states [57],

τ = 1 − y

3
1 ⊗ 1 + 4y − 1

3
|+〉〈+|. (81)

As a comparison, we also consider the family of pure states,

|S〉 =
1∑

i=0

√
si|i〉|i〉. (82)

Example 1. For the amplitude damping channel EAD(ρ) =∑2
i=1 KiρK†

i with the Kraus operators,

K1 =
(

1 0
0

√
1 − p

)
, K2 =

(
0

√
p

0 0

)
, 0 � p � 1,

(83)
let q = 1 − √

1 − p, we have

D(|S〉, EAD) = s0s1q2 + √
s0s1 p, (84)

D(ρB, EAD) = 1
2 q[1 − 2(

√
λ1λ2 +

√
λ3λ4)]

+ p
4 (

√
λ1 +

√
λ2 −

√
λ3 −

√
λ4)2. (85)

Specifying to the Werner states w and the isotropic states τ ,
we have

D(w, EAD) = 1
8 (p + 2q)[1 + x −

√
(1 − x)(1 + 3x)], (86)

D(τ, EAD) = 1
12 (p + 2q)[1 + 2y − 2

√
3y(1 − y)]. (87)

Example 2. Consider the phase damping channel EPD(ρ) =∑2
i=1 KiρK†

i with

K1 =
(

1 0
0

√
1 − p

)
, K2 =

(
0 0
0

√
p

)
, 0 � p � 1.

(88)
Let q = 1 − √

1 − p. By straightforward calculation, we have

D(|S〉, EPD) = 2qs0s1, (89)

D(ρB, EPD) = q

(
1

2
−

√
λ1λ2 −

√
λ3λ4

)
. (90)

The amounts of correlations of the Werner states w and the
isotropic states τ relative to the phase damping channel EPD

can be readily obtained as

D(w, EPD) = 1
4 q[1 + x −

√
(1 − x)(1 + 3x)], (91)

D(τ, EPD) = 1
6 q[1 + 2y − 2

√
3y(1 − y)]. (92)

Example 3. Consider the depolarizing channel,

EDe(ρ) = (1 − 3p)ρ + p
3∑

i=1

σiρσi, 0 � p � 1

3
, (93)
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where σi are the Pauli operators. For the pure state |S〉 and the
Bell diagonal states ρB, we have

D(|S〉, EDe) = 4
√

s0s1(1 + √
s0s1)p, (94)

D(ρB, EDe) = p[4 − (
√

λ1 +
√

λ2 +
√

λ3 +
√

λ4)2]. (95)

In particular, for the Werner states w and the isotropic states
τ , we have

D(w, EDe) = 3p

2
[1 + x −

√
(1 − x)(1 + 3x)], (96)

D(τ, EDe) = p[1 + 2y − 2
√

3y(1 − y)]. (97)

Comparing the above three examples, we see that the
amounts of correlations of both w and τ have similar be-
haviors for these three channels. Specifically, the amount
of correlations of w is decreasing with x in [−1/3, 0] and
increasing with x in [0,1]. The amount of correlations of
τ is decreasing with y in [0, 1/4] and increasing with y in
[1/4, 1]. On the other hand, D(w, E ) and D(τ, E ) are all
increasing functions of the noise parameter p for the three
channels.

Example 4. Consider the general Werner states,

w = d − x

d3 − d
1d ⊗ 1d + dx − 1

d3 − d
F, x ∈ [−1, 1], (98)

on H ⊗ H with {|μ〉: μ = 1, 2, . . . , d} an orthonormal ba-
sis of the d-dimensional Hilbert space H , and F =∑d

μ,ν=1 |μ〉〈ν| ⊗ |ν〉〈μ| the swap operation. In the following,
we evaluate the amounts of correlations of the general Werner
states relative to various channels.

For the unitary channel U (ρ) = UρU † with U an arbitrary
unitary operator on H, we have

D(w,U ) = I (w,U ⊗ 1)

= 1 − [d2s2
+ + 2 ds+s− + s2

−|Tr U |2], (99)

with

s± =
√

1 + x

2
√

d (d + 1)
±

√
1 − x

2
√

d (d − 1)
. (100)

For the twirling channel,

TU (H )(ρ) =
∫

U (H )
UρU †dU (101)

induced by the unitary group U (H ), by Eq. (33) and the result
in Ref. [53], we have

D(w, TU (H ) ) = 1
2d [d − x −

√
(d2 − 1)(1 − x2)]. (102)

For the twirling channel TU0(H ) induced by the unitary
group U0(H ) that does not disturb the local state 1/d of the
Werner states w, since in this case U0(H ) = U (H ), we have

D(w, TU0(H ) ) = D(w, TU (H ) ) = 1
2d [d−x−

√
(d2−1)(1−x2)].

(103)

Example 5. Consider the general isotropic states

τ = 1 − x

d2 − 1
1d ⊗ 1d + d2x − 1

d2 − 1
|�〉〈�|, x ∈ [0, 1], (104)

on H ⊗ H, where |�〉 = 1√
d

∑d
μ=1 |μμ〉 with {|μ〉: μ =

1, 2, . . . , d} an orthonormal basis of the d-dimensional
Hilbert space H. For any unitary channel U (ρ) = UρU † with
U as an arbitrary unitary operator on H, we have

D(τ,U ) = 1 − α2d2 − 2αβ − β2|Tr U |2, (105)

with

α =
√

1 − x

d2 − 1
, β = √

x −
√

1 − x

d2 − 1
. (106)

For the twirling channel TU (H ) induced by the unitary group
U (H ), by Eq. (33) and the result in Ref. [53], we have

D(τ, TU (H ) ) = 1

d2
[d2x − 2x + 1 − 2

√
x(1 − x)(d2 − 1)].

(107)
For the twirling channel TU0(H ) induced by the unitary
group U0(H ) that does not disturb the local state 1/d of
the isotropic states τ , since in this case U0(H ) = U (H ), we
have

D
(
τ, TU0(H )

) = D(τ, TU (H ) )

= 1

d2
[d2x − 2x + 1 − 2

√
x(1 − x)(d2 − 1)].

(108)

V. SUMMARY

Correlations are ubiquitous and multifaceted in quantum
information theory and have been extensively studied from
many perspectives. Some widely used quantifiers of corre-
lations include mutual information, entanglement, quantum
discord, etc. In this paper, we have investigated correlations
by exploiting the coherence difference of the global and local
states relative to a local channel. Since a local channel on a
bipartite state usually causes more decoherence on the global
state than on the local state due to the correlations therein,
we quantify these correlations as the coherence difference
between the global state and the local state relative to the local
channel. Furthermore, we have shown that two typical sets of
states, the set of product states and a natural subset of the set
of classical-quantum states, can be simply and operationally
characterized in this way. It is desirable to find applications of
the channel approach in characterizing other kinds of correla-
tions, such as entanglement and quantum steering by choosing
proper channels.

We have also investigated correlations in bipartite states
relative to weak measurements and have shown that the
amount of correlations is increasing with the measurement
strength, achieves the maximum when the weak measurement
turns to a projective measurement and becomes zero when it
reduces to the identity channel. This sheds further insights into
the physical meaning of the strength of the weak measure-
ments.

Probing correlations via channels has intrinsic relations
to the metrological power of quantum states, and it may be
interesting to seek operational meaning of our quantifiers of
correlations in quantum metrology. This is left for further
study.
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