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Jinchuan Hou,1,* Liang Liu,1 and Xiaofei Qi2,†

1College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, People’s Republic of China
2School of Mathematical Science, Shanxi University, Taiyuan 030006, People’s Republic of China

(Received 3 November 2021; accepted 24 February 2022; published 14 March 2022)

In this paper, definitions of the unification condition, the hierarchy condition, and three kinds of monogamy
relations for multipartite quantum correlation measures are given and discussed. A computable multipartite
multimode Gaussian quantum correlation measure M(k) is proposed for any k-partite multimode continuous-
variable systems with k � 2. The value of M(k) only depends on the covariance matrices of continuous-variable
states, is invariant under any permutation of subsystems, has no ancilla problem, is nonincreasing under k-partite
local Gaussian channels (particularly, invariant under k-partite locally Gaussian unitary operations), and vanishes
on k-partite product states. For a k-partite Gaussian state ρ, M(k)(ρ ) = 0 if and only if ρ is a k-partite
product state. Moreover, M(k) satisfies the unification condition and the hierarchy condition that a multipartite
quantum correlation measure should obey. We also show that M(k) is not strongly monogamous but completely
monogamous and tightly monogamous.

DOI: 10.1103/PhysRevA.105.032429

I. INTRODUCTION

An amazing feature of quantum mechanics is the presence
of quantum correlations in composite quantum systems. It is
proved that quantum correlations beyond entanglement can
also be exploited in quantum information tasks as physical
resources. Various methods have been proposed to describe
bipartite quantum correlations such as quantum discord [1],
geometric quantum discord [2–4], measurement-induced non-
locality (MIN) [5], and measurement-induced disturbance
(MID) [6] for discrete-variable systems. Notice that in many
quantum protocols the systems considered are continuous-
variable (CV) systems. Therefore it is also important and
interesting to study quantum correlations in CV systems.

Denote by GSm+n(HA ⊗ HB) the set of all (m + n)-mode
Gaussian states in the CV system described by a Hilbert space
HA ⊗ HB. Let GA/B : GSm+n → [0,+∞) be a functional. Fol-
lowing the idea from [7–10], GA/B is a Gaussian quantum
correlation measure (GQCM) for a Gaussian quantum corre-
lation (GQC) with respect to subsystem A/B if it satisfies the
following four conditions:

(i) For any Gaussian state ρAB, GA/B(ρAB) = 0 if and only
if ρAB contains no GQC.

(ii) (Locally Gaussian unitary invariant) GA/B[(W ⊗
V )ρAB(W † ⊗ V †)] = GA/B(ρAB) holds for any Gaussian uni-
tary operators W on HA, V on HB, and any Gaussian state ρAB.

(iii) (Nonincreasing under local Gaussian channels
performed on B/A) GA[(I ⊗ �B)ρAB] � GA(ρAB) [resp.
GB((�A ⊗ I )ρAB) � GB(ρAB)] holds for any Gaussian channel
�B (resp. �A) performed on subsystem B (resp. on subsystem
A) and any Gaussian state ρAB.

*Corresponding author: jinchuanhou@aliyun.com
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(iv) GA/B describes the entanglement on pure Gaussian
states; that is, if |ψ〉〈ψ | is a pure Gaussian state, then
GA/B(|ψ〉〈ψ |) = 0 if and only if |ψ〉 is a product state.

Furthermore, GA is a nice GQCM if it satisfies (i)–(iii) and
the following:

(iv′) (Reducing to an entanglement measure for pure
states) There exists an entanglement monotone E such that
GA(|ψ〉〈ψ |) = E (|ψ〉〈ψ |) for any bipartite Gaussian pure
state |ψ〉〈ψ |.

Several GQCMs have been proposed for bipartite CV
systems. Giorda and Paris [11] and Adesso and Datta [12] in-
dependently gave the definition of Gaussian quantum discord
D for Gaussian states. Adesso and Girolami in Ref. [13] pro-
posed the concept of Gaussian geometric discord DG. It was
shown that for a Gaussian state ρAB, D(ρAB) = 0 (DG(ρAB) =
0) if and only if ρAB is a product state; that is, ρAB has no
quantum correlation if and only if it is a product state. Since
then, remarkable efforts have been made to find simpler ways
to quantify this Gaussian correlation. For instance, the MID
of Gaussian states was proposed [14] and MINs Q, QP for
Gaussian states were studied [15]. Gaussian discriminating
strengths based on the minimum or maximum change induced
on the state by a locally Gaussian unitary operation were
investigated in [16–18]. Based on Gaussian unitary operation
and the fidelity, several kinds of Gaussian response of discord
(for example, GDx

R, NF , NF ) were proposed and discussed
in [19,20]. For other related results, see [21–25] and the
references therein. All quantifications mentioned above de-
scribe the same GQC as that described by Gaussian quantum
discord.

However, not one of the bipartite GQCMs mentioned
above is easily accessible. It is very difficult to calculate the
values for all (n + m)-mode Gaussian states except (1 + 1)-
mode Gaussian states or some special Gaussian states, since
these GQCMs involve some measurements on a subsystem
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and some optimization process. Also note that these GQCMs
are not symmetric about the subsystems, though the corre-
sponding GQCs are. The second point is that these GQCMs
cannot be extended to multipartite systems evidently.

Thus, two problems arise.
Problem 1. Are there some ways of quantifying GQCs for

bipartite CV systems that are easily accessible?
Problem 2. What are the rules that every multipartite mul-

timode GQCM (beyond entanglement) should obey and are
there such GQCMs for multipartite CV systems that are easily
accessible and monogamous in some sense?

For the first problem, an effort is made in [26] where
a computable GQCM M for (n + m)-mode CV systems is
proposed. It is shown that M satisfies the following nicer
properties:

(1) For any (n + m)-mode Gaussian state ρAB, M(ρAB) =
0 if and only if ρAB is a product state;

(2) M is locally Gaussian unitary invariant;
(3) M is nonincreasing under local Gaussian channels in

the sense that M((�A ⊗ �B)ρAB) � M(ρAB) holds for any
Gaussian channel �A/B performed on subsystem A/B and any
Gaussian state ρAB;

(4) M is independent of the mean, is symmetric about
subsystems, and has no ancilla problem.

But for the second problem, by our knowledge, no results
of quantifying GQCs (beyond entanglement) for multipartite
multimode CV systems were known. The purpose of this
paper is to give an answer to the second problem.

Not like the bipartite GQCM, as a multipartite multimode
GQCM, it should obey some additional rules. For multipartite
entanglement measures, these additional rules were discussed
first in [27]. It is pointed out in [27] that a multipartite entan-
glement measure should meet the unification condition and
the hierarchy condition. For a quantum correlation beyond
entanglement, as a physical resource it is reasonable to re-
quire that the unification condition and the hierarchy condition
should also be obeyed by their multipartite quantum correla-
tion measures. The unification condition is easily understood,
but the hierarchy condition is not defined clearly in [27].

In this paper we give an exact definition of the hierarchy
condition which declares that the whole correlation of lower
partition is not greater than the whole correlation of higher
partition; the partial correlation is not greater than the whole
correlation; and the correlation after kicking some parties
out of subgroups is not greater than the correlation between
the subgroups. We also propose a multipartite multimode
GQCM M(k) and discuss its properties for any k-partite CV
systems (k � 2). The definition of M(k) only depends on
the covariance matrix of CV states and thus is more eas-
ily calculated for any CV state with finite second moments.
M(k) is a multipartite extension of M as M(2) = M. We
show that M(k) has almost all expected good properties:
M(k) vanishes on k-partite product states and, for a k-partite
Gaussian state ρ, M(k)(ρ) = 0 if and only if ρ is a k-partite
product state; M(k) is invariant under any permutation of
subsystems; has no ancilla problem; and is nonincreasing
under k-partite local Gaussian channels (particularly, is in-
variant under k-partite locally Gaussian unitary operations)
in the sense that M(k)[(�1 ⊗ �2 ⊗ · · · ⊗ �k )ρA1,A2,...,Ak ] �
M(k)(ρA1,A2,...,Ak ) for any Gaussian channel � j in subsystem

HAj and any Gaussian state ρA1,A2,...,Ak . More importantly, we
show that M(k) satisfies the unification condition and the
hierarchy condition that a multipartite quantum correlation
measure should obey. Therefore it is true that M(k) is an
accessible multipartite multimode Gaussian quantum correla-
tion measure for CV systems.

Finally, the monogamy relation for M(k) is investigated.
Recall that a bipartite entanglement measure E is monog-
amous if E (ρA|BC ) � E (ρAB) + E (ρAC ) (CKW inequality)
holds for any ρABC [28]. Many bipartite entanglement mea-
sures are monogamous (see Refs. [29–31] and the references
therein). In [31], Guo and Gour proposed the monogamy
without inequalities. It seems that the monogamy relation (i.e.,
CKW inequality) is a natural feature for quantum entangle-
ment, because entanglement is a kind of physical resource
and thus the amount of part entanglements cannot exceed
the amount of total entanglement, which is almost equivalent
to the statement that if two parties A and B are maximally
entangled, then neither of them can share entanglement with
a third party C [27,31]. The monogamy relations for quantum
correlations beyond entanglement have also been investigated
[32,33]. But it is surprising that all bipartite quantum corre-
lation measures beyond entanglement for discrete systems,
including quantum discord, are not monogamous in general
[33], which is a contradiction to the fact that many quantum
correlations beyond entanglement are physical resources. The
trouble may come from the definition of monogamy relations.
The monogamy relation discusses relationships between three
parties by using a bipartite measure, focuses only on the rela-
tion between the parties A, BC, the parties A, B, as well as the
parties A, C and ignores the relation contained in the parties
ABC and the relation between parties B, C, which seems
incomplete. In fact, by the hierarchy condition, E (ρA|BC ) is
still a part of the total entanglement E (3)(ρABC ) shared by A,
B, and C, where E (3) is a tripartite entangled measure and is
consistent with E . So, to understand the monogamy relation
better one should consider the question in framework of mul-
tipartite entanglement measures. Guo and Zhang gave a strict
framework for defining multipartite entanglement measures,
based on which, the complete monogamy relation and the
tight monogamy relation were established [27].

We give exactly the definitions of the monogamy relations
for a multipartite quantum correlation measure in this paper. It
is revealed that there are three kinds of monogamy relations:
(1) the tight monogamy relation, which claims that the cor-
relation between subgroups attains the total correlation will
imply that the parties in the same subgroup are not correlated
to each other; (2) the complete monogamy relation, which
claims that the correlation of a subgroup attains the total
correlation, will imply that the parties out of the subgroup are
not correlated with any other parties of the system; and (3) the
strong monogamy relation, which claims that the correlation
between subgroups after “kicking some parties out of” each
subgroup keeps invariant will imply that the remaining parties
are not correlated with the parties kicked out of them. Then,
we prove that M(k) is completely monogamous and tightly
monogamous. However, M(k) is not strongly monogamous.

The paper is organized as follows. In Sec. II we recall
briefly some notions and notations from CV systems and
propose the quantity M(k). Section III is devoted to studying
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the basic properties of M(k). In Sec. IV we show that M(k)

satisfies the unification condition and the hierarchy condition.
The monogamy relations for M(k) are studied in Sec. V.
Finally, a short conclusion is given in Sec. VI.

II. DEFINITION OF M(k)

Before giving our definition of the quantity M(k), we
need to briefly recall some notions and notations concern-
ing Gaussian states (for more details, see Ref. [34]). Recall
that an n-mode continuous-variable system (CV system) is a
system determined by 2n-tuple (Q̂1, P̂1, . . . , Q̂n, P̂n) of self-
adjoint operators with state space H = H1 ⊗ H2 ⊗ · · · ⊗ Hn,
where P̂r, Q̂r are respectively the position and momentum
operators of the rth mode, which acts on the separable
infinite-dimensional complex Hilbert space Hr . As it is well
known, Q̂r = (âr + âr

†)/
√

2 and P̂r = −i(âr − âr
†)/

√
2 (r =

1, 2, . . . , n), with â†
r and âr being the creation and annihilation

operators in the rth mode Hr , which satisfy the canonical
commutation relation (CCR),

[âr, â†
s ] = δrsI and [â†

r , â†
s ] = [âr, âs] = 0,

r, s = 1, 2, . . . , n.

Denote by S (H ) the set of all quantum states in a system
described by H (the positive operators on H with trace 1). The
characteristic function χρ for any state ρ ∈ S (H ) is defined as

χρ (z) = tr(ρW (z)),

where z = (x1, y1, . . . , xn, yn)T ∈ R2n, W (z) = exp(iRz) is
the Weyl displacement operator, R = (R̂1, R̂2, . . . , R̂2n) =
(Q̂1, P̂1, . . . , Q̂n, P̂n).

Let FS (H ) be the set of all quantum states with finite
second moments, that is, ρ ∈ FS (H ) if Tr(ρR̂r ) < ∞ and
Tr(ρR̂r

2
) < ∞ for all r = 1, 2, . . . , 2n. For ρ ∈ FS (H ), its

first moment vector

d = dρ = (〈R̂1〉, 〈R̂2〉, . . . , 〈R̂2n〉)T

= (tr(ρR̂1), tr(ρR̂2), . . . , tr(ρR̂2n))T ∈ R2n

and the second moment matrix

� = �ρ = (γkl ) ∈ M2n(R),

defined by γkl = tr[ρ(	R̂k	R̂l + 	R̂l	R̂k )], with 	R̂k =
R̂k − 〈R̂k〉 ([35]) is called, respectively, the mean (or the dis-
placement vector) of ρ and the covariance matrix (CM) of ρ.
Here Mk (R) stands for the algebra of all k × k matrices over
the real field R. Note that a CM � must be real symmetric and
satisfy the condition � + i	 � 0, where 	 = ⊕n

r=1	r with

	r = ( 0 1
−1 0) for each r. A Gaussian state ρ ∈ FS (H ) is

such a state of which the characteristic function χρ (z) is of
the form

χρ (z) = exp
(− 1

4 zT�ρz + idT
ρz

)
.

A quantum channel (trace preserving complete positive
map) � is called a Gaussian channel if � sends every Gaus-
sian state into a Gaussian state. A unitary operator U acting on
H is said to be Gaussian if the unitary operation ρ �→ UρU †

is a Gaussian channel.

Let ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) be a CV
state in a k-partite (n1 + n2 + · · · + nk )-mode CV system.
Then its CM can be represented as

�ρA1 ,A2 ,...,Ak
=

⎛
⎜⎜⎝

A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...

Ak1 Ak2 · · · Akk

⎞
⎟⎟⎠, (1)

where Aj j ∈ M2n j (R) is the CM of the reduced
state ρAj = TrAc

j
(ρA1,A2,...,Ak ) of ρA1,A2,...,Ak , Ac

j =
{A1, . . . , Aj−1, Aj+1, . . . , Ak}, namely, Aj j = �ρA j

, and

Ai j = AT
ji ∈ M2ni,2n j (R) for any i, j ∈ {1, 2, . . . , k}, which

reveals quantum correlation between subsystems Ai and Aj .
Definition 1. For any (n1 + n2 + · · · + nk )-mode k-partite

state ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ), the quantity
M(k)(ρA1,A2,...,Ak ) is defined by

M(k)
(
ρA1,A2,...,Ak

) = 1 − det
(
�ρA1 ,A2 ,...,Ak

)

k

j=1 det
(
�ρA j

) ,

where �ρA1 ,A2 ,...,Ak
and �ρA j

are respectively the covariance ma-
trices of ρA1,A2,...,Ak and ρAj .

Obviously, the function M(k) : FS (HA1 ⊗ HA2 ⊗ · · · ⊗
HAk ) → [0,+∞) satisfies 0 � M(k)(ρA1,A2,...,Ak ) < 1 and is
independent of the mean. Particularly, for bipartite case, M(2)

is just the same as M proposed in [26].

III. BASIC PROPERTIES OF M(k)

By Definition 1, it is clear that for any ρA1,A2,...,Ak ∈
FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ), the value M(k)(ρA1,A2,...,Ak ) is
easily calculated, avoiding performing any measurement and
any optimization procedure. Furthermore, M(k) has the fol-
lowing properties:

(1) M(k) vanishes on product states.
(2) M(k) is invariant under any permutation of subsystems,

that is, for any permutation π of (1, 2, . . . , k), denoting by
ρAπ (1),Aπ (2),...,Aπ (k) the state obtained from the state ρA1,A2,...,Ak

by changing the order of the subsystems according to the
permutation π , we have

M(k)
(
ρAπ (1),Aπ (2),...,Aπ (k)

) = M(k)
(
ρA1,A2,...,Ak

)
.

(3) M(k) has no ancilla problem:

M(k)
(
ρA1,A2,...,Ak ⊗ ρC

) = M(k)
(
ρA1,A2,...,Ak

)
when considering the k-partition A1|A2| . . . |Ak−1|AkC of the
(k + 1)-partite system A1A2 . . . AkC.

(4) M(k) is invariant under k-partite locally Gaussian uni-
tary operations.

(5) For any (n1 + n2 + · · · + nk )-mode k-partite
state ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with CM
� = (Ai j )k×k as in Eq. (1), M(k)(ρA1,A2,...,Ak ) = 0 if and
only if Ai j = 0 whenever i �= j. Particularly, if ρA1,A2,...,Ak

is a Gaussian state, then M(k)(ρA1,A2,...,Ak ) = 0 if and only
if ρA1,A2,...,Ak is a k-partite product Gaussian state, that is,
ρA1,A2,...,Ak = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAk .

(6) (Nonincreasing under local Gaussian channels) For any
Gaussian state ρA1,A2,...,Ak ∈ FS(HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) and
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any local Gaussian channel �1 ⊗ �2 ⊗ · · · ⊗ �k , we have

M(k)
[
(�1 ⊗ �2 ⊗ · · · ⊗ �k )ρA1,A2,...,Ak

]
� M(k)

(
ρA1,A2,...,Ak

)
.

Particularly, M(k) is locally Gaussian unitary invariant.
Proofs of (4)–(6) will be given in Appendix A.
Thus M(k) (k � 2) is a possible candidate of computable

quantification of the multipartite multimode GQC for k-partite
CV systems, which describes the natural quantum correlation
for Gaussian states that a state contains no correlation if and
only if it is a product state.

IV. UNIFICATION CONDITION AND HIERARCHY
CONDITION FOR M(k)

To show that M(k) is a multipartite multimode GQCM,
we have to check the unification condition and the hierar-
chy condition further for M(k). The unification condition
and the hierarchy condition were first proposed in [27] for
the multipartite entanglement measure. Recall that a bipar-
tite entanglement measure E is a non-negative functional
on bipartite states which vanishes on separable states and
is nonincreasing under local operations and classical com-
munication (LOCC). However, a multipartite entanglement
measure should satisfy some additional conditions, such as the
unification condition and the hierarchy condition. For exam-
ple, for a tripartite entanglement measure E (3) : S (HA ⊗ HB ⊗
HC ) → [0,+∞), apart from the usual requirements that E (3)

vanishes on full separable states and cannot increase under
3-partite LOCC, E (3) should satisfy further the unification
condition (i.e., E (3) is invariant under the permutations of
subsystems, and a bipartite entanglement measure E (2) can
be defined which is consistent with E (3)) and the hierarchy
condition [i.e., E (3)(ρABC ) � E (2)(ρX |Y Z ) � E (2)(ρXY ), where
XYZ is any permutation of ABC]. Generally, for a k-partite
entanglement measure E (k), the unification condition ensures
that one can restrict E (k) to any subsystems and any subpar-
titions without causing any trouble; the hierarchy condition
mainly requires that, as a kind of physical resource, the partial
entanglement is never greater than the whole entanglement.
Therefore the unification condition and the hierarchy con-
dition are natural requirements for E (k) to be a k-partite
entanglement measure. But the situation is much more com-
plicated for k > 3, particularly, no exact definition for the
hierarchy condition is known.

We remark here that the hierarchy condition lives also in
the bipartite entanglement measure. In fact, the inequality
E (ρA|BC ) � E (ρAB) may be regarded as the hierarchy con-
dition and should be satisfied by the bipartite entanglement
measure E .

As many quantum correlations beyond entanglement are
also physical resources, naturally, when quantifying these
multipartite quantum correlations, the unification condition
and the hierarchy condition should be basic requirements.
Consider a multipartite quantum correlation (MQC) and as-
sume that for any k � 2, C (k) is a k-partite quantum correlation
measure for MQC. The meaning of the unification condition
is well understood. We say that C (k) satisfies the unification
condition if, for any 2 � l � k, one has a uniform way to
introduce the l-partite quantum correlation measure C (l ) for
any l partition so that the elements in the sequence {C (l )}k

l=2

get along well with each other. For the hierarchy condition
we should consider at least three situations. Roughly speak-
ing, C (k) satisfies the hierarchy condition means that for any
multipartite state, the correlation of subpartition is not greater
than the whole correlation; the correlation of part is not greater
than the correlation of the whole; and “kicking some parties
out of” each subgroup will not increase the correlation be-
tween subgroups of subsystems. In the present paper, as M(k)

is symmetric, we mainly consider the symmetric multipar-
tite quantum correlations (SMQCs), namely, the multipartite
quantum correlations which are invariant under any permuta-
tions of subsystems.

To consider the hierarchy condition for M(k) with k > 2,
one has to check several kinds of inequalities. To make the
question more clear, let us consider the case of k = 4. For a
4-partite system ABCD, it has three kinds of two subpartitions:
W X |Y Z , W |XY Z , W XY |Z; and three kinds of 3-partitions:
W |X |Y Z , W |XY |Z , W X |Y |Z , where W XY Z is any permuta-
tion of ABCD. So the hierarchy condition requires that M(4)

should satisfy the natural property “total correlation” � “par-
tial correlation,” that is,

M(4)(ρABCD) � M(2)(ρW X |Y Z )

� M(2)(ρW X |Y ) � M(2)(ρX |Y ), (2)

M(4)(ρABCD) � M(2)(ρW |XY Z )

� M(2)(ρW |XY ) � M(2)(ρW |X ), (3)

M(4)(ρABCD) � M(3)(ρW |X |Y Z )

� M(3)(ρW XY ) � M(2)(ρW |XY ), (4)

and

M(4)(ρABC|DE ) � M(4)(ρABCD). (5)

Inequalities (2)–(5) motivate in general what kinds of in-
equalities should be checked for M(4) to obey the hierarchy
condition. Obviously, the truth of Inequalities (2)–(4) also
implies that both M(3) and M(2) meet the hierarchy condition.

Since the unification condition is usually clear from the
definition of a multipartite quantum correlation measure, we
give here only an exact definition of the hierarchy condition
for quantifying SMQCs. Let k � 3. For any l subpartition
Pl (A1A2 . . . Ak ) (2 � l � k) of a k-partite system A1A2 . . . Ak ,
it is obvious that there exists a permutation π of (1, 2, . . . k)
and positive integers i1, i2, . . . , il with i1 + · · · + il = k such
that

Pl (A1A2 . . . Ak )

= Aπ (1) . . . Aπ (i1 )|Aπ (i1+1) . . . Aπ (i1+i2 )|Aπ (i1+i2+1) . . . . . .

Aπ (i1+···+il−1 )|Aπ (i1+···+il−1+1) . . . Aπ (k). (6)

Definition 2. For k � 2, let C (k) be a candidate as a
k-partite quantum correlation measure of a symmetric mul-
tipartite quantum correlation which satisfies the unification
condition on k-partite composite system A1A2 . . . Ak . Let
Pl (A1A2 . . . Ak ) be any l-subpartition of A1A2 . . . Ak deter-
mined by 2 � l � k and the permutation π of (1, 2, . . . , k)
as in Eq. (6).
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(1) C (k) is nonincreasing under subpartition if, for any 2 �
l � k and the permutation π ,

C (k)
(
ρA1,A2,...,Ak

)
� C (l )

(
ρPl (A1A2...Ak )

)
holds for any state ρA1A2...Ak .

(2) C (k) is nonincreasing under taking subgroup if, for any
2 � l � k, the permutation π and each h ∈ {0, 1, 2, . . . , l}
with i0 = 0,

C (k)
(
ρA1,A2,...,Ak

)
� C (ih )

(
ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

)
holds for any state ρA1A2...Ak .

(3) C (l ) (l � 2) is nonincreasing under kickout, if, for
any k > l , any permutation π of (1, 2, . . . , k) and for each
h = 0, 1, 2, . . . , l , letting Ch be a nonempty subset of Bh =
{A

π ((
∑h−1

j=0 i j )+1), A
π ((

∑h−1
j=0 i j )+2), . . . , A

π (
∑h

j=0 i j )
},

C (l )
(
ρPl (A1A2...Ak )

)
� C (l )

(
ρC1|C2|...|Cl−1|Cl

)
holds for any state ρA1A2...Ak .

We say that C (k) satisfies the hierarchy condition if C (k)

is nonincreasing under the subpartition, nonincreasing under
taking a subgroup and nonincreasing under kickout. In the
case that C (k) is a k-partite Gaussian quantum correlation mea-
sure, C (k) satisfies the hierarchy condition if it is nonincreasing
under subpartition, nonincreasing under taking a subgroup,
and nonincreasing under kickout at least for all k-partite Gaus-
sian states.

The hierarchy condition for bipartite quantum correla-
tion measures beyond entanglement is less studied. Generally
speaking, many known bipartite Gaussian correlations are not
hierarchied. This is often the case for those quantum corre-
lations with the ancilla problem. For example, considering
the Gaussian nonlocality N proposed in [18], with ρABC =
ρAB ⊗ ρC , we have

N (ρA|BC ) = N (ρAB)trρ2
C < N (ρAB),

whenever ρC is not pure. This means that partial correlation
may be bigger than the whole correlation, that is, the hierarchy
condition is broken by N . But M(=M(2) ) proposed in [26]
satisfies the following hierarchy condition:

For any (m + n + l )-mode tripartite state ρABC ∈
FS (HA ⊗ HB ⊗ HC ), we have M(ρA|BC ) � M(ρAB).

We claim that M(4) satisfies Inequalities (2)–(5) and thus
meets the hierarchy condition. In fact, this is a special case of
the following general result.

Theorem 1. For k � 2, M(k) in Definition 1 satisfies the
unification condition and the hierarchy condition. Thus M(k)

is a k-partite multimode Gaussian quantum correlation mea-
sure.

It is clear from Definition 1 that M(k) satisfies the uni-
fication condition. To show that M(k) meets the hierarchy
condition, one has to check that, by Definition 2, M(k) is
nonincreasing under subpartition, nonincreasing under taking
a subgroup, and nonincreasing under kickout for all k-partite
FS states. A proof will be given in Appendix B.

V. MONOGAMY RELATIONS FOR M(k)

An important feature of many bipartite entanglement
measures is that they are monogamous. Here we accept
a slightly more general concept of monogamy relation of

entanglement without inequalities from [27,31] rather than
the CKW inequality, which says that if two parties A and
B are maximally entangled, then neither A nor B can be
entangled with the third party C. In [27] multipartite entangle-
ment measures and multipartite monogamy relations (mainly
tripartite systems) were discussed. For a bipartite entangle-
ment measure E : S (HA ⊗ HB) → [0,+∞), the monogamy
of E implies E (ρA|BC ) � E (ρAB), and E (ρA|BC ) = E (ρAB) will
force E (ρAC ) = E (ρBC ) = 0 (which is equivalent to the state-
ment that there exists some α > 0 such that E (ρA|BC )α �
E (ρAB)α + E (ρAC )α [27]). Clearly the monogamy relation
of entanglement accords with the resource allocation the-
ory: if the first part and the second part share all resources,
then the third part can share any resource with neither the
first part nor the second part. However, as pointed out in
[27], the monogamy relation of the above form discusses the
entanglement allocation among three parties by a bipartite
entanglement measure E and thus is not complete, because
E (ρA|BC ) is only a part of the whole entanglement contained
in ρABC (or shared by A,B,C). Therefore, to discuss the
monogamy relation of entanglement, one needs the help of
multipartite entanglement measures.

Different from the bipartite monogamy relation, there
are three kinds of monogamy relations for a tripar-
tite entanglement measure: E (3) is bipartitelike monoga-
mous if E (3)(ρA|B|(CD) ) = E (3)(ρABC ) implies E (2)(ρAD) =
E (2)(ρBD) = E (2)(ρCD) = 0 (this monogamy relation is
not proposed and discussed in [27]); E (3) is com-
pletely monogamous if E (3)(ρABC ) = E (2)(ρAB) implies
E (2)(ρAC ) = E (2)(ρBC ) = 0; E (3) is tightly monogamous if
E (3)(ρABC ) = E (2)(ρA|BC ) implies E (2)(ρBC ) = 0. The bipar-
titelike monogamy relation is more stringent or stronger
than the complete monogamy relation, as we always have
E (4)(ρABCD) � E (3)(ρA|B|CD) by the hierarchy condition. So
we may call it the strong monogamy relation. Thus the monog-
amous bipartite entanglement measures are in fact strongly
monogamous.

Note that many multipartite quantum correlations are
physical resources. Naturally, when discussing multipartite
quantum correlation measures, the three kinds of monogamy
relations similar to those mentioned in the previous paragraph
for E (3) should be explored. Let us give a precise definition of
the monogamy relations as follows.

Definition 3. For k � 2, let C (k) be a k-partite quantum
correlation measure of a symmetric multipartite quantum
correlation on a k-partite composite system A1A2 . . . Ak . Let
Pl (A1A2 . . . Ak ) be a l-subpartition of A1A2 . . . Ak determined
by 2 � l � k and the permutation π of (1, 2, . . . , k) as in
Eq. (6).

(1) (Tight monogamy relation) C (k) (k � 3) is tightly
monogamous if, for any l , any π , and any k-partite state
ρA1A2...Ak ,

C (k)
(
ρA1A2...Ak

) = C (l )
(
ρPl (A1A2...Ak )

)
will imply that, for every h = 1, 2, . . . , l ,
C (ih )(ρBh ) = 0 whenever ih � 2, where Bh =
Aπ (i0+i1+···ih−1+1)Aπ (i0+i1+···ih−1+2) . . . Aπ (i0+i1+···ih−1+ih ) with
i0 = 0.

(2) (Complete monogamy relation) C (k) (k � 3) is com-
pletely monogamous if, for any l , any π with i1 � 2 and any
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k-partite state ρA1A2...Ak , C (k)(ρA1A2...Ak ) = C (i1 )(ρAπ (1)Aπ (2)...Aπ (i1 ) )
will imply that

C (2)(ρAπ (1)...Aπ (i1 )|Aπ (i1+1)Aπ (i1+2)...Aπ (k)

) = 0

and

C (k−i1 )
(
ρAπ (i1+1)Aπ (i1+2)...Aπ (k)

) = 0.

(3) (Strong monogamy relation) C (l ) (l � 2) is
strongly monogamous if, for any k > l and for each
h = 1, 2, . . . , l , letting Ch be a nonempty subset of
Bh = {A

π ((
∑h−1

j=0 i j )+1), A
π ((

∑h−1
j=0 i j )+2), . . . , A

π (
∑h

j=0 i j )
},

C (l )
(
ρPl (A1A2...Ak )

) = C (l )
(
ρC1|C2|...|Cl−1|Cl

)
will imply that C (rh )(ρCh ) = 0 whenever rh � 2, with rh the
number of subsystems contained in Ch, and that C (2)(ρAiA j ) =
0 whenever one of Ai and Aj is not in ∪l

h=1Ch.
If C (k) is a multipartite multimode Gaussian quantum cor-

relation measure for CV systems, we require that C (k) meets
the definition at least on Gaussian states.

Roughly speaking, the tight monogamy relation means that
if the correlation of subpartition attains the total correlation,
then the parties in the same subgroup are not correlated to each
other; the complete monogamy relation means that if the corre-
lation of a subgroup of subsystems attains the total correlation,
then the parties out of the subgroup are not correlated with
any other parties in the system; the strong monogamy relation
claims that if the correlation of subpartition keeps invariant
after “kicking some parties out of” each subgroups, then the
remain parties are not correlated with the parties kicked out.

The following bipartitelike monogamy relation is a special
case of the strong monogamy relation.

(4) (Special case of strong monogamy relation) C (k)

(k � 2) is strongly monogamous if, for any (k + 1)-partite
state ρA1A2...AkAk+1 , C (k)(ρA1A2...Ak−1|(AkAk+1 ) ) = C (k)(ρA1A2...Ak−1Ak )
will imply that C (2)(ρA1Ak+1 ) = C (2)(ρA2Ak+1 ) = · · · =
C (2)(ρAkAk+1 ) = 0.

Many bipartite GQCMs beyond entanglement are not
monogamous. For example, the Gaussian nonclassicality N
proposed in [18] is obviously not monogamous since it breaks
the hierarchy condition. Though M = M(2) obeys the hier-
archy condition, it is not monogamous by the next theorem.
Hence it is reasonable that a good multipartite (Gaussian)
quantum correlation measure should be at least completely
monogamous and tightly monogamous.

Theorem 2. The bipartite Gaussian quantum correlation
measure M is not (strongly) monogamous.

Proof. Let ρABC be an (m + n + l )-mode tripartite state

with CM �ABC =
( A X Z

X T B Y
ZT Y T C

)
. Then, by Theorem B3 in

Appendix B, M(ρA|BC ) = M(ρAB) if and only if XB−1Y =
Z , which may not be zero. However, M(ρAC ) = M(ρBC ) = 0
if and only if Z = 0 and Y = 0. Thus M(ρA|BC ) = M(ρAB)
does not imply that M(ρAC ) = M(ρBC ) = 0.

To make it clearer, we give an example which reveals
that there does exist a tripartite Gaussian state ρABC so that
M(ρA|BC ) = M(ρAB) but M(ρAC ) �= 0 and M(ρBC ) �= 0.
Therefore M is not monogamous.

Let

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 1
3 0

0 2 0 1 0 1
3

1 0 3 0 1 0
0 1 0 3 0 1
1
3 0 1 0 2 0
0 1

3 0 1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

and

	 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠.

Since � + i	 � 0, � is a CM of some (1 + 1 + 1)-mode
Gaussian state ρABC . Note that

Z =
(

1
3 0
0 1

3

)
=

(
1 0
0 1

)(
3 0
0 3

)−1(
1 0
0 1

)
= XB−1Y.

However, it is easily calculated that M(ρA|BC ) = M(ρAB) ≈
0.3056, M(ρAC ) ≈ 0.0548 �= 0, and M(ρBC ) ≈ 0.3056 �= 0.
So M breaks the monogamy relation at ρABC . �

The fact that M is not monogamous is not surprising
because, by the hierarchy condition, M(ρA|BC ) = 0.3056 is
just a part of the total quantum correlation M(3)(ρABC ) =
0.5144 shared by three parties A, B, C. So M(ρA|BC ) =
M(ρAB) cannot always force that both M(ρAC ) and M(ρBC )
are zero. However, for some special tripartite Gaussian
states σABC , M(σA|BC ) = M(σAB) do imply that M(σAC ) =
M(σBC ) = 0.

Example 1. For any tripartite fully symmetric Gaussian
state σABC , M(σA|BC ) = M(σAB) implies that M(σAC ) =
M(σBC ) = 0. In fact, we have M(σA|BC ) = M(σAB) if and
only if σABC = σA ⊗ σB ⊗ σC .

Recall that σABC is fully symmetric if it is an (n + n + n)-
mode Gaussian state with CM having the form

�σABC =
⎛
⎝ A X X

X T A X
X T X T A

⎞
⎠,

where A, X ∈ M2n(R). We have to show that M(σA|BC ) =
M(σAB) if and only if X = 0. This will be done in
Appendix C.

To illustrate the meaning of three kinds of monogamy
relations in Definition 3 for multipartite multimode GQCM
C (k), we consider the case k = 4. For a 4-partite composite
system ABCD, let W XY Z be any permutation of ABCD. The
three kinds of monogamy relations for C (4) can be stated as
follows:

(a) (Tight monogamy relation) C (4) is tightly
monogamous if

(a1) C (4)(ρABCD) = C (2)(ρW X |Y Z ) implies that
C (2)(ρW X ) = C (2)(ρY Z ) = 0,

(a2) C (4)(ρABCD) = C (2)(ρW |XY Z ) implies that
C (3)(ρXY Z ) = 0,

and
(a3) C (4)(ρABCD) = C (3)(ρW |X |Y Z ) implies that

C (2)(ρY Z ) = 0.
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(b) (Complete monogamy relation) C (4) is completely
monogamous if

(b1) C (4)(ρABCD) = C (3)(ρW XY ) implies that C (2)(ρW Z ) =
C (2)(ρXZ ) = C (2)(ρY Z ) = 0

and
(b2) C (4)(ρABCD) = C (2)(ρW X ) implies that C (2)(ρW X |Y Z ) =

C (2)(ρY Z ) = 0.

(c) (A special case of the strong monogamy relation) C (4)

is strongly monogamous if M(4)(ρABC|(DE ) ) = M(4)(ρABCD)
implies that M(2)(ρAE ) = M(2)(ρBE ) = M(2)(ρCE ) =
M(2)(ρDE ) = 0.

We claim that M(4) is completely monogamous and tightly
monogamous but is not strongly monogamous. In fact, this is
a special case of the following general result, which will be
proved in Appendix C.

Theorem 3. Let M(k):FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) → [0,

+∞) be the k-partite (n1 + n2 + · · · + nk )-mode Gaussian
quantum correlation in Definition 1.

(1) For k � 3, M(k) is tightly monogamous.
(2) For k � 3, M(k) is completely monogamous.
(3) For k � 2, M(k) is not strongly monogamous.
Example 2. Consider the (k + 1)-partite (1 + · · · + 1)-

mode case. Let � = (Ai j ) be a real symmetric matrix, where

Aj j = (2 0
0 2) for j = 1, 2, . . . , k − 1, k + 1, Akk = (3 0

0 3),

Ak−1,k = Ak,k+1 = (1 0
0 1), Ak−1,k+1 = (

1
3 0
0 1

3
), and otherwise,

Ai j = 0 for i < j. It is easily checked that � = �ρ is a CM
for some Gaussian state ρ = ρA1A2...AkAk+1 since � + i ⊕k+1

j=1

	 j � 0 with 	 j = ( 0 1
−1 0). For this state ρA1A2...Ak−1AkAk+1 , we

have M(k)(ρA1A2...Ak−1|AkAk+1 ) = M(k)(ρA1A2...Ak−1Ak ) = 0.3056,
but M(2)(ρAk−1Ak+1 ) ≈ 0.0548 �= 0. Hence M(k) is not
strongly monogamous.

VI. CONCLUSION

For a k-partite (n1 + n2 + · · · + nk )-mode Gaussian state
ρ = ρA1A2...Ak , we say that ρ is not quantum correlated if it is a
k-partite product state, that is, ρ = ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAk . In
this paper we propose a computable multipartite multimode
Gaussian quantum correlation measure M(k) for any k-partite
multimode continuous-variable (CV) system. The value of
M(k) only depends on the covariance matrices of CV states,
is invariant under any permutation of subsystems, has no an-
cilla problem, is nonincreasing under k-partite local Gaussian
channels (particularly, invariant under k-partite local Gaus-
sian unitary operations), and vanishes on k-partite product
states. For a k-partite Gaussian state ρ, M(k)(ρ) = 0 if and
only if ρ is a k-partite product state. Moreover, as a multi-
partite Gaussian quantum correlation measure, M(k) satisfies
the unification condition and the hierarchy condition that a
multipartite quantum correlation measure should obey (which
means that M(k) is consistent with M(l ) for any 2 � l � k,
the correlation of the subpartition is not greater than the whole
correlation, the correlation of part is not greater than the corre-
lation of whole, and the correlation after kicking some parties
out of subgroups is not greater than the correlation between
the subgroups). Finally, the monogamy relations for multipar-
tite quantum correlation measures are discussed. Generally
speaking, there are three kinds of monogamy relations for a

multipartite correlation measure: the strong monogamy rela-
tion (the correlation between subgroups after “kicking some
parties out of” each subgroups keeps invariant will imply
that the remain parties are not correlated with the parties
kicked out), the complete monogamy relation (the correla-
tion of a subgroup attains the total correlation will imply
that the parties out of the subgroup are not correlated with
any other parties of the system) and the tight monogamy
condition (the correlation between subgroups attains the total
correlation will imply that the parties in the same subgroup
are not correlated to each other). Though M(k) is not strongly
monogamous, M(k) is completely monogamous and tightly
monogamous. Thus M(k) is a nice multipartite multimode
Gaussian quantum correlation measure. As M(k) is easily cal-
culated, it is more convenient to be applied in other scenarios
of quantum information.

By now we think that M(k) is the only known multipar-
tite multimode Gaussian quantum correlation measure beyond
entanglement. It is interesting to find other multipartite multi-
mode Gaussian quantum correlation measures.
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APPENDIX A: PROOFS OF BASIC PROPERTIES OF M(k)

This Appendix section is devoted to proving the properties
(4)–(6) of M(k) in Sec. III.

Property 4. M(k) is invariant under k-partite local Gaussian
unitary operation.

Proof. For an n-mode CV system determined by R =
(R̂1, R̂2, . . . , R̂2n) = (Q̂1, P̂1, . . . , Q̂n, P̂n), it is known that a
unitary operator U is Gaussian if and only if there is a vector
m in R2n and a matrix S ∈ Sp(2n,R) such that U †RU =
SR + m [36,37], where Sp(2n,R) is the symplectic group
of all 2n × 2n real matrices S that satisfy S ∈ Sp(2n,R) ⇔
S	ST = 	. Thus every Gaussian unitary operator U is de-
termined by some affine symplectic map (S, m) acting on
the phase space and can be parameterized as U = US,m. It
follows that if US,m is a Gaussian unitary operator, then for
any n-mode state ρ with CM �ρ and mean dρ , the state
σ = US,mρU †

S,m has the CM �σ = S�ST and the mean dσ =
m + Sd. Particularly, if ρ is also Gaussian, then the char-
acteristic function of the Gaussian state σ is of the form
exp(− 1

4 zT�σ z + idT
σ z).

Now, assume that ρ = ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2

⊗ · · · ⊗ HAk ) is an (n1 + n2 + · · · + nk )-mode k-partite
state, and US,m = U1 ⊗ U2 ⊗ · · · ⊗ Uk is a Gaussian
unitary operator with Uj = US j ,m j being Gaussian unitary
on HAj . Clearly, S = ⊕k

j=1S j and m = ⊕k
j=1m j . Let

σ = σA1,A2,...,Ak = US,mρA1,A2,...,AkU
†
S,m. Then �σ = S�ρST

and �σA j
= S j�ρA j

ST
j . As det(S) = 
k

j=1 det(S j ), it follows
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from Definition 1 that

M(k)
(
σA1,A2,...,Ak

) = 1 − det(�σ )


k
j=1 det

(
�σA j

)
= 1 − det(S�ρST )


k
j=1 det

(
S j�ρA j

ST
j

)
= 1 − det(S) det(�ρ ) det(ST )


k
j=1 det(S j ) det

(
�ρA j

)
det

(
ST

j

)
= 1 − det(�ρ )


k
j=1 det(�ρA j

)

= M(k)
(
ρA1,A2,...,Ak

)
,

as desired. �
Property 5. For any (n1 + n2 + · · · + nk )-mode k-partite

state ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with CM � =
(Ai j )k×k as in Eq. (1), M(k)(ρA1,A2,...,Ak ) = 0 if and only if
Ai j = 0 whenever i �= j. Particularly, if ρA1,A2,...,Ak is a Gaus-
sian state, then M(k)(ρA1,A2,...,Ak ) = 0 if and only if ρA1,A2,...,Ak

is a k-partite product Gaussian state, that is, ρA1,A2,...,Ak =
ρA1 ⊗ ρA2 ⊗ · · · ⊗ ρAk .

Proof. This is an immediate consequence of Lemma A1
below. �

Lemma A1. Assume that

�k =

⎛
⎜⎜⎝

A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...

Ak1 Ak2 · · · Akk

⎞
⎟⎟⎠

is a positive-definite block matrix over the complex field C.
Then det(�k ) = 
k

j=1 det(Aj j ) if and only if Ai j = 0 when-
ever i �= j.

To prove Lemma A1, we need the following lemma proved
in [26], which is also useful in the other part of the present
paper:

Lemma A2. For S, T ∈ Mn(C) with S � T > 0, det(S) =
det(T ) if and only if S = T .

Proof of Lemma A1. The “if” part is obvious. We prove
the “only if” part by induction on k. For the case k =
2, denote �2 = ( A C

CT B). It is well known that det(�2) =
det(A) det(B − CTA−1C) = det(B) det(A − CB−1CT ) > 0. If
det(�2) = det(A) det(B), then det(B − CTA−1C) = det B. Let
D = B − CTA−1C. As �2 > 0, we have 0 < D � B. Thus, by
Lemma A2 we must have B = D as det(D) = det(B), which
entails that C = 0.

Now, assume that the assertion is true for k − 1 � 2. De-
note by �k−1 the principal submatrix of �k , that is,

�k−1 =

⎛
⎜⎜⎝

A11 A12 · · · A1,k−1

A21 A22 · · · A2,k−1
...

...
. . .

...

Ak−1,1 Ak−1,2 · · · Ak−1,k−1

⎞
⎟⎟⎠,

which is positive definite, too. Note that the condition
det(�k ) = 
k

j=1 det(Aj j ) implies


k
j=1 det(Aj j ) = det(�k )

= det(Akk ) det

⎛
⎜⎜⎝�k−1 −

⎛
⎜⎜⎝

A1k

A2k
...

Ak−1,k

⎞
⎟⎟⎠

× A−1
kk

(
A†

1k A†
2k · · · A†

k−1,k

)
⎞
⎟⎟⎠

� det(Akk ) det(�k−1)

� det(Akk )
k−1
j=1 det(Aj j ) = 
k

j=1 det(Aj j ). (A1)

It follows that 
k−1
j=1 det(Aj j ) = det(�k−1). By the inductive

assumption, Ai j = 0 whenever i �= j and i, j ∈ {1, 2, . . . , k −
1}. What remains is to check that Ajk = 0 for all j =
1, 2, . . . , k − 1. By Eq. (A1) again, one gets

det

⎛
⎜⎜⎝�k−1 −

⎛
⎜⎜⎝

A1k

A2k
...

Ak−1,k

⎞
⎟⎟⎠A−1

kk

(
A†

1k A†
2k · · · A†

k−1,k

)
⎞
⎟⎟⎠

= det(�k−1),

which forces ⎛
⎜⎜⎝

A1k

A2k
...

Ak−1,k

⎞
⎟⎟⎠A−1

kk = 0,

and so Ajk = 0 for all j = 1, 2, . . . , k − 1. Hence the “only
if” part is also true, completing the proof. �

Property 6. (Nonincreasing under local Gaussian channels)
For any Gaussian state ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗
HAk ) and any local Gaussian channel �1 ⊗ �2 ⊗ · · · ⊗ �k ,
we have

M(k)
[
(�1 ⊗ �2 ⊗ · · · ⊗ �k )ρA1,A2,...,Ak

]
� M(k)

(
ρA1,A2,...,Ak

)
.

Particularly, M(k) is locally Gaussian unitary invariant.
To prove Property 6, we need a lemma on matrices

from [26]:
Lemma A3. Let B, K, M ∈ Mn(C) with B and M positive

semidefinite. If both B and KBK† + M are invertible, then
K†(KBK† + M )−1K � B−1. The equality holds if and only if
M = 0 and K is invertible.

Proof of Property 6. As Gaussian state ρ is characterized
by its CM � and mean d, and we can parameterize it as
ρ = ρ(�, d). Recall that if � is a Gaussian channel of n-
mode Gaussian systems, then for any n-mode Gaussian state
ρ = ρ(�, d), �(ρ(�, d)) = ρ(�′, d′) with

d′ = Kd + d and �′ = K�KT + M (A2)

for some real matrices M, K ∈ M2n(R) satisfying M = MT �
0 and det M � ( det(K ) − 1)2 and some vector d ∈ R2n.
So we can parameterize the Gaussian channel � as � =
�(K, M, d).
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Let ρ = ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) be a Gaussian state whose CM is presented as in Eq. (1) and �1 ⊗ �2 ⊗
· · · ⊗ �k be a local Gaussian channel with � j = � j (Kj, Mj, d j ). We first show that for any j ∈ {1, 2, . . . , k},

M(k)((I1 ⊗ · · · I j−1 ⊗ � j ⊗ I j+1 ⊗ · · · ⊗ Ik )ρA1,A2,...,Ak

)
� M(k)

(
ρA1,A2,...,Ak

)
, (A3)

where � j is a Gaussian channel performed on subsystem A j . Since M(k) is invariant under permutation of subsystems, we may
assume that j = k. Denote

ρ ′ = ρ ′
A1,A2,...,Ak

= (I1 ⊗ I2 ⊗ · · · ⊗ Ik−1 ⊗ �k )ρA1,A2,...,Ak .

Then the CM �ρ ′ of ρ ′
A1,A2,...,Ak

has the form

�ρ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 · · · A1,k−1 A1kKT
k

A21 A22 · · · A2,k−1 A2kKT
k

...
...

. . .
...

...

Ak−1,1 Ak−1,2 · · · Ak−1,k−1 Ak−1,k

KkAk1 KkAk2 · · · KkAk,k−1 KkAkkKT
k + Mk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and thus, by Lemma A3, one gets

M(k)
(
ρ ′

A1,A2,...,Ak

) = 1 − det(�ρ ′ )

det
(
KkAkkKT

k + Mk
)

k−1

j=1 det(Aj j )

=1 −
det

⎛
⎝�k−1 −

⎛
⎝ A1k

A2k
...

Ak−1,k

⎞
⎠KT

k

(
KkAkkKT

k + Mk
)−1

Kk
(
AT

1k AT
2k · · · AT

k−1,k

)⎞⎠

k−1

j=1 det(Aj j )

�1 −
det

⎛
⎝�k−1 −

⎛
⎝ A1k

A2k
...

Ak−1,k

⎞
⎠A−1

kk

(
AT

1k AT
2k · · · AT

k−1,k

)⎞⎠

k−1

j=1 det(Aj j )
= M(k)

(
ρA1,A2,...,Ak

)
.

Therefore we have proved that the inequality in Eq. (A3) is true.
Then, applying the inequality in Eq. (A3), we have

M(k)((�1 ⊗ �2 ⊗ · · · ⊗ �k )ρA1,A2,...,Ak

) = M(k)
[(


k
j=1(I1 ⊗ · · · I j−1 ⊗ � j ⊗ I j+1 ⊗ · · · ⊗ Ik )

)
ρA1,A2,...,Ak

]
� M(k)

[(

k

j=2(I1 ⊗ · · · I j−1 ⊗ � j ⊗ I j+1 ⊗ · · · ⊗ Ik )
)
ρA1,A2,...,Ak

]
� . . . . . .

� M(k)((I1 ⊗ · · · Ik−1 ⊗ �k )ρA1,A2,...,Ak

)

� M(k)
(
ρA1,A2,...,Ak

)
.

Hence M(k) is nonincreasing under k-partite local Gaussian channels.
Particularly, if the k-partite local Gaussian channel � = �1 ⊗ �2 ⊗ · · · ⊗ �k is invertible and �−1 is still a Gaussian channel

(it is the case when � is a k-partite locally Gaussian unitary operation), then

M(k)(ρA1A2...Ak

) = M(k)(�−1�
(
ρA1A2...Ak

))
� M(k)(�

(
ρA1A2...Ak

))
� M(k)(ρA1A2...Ak

)
,

and consequently, M(k)(�(ρA1A2...Ak )) = M(k)(ρA1A2...Ak ). This reveals that M(k) is invariant under k-partite Gaussian unitary
operations. �

APPENDIX B: PROOF OF THEOREM 1, THE HIERARCHY CONDITION FOR M(k)

In this Appendix section we show that M(k) satisfies the hierarchy condition and thus completes the proof of Theorem 1 in
Sec. IV. We begin with considering the bipartite case. The following lemmas are needed.
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Lemma B1. Let
( I D F

D† I E
F † E† I

)
be a positive-definite block matrix over the complex field C. Then max{‖D‖, ‖E‖, ‖F‖} < 1,

(D F )

(
I E

E† I

)−1(
D†

F †

)
� DD†, (D F )

(
I E

E† I

)−1(
D†

F †

)
� FF †,

(F † E†)

(
I D

D† I

)−1(
F
E

)
� F †F and (F † E†)

(
I D

D† I

)−1(
F
E

)
� E†E .

Furthermore, the equality holds for any one of the above four inequalities if and only if the equality holds for all of the above
four inequalities, and in turn, if and only if F = DE .

Proof. By the assumption,
( I D F

D† I E
F † E† I

)
� 0 and is invertible. So we must have max{‖D‖, ‖E‖, ‖F‖} < 1. We only give a

proof of the first inequality in detail, and the others are checked similarly by noting that

E (I − E†E )−1 = (I − EE†)−1E and (I − E†E )−1E† = E†(I − EE†)−1.

It is easily checked that (
I E

E† I

)−1

=
(

(I − EE†)−1 −E (I − E†E )−1

−(I − E†E )−1E† (I − E†E )−1

)
.

Then,

(D F )

(
I E

E† I

)−1(
D†

F †

)
= D(I − EE†)−1D† − F (I − E†E )−1E†D† − DE (I − E†E )−1F † + F (I − E†E )−1F †

= DD† + DE (I − E†E )−1E†D† − F (I − E†E )−1E†D† − DE (I − E†E )−1F † + F (I − E†E )−1F †

= DD† + (D F )

(
E (I − E†E )−1E† −E (I − E†E )−1

−(I − E†E )−1E† (I − E†E )−1

)(
D†

F †

)
.

Obviously, (
E (I − E†E )−1E† −E (I − E†E )−1

−(I − E†E )−1E† (I − E†E )−1

)
� 0

since [−E (I − E†E )−1][(I − E†E )−1]−1[−(I − E†E )−1E†] = E (I − E†E )−1E†. Hence we have

(D F )

(
I E

E† I

)−1(
D†

F †

)
= DD† + (D F )

(
E (I − E†E )−1E† −E (I − E†E )−1

−(I − E†E )−1E† (I − E†E )−1

)(
D†

F †

)
� DD†, (B1)

as desired.
It is clear from Inequality (B1) that the equality holds if and only if

(D F )

(
E (I − E†E )−1E† −E (I − E†E )−1

−(I − E†E )−1E† (I − E†E )−1

)(
D†

F †

)
= 0.

As for operators A,C with A � 0, CAC† = 0 ⇔ CA = 0, we see that the above equation holds if and only if

DE (I − E†E )−1E† − F (I − E†)−1E† = 0, −DE (I − E†E )−1 + F (I − E†E )−1 = 0;

and in turn, if and only if F = DE .
It is similar to show that the equality for any one of the other three inequalities holds if and only if the same condition F = DE

is satisfied, completing the proof. �
The following lemma is a generalization of Lemma B1, which is also useful.

Lemma B2. Let
( A X Z

X † B Y
Z† Y † C

)
be a positive-definite block matrix over the complex field C. Then

(X Z )

(
B Y

Y † C

)−1(
X †

Z†

)
� XB−1X †, (X Z )

(
B Y

Y † C

)−1(
X †

Z†

)
� ZC−1Z†,

(Z† Y †)

(
A X

X † B

)−1(
Z
Y

)
� Z†A−1Z and (Z† Y †)

(
A X

X † B

)−1(
Z
Y

)
� Y †B−1Y.

Furthermore, the equality holds for any one of the above four inequalities if and only if the equality holds for all of the above
four inequalities, and in turn, if and only if Z = XB−1Y .
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Proof. Clearly,

� =
⎛
⎝ A X Z

X † B Y
Z† Y † C

⎞
⎠ =

⎛
⎝A

1
2 0 0

0 B
1
2 0

0 0 C
1
2

⎞
⎠

⎛
⎝ I D F

D† I E
F † E† I

⎞
⎠

⎛
⎝A

1
2 0 0

0 B
1
2 0

0 0 C
1
2

⎞
⎠,

where D = A− 1
2 XB− 1

2 , E = B− 1
2 YC− 1

2 , and F = A− 1
2 ZC− 1

2 . As � is positive and invertible, we have {‖D‖, ‖E‖, ‖F‖} ⊂ [0, 1).
Then Lemma B1 is applicable. Let us give a proof of the second inequality in detail. By Lemma 4 we have

(D F )

(
I E

E† I

)−1(
D†

F †

)
� FF †.

Substituting D = A− 1
2 XB− 1

2 , E = B− 1
2 YC− 1

2 , and F = A− 1
2 ZC− 1

2 into the above inequality leads to

A− 1
2 (X Z )

(
B Y

Y † C

)−1(
X †

Z†

)
A− 1

2 = (D F )

(
I E

E† I

)−1(
D†

F †

)
� FF † = A− 1

2 ZC−1Z†A− 1
2 ,

which entails that

(X Z )

(
B Y

Y † C

)−1(
X †

Z†

)
� ZC−1Z†.

By Lemma B1, the equality holds if and only if F = DE , which holds if and only if Z = XB−1Y , completing the proof. �
The next result reveals that the bipartite Gaussian quantum correlation measure M = M(2) satisfies the hierarchy condition.
Theorem B3. For any (m + n + l )-mode tripartite state ρABC ∈ FS (HA ⊗ HB ⊗ HC ), we have M(ρA|BC ) � M(ρAB). Further-

more, M(ρA|BC ) = M(ρAB) if and only if Z = XB−1Y , where �ABC =
( A X Z

X T B Y
ZT Y T C

)
is the covariance matrix of ρABC .

Proof. Let ρABC be an (m + n + l )-mode tripartite state with CM �ABC =
( A X Z

X T B Y
ZT Y T C

)
. Then the CM of ρA is A and the CM

of ρBC is �BC = ( B Y
Y T C

)
. Clearly,

�ABC =
⎛
⎝A

1
2 0 0

0 B
1
2 0

0 0 C
1
2

⎞
⎠

⎛
⎝ I D F

DT I E
F T ET I

⎞
⎠

⎛
⎝A

1
2 0 0

0 B
1
2 0

0 0 C
1
2

⎞
⎠,

where D = A− 1
2 XB− 1

2 , E = B− 1
2 YC− 1

2 , and F = A− 1
2 ZC− 1

2 . As �ABC is invertible, we have {‖D‖, ‖E‖, ‖F‖} ⊂ [0, 1). It follows
that

M(ρA|BC ) =1 − det(�ABC )

det(A) det(�BC )
= 1 −

det

((
I D F

DT I E
F T ET I

))

det
(( I E

ET I

)) = 1 − det

[
I − (D F )

(
I E

ET I

)−1(
DT

F T

)]

and

M(ρAB) = 1 − det(�AB)

det(A) det(B)
= 1 − det(I − DT D) = 1 − det(I − DDT ).

Thus, by Lemma B1, we have

(D F )

(
I E

ET I

)−1(
DT

F T

)
� DDT .

Hence

det

(
I − (D F )

(
I E

ET I

)−1(
DT

F T

))
� det(I − DDT ),

and consequently, M(ρA|BC ) � M(ρAB).
Now, by Lemma A2 it is easily seen that M(ρA|BC ) = M(ρAB) if and only if

(D F )

(
I E

ET I

)−1(
DT

F T

)
= DDT .

Therefore, by Lemma B1 we conclude that M(ρA|BC ) = M(ρAB) if and only if F = DE , which is equivalent to say that
XB−1Y = Z . This completes the proof. �

Now let us consider the general case.
Theorem B4. Let ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with the CM as in Eq. (1). For any l-subpartition (2 � l < k) of

a k-partite system (k � 3) A1A2 . . . Ak as in Eq. (6), the following statements are true.
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(i) (Nonincreasing under subpartition)

M(k)
(
ρA1,A2,...,Ak

)
� M(l )

(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|......|Aπ (i1+···+il−1+1)...Aπ (i1+···+il )

)
.

(ii) (Nonincreasing under taking subgroup) With i0 = 0, for each h ∈ {1, 2, . . . , l}, we have

M(k)
(
ρA1,A2,...,Ak

)
� M(ih )

(
ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

)
.

Proof. (i) Let ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with the CM as in Eq. (1) and Pl (A1A2 . . . Ak ) be an l partition of
A1A2 . . . Ak as in Eq. (6). Denote by Bh = Aπ (i0+i1+···ih−1+1) · · · Aπ (i0+i1+···ih−1+ih ) and �Bh the CM of ρBh , h = 1, 2, . . . , k. Then,
by Definition 1 and Lemma A1, we have, with i0 = 0,

M(l )(ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|...|Aπ (i1+···+il−1+1)...Aπ (k)

) = 1 − det
(
�ρA1A2 ...Ak

)

l

h=1 det
(
�Bh

) � 1 − det
(
�ρA1A2 ...Ak

)

l

h=1

[



i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) )

]
= M(k)

(
ρA1A2...Ak

)
. (B2)

This completes the proof of (i).
(ii) For any h ∈ {1, 2, . . . , l}, we also denote by Bh = {π (i0 + i1 + · · · + ih−1 + 1), . . . , π (i0 + i1 + · · · + ih−1 + ih)} and

�Bc
h
= (Ai j ) with i, j ∈ Bc

h = {1, 2, . . . , k} \ Bh, which is the CM of ρBc
h
. Then

�ρ
∼= �ρAπ (1) ...Aπ (i1 ) |Aπ (i1+1) ...Aπ (i1+i2 ) |...|Aπ (i1+···+il−1+1) ...Aπ (i1+···+il )

∼= �ρBhBc
h

=
(

�Bh Ch

CT
h �Bc

h

)
.

Thus for any h = 1, 2, . . . , l , we have

M(ih )
(
ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

) = 1 − det
(
�Bh

)



i0+i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) )

= 1 − det
(
�Bh

)
det

(
�Bc

h
− CT

h �−1
Bh

Ch
)

det
(
�Bc

h
− CT

h �−1
Bh

Ch
)



i0+i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) )

� 1 − det
(
�ρA1A2 ...Ak

)
det

(
�Bc

h

)



i0+i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) )

� 1 − det
(
�ρA1A2 ...Ak

)

k

j=1 det(Aj j )

= M(k)
(
ρA1A2...Ak

)
. (B3)

This completes the proof of statement (ii). �
To prove that M(k) satisfies the hierarchy condition, we still need a multipartite version of Theorem B3.
Theorem B5. (Nonincreasing under kickout) For any l subpartition (2 � l < k) of a k-partite system (k � 3) A1A2 . . . Ak as

in Eq. (6) with il � 2 and any ρA1A2...Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ), we have

M(l )
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|......|Aπ (i1+···+il−1+1)...Aπ (k−1)Aπ (k)

)
� M(l )

(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|......|Aπ (i1+···+il−1+1)...Aπ (k−1)

)
.

Corollary B6. For k � 2 and ρ = ρA1A2...AkAk+1 ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ⊗ HAk+1 ) with CM �ρ = (Ai j )(k+1)×(k+1), we
always have M(k)(ρA1A2...Ak−1|AkAk+1 ) � M(k)(ρA1A2...Ak ).

Note that M(k) is symmetric about subsystems, so the following corollary is true, which is a generalization of Theorem B5
and reveals exactly the meaning of “nonincreasing under kickout.”

Corollary B7. (Nonincreasing under kickout) Assume k � 3 and consider any l partition (2 � l < k) of a k-
partite system A1A2 . . . Ak as in Eq. (5). For each h = 1, 2, . . . , l , let Ch be a nonempty subset of Bh =
{A

π[(
∑h−1

j=0 i j )+1], A
π[(

∑h−1
j=0 i j )+2], . . . , A

π (
∑h

j=0 i j )
}, where i0 = 0. Then, for any ρA1A2...Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ), we have

M(l )
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|......|Aπ (i1+···+il−1+1)...Aπ (k)

)
� M(l )

(
ρC1|C2|...|Cl−1|Cl

)
.

Proof of Theorem B5. By the invariance of M(k) under permutations, with no loss of generality, we may assume that the l
subpartition of A1A2 . . . Ak−1Ak is

A1 . . . Ai1

∣∣Ai1+1 . . . Ai1+i2

∣∣Ai1+i2+1 . . . . . . Ai1+···+il−1

∣∣Ai1+···+il−1+1 . . . Ak−1,k−1Akk . (B4)

As il � 2, we see that i1 + i2 + · · · + il−1 < k − 1.
For any k-partite state ρ = ρA1A2...Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with CM as represented as in Eq. (1), write Bh the hth

party of the l subpartition in Eq. (B4), that is, Bh = Ai0+i1+···+ih−1+1 . . . Ai1+···ih , and ρBh the corresponding reduced state of
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ρA1A2...Ak , h = 1, 2, . . . , l . Let ρkc be the reduced state ρkc = ρA1A2...Ak−1,k−1 of ρA1A2...Ak . Then

M(l )(ρA1...Ai1 |Ai1+1...Ai1+i2 |......|Ai1+···+il−1+1...Ak−1,k−1Akk

) = 1 − det(�ρ )


l
h=1 det

(
�ρBh

)
and

M(l )
(
ρA1...Ai1 |Ai1+1...Ai1+i2 |......|Ai1+···+il−1+1...Ak−1,k−1

) = 1 − det
(
�ρkc

)
det

(
�ρAi1+···+il−1+1 ...Ak−1k−1

)

l−1

h=1 det
(
�ρBh

) .

So the theorem is true if and only if

det(�ρ )

det
(
�ρBl

) � det
(
�ρkc

)
det

(
�ρAi1+···+il−1+1 ...Ak−1k−1

) . (B5)

Decompose �ρ into

�ρ = (Ai j ) =

⎛
⎜⎜⎜⎜⎝

A
1
2
11 0 · · · 0

0 A
1
2
22 · · · 0

...
...

. . .
...

0 0 · · · A
1
2
kk

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

I E12 · · · E1k

ET
12 I · · · E2k
...

...
. . .

...

ET
1k ET

2k · · · I

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

A
1
2
11 0 · · · 0

0 A
1
2
22 · · · 0

...
...

. . .
...

0 0 · · · A
1
2
kk

⎞
⎟⎟⎟⎟⎠,

where Ei j = A
− 1

2
ii Ai jA

− 1
2

j j (i �= j), and denote

�ρ =

⎛
⎜⎜⎝

I E12 · · · E1k

ET
12 I · · · E2k
...

...
. . .

...

ET
1k ET

2k · · · I

⎞
⎟⎟⎠.

Then the inequality in Eq. (B5) holds if and only if

det(�ρ )

det
(
�ρBl

) � det
(
�ρkc

)
det

(
�ρAi1+···+il−1+1 ...Ak−1,k−1

) . (B6)

Rewrite

�ρ =

⎛
⎜⎜⎝

I E12 · · · E1k

ET
12 I · · · E2k
...

...
. . .

...

ET
1k ET

2k · · · I

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�ρA1 ...Ai1+···+il−1
X Z

X T �ρAi1+···+il−1+1 ...Ak−1
Y

ZT Y T I

⎞
⎟⎟⎠,

where

X =

⎛
⎜⎜⎝

E1,i1+···+il−1+1 E1,i1+···+il−1+2 · · · E1,k−1

E2,i1+···+il−1+1 E2,i1+···+il−1+2 · · · E2,k−1
...

...
. . .

...

Ei1+···+il−1,i1+···+il−1+1 Ei1+···+il−1,i1+···+il−1+2 · · · Ei1+···+il−1,k−1

⎞
⎟⎟⎠,

Z =

⎛
⎜⎜⎝

E1k

E2k
...

Ei1+···+il−1,k

⎞
⎟⎟⎠ and Y =

⎛
⎜⎜⎝

Ei1+···+il−1+1,k

Ei1+···+il−1+2,k
...

Ek−1,k

⎞
⎟⎟⎠.

Then �ρkc =
(�ρA1 ...Ai1+···+il−1

X

X T �ρAi1+···+il−1+1 ...Ak−1

)
,

det(�ρ ) = det(�ρkc ) det

(
I − (ZT Y T )�−1

ρkc

(
Z
Y

))
,

and

det
(
�ρBl

) = det
(
�ρAi1+···+il−1+1 ...Ak−1,k−1

)
det

(
I − Y T �−1

ρAi1+···+il−1+1 ...Ak−1,k−1
Y

)
.
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So the inequality in Eq. (B6) holds if and only if

det

[
I − (ZT Y T )�−1

ρkc

(
Z
Y

)]
� det

(
I − Y T �−1

ρAi1+···+il−1+1 ...Ak−1,k−1
Y

)
. (B7)

Now, by the fourth inequality in Lemma B2, we have

(ZT Y T )�−1
ρkc

(
Z
Y

)
� Y T �−1

ρAi1+···+il−1+1 ...Ak−1,k−1
Y, (B8)

which implies that the inequality in Eq. (B7) is true. Consequently, the inequality in Eq. (B6) is true, and hence the inequality in
Eq. (B5) holds, which completes the proof. �

It is clear from Theorem B4 and Corollary B7 that M(k) satisfies the conditions (1)–(3) in Definition 2 and thus meets the
hierarchy condition. This completes the proof of Theorem 1.

APPENDIX C: PROOF OF THEOREM 3

We first complete the proof of Example 1, that is, to show that, for any tripartite fully symmetric Gaussian state σABC ,
M(σA|BC ) = M(σAB) if and only if σABC = σA ⊗ σB ⊗ σC .

Proof of Example 1. Recall that σABC is fully symmetric if it is an (n + n + n)-mode Gaussian state with CM having the form

�σABC =
⎛
⎝ A X X

X T A X
X T X T A

⎞
⎠,

where A, X ∈ M2n(R). We have to show that M(σA|BC ) = M(σAB) if and only if X = 0.
The “if” part is obvious. For the “only if” part, assume M(σA|BC ) = M(σAB). By Theorem B3, X = XA−1X .
Assume that X �= 0. If X is invertible, then X = A, which is impossible as �σABC is invertible. So ker X �= {0}. Under the space

decomposition R2n = ker X ⊕ (ker X )⊥, A and X can be represented as

A =
(

A11 A12

AT
12 A22

)
and X =

(
0 X12

0 X22

)
.

Notice that

A−1 =
( (

A11 − A12A−1
22 AT

12

)−1 −A−1
11 A12

(
A22 − AT

12A−1
11 A12

)−1

−(
A22 − AT

12A−1
11 A12

)−1
AT

12A−1
11

(
A22 − AT

12A−1
11 A12

)−1

)
.

Then X = XA−1X gives

X22 = 0 and X12 = −X12
(
A22 − AT

12A−1
11 A12

)−1
AT

12A−1
11 X12

with ker X12 = {0}. It follows that Ai j, Xi j ∈ Mn(R) and A12, X12 are invertible. Therefore a tripartite fully symmetric Gaussian
state σABC satisfies M(σA|BC ) = M(σAB) if and only if its CM has the form

�σABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 0 X12 0 X12

AT
12 A22 0 0 0 0

0 0 A11 A12 0 X12

X T
12 0 AT

12 A22 0 0

0 0 0 0 A11 A12

X T
12 0 X T

12 0 AT
12 A22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ai j, X12 ∈ Mn(R) are invertible and

X12 = −A11
(
A−1

12

)T (
A22 − AT

12A−1
11 A12

)
.

As �σABC > 0, we have (
A11 A12

AT
12 A22

)
�

(
0 X12

0 0

)(
A11 A12

AT
12 A22

)−1(
0 0

X T
12 0

)
=

(
D 0
0 0

)
,

where

D = X12
(
A22 − AT

12A−1
11 A12

)−1
X T

12 = A11
(
A−1

12

)T (
A22 − AT

12A−1
11 A12

)
A−1

12 A11

= A11
(
A−1

12

)T
A22A−1

12 A11 − A11.

032429-14



COMPUTABLE MULTIPARTITE MULTIMODE GAUSSIAN … PHYSICAL REVIEW A 105, 032429 (2022)

Thus we have

2A11 − A11
(
A−1

12

)T
A22A−1

12 A11 � A12A−1
22 AT

12.

Note that
(A11 A12

AT
12 A22

)
> 0 implies that there is a contractive matrix E with ‖E‖ < 1 such that A12 = A

1
2
11EA

1
2
22. E is invertible as

A12 is. So the above inequality becomes to

2A11 � A
1
2
11EET A

1
2
11 + A

1
2
11(EET )−1A

1
2
11,

and consequently,

2I � EET + (EET )−1.

This is impossible because it leads to a contraction 0 � (I − EET )2 > 0. Therefore we must have X = 0 and σABC = σA ⊗
σB ⊗ σC .

As an illustration, let us consider the (1 + 1 + 1)-mode case. If � is a CM of an (1 + 1 + 1)-mode symmetric Gaussian state
σABC satisfying M(σA|BC ) = M(σAB) and σABC not a product state, then, by what discussed above, � has the form

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a c 0 − ab−c2

c 0 − ab−c2

c
c b 0 0 0 0

0 0 a c 0 − ab−c2

c

− ab−c2

c 0 c b 0 0

0 0 0 0 a c
− ab−c2

c 0 − ab−c2

c 0 c b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a, b, c ∈ R with a > 0, b > 0 and ab > c2 > 0. Since

� + i	 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a c + i 0 − ab−c2

c 0 − ab−c2

c
c − i b 0 0 0 0

0 0 a c + i 0 − ab−c2

c

− ab−c2

c 0 c − i b 0 0

0 0 0 0 a c + i
− ab−c2

c 0 − ab−c2

c 0 c − i b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0,

we have

ab − c2 − 1 � 0

and

(ab − c2 − 1)2 − ab(ab − c2)2

c2
� 0.

However, the last inequality is not true, as it will lead to a contradiction ab(ab − c2)2 � c2(ab − c2 − 1)2 < ab(ab − c2)2. �
The “only if” parts of statements (i) and (ii) of the next general result imply respectively that M(k) is tightly monogamous

and completely monogamous.
Theorem C1. Assume k � 3. Let ρ = ρA1,A2,...,Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with the CM �ρ = (Ai j )k×k as in Eq. (1).

For any l partition (2 � l < k) of a k-partite system A1A2 . . . Ak determined by a permutation π of k as in Eq. (6), the following
statements are true.

(i) With i0 = 0, we have

M(k)
(
ρA1,A2,...,Ak

) = M(l )
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|...|Aπ (i1+···+il−1+1)...Aπ (i1+···+il )

)
if and only if

M(ih )(ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

) = 0 for all h ∈ {1, 2, . . . , l} with ih � 2.

(ii) For each h ∈ {1, 2, . . . , l}, we have

M(k)
(
ρA1,A2,...,Ak

) = M(ih )
(
ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

)
if and only if, when h > 1,

M(2)
(
ρAπ (i1+···+ih−1+1)...Aπ (i1+···+ih )|Aπ (1)...Aπ (i1+···+ih−1 )Aπ (i1+···+ih+1)...Aπ (k)

) = 0
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and

M(k−ih )
(
ρAπ (1)...Aπ (i1+···+ih−1 )Aπ (i1+···+ih+1)...Aπ (k)

) = 0;

when h = 1,

M(2)
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)Aπ (i1+2)...Aπ (k)

) = 0 and M(k−i1 )
(
ρAπ (i1+1)Aπ (i1+2)...Aπ (k)

) = 0.

Proof. (i) Denote by Bh = Aπ (i0+i1+···ih−1+1) · · · Aπ (i0+i1+···ih−1+ih ) and �Bh the CM of ρBh , h = 1, 2, . . . , l . Then, by Eq. (B2),

M(l )
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|...|Aπ (i1+···+il−1+1)...Aπ (k)

) = M(k)
(
ρA1,A2,...,Ak

)
if and only if


l
h=1 det(�Bh ) = 
l

h=1

[



i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) )

]
.

By Lemma A1, the above equation holds if and only if det(�Bh ) = 

i1+···+ih−1+ih
j=i0+i1+···+ih−1+1 det(Aπ ( j),π ( j) ) for each h = 1, 2, . . . , l , and

in turn, if and only if M(ih )(ρAπ (i0+i1+···+ih−1+1)...Aπ (i1+···+ih ) ) = 0 for each h = 1, 2, . . . , l whenever ih � 2.
(ii) For any h ∈ {1, 2, . . . , l} with ih � 2, denote by �Bc

h
= (Ai j ) with i, j ∈ {1, 2, . . . , k} \ Bh = Bc

h, then

�ρ
∼= �ρBhBc

h
=

(
�Bh Ch

CT
h �Bc

h

)
.

By Eq. (B3),

M(ih )
(
ρAπ (i0+i1+···+ih−1+1)...Aπ (i0+i1+···+ih )

) = M(ih )
(
ρBh

) = M(k)
(
ρA1A2...Ak

)
(C1)

if and only if

det
(
�Bc

h
− CT

h �−1
Bh

Ch
) = 
 j∈Bc

h
det(Aj j ).

By Lemma A1 and Lemma A2, the above equation holds if and only if Ch = 0 and det(�Bc
h
) = 
 j∈Bc

h
det(Aj j ). Therefore Eq. (C1)

is true if and only if

M(2)
(
ρBhBc

h

) = 0 and M(k−ih )
(
ρBc

h

) = 0.

This completes the proof of statement (ii). �
To prove that M(k) is not strongly monogamous, the following general result is useful.
Theorem C2. For any ρ = ρA1A2...Ak ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ) with CM �ρ = (Ai j )k×k as in Eq. (1) and any l partition

(2 � l < k) of A1A2 . . . Ak determined by a permutation π as in Eq. (6) with il � 2, we have

M(l )
(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|...|Aπ (i1+···+il−1+1)...Aπ (k)

)
= M(l )

(
ρAπ (1)...Aπ (i1 )|Aπ (i1+1)...Aπ (i1+i2 )|...|Aπ (i1+···+il−1+1)...Aπ (k−1)

)
if and only if F = D(�ρAπ (i1+···+il−1+1) ...Aπ (k−1)

)−1E , where

D =

⎛
⎜⎜⎝

Aπ (1),π (i1+···+il−1+1) Aπ (1),π (i1+···+il−1+2) · · · Eπ (1),π (k−1)

Aπ (2),π (i1+···+il−1+1) Aπ (2),π (i1+···+il−1+2) · · · Eπ (2),π (k−1)
...

...
. . .

...

Aπ (i1+···+il−1 ),π (i1+···+il−1+1) Aπ (i1+···+il−1 ),π (i1+···+il−1+2) · · · Aπ (i1+···+il−1 ),π (k−1)

⎞
⎟⎟⎠

is an (k − il ) × (il − 1) block matrix,

F =

⎛
⎜⎜⎝

Aπ (1),π (k)

Aπ (2),π (k)
...

Aπ (i1+···+il−1 ),π (k)

⎞
⎟⎟⎠ and E =

⎛
⎜⎜⎝

Aπ (i1+···+il−1+1),π (k)

Aπ (i1+···+il−1+2),π (k)
...

Aπ (k−1),π (k)

⎞
⎟⎟⎠.

The following result is a special case of Theorem C1, which illustrates the exact meaning of Theorem C2 plainly.
Theorem C3. For k � 2 and ρ = ρA1A2...AkAk+1 ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ⊗ HAk+1 ) with CM �ρ = (Ai j )(k+1)×(k+1),

M(k)(ρ
A1A2...Ak−1

∣∣AkAk+1

) = M(k)(ρA1A2...Ak

)
if and only if

⎛
⎜⎜⎝

A1,k+1

A2,k+1
...

Ak−1,k+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A1,k

A2,k
...

Ak−1,k

⎞
⎟⎟⎠A−1

kk Ak,k+1.

Proof of Theorem C2. Without loss of generality, we may assume that the l partition of A1A2 . . . Ak−1Ak is

A1 . . . Ai1

∣∣Ai1+1 . . . Ai1+i2

∣∣Ai1+i2+1 . . . Ai1+···+il−1

∣∣Ai1+···+il−1+1 . . . Ak−1,k−1Akk,
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since M(k) is invariant under any permutation of subsystems. It is clear by the assumption il � 2 that i1 + i2 + · · · + il−1 <

k − 1. With the same symbols used in the proof of Theorem B5, and by Eqs. (B5)–(B8),

M(l )
(
ρA1...Ai1 |Ai1+1...Ai1+i2 |Ai1+i2+1...Ai1+···+il−1 |Ai1+···+il−1+1...Ak−1,k−1Akk

)
= M(l )

(
ρA1...Ai1 |Ai1+1...Ai1+i2 |Ai1+i2+1...Ai1+···+il−1 |Ai1+···+il−1+1...Ak−1,k−1

)
,

if and only if

det(�ρ )

det
(
�ρBl

) = det(�ρ )

det
(
�Bl

) = det
(
�ρkc

)
det

(
�ρAi1+···+il−1+1 ...Ak−1k−1

) = det
(
�ρkc

)
det

(
�ρAi1+···+il−1+1 ...Ak−1,k−1

) , (C2)

where

�ρ =

⎛
⎜⎜⎝

I E12 · · · E1k

ET
12 I · · · E2k
...

...
. . .

...

ET
1k ET

2k · · · I

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�ρA1 ...Ai1+···+il−1
X Z

X T �ρAi1+···+il−1+1 ...Ak−1
Y

ZT Y T I

⎞
⎟⎟⎠

with Ei j = A
− 1

2
ii Ai jA

− 1
2

j j , i �= j,

X =

⎛
⎜⎜⎝

E1,i1+···+il−1+1 E1,i1+···+il−1+2 · · · E1,k−1

E2,i1+···+il−1+1 E2,i1+···+il−1+2 · · · E2,k−1
...

...
. . .

...

Ei1+···+il−1,i1+···+il−1+1 Ei1+···+il−1,i1+···+il−1+2 · · · Ei1+···+il−1,k−1

⎞
⎟⎟⎠,

Z =

⎛
⎜⎜⎝

E1k

E2k
...

Ei1+···+il−1,k

⎞
⎟⎟⎠ and Y =

⎛
⎜⎜⎝

Ei1+···+il−1+1,k

Ei1+···+il−1+2,k
...

Ek−1,k

⎞
⎟⎟⎠.

It is clear that Eq. (C2) holds if and only if

(ZT Y T )�−1
ρkc

(
Z
Y

)
= Y T �−1

ρAi1+···+il−1+1 ...Ak−1,k−1
Y. (C3)

By Lemma B2, Eq. (C3) is true if and only if Z = X�−1
ρAi1+···+il−1+1 ...Ak−1,k−1

Y , which is equivalent to

F = D
(
�ρAi1+···+il−1+1 ...Ak−1,k−1

)−1
E , (C4)

where

D =

⎛
⎜⎜⎝

A1,i1+···+il−1+1 A1,i1+···+il−1+2 · · · A1,k−1

A2,i1+···+il−1+1 A2,i1+···+il−1+2 · · · A2,k−1
...

...
. . .

...

Ai1+···+il−1,i1+···+il−1+1 Ai1+···+il−1,i1+···+il−1+2 · · · Ai1+···+il−1,k−1

⎞
⎟⎟⎠,

F =

⎛
⎜⎜⎝

A1k

A2k
...

Ai1+···+il−1,k

⎞
⎟⎟⎠ and E =

⎛
⎜⎜⎝

Ai1+···+il−1+1,k

Ai1+···+il−1+2,k
...

Ak−1,k

⎞
⎟⎟⎠.

Hence the statement of the theorem is true and the proof is
completed. �

Now we are in a position to prove Theorem 3.
Proof of Theorem 3. Assume k � 3. It is obvious that M(k)

is tightly monogamous by (i) and is completely monogamous
by (ii) in Theorem C1. Hence the statements (1) and (2) of
Theorem 3 are true.

To prove the statement (3), assume k � 2. Let
ρA1A2...AkAk+1 ∈ FS (HA1 ⊗ HA2 ⊗ · · · ⊗ HAk ⊗ HAk+1 ) with

CM �ρ = (Ai j )(k+1)×(k+1). It is clear that M(2)(ρA1Ak+1 ) =
M(2)(ρA2Ak+1 ) = · · · = M(2)(ρAkAk+1 ) = 0 if and only if

⎛
⎜⎜⎝

A1,k+1

A2,k+1
...

Ak−1,k+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎠ = 0.
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However, by Theorem C3, M(k)(ρA1A2...Ak−1|AkAk+1 ) =
M(k)(ρA1A2...Ak ) if and only if

⎛
⎜⎜⎜⎝

A1,k+1

A2,k+1
...

Ak−1,k+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

A1,kA−1
kk Ak,k+1

A2,kA−1
kk Ak,k+1
...

Ak−1,kA−1
kk Ak,k+1

⎞
⎟⎟⎟⎟⎠,

which may not be zero. To make this sure, let us give an exam-
ple here. Consider the (k + 1)-partite (1 + 1 + · · · + 1)-mode
case. Let � = (Ai j ) be a real symmetric matrix, where Aj j =(2 0

0 2

)
for j = 1, 2, . . . , k − 1, k + 1, Akk = (3 0

0 3

)
, Ak−1,k =

Ak,k+1 = (1 0
0 1

)
, Ak−1,k+1 = ( 1

3 0
0 1

3

)
, otherwise, Ai j = 0 for

i < j. It is easily checked that � = �ρ is a CM for a Gaus-
sian state ρ = ρA1A2,...,AkAk+1 since � + i	 � 0, where 	 =
⊕k+1

j=1	 j with 	 j = ( 0 1
−1 0

)
. Obviously, we have⎛

⎜⎜⎜⎜⎜⎝

A1,k+1

A2,k+1

...

Ak−1,k+1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

A1,kA−1
kk Ak,k+1

A2,kA−1
kk Ak,k+1

...

Ak−1,kA−1
kk Ak,k+1

⎞
⎟⎟⎟⎟⎟⎠ �= 0

as Ak−1,k+1 = Ak−1,kA−1
kk Ak,k+1 �= 0. In fact, for this state

ρ, we have M(k)(ρA1A2...Ak−1|AkAk+1 ) = M(k)(ρA1A2...Ak−1Ak ) ≈
0.3056, but M(2)(ρAk−1Ak+1 ) ≈ 0.0548 �= 0.

Hence M(k) is not strongly monogamous, which completes
the proof of statement (3) in Theorem 3. �
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