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Automatic depth optimization for a quantum approximate optimization algorithm
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Quantum approximate optimization algorithm (QAOA) is a hybrid algorithm whose control parameters are
classically optimized. In addition to the variational parameters, the right choice of hyperparameter is crucial for
improving the performance of any optimization model. Control depth, or the number of variational parameters,
is considered as the most important hyperparameter for QAOA. In this paper we investigate the control depth
selection with an automatic algorithm based on proximal gradient descent. The performances of the automatic
algorithm are demonstrated on seven-node and ten-node max-cut problems, which show that the control depth
can be significantly reduced during the iteration whereas achieving an sufficient level of optimization accuracy.
With theoretical convergence guarantee, the proposed algorithm can be used as an efficient tool for choosing
the appropriate control depth as a replacement of random search or empirical rules. Moreover, the reduction of
control depth will induce a significant reduction in the number of quantum gates in circuit, which improves the
applicability of QAOA on noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Quantum approximate optimization algorithm (QAOA) is
considered as one of the most promising applications for near-
term noisy intermediate scale quantum (NISQ) [1] computing
device to demonstrate quantum advantage [2–4]. The goal of
QAOA is to prepare a quantum state that yields an approx-
imate solution to a classical optimization problem. QAOA
is a hybrid quantum-classical algorithm, in the sense that
the quantum state is generated and measured using quantum
hardware whereas the control parameters are optimized by
the classical algorithm to form a closed loop. In the standard
QAOA, the quantum state is generated by executing p blocks
of noncommuting quantum operations which consist of 2p-
variational control parameters in total. The control parameters
can be optimized by gradient-free [2,5–7], gradient-based
[6,8–10], and machine learning methods [11–15]. In this case,
the control depth is 2p, which is a hyperparameter that has a
strong influence on the performance of the model.

Although it has been proven that QAOA converges to the
optimal solution in the p → ∞ limit [2], an extremely large
p is not physically realizable due to the noise effect and
limited control capability of NISQ devices. In practice, the
control depth has a finite value which is often preselected.
However, although there have been studies on the dependence
of QAOA performances upon the control or circuit depth, it is
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still not clear how to determine an optimal depth with respect
to any specific problem [16–20]. The current research (e.g.,
Refs. [2,8,20–23]) have found several empirical or analytical
rules to select the control depth for certain problems, which
cannot be formulated as automated algorithms. In addition,
considering that the empirical or analytical selection rules
are different for different problems or even different class
of instances, a generic selection rule seems unlikely to exist.
However, searching for a good control depth by hand tuning is
computationally inefficient. In particular, none of the current
works have investigated any automatic algorithm framework
for balancing model accuracy and model complexity with an
intermediate control depth, which is critical for the robust
implementation of QAOA.

This paper presents an attempt to derive a generic and au-
tomatic algorithm for optimizing the control depth of QAOA,
which is more efficient than random search and more gener-
ally applicable than existing empirical or analytical selection
rules. Since the control depth is a hyperparameter of the
model, the depth optimization can be taken as a model selec-
tion problem. Therefore, any model selection method [24,25]
can be considered to solve this problem. In this paper, we
employ the model selection method with l1 regularization (by
additionally minimizing the l1 norm of a parameter vector)
[26] for mainly two reasons. First, the regularized model
can be optimized iteratively, which makes it very efficient.
For example, regularization techniques, such as least absolute
shrinkage and selection operator (LASSO) [26], and its vari-
ants are often used for the automatic model selection. LASSO
imposes an l1 regularization on the parameters to be estimated
in addition to the objective function, which can effectively
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shrink the number of parameters of the model during itera-
tion. Second, an l1-regularized optimization problem can be
solved by fast algorithms with optimality and convergence
guarantee. In particular, the commonly used proximal gradient
(PG) descent method can be used to solve a linear and convex
problem with a basic convergence rate of O(1/k) [27] which
can be further accelerated by a line search [28], where k is the
current iteration step. Since the objective function in QAOA
is possibly nonconvex [17], we also have to consider an ex-
tension of PG descent algorithm that is compatible with both
convex and nonconvex problems [29,30]. Other regularization
terms can also be used as candidates if certain assumptions on
the correlations between the parameters are made [31].

The most common criterion for model selection is to
achieve the balance between model accuracy and complexity
[24,25]. It should be noted that for the noise-free case in
this paper, the accuracy of the model will be monotonically
increasing with the control depth. As a result, a criterion that
balances the accuracy and control depth has to be proposed,
otherwise, the best model would be the unregularized one if
accuracy is the sole consideration. Fortunately, the necessity
of complexity control naturally arises in the context of QAOA.
To be more specific, the objective for QAOA can be stated
as optimizing the approximation ratio until a desired value
has been reached, which has been proven to be NP-hard with
classical algorithms [17]. In other words, we only require
QAOA to give an optimization result that is good enough
instead of the best result. In this case, the optimization target
can be expressed as

C∗

Cmax
� r∗, (1)

where C∗ is the optimized value of the objective function and
Cmax is the maximum value. Cmax can be obtained by brute
force methods across different instances [32] or enforcing
a frustration-free Hamiltonian whose ground-state energy is
known in advance [33]. Here C∗/Cmax stands for the ap-
proximation ratio. According to (1), the approximation ratio
measures the optimization accuracy. An approximate solu-
tion C∗ is smaller than Cmax, and QAOA intends to produce
a solution that is as close to Cmax as possible. Finding the
minimum depth that satisfies (1) with a good-enough r∗
naturally confines the control complexity and is crucial for
the understanding of the fundamental performance limitations
of QAOA [34,35], which can further contribute to a better
design that mitigates the circuit complexity in the practical
implementation.

In this paper, we provide a comprehensive study of the
performance of PG descent methods for the control depth
optimization of QAOA. Numerical results show that the per-
formance of QAOA is heavily affected by the control depth,
which can be significantly optimized during the iteration using
a proper regularization strength. This paper is organized as
follows. A short introduction on QAOA is given in Sec. II.
The algorithms for control depth optimization are detailed
in Sec. III. In Sec. IV, the max-cut problem and metrics
for numerical experiment are defined. Section V presents the
numerical results on seven-node and ten-node examples. The
conclusion is summarized in Sec. VI.

II. STANDARD QAOA

The Pauli matrices are defined by

σz =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
. (2)

The two computational basis states of a single qubit are
denoted as |0〉 = (0 1)T and |1〉 = (1 0)T . Let Ho be
the Hamiltonian that encodes the corresponding optimization
problem, and Hc = ∑N

n=1 σ (n)
x be the control Hamiltonian.

The optimal solution to the classical problem, which is often a
combinatorial problem, is encoded as the ground state of Ho.
The standard QAOA is executed by alternatively applying the
noncommuting Ho and Hc as

|ψ (β, γ )〉 = e−iHcβpe−iHoγp · · · e−iHcβ1 e−iHoγ1 |s〉. (3)

Here |s〉 = |+〉1 · · · |+〉N is the initial N-qubit state that can be
easily prepared with |+〉 = 1/

√
2(|0〉 + |1〉). The parameters

β = (β1, . . . , βp), γ = (γ1, . . . , γp) stand for control angles
constrained in the region (−π, π ], and 2p is the control depth.
A negative parameter corresponds to the angle of a backward
rotation. The goal of QAOA can be formulated as

min
β,γ

f (β, γ ) = min
β,γ

〈ψ (β, γ )|Ho|ψ (β, γ )〉. (4)

That is, the goal is to optimize β, γ such that the generated
quantum state |ψ (β, γ )〉 approximates the ground state of Ho.
In QAOA, (3) is implemented using quantum hardware. In
practice, each unitary operation defined in (3) is realized as
a sequence of quantum gates. Moreover, f (β, γ ) in (4) is the
expectation value of Ho with respect to state |ψ (β, γ )〉, which
can be calculated by repeatedly executing (3) and taking the
average of the quantum measurement results with respect to
Ho. In contrast, the optimization algorithm for the control
parameters β, γ can be designed and implemented classically.

III. ALGORITHMS FOR DEPTH SELECTION

In this paper, we adopt the l1 regularization technique
for the automatic reduction of control depth. The regularized
model is given by

min
β,γ

f (β, γ ) + g(β, γ ) = min
β,γ

〈ψ (β, γ )|Ho|ψ (β, γ )〉

+ λ

p∑
j=1

(|β j | + |γ j |). (5)

The effect of the additional regularization term g(β, γ ) is
shrinking some of the control parameters to be exactly zero
during optimization. Letting x = (β, γ ), (5) can be written in
standard form as

min
x

〈ψ (x)|Ho|ψ (x)〉 + λ‖x‖1, (6)

where ‖ · ‖1 denotes the l1 norm of a vector. Note that f (·)
is differentiable but possibly nonconvex [17], whereas the
regularization term g(·) is convex but nondifferentiable.

The PG descent method updates the control parameters as

xk+1 = arg min
z

f (xk ) + ∇ f (xk )T (z − xk ) + 1

2η
‖z − xk‖2

2

+g(z). (7)
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FIG. 1. The illustration of a soft-thresholding operation with the
y-axis value determines the value of parameter after thresholding.
The blue dotted line indicates the reference case without soft thresh-
olding. During each iteration, the updated control parameter is then
shifted towards zero by an amount of λη (red line). If the absolute
value of the control parameter is below the threshold, then it will be
directly penalized to zero (red line).

The motivation is to minimize the quadratic approximation
to f (·) around xk with ∇2 f (·) replaced by I

η
and leave the

nondifferentiable g(·) alone. Here η is the learning rate. For
g(·) = λ‖ · ‖1, the minimization problem (7) has the following
closed-form solution,

xk+1 = Sλη[xk − η∇ f (xk )]. (8)

Here Sλη(xk ) is the soft-thresholding operator defined by

Sλη([xk]i ) =
⎧⎨
⎩

[xk]i − λη, [xk]i > λη

0, −λη � [xk]i � λη

[xk]i + λη, [xk]i < −λη.

(9)

where [xk]i is the ith element of the vector xk for i =
1, . . . , 2p. As shown in Fig. 1, once the condition |[xk]i| � λη

is met, [xk]i will be penalized to exactly zero, which will re-
move the corresponding control action and reduce the control
depth. The gradient vector ∇ f (xk ) is approximated by

[∇ f (xk )]i ≈ f ([xk]i + ε) − f ([xk]i − ε)

2ε
, ε > 0, (10)

in which f ([xk]i ± ε) can be estimated using either classical
simulation or quantum hardware. It should be noted that the
stop criterion is to continue the iterations until a good-enough
threshold value has been reached and, thus, whether the ex-
pectations are obtained by classical simulation or quantum
measurement would not matter. Particularly, the gradient de-
scent update did not use any information of the underlying
dynamical model. Therefore, the only consequence brought
by realistic noise is that the achieved approximation ratio may
be lower than the noise-free case, and gradient estimates may
be noisy.

Generally speaking, the convergence rate of O(1/k) cannot
be guaranteed in the absence of the convexity assumption
on f (·). Nevertheless, since PG descent is a first-order op-
timization method just as the stochastic gradient descent, its
convergence curve is still expected to be stable. In addition,
as can be seen from (8), PG descent is simply a reweighting
of the conventional gradient descent, which is unlikely to get

unstable. Due to these reasons, the stability of the convergence
curves can be clearly observed in the numerical results of this
paper.

Algorithm 1. Nonconvex accelerated proximal gradient (APG)
algorithm for QAOA.

Require: f (·) is L-Lipschitz smooth.
Initialize: η ∈ (0, 1/L); x0 = x1; λ, tol > 0; a positive integer q.
1: for k = 1, . . . , K do
2: yk = xk + k−1

k+2 (xk − xk−1); \\ line search for possible
acceleration

3: Fk = maxt∈(max(1,k−q),...,k)[ f (xt ) + g(xt )];
4: if f (yk ) + g(yk ) � Fk then
5: \\ check if yk is a good extrapolation
6: vk = yk ;
7: else
8: vk = xk ;
9: end if
10: ∇ f (vk ) is calculated using classical simulation or quantum

hardware;
11: xk+1 = Sλη[vk − η∇ f (vk )]; \\ PG update
12: f (xk+1) is calculated using classical simulation or quantum

hardware;
13: if | f (xk+1) + g(xk+1) − Fk | < tol then
14: return xk ; \\ early stopping if convergence has been achieved
15: end if
16: end for
17: return xK+1;

We also consider a second algorithm which does not re-
quire f (·) to be convex and has a proved convergence rate.
This algorithm is an efficient APG descent method proposed
in Ref. [30]. We can use this unified approach for both convex
and nonconvex problems to construct the classical optimiza-
tion part in QAOA. The details are shown in Algorithm 1.
It should be noted that the extrapolation defined by step 2
can accelerate the convergence if f (·) is locally convex. Steps
3–9 are designed to check if the acceleration works. In step
3, choosing q > 0 allows yk to occasionally increase the ob-
jective function f (·) in order to escape from local minima
[30,36]. In particular, q is set to be 2 in the numerical exper-
iments of this paper. Although the only difference between
APG and PG appears to be the acceleration part, the con-
vergence rate of APG is shown to be O(1/k) for nonconvex
f (·) [30].

The regularization parameter λ in (6) is used to control the
model complexity. A large λ forces most of the elements in
x to be zero, whereas a very small λ results in a model that
is close to an unregularized one. For this reason, λ has to be
carefully chosen to encourage a simple control model with
sparse x whereas achieving an sufficient level of optimization
accuracy. The common practice is to conduct a grid search
to find the optimal λ. In order to mitigate the resource re-
quirement and running time of the algorithm, the candidate
hyperparameters can be examined in the following order:

λ1 > λ2 > · · · > λM . (11)

That is, the algorithms start with a relatively large λ,
which will produce the most sparse control model. Then the
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procedures are repeated by decreasing λ until a predetermined
optimization accuracy has been achieved. Since the regular-
ization strength cannot be too large or too small, only a few
λs have to be tested before an acceptable result has been
obtained, irrespective of problem size. In contrast, the number
of experiments needed for finding an optimized depth with
random search scales as O(p). Therefore, the automatic algo-
rithm is very efficient when dealing with large-scale problems
where we have M � p.

It should be noted that for the noise-free QAOA consid-
ered in this paper, the optimization accuracy always tends to
increase with the control depth [2,37], which means we can
always improve the optimization accuracy by decreasing λ.
In that case, the model will become overly complex, or the
control depth will become too large. As we have stated, the
model complexity can be controlled by selecting the largest λ

that satisfies the criterion (1).

IV. MAX CUT AND APPROXIMATION RATIO

As a proof-of-principle demonstration, the performance of
depth optimization is demonstrated on the max-cut problem
[3]. Consider an N-node nondirected and weighted graph G =
(V, E ). Max cut seeks for a partition of V into two subsets
S1 and S2 such that the sum of weights of edges connecting
nodes in the two disjoint subsets is maximized. By assigning
Zi = 1, i ∈ S1 and Zj = −1, j ∈ S2, the max-cut problem can
be formulated as a binary optimization,

Cmax = max
i, j

1

2

∑
(i, j)∈E

ωi j (1 − ZiZ j ). (12)

It is known that finding an approximate solution of binary
string Z∗ such that

C(Z∗)

Cmax
� r∗ (13)

is NP-hard, with r∗ being a minimum ratio [17,38]. In the
QAOA setup, the problem-based Hamiltonian for (12) is given
by

Ho′ = 1

2

∑
(i, j)∈E

ωi j (I − σziσz j ). (14)

The approximation ratio for benchmarking the performance
of the QAOA can be defined as

r′ = maxβ,γ 〈ψ (β, γ )|H ′
o|ψ (β, γ )〉

Cmax
. (15)

Particularly, maximization the expectation of Ho′ is equiv-
alent to the minimization of expectation of the following

Hamiltonian:

Ho =
∑

(i, j)∈E

ωi jσziσz j , (16)

for which the approximation ratio can be defined by

r = 1 − minβ,γ 〈ψ (β, γ )|Ho|ψ (β, γ )〉 − Cmin

Cmax − Cmin
∈ [0, 1],

(17)

with Cmin being the theoretical best result. According to (17),
the approximation ratio r measures the optimization accuracy.
In particular, r = 1 implies that a perfect solution has been
obtained by QAOA.

V. NUMERICAL RESULTS

Two randomly generated instances of max cut for the
numerical illustration are given in Table I. The seven-node
instance has 9 weighted edges, and the ten-node instance has
14 weighted edges. The code and data for the experiments are
available in the Supplemental Material [39].

A. Seven-node max cut

First, we demonstrate the performance of depth optimiza-
tion on the seven-node max cut problem. We let η = 0.006.
The elements of β and γ are all initialized as 0.3 with an
initial control depth of 14. The minimum acceptable approx-
imation ratio is set to be 0.9, which is drawn in red dashed
line in Fig. 2. The regularization parameter has four values
{2, 1.2, 0.72, 0.432}, which are tested in decreasing order.
Note that the effective range of regularization parameter can
be estimated based on the range of the objective function and
the initial values of the control parameters as the regulariza-
tion term has to be comparable with the objective function for
the optimization to be successful.

As can be seen in Fig. 2, the depth selection results are
consistent for APG and PG with the same λ. More specifically,
the final control depths are basically the same with the same
λ after 200 iterations. Also, it has been shown that if λ is too
large, the algorithms cannot reach the minimum acceptable
ratio. The final accuracy is mainly determined by the control
depth. That is, the approximation ratios achieved for different
algorithms are very close under the same depth, which high-
lights the importance of depth optimization.

In particular, acceleration in convergence can be observed
in Fig. 2(a). APG converges in less than 50 iterations, whereas
PG may need more than 100 iterations to converge. APG
achieves the minimum acceptable ratio in about 40 iterations
with λ = 0.72, and the control depth has been shrunk to 11
at that point. Note that the removal of one control parameter

TABLE I. Instances of seven-node and ten-node max cut.

Vertex Weight Vertex Weight Vertex Weight Vertex Weight Vertex Weight Vertex Weight Vertex Weight

Z0 Z4 0.73 Z0 Z6 0.50 Z1 Z5 0.36 Z2 Z6 0.58 Z3 Z6 0.43
Seven-node max cut

Z0 Z5 0.33 Z1 Z4 0.69 Z2 Z5 0.88 Z3 Z5 0.67
Z0 Z1 0.21 Z0 Z6 0.67 Z1 Z5 0.34 Z1 Z9 0.89 Z2 Z9 0.92 Z3 Z8 0.77 Z4 Z9 0.68

Ten-node max cut
Z0 Z5 0.41 Z0 Z8 0.82 Z1 Z6 0.77 Z2 Z6 0.45 Z3 Z7 0.81 Z4 Z5 0.35 Z8 Z9 0.15
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FIG. 2. Approximation ratios versus number of iterations for dif-
ferent λs. (a) APG algorithm. (b) PG algorithm. The black dots mark
for the approximation ratios have reached the minimum acceptable
value of 0.9. The numbers on the right of the figure refer to the final
depths after 200 iterations.

may reduce the number of required control operations by two.
For example, if β j in the control sequence,

Ho
γ j−→ Hc

β j−→ Ho
γ j+1−→ (18)

has been penalized to 0, then the two control operations gener-
ated by Ho will be combined into one operation with a duration
of γ j + γ j+1. As a result, the reduction of control depth from
14 to 11 implies a more significant reduction in the number
of control operations. As shown in Fig. 3, although the final
control depth is 11, the number of required control operations
is only 8. In this case, the actual percentage of reduction in
control operations is 6/14 that exceeds 40%. Since each uni-
tary control operation is realized as a composition of quantum
gates, this reduction in control depth will induce a significant
reduction in the number of quantum gates or the depth of
quantum circuit for practical implementation of QAOA.

The standard practice for model selection is to use the
regularized model to solve for the best hyperparameter, and

FIG. 3. The optimized control sequence with λ = 0.72. The first
43 iterations are calculated using the regularized model and APG
algorithm. After the approximation ratio has reached 0.9, the regu-
larization term has been removed. Conventional gradient descent is
used to continue the optimization process until 300 iterations with
a fixed control depth. The length of each operation is the absolute
value of the parameter.

then continue the optimization process without the regular-
ization term to achieve the best accuracy. We have followed
this practice and the optimized control sequences are depicted
in Figs. 3 and 4. In Fig. 4, the APG and PG algorithms are
iterated for 100 times, and then the control depth is fixed
for further optimization. It should be noted that the three
experiments have achieved basically the same approximation
ratio after 300 iterations, which is around 0.9274. This may
be because the selected control depth is the same for all three
experiments. Started with different values of parameters after
the regularization, the ultimate accuracy is still determined
by the control depth. In this case, this phenomenon can be
taken as evidence to show the importance of optimizing the
control depth. Next, we conduct another experiment to show
that the performances of APG and PG are not sensitive to
small changes in the initial parameters. To do this, the mean
and standard derivation of the convergence curves of approxi-
mation ratios are calculated with respect to randomly sampled

FIG. 4. The optimized control sequences for (a) APG algorithm
and (b) PG algorithm with λ = 0.432. The first 100 iterations are
calculated using the regularized model, and after that the regulariza-
tion term has been removed. Conventional gradient descent is used
to continue the optimization process until 300 iterations with a fixed
control depth.
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FIG. 5. Mean and standard derivation of the approximation ratios
are plotted versus number of iterations for (a) APG algorithm and
(b) PG algorithm. The initial values for the 14 control parameters are
independently sampled from a uniform distribution over an interval
[0.27,0.33].

initial values over the interval [0.27,0.33]. As shown in Fig. 5,
100 samples are drawn from a uniform distribution for APG
and PG, respectively. The numerical results have confirmed
that the convergence of both algorithms are stable against
random initialization of parameters.

In Fig. 6, we test the performance of depth optimization by
varying the initial control depth, from 20 to 40. For λ = 2 and
1.2, the regularization term dominates and the optimized con-
trol depths are all similar for different initial values. Even if a
large initial value is chosen, the control depth will be automat-
ically reduced to a small value during the iteration, otherwise,
the regularization term will become too large to optimize.
In this case, both the optimized depth and the approxima-
tion ratio are steady. For λ = 0.72 and 0.432, there is a
more subtle trade-off between the regularization term and the

FIG. 6. The approximation ratios versus initial control depth for
different λ. The approximation ratio for each initial depth is calcu-
lated after 200 iterations of PG algorithm. The numbers along the
curve are the final depths after the optimization.

objective function. In particular, the control depths are
allowed to increase slowly to promote the optimization
accuracy. This observation is consistent with the existing
conclusion that the optimization accuracy will monotonically
increase with the control depth for noise-free QAOA. Specif-
ically, the selected control depth doubled as we increase its
initial value from 20 to 40 for λ = 0.432. In this case, the
regularization strength is too small to penalize the parameters.

We conduct numerical experiments with initial depths 20,
28 and compare the results of regularized and unregularized
cases. The detailed results are shown in Table II. In this
paper, the performance is measured by the model complexity
when approximation ratio reaches a desired threshold value.
As can be seen from Table II, the control length, depth and
iterations for the regularized models to reach 0.9 are always
smaller than the unregularized model, which means that the
unregularized model is always the worst and has much room
to improve. Even after 200 iterations, the regularized model

TABLE II. The results are obtained when the approximation
ratios reach 0.9 and after 200 iterations, respectively.

Initial depth λ = 0 λ = 0.432 λ = 0.72

Length (r = 0.9) 5.36382 5.21552 4.9451
Depth (r = 0.9) 20 19 15

Iterations (r = 0.9) 32 27 46
20

Length (200 iterations) 6.39597 5.11906 4.99829
Depth (200 iterations) 20 14 13

r (200 iterations) 0.9753 0.9396 0.9120
Length (r = 0.9) 8.95274 7.02808 6.71423
Depth (r = 0.9) 28 28 26

Iterations (r = 0.9) 33 25 30
28

Length (200 iterations) 9.13553 6.78664 6.51269
Depth (200 iterations) 28 20 18

r (200 iterations) 0.9882 0.9722 0.9451
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FIG. 7. Approximation ratios versus number of iterations for dif-
ferent λ. (a) APG algorithm. (b) PG algorithm. The black dots mark
for the first time the approximation ratios have reached the minimum
acceptable value 0.9. The numbers on the right of the figure are the
final depths after 200 iterations.

with λ = 0.432 still has similar accuracy as the unregularized
one, whereas the control length and depth are significantly
reduced under the regularization.

B. Ten-node max cut

For the ten-node instance, the initial control depth is set to
be 20. The optimization landscape of the ten-node instance is
more complex than that of the seven-node instance, and, thus,
we choose a smaller learning rate η = 0.0035 to stabilize the
convergence. The initial values for the control parameters are
still 0.3. The convergence curves for different λ are plotted
in Fig. 7. It can be observed that the performance of APG is
unstable at the initial stage. In contrast, the convergence of
PG is always stable during the iteration. At the initial stage,
APG seeks for an acceleration by exploring the optimization

landscape with extrapolations. Since bad extrapolations are
allowed (q = 2) in the experiments, the convergence curves
can be severely perturbed at initial stage that may cause the
objective function to fall into bad local minima. Moreover, the
ultimate approximation ratio achieved with APG is slightly
worse than PG. This may suggest one has to be cautious with
APG in high-dimensional setting due to its indeterministic
behavior in acceleration, although it has a proved convergence
rate of O(1/k).

VI. CONCLUSION

In this paper, we have proposed an automatic and fast
algorithm for depth optimization of QAOA based on prox-
imal gradient descent. On one hand, this algorithm can be
used as an efficient tool to study the ultimate performances
and limitations of QAOA by optimizing the hyperparameter.
On the other hand, the automatic algorithm can be directly
integrated with quantum hardware to accelerate the optimiza-
tion process and reduce the control complexity. In particular,
the proper control depth can be found with M experiments,
where M is the number of candidate regularization parameters
which is small and irrespective of problem size. This results
in a significant reduction in the number of experiments for
determining the best control depth and approximation ratio as
the number of experiments for finding the best control depth
by random search scales with O(p), which could be extremely
time consuming for large-scale problems.

There are two interesting directions for future work. First,
due to the inevitable noise in NISQ devices, the optimal
control depth could be naturally constrained. As the errors
induced by the noise accumulate over time and increase with
the control depth, the performance of QAOA may start to
decline after the control depth reaches an optimal value. This
effect can also be studied by adding noise terms to the ideal
quantum dynamical model. For example, it has been found by
numerical simulations in Refs. [40,41] that the performance
of QAOA may not be monotonically increasing with higher
depth when subjected to typical quantum noises. This phe-
nomenon has also been observed in a recent experiment [42].
In this case, automatic approach may be able to determine
the optimal control depth without using the condition (1) for
complexity control. Second, a dataset can be generated for
the depth optimization if robust control is considered. For
example, by assuming system uncertainties, a large number
of samples can be generated for optimizing the control with
respect to a single control task [43,44]. Clearly, the algorithm
proposed in this paper can be extended to realize the robust
depth optimization for QAOA. In this case, cross validation
can be used to determine the critical value λ that maximizes
the model generalizability and robustness with a train-test
split.
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