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Quantum teleportation of hybrid qubits and single-photon qubits using Gaussian resources
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We compare single-photon qubits and hybrid qubits as information carriers through quantum teleportation
using a Gaussian continuous-variable channel. A hybrid qubit in our study is in the form of entanglement between
a coherent state and a single photon. We find that hybrid qubits outperform photonic qubits when coherent
amplitudes of the hybrid qubits are as low as α � 1, while single-photon qubits yield better results for larger
amplitudes. We analyze further the effect of photon losses and observe that the overall character of teleportation
for different qubits remains the same although the teleportation fidelities are degraded by photon losses. Our
work provides a comparative look at practical quantum information processing with different types of qubits.
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I. INTRODUCTION

Quantum teleportation [1,2] provides a platform to transmit
unknown quantum information at the cost of shared entangle-
ment. It plays a central role in various quantum information
processing tasks such as broadband communication [3],
quantum computing [4–6], and secret key distillation [7].
Further developments provide feasibility of scalable quan-
tum networks [8] leading to quantum internet [9]. So far,
quantum teleportation based on photonic systems has been
experimentally demonstrated and extensively analyzed for
both discrete variable (DV) [10,11] and continuous variable
(CV) [12,13] systems. While the teleportation of DV systems
suffers from limited success probabilities [14], teleportation
of CV states yields nonunit fidelities as it requires infinite
squeezing that means an infinite amount of energy for perfect
teleportation [2].

In order to circumvent the aforementioned difficulties, var-
ious attempts have been made using coherent-state qubits
[15–19], ancillary states [20,21], squeezing operation [22,23],
multiphoton qubits [24], and hybrid qubits [25,26]. Another
idea is to use Gaussian resources to teleport qubits [27–29].
This approach has practical advantages that Gaussian quan-
tum channels could readily be generated in a laboratory, and
their characterizations are relatively straightforward [30,31].
On the other hand, it is more demanding to generate and an-
alyze non-Gaussian channels [32–35]. Despite earlier studies
on teleporting various types of qubits, an analysis of compar-
ative performance of these qubits via CV channels remains an
open issue.

In this article, we provide a partial answer to this query.
Here, we critically investigate the teleportation of different
types of qubits using an entangled Gaussian channel. To be
specific, we focus on three different types of qubits: (a) the
dual-rail single-photon qubit [6], (b) hybrid qubit of type
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A that is entanglement between a single-photon state and
a coherent state [36], and (c) hybrid qubit of type B that
is entanglement between a single-photon state and super-
positions of coherent sates [37]. As the entangled channel,
we consider a pair of two-mode squeezed vacuum states
(TMSVs), and analyze the performance of the CV-based
teleportation [2].

To that end, we first obtain analytic expressions for the
teleportation fidelity and elaborate our observation through
various plots. Our results indicate that in the case of low
amplitudes of the coherent states α � 1.0 both types of the
hybrid qubits, i.e., hybrid qubits (both types A and B) per-
form better than the single-photon qubit. Hybrid qubits are
known to be useful for fault-tolerant quantum computing
with error correction [25,38,39], and the best suggested value
of α for hybrid qubits (type A) is ≈0.84 [39]. This sug-
gests that the teleportation scheme investigated in this paper
may result in advantages in terms of fault-tolerant quantum
computing.

On the other hand, when the amplitudes are α ≈ 1.0, all
three states offer the same fidelities. Nonetheless, the single-
photon qubit outperforms hybrid qubits of both types as the
coherent amplitude increases (α � 1.0). Next, we consider a
realistic case when the channel undergoes symmetric photon
losses and suffers from decoherence. We observe that the
photon loss degrades the performance for all three types of
qubits so that quantum teleportation does not succeed be-
yond a certain strength of loss. However, within the tolerable
loss where quantum teleportation still prevails, the overall
behavior remains similar to the ideal cases, i.e., without
loss.

The present article is organized as follows. In Sec. II,
we generalize the original protocol for continuous variable
teleportation [2] to the case of a four-mode resource and a
two-mode input state. In Sec. III, we show the relative com-
parison between the single-photon qubit and the hybrid qubits
under ideal conditions. Section IV involves similar compar-
isons under the effects of photon losses. In Sec. V, we discuss
various aspects of our results.
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FIG. 1. Schematic of teleportation of optical qubits using a pair-Gaussian state. First a pair of Gaussian states (TMSVs) are generated. Next,
similar to the original protocol for CV teleportation [2], Alice makes the homodyne measurements on each of the modes of the optical qubit
after mixing it with one of the incoming modes of two TMSVs in a 50:50 BS, separately. Then she communicates the results of the individual
measurements to a distant party, say Bob classically. Subsequently, Bob makes unitary operations (based on the measurement results of Alice)
on the remaining two modes of the pair of TMSVs and jointly recovers the input qubit state. Here R1 and R2 boxes are included just to explain
the noisy (photon loss case). In case of no photon loss one simply takes R1 = R2 = 0. As the optical qubits, we have considered three different
types such as dual rail single-photon qubit, hybrid qubit of type A, and hybrid qubit of type B (discussed in the text).

II. TELEPORTATION FIDELITY USING PAIR-GAUSSIAN
CHANNEL

In the original protocol for CV teleportation [2], which
involves a bipartite resource and a single-mode input, the
fidelity F of teleportation could easily be evaluated in terms
of the characteristic functions as [40,41]

F =
∫

d2z

π
χin(z)χres(z; z∗)χin(−z), (1)

where χ (z) = Tr[ρD(z)], D(z) = exp[za† − z∗a]. It is
straightforward to extend this to a four-mode resource and a
two-mode input state as

F =
∫∫

d2z1

π

d2z2

π
χres(z1, z2; z∗

1, z∗
2 )

× χin(z1, z2) × χin(−z1,−z2). (2)

Here, we consider the four-mode Gaussian channel to be a
pair of TMSVs. In Fig. 1 we present the basic schematic of
teleportation of optical qubits using a pair of TMSVs. TMSV
states are described by the variance matrix � = V ⊕ V , and
V stands for the variance matrix of the TMSV given by

V =

⎛
⎜⎝

η 0 c 0
0 η 0 −c
c 0 η 0
0 −c 0 η

⎞
⎟⎠ =

(
ηI cσz

cσz ηI

)
, (3)

where η = cosh(2r)/2, c = sinh(2r)/2, I is the 2 × 2 identity
matrix, and σz is Pauli spin matrix. As a consequence, the
resource state characteristic function in Eq. (2) is

χres(z1, z2; z∗
1, z∗

2 ) = e−�ZT �c �Z , (4)

where �Z = (z1, z∗
1, z2, z∗

2 )T and �c = �1
c ⊕ �2

c s.t. �i
c =

( 0 η − c
η − c 0 ) (i = 1, 2). Replacing χres(z1, z2; z∗

1, z∗
2 ) in (2),

the fidelity for the two-mode input with the pair-Gaussian
resource can be represented as

F =
∫

d �Z
π2

e−�ZT �c �Zχin( �Z )χin(−�Z ). (5)

We then explore quantum teleportation with a pair-Gaussian
channel for the aforementioned types of qubits. It is known
that in the case of qubits, quantum teleportation is suc-
cessful when the fidelity is over the classical limit, i.e.,
F > 2/3 [42,43].

III. TELEPORTATION OF DIFFERENT TYPES OF QUBITS
WITH PAIR-GAUSSIAN CHANNEL

In this article, we consider three different types of qubits.
They are (a) dual-rail single-photon qubit (spq), (b) hybrid-
qubit type A (hqA), and (c) hybrid-qubit type B (hqB) that
can expressed as

|ψspq〉 = √
p|0, 1〉 + √

1 − p eiφ|1, 0〉, (6)

|ψhqA〉 = √
p|0, α〉 + √

1 − p eiφ|1,−α〉, (7)

|ψhqB〉 = √
p|0, α+〉 + √

1 − p eiφ|1, α−〉, (8)

where α± = (|α〉 ± | − α〉)/N± are even (α+) and odd (α−)
superpositions of coherent states with N± = 2(1 ± e−2α2

). It
should be pointed out that hybrid qubits in the forms of
Eq. (7) and Eq. (8) have been experimentally implemented
in Ref. [36] and Ref. [37], respectively. These types of hybrid
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entanglement are useful for quantum computation [25,38,39]
as well as quantum communication [26,44–46].

A. Average fidelity of teleportation

The input states in Eqs. (6)–(8) are parametrized by two
parameters p and φ. We thus write F in Eq. (5) as F (p, φ) in
the present context. From an experimental point of view, it is
natural to assume that parameters p and φ would vary during
the trials. It is then imperative to look at the average behav-
ior of the teleportation process. This could be accomplished
by considering the fidelity averaged over all possible input
states, i.e.,

F av = 1

2π

∫
d p

∫
dφ F (p, φ). (9)

Henceforth, we shall refer to Eq. (9) only while talking about
fidelity, unless mentioned otherwise. Here we obtain an an-
alytic expression for the teleportation fidelities for the input
qubits as (Appendix A)

F av
spq = 4(4 + �2)

(2 + �)2
, (10)

F av
hqA = 4

3(2 + �)2
((2 + �)2 + (4 + �2)

+ (2 + �)
(
�e− 8

(2+�) α
2 + 2e− 4�

(2+�) α
2)

), (11)

F av
hqB = 8

3(2 + �)2

((
1 + e−8βα2)( 1

N2+
+ 1

N+N−
+ 1

N2−

)

+ e−4α2(
1 + e8βα2)( 1

N2+
− 1

N+N−
+ 1

N2−

)

+ 4e−2α2

(
1

N2+
− (1

N2−

)

+ 4β

N+N−

(
e−4(1−2β )α2 − e−8βα2))

, (12)

where � = 4(η − c). The subscripts spq, hqA. and hqB rep-
resent single-photon qubit, hybrid qubit of type A, and hybrid
qubit of type B, respectively.

In Fig. 2, we plot the comparisons of quantum teleportation
fidelities for the single-photon qubit and the hybrid qubits
with the pair-TMSV channel under the ideal condition without
photon loss. As shown in the figures, hybrid qubits perform
better as long as the coherent amplitude is α < 1. When each
type of qubit contains the average photon numbers of α ≈ 1,
there is little distinction between the different types of qubits.
With the increase in amplitude of the coherent state (α � 1)
the single-photon qubit appears to yield better performance.
It should also be noted that for all three types of qubits,
quantum teleportation is achieved for the degree of squeezing
is r � 1.0.

B. Deviation in fidelity

While the average fidelity (9) describes the teleportation
satisfactorily, it has been shown that higher order quantities
like the fidelity deviation [47] play an important role in char-
acterizing the teleportation process further. It is defined as the

FIG. 2. (a) Teleportation fidelities of the single-photon qubit
(solid curve) and hybrid qubits of type A against the squeezing
degree r without photon loss. (b) Teleportation fidelities of the
single-photon qubit (solid curve) and hybrid qubits of type B without
photon loss.

uncertainty in fidelity, i.e.,

�F = F 2
av − (Fav)2, (13)

where averages are taken over p and φ as described in Eq. (9).
It may be noted that the fidelity of teleportation for the

single-photon qubit is independent of p and φ (Appendix A)
leading to the null result for the corresponding fidelity devi-
ation. On the other hand, the deviation for the hybrid qubits
depends only on the p (Appendix B). We obtain �F for
hybrid qubits of types A and B in Appendix B, and plot in
Fig. 3 the dependence of �F on the squeezing strength r for
different values of α. We observe that, in general, at a given
squeezing strength, the value of fidelity deviation is negligible
compared to the respective average value for both types of
hybrid qubits. This suggests that although deviation in fidelity
is nonzero, average fidelity is enough to consider as a merit
of teleportation for the hybrid qubits similar to the case of the
single-photon qubit.

IV. TELEPORTATION OF QUBITS USING PAIR-GAUSSIAN
CHANNEL UNDER PHOTON LOSS

In this section we consider teleportation of the qubits under
decoherence. For the sake of simplicity we consider that the
resource, i.e., the pair-Gaussian channel undergoes photon
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FIG. 3. (a) Deviation in teleportation fidelity �F for hybrid qubit
type A against the squeezing degree r. (b) Deviation in teleportation
fidelity for hybrid qubit type B against the squeezing degree. Various
curves correspond to different values of α.

loss. The effect of photon loss for a quantized electromagnetic
wave could be modeled in terms of a passive beam splitter
(BS). First the mode of interest passes through a passive BS
with refectivity R while the other input arm of the BS is left
at vacuum. Corresponding input-output mode relation for this
BS could be written as

(
aout

bout

)
=

(√
1 − R2 R
−R

√
1 − R2

)(
ain

bin

)
. (14)

Subsequently, discarding the output ancila modes (taking
trace) leads to the effective photon loss on the input mode of
the light. Here, R = 1 stands for complete photon loss.

To begin with, we first consider the general case where
both the modes of the Gaussian state undergo photon loss
parametrized by the respective losses, R1 and R2 (Fig. 4). This
will enable us to analyze the two cases of interest.

(1) Asymmetric photon loss: Only one mode goes through
photon loss while other remains intact.

(2) Symmetric photon loss: Both the modes undergo equal
losses.

In a straightforward calculation the effect of this general
photon loss on the input Gaussian state (3) leads to the change
in the variance matrix as (Appendix C)

V gen
loss =

(
η′I c′σz

c′σz ζ ′I

)
, (15)

TMSV

mode a

BS

R1

output
mode a

loss of photon

mode b

BS

R2 output
mode b

loss of photon

FIG. 4. Schematic of general photon loss on TMSV. BS stands
for beam splitter. R1 and R2 are the loss parameters.

where η′ = 1+2(1−R2
1 ) sinh2 r

2 , ζ ′ = 1+2(1−R2
2 ) sinh2 r

2 , and c′ =√
(1 − R2

1)(1 − R2
2) cosh r sinh r. Corresponding fidelities in

Eqs. (10), (11), and (12) could be accordingly obtained by
replacing the variance matrix of Eq. (3) by that of Eq. (15).

A. Case 1: Asymmetric photon loss

Let us first consider a practical communication setup. Here,
usually for a bipartite resource state, only one of the two
modes (say the “communication mode”) is sent to another
distant party while the other mode (say the “laboratory mode”)
stays in the laboratory. As a consequence, the laboratory
mode remains intact while the communication mode under-
goes photon loss. Consequently, the elements of variance
matrix (15) changes as η′ = η = (cosh2 r + sinh2 r)/2, ζ =
1+2(1−R2 ) sinh2 r

2 , and c′ = (1 − R2) cosh r sinh r.
In the asymmetric setup, only one mode suffers all photon

losses while the photon losses are divided into two modes
for the symmetric setup. Considering this observation, it is
now important to note that in order to fairly compare the
asymmetric loss with the symmetric loss of R1 = R2 = R (see
Fig. 4), we need to choose the asymmetric loss rate accord-
ingly. For the symmetric case, if an input-mode field (either
mode a or b in Fig. 4) of amplitude E travels for distance
L, the output field amplitude is given by

√
1 − R2E , and it

is the same for the other mode. However, in the asymmetric
case, the corresponding traveling distance is 2L only for one
field mode, and the output attenuated field amplitude would be√

1 − R2
√

1 − R2E = (1 − R2)E . This leads to the loss rate
for the asymmetric case as R1 = 0 and R2 = √

2R
√

1 − R2/2.
In this way, the total average photon losses remain the same
for the two cases.

In Figs. 5 and 6, we plot the comparison of the single-
photon qubit with hybrid qubits of types A and B, respectively.
We compare for two different squeezing values as r = 1.5 and
2.0. We observe that the overall performances of the qubits
remain the same except for the fact that the loss parameter
(R) now restricts the experimentally available region over
which teleportation is performed over the classical limit. As
evident from the figures, teleportation fidelities drop down to
the classical limit as the loss rate R increases.
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FIG. 5. Teleportation fidelities for the single-photon qubit and
hybrid qubits of type A under asymmetric photon loss R.

B. Case 2: Symmetric photon loss

We further consider another situation where the resource
state is generated at a third place at the center and is sent
two equally distant parties of modes a and b. For the sake
of simplicity, we consider that both the arms undergo the
same losses as modeled by the condition of R1 = R2 = R.
Evidently, under such loss the variance matrix (15) changes
as η′ = ζ ′ = 1+2(1−R2 ) sinh2 r

2 and c′ = (1 − R2) cosh r sinh r.
In Figs. 7 and 8, we plot teleportation fidelities for

the single-photon qubit and hybrid qubits under symmetric
photon losses. For comparison, in line with the asymmetric
case, we consider two different squeezing values as r = 1.5
and 2.0. Interestingly, we observe that the symmetric setup
shows better performance in terms of the fidelity as shown in
the figures.

V. CONCLUSION

We have analyzed quantum teleportation of single-photon
qubits and hybrid qubits using a pair of Gaussian channels.
We have considered two slightly different types of hybrid
qubits. One is entanglement between a single photon and a
coherent state, and the other is entanglement between a single
photon and a coherent-state superposition. We note that the
hybrid qubit of both types considered in this paper have been
experimentally implemented [36,37] although their fidelities
are yet limited. Our analysis is mostly centered around the

FIG. 6. Teleportation fidelities for the single-photon qubit and
hybrid qubits of type B under asymmetric photon loss R.

query of which type of qubit is better as an information carrier
when a Gaussian channel is used for quantum teleportation.

To that end, we have shown that while the coherent am-
plitude is as low as α � 1, both types of hybrid qubits yield
better results than the single-photon qubit. On the other hand,
as α increases, the single-photon qubit leads to better perfor-
mance. We obtain similar values for all three types of qubits
when α ≈ 1.

To apprehend the relative similarity between the different
types of qubits for α ≈ 1, we have considered two nonclassi-
cal properties (not shown in the manuscript) of negativity of
the Wigner function [48] and interference-based measure of
macroscopic superpositions [49]. However, there seems to be
no apparent similarity between the different types of qubits
with respect to these attributes for α ≈ 1.

We have further analyzed the performance of qubit telepor-
tation under the effect of photon loss. To that end, we have first
described the analytical model for general photo-loss process
where losses on both the modes are characterized by inde-
pendent loss parameters R1 and R2. Subsequently, we have
separately described two different cases of (a) the asymmetric
one where only one of the modes undergoes photon loss while
the other mode remains pure and (b) the symmetric case
where both the modes undergo equal photon loss. We observe
that although photon loss degrades the teleportation fidelities
for both the symmetric and asymmetric cases, the symmetric
case is more robust against loss under the same total amount
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FIG. 7. Teleportation fidelities for the single-photon qubits and
hybrid qubits of type A under symmetric photon loss.

of loss. It may imply that the entanglement structure of the
Gaussian state is more fragile under the asymmetric loss,
which deserves further investigation while it is beyond the
scope of this work.

Hybrid qubits are useful for various applications including
quantum computation [25,38,50] and quantum communi-
cation [51–55]. It is particularly advantageous for fault-
tolerant quantum computing with error correction [38,39].
In Ref. [39], the authors suggested the best value of α for
hybrid qubits (type A) to perform fault-tolerant quantum
computing to be ≈0.84. We note that teleportation with a
high fidelity is crucial for quantum computing schemes with
hybrid qubits [25,38,39]. Here, we provide a comparative
look at a practical quantum information processing task such
as quantum teleportation of different types of qubits using
Gaussian resources. Moreover, this article extends the
schemes for Gaussian teleportation of qubits [27–29] from
single-photon qubits to the case of hybrid qubits. This enables
one to take advantage of the teleportation scheme studied in
this paper in view of fault-tolerant quantum computing and
accordingly choose the qubit of interest.

It is known that the fidelity is not always an ideal distance
measure between two quantum states. In order to complement
our argument, we have considered a second order quantity,
called fidelity deviation [49], which is the uncertainty in
fidelity considered over all possible combinations in input
states. The deviations in fidelities for hybrid qubits appear to
be negligible compared to the average fidelities for all values

FIG. 8. Teleportation fidelities for the single-photon qubits and
hybrid qubits of type B under symmetric photon loss.

of α. This may suggest that the average fidelity is a rea-
sonable tool to characterize the teleportation using Gaussian
resources.

It should be noted that hybrid qubits, which do not contain
definite numbers of photons unlike dual-rail single-photon
qubits, due to their uncertainty in photon numbers, produce
unlocatable errors that cannot be readily noticed. In contrast,
a dual-rail single-photon qubit contains definitely one photon,
and its photon loss is relatively easy to be noticed at the
photodetector. This difference should be considered with the
quantitative results of this paper. We point out that the unlo-
catable errors for hybrid qubits can be corrected for quantum
computing [25,38,39]. There are also further attempts to miti-
gate these effects for teleportation [56,57] while how to apply
such schemes to our framework is an open question.
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APPENDIX A: TELEPORTATION FIDELITY OF SINGLE-PHOTON QUBITS AND HYBRID QUBITS WITH A
PAIR-GAUSSIAN CHANNEL

1. Teleportation fidelity for single-photon qubits

The characteristic function for the dual-rail single-photon qubit is given as

χspq(λ1, λ2) =e− |λ1 |2+|λ2 |2
2 (pL1(|λ2|2) + (1 − p)L1(|λ1|2) −

√
p(1 − p)[eiφλ∗

1λ2 + e−iφλ1λ
∗
2]), (A1)

where Lk (x) is the kth-order Laguerre polynomial. On the other hand the characteristic function for the resource state is given in
Eq. (4). Consequently, considering the symmetry of the resource state, the fidelity for the single-photon qubit becomes

Fspq(p, φ) =
∫∫

d2λ1

π

d2λ2

π
ρres(λ1, λ2; λ∗

1, λ
∗
2 ) × χspq(λ1, λ2) × χspq(−λ1,−λ2)

=
∫∫

d2λ1

π

d2λ2

π
e− ��T (�c+ 1

2 σx⊕σx ) ��(
[p2 + (1 − p)2]L2

1(|λ1|2) + 2p(1 − p)
[
L1(|λ1|2)L1(|λ2|2) + cos(2φ)λ∗2

1 λ2
2

+ |λ1|2|λ2|2
] − 4

√
p(1 − p) cos(φ)L1(|λ1|2)λ1λ

∗
2

)
=T1 + T2 + T3 + T4 + T5(let), (A2)

where �� = (λ1, λ
∗
1, λ2, λ

∗
2 )T and σx is the Pauli matrix. By using the generating function for the Laguerre polynomial in terms of

parametric differentiation, Ln(xy) = 1
n!∂

n
a ∂n

b [eab+ax−by]a,b=0, in a straightforward but tedious calculation, it could be shown that

T1 = p2 + (1 − p)2

det[M]

(
(1 − 2β )2 + 4β2

)
; T2 = 2p(1 − p)

det[M]
(1 − 2β )2; T3 = 0; T4 = 2p(1 − p)

det[M]
4β2; and T5 = 0, (A3)

where 4 det[M] = (2 + �)2, β = 2+�
4 det[M] = 1

2+�
, and � = 4(η − c). Summing up all the terms and we obtain the fidelity as

Fspq(p, φ) = (1 − 2β )2 + 4β2

det[M]
= 4(4 + �2)

(2 + �)2
, (A4)

which is independent of p and φ.

2. Teleportation fidelity for hybrid qubit of type A (hqA)

The characteristic function of the hqA is given by

χhqA(p, φ) = e− |λ1 |2+|λ2 |2
2

(
pe−α(λ1−λ∗

1 ) + (1 − p)eα(λ1−λ∗
1 )L1(|λ1|2) −

√
p(1 − p)e−2α2[

λ2e−iφeα(λ1+λ∗
1 ) + λ∗

2eiφe−α(λ1+λ∗
1 )
])

,

(A5)
leading to the fidelity,

FhqA(p, φ) =
∫∫

d2λ1

π

d2λ2

π
ρres(λ1, λ2; λ∗

1, λ
∗
2 ) × χhqA(λ1, λ2) × χhqA(−λ1,−λ2)

=
∫∫

d2λ1

π

d2λ2

π
e− ��T (�c+ 1

2 σx⊕σx ) ��(
p2 + (1 − p)2L2

1(|λ1|2) + 2p(1 − p)e2α(λ1−λ∗
1 )L1(|λ1|2)

− 2p(1 − p)e−4α2
[λ2

2 cos(2φ) − |λ2|2e2α(λ1+λ∗
1 )]

)
= T ′

1 + T ′
2 + T ′

3 − T ′
4 + T ′

5 (let). (A6)

In straightforward calculation it could be shown that

T ′
1 = p2

det[M]
; T ′

2 = (1 − p)2

det[M]

(
(1 − 2β )2 + 4β2); T ′

3 = 2p(1 − p)

det[M]
e−8βα2

(1 − 2β ),

T ′
4 = 0; T ′

5 = 4p(1 − p)e−4α2

det[M]
βe8βα2

, (A7)

leading to

FhqA(p, φ) = 1

det[M]
(p2 + (1 − p)2[(1 − 2β )2 + 4β2] + 2p(1 − p)[(1 − 2β )e−8βα2 + 2βe−4α2

e8βα2
]). (A8)

Averaging over p and φ and using the expressions for β and det[M], we get

F av
hqA = 4

3(2 + �)2

(
(2 + �)2 + (4 + �2) + (2 + �)

[
�e− 8

(2+�) α
2 + 2e− 4�

(2+�) α
2])

. (A9)
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3. Teleportation fidelity for hybrid qubit of type B (hqB)

Let us first consider the following quantities:

χ±(λ) = 〈α±|D(λ)|α±〉 = e−|λ|2/2

N±
([eα(λ−λ∗ ) + e−α(λ−λ∗ )] ± e−2α2

[eα(λ+λ∗ ) + e−α(λ+λ∗ )]),

χ+−(λ) = 〈α+|D(λ)|α−〉 = e−|λ|2/2

√
N+N−

([eα(λ−λ∗ ) − e−α(λ−λ∗ )] + e−2α2
[eα(λ+λ∗ ) − e−α(λ+λ∗ )]),

χ−+(λ) = 〈α−|D(λ)|α+〉 = e−|λ|2/2

√
N+N−

([eα(λ−λ∗ ) − e−α(λ−λ∗ )] − e−2α2
[eα(λ+λ∗ ) − e−α(λ+λ∗ )]). (A10)

The characteristic function for the hybrid qubit of type B is then given as

χhqB(p, φ) = pχ+(λ1)e−|λ2|2/2 + (1 − p)e−|λ2|2/2L1(|λ2|2) +
√

p(1 − p)e−|λ2|2/2
(
λ2e−iφχ−+(λ1) − λ∗

2eiφχ+−(λ1)
)
. (A11)

This leads to the fidelity for hqB,

FhqB(p, φ) =
∫∫

d2λ1

π

d2λ2

π
ρres(λ1, λ2; λ∗

1, λ
∗
2 ) × χhqB(λ1, λ2) × χhqB(−λ1,−λ2)

=
∫∫

d2λ1

π

d2λ2

π
e− ��T �c ��e−|λ2|2

(
p2χ2

+(λ1) + (1 − p)2χ2
−(λ1)L2

1(|λ2|2) + 2p(1 − p)χ+(λ1)χ−(λ1)L1(|λ2|2)

+ p(1 − p)
[
λ2

2e−2iφχ2
−+(λ1) − λ∗2

2 e2iφχ2
+−(λ1) − 2|λ2|2χ+−(λ1)χ−+(λ1)

])

= T ′′
1 + T ′′

2 + T ′′
3 + T ′′

4 + T ′′
5 − T ′′

6 (let), (A12)

where we have made use of the following relations:

χ±(−λ) = χ±(λ); χ+−(−λ) = −χ+−(−λ); and χ−+(−λ) = −χ−+(λ). (A13)

Similar to the previous cases it could be easily shown that

T ′′
1 = 2p2

N2+ det[M]

(
[1 + e−8βα2

] + e−4α2
[1 + e8βα2

] + 4e−2α2)
,

T ′′
2 = 2(1 − p)2

N2− det[M]

(
[1 + e−8βα2

] + e−4α2
[1 + e8βα2

] − 4e−2α2)(
(1 − 2β )2 + 4β2),

T ′′
3 = 4p(1 − p)

N+N− det[M]

(
[1 + e−8βα2

] − e−4α2
[1 + e8βα2

]
)
(1 − 2β ),

T ′′
4 = 0 = T ′′

5 & T ′′
6 = − 4p(1 − p)

N+N− det[M]

(
[1 − e−8βα2

] + e−4α2
[1 − e8βα2

]
)
2β. (A14)

Summing up all the terms we get

F av
hqB = 2

det[M]

((
1 + e−8βα2)( p

N+
+ 1 − p

N−

)2

+ e−4α2(
1 + e8βα2)( p

N+
− 1 − p

N−

)2

+4e−2α2

(
p2

N2+
− (1 − p)2

N2−

)
+ 8β

N+N−

(
e−4(1−2β )α2 − e−8βα2)

p(1 − p)

)
, (A15)

which upon averaging leads to

F av
hqB = 8

3(2 + �)2

((
1 + e−8βα2)( 1

N2+
+ 1

N+N−
+ 1

N2−

)
+ e−4α2(

1 + e8βα2)( 1

N2+
− 1

N+N−
+ 1

N2−

)

+4e−2α2

(
1

N2+
− (1

N2−

)
+ 4β

N+N−

(
e−4(1−2β )α2 − e−8βα2))

. (A16)

APPENDIX B: EXPRESSIONS OF FIDELITY DEVIATION FOR HYBRID QUBITS

Let us first consider the hybrid qubit of type A (hqA). Expression for the fidelity deviation for hqA could be ob-
tained in the following way. The square of fidelity is easily obtained from Eq. (A8) by using the expressions for β and
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det[M] as

F 2
hqA(p, φ) = 16

(2 + �)4

(
p4 + (1 − p)4 (4 + �2)2

(2 + �)4
+ 4p2(1 − p)2

(2 + �)2

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2)2 + 2p2(1 − p)2 4 + �2

(2 + �)2
,

4p3(1 − p)

2 + �

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2) + 4p(1 − p)3

(2 + �)2

4 + �2

(2 + �)2

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2))

, (B1)

that leads to the average value,

(
F 2

hqA

)
av = 1

2π

∫∫
d pdφF 2

hqA(p, φ)

= 16

5(2 + �)4

(
1 + (4 + �2)2

(2 + �)4
+ 2

3(2 + �)2

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2)2 + 4 + �2

3(2 + �)2

+ 1

2 + �

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2) + 4 + �2

(2 + �)3

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2))

= 16

5(2 + �)8

(
(2 + �)4 + (4 + �2)2 + 2(2 + �)2

3

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2)2 + 1

3
(2 + �)2(4 + �2)

+ (2 + �)
(
(2 + �)2 + (4 + �2)

)(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2))

. (B2)

On the other hand, the square of average fidelity is given by

(
F av

hqA

)2 = 16

9(2 + �)8

(
(2 + �)4 + (4 + �2)2 + (2 + �)2

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2)2 + 2(2 + �)2(4 + �2)

+2(2 + �)
(
(2 + �)2 + (4 + �2)

)(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2))

, (B3)

leading to the final result,

�FhqA = 16

45(2 + �)8
(4(2 + �)4 + 4(4 + �2)2 − 7(2 + �)2(4 + �2) + (2 + �)2

(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2)2

− 2(2 + �)
(
(2 + �)2 + (4 + �2)

)(
�e− 8

2+�
α2 + 2e− 4�

2+�
α2))

. (B4)

Similarly, we obtain the results on fidelity deviation in the case of hybrid qubit type B. However, there seems to be no compact
expression for �FhqB. Consequently, we proceed with the numerical results.

APPENDIX C: CHANGE IN VARIANCE MATRIX OF THE PAIR-GAUSSIAN CHANNEL UNDER PHOTON LOSS

To evaluate the effect of photon loss, modeled by the BS operation and partial trace, we consider the extended vector composed
quadrature of the system modes (a,b) and the ancilla modes (c,d) as �ζext = (xa, pa, xb, pb, xc, pc, xd , pd )T leading to the input
extended variance matrix of the four-mode system (i.e., including the ancilla modes) given as

V in
ext =

⎛
⎝V 0 0

0 I/2 0
0 0 I/2

⎞
⎠ =

⎛
⎜⎝

ηI cσz 0 0
cσz ηI 0 0
0 0 I/2 0
0 0 0 I/2

⎞
⎟⎠. (C1)

We first consider the action of a two-mode beam splitter (BS) with loss parameter R, (Ubs(R)), on the local quadrature
variables. Respective input-output relation is given by the matrix,

Sbs,(2) =
(√

1 − RI
√

RI√
RI

√
1 − RI

)
. (C2)

Accordingly, the four-mode BS matrix (for the modes a-c and b-d) with individual loss parameters R1 and R2 is given by

Sbs,(4) =

⎛
⎜⎜⎝

√
1 − R1I 0

√
R1I 0

0
√

1 − R2I 0
√

R2I√
R1I 0

√
1 − R1I 0

0
√

R1I 0
√

1 − R1I

⎞
⎟⎟⎠. (C3)

We know that if the quadrature variables are changed as Ubs : �ζ → Sbs�ζ , then the variance matrix changes as Ubs : V →
SbsV ST

bs, where “T” stands for transposition. Consequently, under the transformation Sbs,(4), output extended variance matrix
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will be

V out
ext = Sbs,(4)V

in
extS

T
bs,(4)

=

⎛
⎜⎜⎝

(η(1 − R1) + R1/2)I c
√

(1 − R1)(1 − R2)σz
√

R1(1 − R1)(−η + 1/2)I −c
√

R2(1 − R1)σz

c
√

(1 − R1)(1 − R2)σz (η(1 − R2) + R2/2)I −c
√

R1(1 − R2)σz
√

R2(1 − R2)(−η + 1/2)I√
R1(1 − R1)(−η + 1/2)I −c

√
R1(1 − R2)σz (ηR1 + (1 − R1)/2)I c

√
R1R2σz

−c
√

R2(1 − R1)σz
√

R2(1 − R2)(−η + 1/2)I c
√

R1R2σz (ηR2 + (1 − R2)/2)I

⎞
⎟⎟⎠.

(C4)

Evidently, the system variance matrix under photon loss is obtained, by considering the submatrix corresponding to the system
modes, as

V gen
loss =

(
(η(1 − R1) + R1/2)I c

√
(1 − R1)(1 − R2)σz

c
√

(1 − R1)(1 − R2)σz (η(1 − R2) + R2/2)I

)
. (C5)
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