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Conditions for steady-state entanglement of quantum systems in a stationary
environment under Markovian dissipation
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We study the entanglement dynamics of an open quantum system composed of two identical two-level
subsystems in a common stationary environment undergoing Markovian dissipation, with the help of a set of
physical parameters defined with the collective transition coefficients of the system. We then systematically
investigate the steady-state entanglement of such a system and obtain the necessary and sufficient condition
for steady-state entanglement when it is initial-state dependent. We also show in particular conditions for
steady-state entanglement in some circumstances and propose in general a conjecture for the necessary and
sufficient condition when it is independent of the initial state.
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I. INTRODUCTION

Quantum entanglement, which describes the nonlocal cor-
relation between different quantum subsystems that has no
classical counterpart [1], has become the core of quantum
information science and technology [2,3], such as quantum
cryptography [4], quantum teleportation [5], and quantum
computation [6]. In recent decades, as one of the basic issues
in quantum information science, the preparation of entangled
states [7,8], has been extensively studied. However, a thorny
problem is the inevitable coupling between a quantum sys-
tem and the ubiquitous environmental fluctuations, which in
general causes decoherence [9]. Moreover, unlike the asymp-
totic decoherence of a single quantum system, an initially
entangled quantum system may get completely disentangled
within a finite time due to spontaneous emission even in
vacuum, which is called entanglement sudden death [10,11].
Consequently, the fragility of entanglement has become one of
the main obstacles to the realization of quantum information
technologies. To fight against the destructive environmental
effects on entanglement, many active strategies have been pro-
posed, such as entanglement distillation [12,13], dynamical
decoupling [14], repeated projective measurements (i.e., using
the quantum Zeno effect) [15], and weak measurement and
quantum measurement reversal [16].

Nevertheless, on the other hand, the environmental noise
does not always play a negative role. It can also serve as a
medium to provide indirect interactions so that two otherwise
separable quantum subsystems may get entangled [17–30].
Then a natural question is whether the entanglement generated
for a quantum system undergoing dissipation can persist in
the steady state. In fact, it has been shown that, in some
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specific scenarios, quantum systems undergoing purely dissi-
pative dynamics can obtain steady-state entanglement, such
as in a thermal bath in the limit of vanishing interatomic
separation [31], in a plasmonic waveguide [32,33], and in a
nonequilibrium environment [34–36]. Now a question arises
naturally as to what the necessary and sufficient condition
is for steady-state entanglement of an open quantum system
undergoing purely dissipative dynamics.

In this paper we study the conditions for steady-state en-
tanglement of a certain class of open quantum systems, i.e.,
an open quantum system composed of two identical two-level
subsystems, each of which is weakly coupled to a common
stationary environment, and the dynamics is Markovian. We
define a set of parameters with the collective transition coef-
ficients of the system. With the help of these parameters, we
obtain the conditions for steady-state entanglement. Hereafter,
& denotes the logical AND and ‖ denotes the logical OR. Nat-
ural units with h̄ = c = kB = 1 are used, where c is the speed
of light, h̄ the reduced Planck constant, and kB the Boltzmann
constant.

II. MASTER EQUATION

We consider a quantum system composed of a pair of
identical two-level quantum subsystems weakly coupled to a
common stationary dissipative environment. The Hamiltonian
of the total system is

H = HS + HE + HI . (1)

We assume that the two subsystems do not interact directly
with each other, so the Hamiltonian of the two subsystems HS

takes the form

HS = ω

2
σ

(1)
3 + ω

2
σ

(2)
3 , (2)

where ω is the energy-level spacing between the excited
state |1〉 and the ground state |0〉, σ (1)

μ = σμ ⊗ σ0, and

2469-9926/2022/105(3)/032426(14) 032426-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7668-7537
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032426&domain=pdf&date_stamp=2022-03-14
https://doi.org/10.1103/PhysRevA.105.032426


YUEBING ZHOU, JIAWEI HU, AND HONGWEI YU PHYSICAL REVIEW A 105, 032426 (2022)

σ (2)
μ = σ0 ⊗ σμ. Here we define σ0 = |1〉〈1| + |0〉〈0|, σ1 =

|0〉〈1| + |1〉〈0|, σ2 = i(|0〉〈1| − |1〉〈0|), and σ3 = |1〉〈1| −
|0〉〈0|. Further, HE is the Hamiltonian of the environment.
The interaction Hamiltonian describing the linear coupling
between the two-level subsystems and the environment can
be written as

HI = ε

2∑
α=1

∑
m

S (α)
m (τ ) ⊗ �m(x(α)(τ )), (3)

where ε is the coupling constant, which is assumed to be
small, �m(x(α)(τ )) is the operator of the environment, and
S (1)

m (τ ) = Sm(τ ) ⊗ σ0 and S (2)
m (τ ) = σ0 ⊗ Sm(τ ) are oper-

ators of the two subsystems, respectively, with Sm(τ ) the
single-subsystem operator. In the interaction picture, the
single-subsystem operator Sm(τ ) can be expressed as

Sm(τ ) = dmσ+eiωτ + d∗
mσ−e−iωτ , (4)

where σ+ = |1〉〈0| and σ− = |0〉〈1| are the transition opera-
tors of the two-level subsystems and dm = 〈1|Sm(τ )|0〉. Note
that here the interaction Hamiltonian does not include terms
leading to pure dephasing.

Under the Born-Markov approximation and the rotating-
wave approximation, the evolution equation of the reduced
density matrix ρ(τ ) = TrE [ρtot (τ )] can be described by
the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master
equation [37,38]

dρ(τ )

dτ
= −i[Heff , ρ(τ )] + D[ρ(τ )], (5)

where the dissipator D[ρ(τ )] takes the form

D[ρ(τ )] = 1

2

2∑
α,	=1

[D(α	)
+ (2σ

(	)
− ρσ

(α)
+ − {σ (α)

+ σ
(	)
− , ρ})

+ D(α	)
− (2σ

(	)
+ ρσ

(α)
− − {σ (α)

− σ
(	)
+ , ρ})]. (6)

Here σ
(1)
± = σ± ⊗ σ0, σ

(2)
± = σ0 ⊗ σ±, and the dissipative co-

efficients D(α	)
± can be written as

D(α	)
+ = ε2

∑
m,n

d (α)∗
m d (	)

n

∫ ∞

−∞
G(α	)

mn (
τ )eiω
τ d
τ, (7)

D(α	)
− = ε2

∑
m,n

d (α)
m d (	)∗

n

∫ ∞

−∞
G(α	)

mn (
τ )e−iω
τ d
τ. (8)

In the derivation of the master equation, we assume that the
environment perceived by the quantum system is stationary,
i.e., the correlation functions of the environment

G(α	)
mn (τ, τ ′) = 〈�m(x(α)(τ ))�n(x(	)(τ ′))〉 (9)

in Eqs. (7) and (8) are functions of 
τ = τ − τ ′, i.e., they are
invariant under temporal translations. According to Eqs. (7),
(8), (9), it can be proved that D(α	)

± = D(	α)∗
± . Note that here

we ignore the environment-induced energy shift of the sub-
systems and focus on the effects of dissipation, so the effective
Hamiltonian Heff in Eq. (5) is not shown.

On the other hand, for a quantum system composed of a
pair of identical two-level subsystems in interaction with a
stationary dissipative environment, the transition amplitude

from the state |k, ϕ0〉 to |k′, ϕ f 〉 can be expressed as

A|k,ϕ0〉→|k′,ϕ f 〉(T ) = i〈k′, ϕ f |
∫ T /2

−T /2
dτ HI (τ )|k, ϕ0〉, (10)

where |ϕ0〉 and |ϕ f 〉 represent the initial and final states of the
environment, respectively, |k〉 and |k′〉 are two arbitrary states
of the quantum system, and T is the interaction time, which is
treated as infinite here. Then we can define a set of transition
coefficients as

�kl→k′l ′ = lim
T →+∞

1

T
∑
ϕ f

A|k,ϕ0〉→|k′,ϕ f 〉A∗
|l,ϕ0〉→|l ′,ϕ f 〉. (11)

It is obvious that �kl→k′l ′ = �∗
lk→l ′k′ . When l = k and l ′ = k′,

Eq. (11) becomes the transition rate of the quantum system
from |k〉 to |k′〉. So �kk→k′k′ � 0. If the state |k〉 is a superpo-
sition state which can be written as |k〉 = b|k1〉 + c|k2〉 with
|b|2 + |c|2 = 1, then the transition rate �kk→k′k′ can be written
according to Eq. (11) as

�kk→k′k′ = |b|2�k1k1→k′k′ + |c|2�k2k2→k′k′

+ (bc∗�k1k2→k′k′ + b∗c�k2k1→k′k′ ). (12)

The term in parentheses in Eq. (12) contributes an interference
term. Therefore, when l 
= k or l ′ 
= k′, �kl→k′l ′ (which is
in general a complex number) is referred to as a coherent
transition coefficient, since it is related to the interference term
in the transition rate between coherent superposition states.

In the coupled basis {|e〉, |s〉, |a〉, |g〉}, where

|e〉 = |11〉, |s〉 = u|10〉 + v|01〉,
|g〉 = |00〉, |a〉 = v∗|10〉 − u∗|01〉, (13)

with |u|2 + |v|2 = 1, the master equation (5) (consider the dis-
sipator only, i.e., dρ(τ )/dτ = D[ρ(τ )]) can be written as a set
of first-order linear differential equations using the transition
coefficients defined in Eq. (11), i.e.,

ρ̇kl = 1

2

∑
k′l ′

[2ρk′l ′�k′l ′→kl − ρkl ′�ll ′→k′k′ − ρl ′l�l ′k→k′k′ ],

(14)

where ρkl = 〈k|ρ|l〉 and ρ̇kl = dρkl/dτ , with k, l, k′, l ′ ∈
{e, s, a, g}. Here the transition coefficient �kl→k′l ′ can be ex-
pressed as

�kl→k′l ′ =
2∑

α,	=1

∑
κ=±

〈l|σ (α)
κ |l ′〉〈k′|σ (	)†

κ |k〉D(α	)
κ . (15)

According to Eq. (15), for a quantum system described by the
master equation (5), �kl→k′l ′ is zero if 
Ekk′ = 
Ell ′ = ±ω is
not satisfied, where 
Ekk′ = Ek − Ek′ .

Substituting |e〉 = |11〉, |φ1〉 = |10〉, |φ2〉 = |01〉, and
|g〉 = |00〉 into Eq. (15), we obtain

D(11)
+ = �φ1φ1→gg = �ee→φ2φ2 = �φ1e→gφ2 ,

D(11)
− = �gg→φ1φ1 = �φ2φ2→ee = �gφ2→φ1e,

D(22)
+ = �φ2φ2→gg = �ee→φ1φ1 = �φ2e→gφ1 ,

D(22)
− = �gg→φ2φ2 = �φ1φ1→ee = �gφ1→φ2e. (16)
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Thus, the dissipation coefficients D(αα)
+ and D(αα)

− are the indi-
vidual downward and upward transition coefficients (rates) of
the αth subsystem, respectively. Similarly,

D(12)
+ = D(21)∗

+ = �φ2φ1→gg = �ee→φ1φ2

= �eφ1→φ1g = �φ2e→gφ2 ,

D(12)
− = D(21)∗

− = �gg→φ2φ1 = �φ1φ2→ee

= �φ1g→eφ1 = �gφ2→φ2e, (17)

so the dissipation coefficients D(α	)
+ |α 
=	 and D(α	)

− |α 
=	 are
the collective downward and upward coherent transition co-
efficients of the two subsystems. Moreover, it can be found
from Eq. (15) that all possible transition coefficients can be
expressed with D(α	)

± , since {|11〉, |10〉, |01〉, |00〉} forms a set
of the complete basis. The relationship between the dissi-
pation coefficients in the master equation and the collective
transitions coefficient of two subsystems shown in Eq. (17)
can be regarded as a generalization of the result in Ref. [39],
in which the relationship between the dissipation coefficients
in the master equation of a single quantum system and its
transition rates is shown.

III. ENTANGLEMENT DYNAMICS PARAMETERS

Now we define a set of eight parameters using D(α	)
± to de-

scribe the entanglement dynamics of an open quantum system
composed of two two-level subsystems.

(i) The factor � is defined as

� ≡ �(11) + �(22)

2
, (18)

where

�(α	) = D(α	)
+ − D(	α)

− (19)

is the spontaneous emission coefficient. That is, � is the av-
erage of the individual spontaneous emission rates of the two
quantum subsystems, so � � 0.

(ii) The factor γ is defined as

γ ≡ �(22) − �(11)

�(11) + �(22)
, (20)

which describes the degree of difference between the in-
dividual spontaneous emission rates of the two quantum
subsystems. Obviously, |γ | � 1. Here γ = 0 means �(11) =
�(22), i.e., the individual spontaneous emission rates of sub-
systems 1 and 2 are the same; γ = 1 (−1) means �(11)

(�(22)) is zero, i.e., the individual spontaneous emission rate
of subsystem 1 (2) is zero. The larger the |γ |, the greater the
difference between the spontaneous emission rates of the two
subsystems.

(iii) For subsystem 1, we can define a parameter η1 with
the individual downward and upward transition rates of sub-
system 1 as

η1 ≡ D(11)
+ + D(11)

−
D(11)

+ − D(11)
−

= 2N1 + 1 = coth
ω

2T1
, (21)

where N1 is the effective particle number perceived individ-
ually by subsystem 1. Then an equivalent temperature can

be defined as T1 = ω[ln(1 + 1/N1)]−1. It is obvious from
Eq. (21) that η1 � 1 since N1 � 0.

(iv) Similarly, for subsystem 2, we can also define a param-
eter η2,

η2 ≡ D(22)
+ + D(22)

−
D(22)

+ − D(22)
−

= 2N2 + 1 = coth
ω

2T2
, (22)

and η2 � 1.
(v) The angle θ1 is defined as the argument of �(12), i.e.,

θ1 ≡ Arg[�(12)] = Arg[D(12)
+ − D(21)

− ], (23)

and the range is θ1 ∈ (−π, π ]. Here θ1 = 0 means �(12) =
�(21) > 0 and θ1 = π means �(12) = �(21) < 0. The factor θ1

characterizes the difference between the collective coherent
emission coefficient �(12) and its complex conjugate �(21).

(vi) We define a parameter λ1,

λ1 ≡
√

�(12)�(21)

�(11)�(22)
, (24)

to characterize the cooperative coherence of the two subsys-
tems in collective transition processes. It is obvious from
the definition that λ1 � 0. In the following, we prove that
λ1 � 1, as required by the fact that the downward transition
rate cannot be smaller than the upward one for two arbitrary
energy eigenstates.

Proof. For a quantum system composed of two identical
two-level quantum subsystems, the eigenvalues and the cor-
responding eigenstates of the Hamiltonian HS can be written
as

Ee = ω, |e〉 = |11〉,
Eψ = 0, |ψ〉 = u|10〉 + v|01〉, (25)

Eg = −ω, |g〉 = |00〉.

Here u = |u|eiϕ1 , v = |v|eiϕ2 , and |u|2 + |v|2 = 1. The spon-
taneous emission rate from a higher level h to a lower level
l can be expressed as �hh→ll − �ll→hh, since the stimulated
absorption rate and the stimulated emission rate must be equal
and are thus canceled. According to Eq. (12), we obtain

�ψψ→gg − �gg→ψψ

= |u|2�(11) + |v|2�(22) + (u∗v�(12) + uv∗�(21)) (26)

= (|u|
√

�(11) − |v|
√

�(22))2 + 2|u||v|
√

�(11)�(22)

+2 Re[u∗v �(12)]

� 2|u||v|
√

�(11)�(22) + 2 Re[u∗v�(12)] (27)

= 2|u||v|(
√

�(11)�(22)

+
√

�(12)�(21)Re[ei(ϕ2−ϕ1+θ1 )])

� 2|u||v|
√

�(11)�(22)

(
1 −

√
�(12)�(21)

�(11)�(22)

)
, (28)

where Re[x] means the real part of x. Note here that if and only

if |u| =
√

�(22)

�(11)+�(22) and |v| =
√

�(11)

�(11)+�(22) , the inequality (27)
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reduces to an equality. Moreover, the inequality (28) reduces
to an equality if and only if ϕ1 − ϕ2 = θ1 + π , that is,

�ψψ→gg − �gg→ψψ = 2|u||v|
√

�(11)�(22)(1 − λ1) (29)

if and only if |ψ〉 =
√

�(22)

�(11)+�(22) eiϕ1 |10〉 +√
�(11)

�(11)+�(22) ei(ϕ1−θ1−π )|01〉. Similarly,

�ee→ψψ − �ψψ→ee

� 2|u||v|
√

�(11)�(22)

(
1 −

√
�(12)�(21)

�(11)�(22)

)
(30)

and the equality holds if and only if |ψ〉 =√
�(11)

�(11)+�(22) eiϕ1 |10〉 +
√

�(22)

�(11)+�(22) ei(ϕ1−θ1−π )|01〉. Therefore,

{�ψψ→gg � �gg→ψψ }&{�ee→ψψ � �ψψ→ee} ⇔ λ1 � 1.

(31)

. Q.E.D.

To conclude, λ1 ∈ [0, 1]. When λ1 = 0, �(12) = �(21) = 0,
which indicates that there is no cooperative coherence be-
tween the subsystems in the process of collective spontaneous
emission, e.g., when the spatial separation between the two
subsystems L → ∞. At this time, we find that the interference
term in the collective spontaneous emission rate (26) van-
ishes. When λ1 = 1, �(12)�(21) = �(11)�(22), which indicates
the strongest cooperative coherence between the two subsys-
tems. As we have shown in the proof, when λ1 = 1, there
exists a collective state |ψ〉 such that the upward and down-
ward collective transition rates are equal, i.e., the collective
spontaneous emission rate is zero owing to the interference
cancellation. Thus, the larger the λ1, the stronger the cooper-
ative coherence between the subsystems.

(vii) The angle θ2 is defined as the argument of D(21)
− , i.e.,

θ2 ≡ Arg[D(21)
− ]. (32)

Then θ2 ∈ (−π, π ]. Here θ2 = 0 means D(12)
− (ω) =

D(21)
− (ω) > 0 and θ2 = π means D(12)

− (ω) = D(21)
− (ω) < 0.

The factor θ2 characterizes the difference between the
collective coherent emission coefficient D(12)

− and its complex
conjugate D(21)

− .
(viii) We define λ2 as

λ2 =
√

D(12)
− D(21)

−
D(11)

− D(22)
−

, (33)

whose range is 0 � λ2 � 1. The proof is shown as follows.
Proof. Similar to the proof of 0 � λ1 � 1, we can obtain

that

�gg→ψψ = |u|2D(11)
− + |v|2D(22)

− + (uv∗D(12)
− + u∗vD(21)

− )

� 2|u||v|
√

D(11)
− D(22)

−

(
1 −

√
D(12)

− D(21)
−

D(11)
− D(22)

−

)
. (34)

The inequality (34) becomes an equality if and only if |u| =√
D(22)

−
D(11)

− +D(22)
−

, |v| =
√

D(11)
−

D(11)
− +D(22)

−
, and ϕ1 − ϕ2 = θ2 + π . Simi-

larly,

�ψψ→ee = |v|2D(11)
− + |u|2D(22)

− + (uv∗D(12)
− + u∗vD(21)

− )

� 2|u||v|
√

D(11)
− D(22)

−

(
1 −

√
D(12)

− D(21)
−

D(11)
− D(22)

−

)
. (35)

The inequality (35) becomes an equality if and only if |u| =√
D(11)

−
D(11)

− +D(22)
−

, |v| =
√

D(22)
−

D(11)
− +D(22)

−
, and ϕ1 − ϕ2 = θ2 + π . There-

fore,

{�gg→ψψ � 0} & {�ψψ→ee � 0} ⇔ λ2 � 1. (36)

Q.E.D.

Thus, when λ2 = 0, i.e., D(12)
− = D(21)

− = 0, the interfer-
ence terms in Eqs. (34) and (35) vanish. As a result, there is
no cooperative coherence between the two subsystems in the
process of collective excitation. When λ2 = 1, there exists a
collective state |ψ〉 determined by D(α	)

− such that the upward
collective transition rate is zero owing to the interference
cancellation.

So far, we have defined eight parameters
{�, γ , η1, η2, λ1, λ2, θ1, θ2} and proved that � � 0, |γ | � 1,
η1 � 1, η2 � 1, 0 � λ1 � 1, and 0 � λ2 � 1 by using that
(a) the transition rate between any two collective states is
non-negative and (b) the downward transition rate is greater
than or equal to the upward one for two arbitrary energy
eigenstates. With the parameters defined above, D(α	)

± can be
reexpressed as

D(11)
± = 1

2 (η1 ± 1)(1 − γ )�,

D(22)
± = 1

2 (η2 ± 1)(1 + γ )�,

D(12)
− = D(21)∗

− = 1
2

√
(η1 − 1)(η2 − 1)λ2e−iθ2

√
1 − γ 2�,

D(12)
+ = D(21)∗

+ = (
√

(η1 − 1)(η2 − 1)λ2 + 2λ1ei(θ1−θ2 ) )

× 1
2 eiθ2

√
1 − γ 2�. (37)

Then we can use this set of parameters
{�, γ , η1, η2, λ1, λ2, θ1, θ2} to describe the evolution of
the quantum system.

IV. STEADY STATE

Under the coupled basis {|e〉, |s〉, |a〉, |g〉}, which is defined
in Eq. (13), the first-order linear differential equations (14)
describing the evolution of the system can be explicitly written
as

Ẋ = −U1X, ρ̇ge = −η̄�ρge, Ẏ = −U2Y. (38)

Here X = (ρee ρss ρaa ρgg ρas ρsa)
T

and Y =
(ρse ρae ρgs ρga)

T
are two column vectors and

η̄ = 1
2 [η1 + η2 + (η2 − η1)γ ]. (39)
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The coefficient matrices U1 and U2 can be written explicitly as

U1 =

⎛
⎜⎜⎜⎜⎜⎝

Pee −�ss→ee −�aa→ee 0 −�as→ee −�sa→ee

−�ee→ss Pss 0 −�gg→ss K K∗
−�ee→aa 0 Paa −�gg→aa K K∗

0 −�ss→gg −�aa→gg Pgg −�as→gg −�sa→gg

−�ee→as K∗ K∗ −�gg→as Pas 0
−�ee→sa K K −�gg→sa 0 Psa

⎞
⎟⎟⎟⎟⎟⎠ (40)

and

U2 =

⎛
⎜⎝

Pse K −�gs→se −�ga→se

K∗ Pae −�gs→ae −�ga→ae

−�se→gs −�ae→gs Pgs K
−�se→ga −�ae→ga K∗ Pga

⎞
⎟⎠. (41)

Moreover, here we define

Pkl = 1

2

∑
k′

(�kk→k′k′ + �ll→k′k′ ), (42)

with k, l, k′ ∈ {e, s, a, g}, and

K = 1
2 (�as→ee + �as→gg). (43)

Then the general solution of the differential equations (38) can
be written in the form

X(τ ) = M0 +
5∑

i=1

Mie
−ξi η̄�τ ,

Y(τ ) =
4∑

j=1

N je
−ζ j η̄�τ , (44)

ρge(τ ) = ρge(0)e−η̄�τ ,

where ξi and Mi (i = 0, 1, 2, 3, 4, 5), and ζ j and N j ( j =
1, 2, 3, 4) are the eigenvalues and the corresponding eigen-
vectors of the dimensionless coefficient matrices U1/η̄�

and U2/η̄�, respectively. Note that ξ0 ≡ 0, and M0 can
be uniquely determined by the normalization condition∑

k ρkk = 1, which is independent of the initial state. How-
ever, the rest components of Mi and N j are related to the initial
state.

The steady-state solution (when τ → ∞) of Eq. (38) must
be finite, which requires that the real parts of ξi and ζ j must be
non-negative. This is naturally guaranteed since the dynamical
map generated by the GKLS equation is completely positive
and trace preserving [37,38,40]. Note that the two definite
eigenvalues for U1/η̄� are labeled as ξ0 = 0 and ξ5 = 1 and
the rest of the eigenvalues ξi and ζ j are labeled as ξ1, ξ2, ξ3, ξ4

and ζ1, ζ2, ζ3, ζ4, respectively, in increasing order with respect
to their real parts. Then, allowing for the ranges of parameters
|γ | � 1, η1 � 1, η2 � 1, 0 � λ1 � 1, and 0 � λ2 � 1, it can
be proved that there is at most one zero root in ξi (or ζ j) (i =
1, 2, 3, 4), i.e., only ξ1 (or ζ1) can be zero. See Appendix A
for the proof.

First of all, if � = 0, then ρ(∞) = ρ(0) and the quantum
system is locked up in the initial state. If � 
= 0, then the

asymptotic state can be expressed as

X(∞) =
{

M0 + M1, ξ1 = 0
M0, ξ1 
= 0,

Y(∞) =
{

N1, ζ1 = 0
0, ζ1 
= 0,

and ρge(∞) = 0. Moreover, there are three cases in which
ξ1 = 0, i.e.,

|γ | = 1 (case I),

λ1 = λ2 = 1 & γ = 0 & η1 = η2 
= 1 & θ1 = θ2 (case II),

λ1 = 1 & |γ | 
= 1 & η1 = η2 = 1 (case III),

and there are two cases in which ζ1 = 0, which are cases I and
III shown above. The relevant proofs are given in Appendix A.
Then, when none of �, ξ1, or ζ1 is zero, the steady state
is independent of the initial state, while the steady state is
dependent on the initial state if at least one of �, ξ1, or ζ1

is zero.

V. CONDITIONS FOR STEADY-STATE ENTANGLEMENT

We characterize the degree of entanglement by concur-
rence C [41], which is

C[ρ(τ )] = max{0, K (τ )}, (45)

where K (τ ) = κ1 − κ2 − κ3 − κ4, with κi (i = 1, 2, 3, 4) the
square roots of eigenvalues of the matrix ρ(σ2 ⊗ σ2)ρT (σ2 ⊗
σ2) in decreasing order. Here ρ is the density matrix in the
decoupled basis {|11〉, |10〉, |01〉, |00〉} and ρT is its transpose.
According to the discussion in Sec. IV, the steady states can
be divided into two types, i.e., those related to the initial state
and those independent of the initial state. In the following,
we discuss the possible steady-state entanglement for the two
types of steady states, respectively.

A. Steady-state entanglement depending on the initial state

First of all, if � = 0, the quantum system will be locked
up in the initial state and the initial entanglement will be pro-
tected. As an example, in Ref. [42], a pair of two-level atoms
placed in between two perfectly reflecting plate is shown to
be locked up in its initial state when the distance between
the plates is less than half of the transition wavelength of the
atoms.

In the following, we focus on the case of � 
= 0. In this sec-
tion, we work in the coupled basis {|e〉, |s〉, |a〉, |g〉} [Eq. (13)]
with

u =
√

1 − γ

2
eiθ1/2, v =

√
1 + γ

2
e−iθ1/2. (46)
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Then the state |a〉 can be a subradiant state [43], i.e., the
downward collective transition rate between the subradiant
state and the ground state is zero.

Case I: |γ | = 1. In this case, ξ1 = 0 and ζ1 = 0. The
asymptotic state can be expressed as the block matrix

ρ(∞) =
(

P− 0
0 P+

)
, (47)

where

P± = ηi ± 1

2ηi

(
ρaa(0) + ρee(0) ρag(0) + γ ρes(0)
ρga(0) + γ ρse(0) ρss(0) + ρgg(0)

)
. (48)

Here ηi = η2 when γ = 1 and ηi = η1 when γ = −1. Substi-
tuting ρ(∞) into Eq. (45), we can obtain

K (∞) = −({[ρss(0) + ρgg(0)][ρaa(0) + ρee(0)]

− |ρga(0) + γ ρse(0)|2}(1 − η−2
i

))1/2 � 0. (49)

So there is no steady-state entanglement. Specific examples
of this can been found in the literature. For example, in
Refs. [42,44], it was shown that if one of the two atoms
is placed extremely close to a reflecting plate (|γ | = 1), the
entanglement will be completely degraded by dissipation.

Case II: λ1 = λ2 = 1, γ = 0, η1 = η2 
= 1, and θ1 = θ2. In
this case, ξ1 = 0 and ζ1 = 1

2 (1 − η−1) > 0, where η ≡ η1 =
η2 and the nonzero density matrix elements of the asymptotic
state can be obtained as

ρee(∞) = (η − 1)2[1 − ρaa(0)]

1 + 3η2
,

ρss(∞) = (η2 − 1)[1 − ρaa(0)]

1 + 3η2
,

ρaa(∞) = ρaa(0),

ρgg(∞) = (η + 1)2[1 − ρaa(0)]

1 + 3η2
. (50)

For the expression of the asymptotic state in the uncoupled
basis {|11〉, |10〉, |01〉, |00〉}, see Appendix B. Substituting
Eq. (50) into Eq. (45), we find that

C(∞) = 2(3η2 − 1)

3η2 + 1
ρaa(0) − 3(η2 − 1)

3η2 + 1
> 0 (51)

if ρaa(0) >
3(η2−1)

2(3η2−1) . Examples of this case include two atoms
in certain initial states with a vanishing interatomic separation
immersed in a thermal bath, which were shown (in Ref. [31])
to be able to obtain steady-state entanglement, and the two-
qubit system prepared in |10〉 or |01〉 in a one-dimensional
plasmonic waveguide, which was found (in Ref. [32]) to
satisfy these conditions so that steady-state entanglement is
obtained.

Case III: λ1 = 1, |γ | 
= 1, and η1 = η2 = 1. In this case,
ξ1 = 0 and ζ1 = 0. Then the nonzero density matrix elements
of the asymptotic state are

ρaa(∞) = ρee(0)γ 2 + ρaa(0),

ρgg(∞) = 1 − ρee(0)γ 2 − ρaa(0), (52)

ρga(∞) = ρ∗
ag(∞) = ρga(0) + γ ρse(0).

For the expression of the asymptotic state in the uncoupled
basis {|11〉, |10〉, |01〉, |00〉}, see Appendix B. Substituting
Eq. (52) into Eq. (45), we obtain

C(∞) =
√

1 − γ 2[ρaa(0) + γ 2ρee(0)]. (53)

This indicates that, as long as the initial state has components
of |a〉 or |e〉, entanglement can be created and maintained in
the asymptotic regime. An example of this case is when the
environment can be modeled as a single-mode field (i.e., the
Tavis-Cummings model) [45,46] in vacuum, which has been
extensively studied [15,18,19,47]. For clarity, we summarize
the necessary and sufficient condition for steady-state entan-
glement depending on the initial state in Table I.

B. Steady-state entanglement independent of the initial state

When � 
= 0, ξ1 
= 0, and ζ1 
= 0, the asymptotic
state ρ(∞) is independent of the initial state. See Ap-
pendix B for the explicit expressions in the uncoupled basis
{|11〉, |10〉, |01〉, |00〉}. The concurrence coefficient K (∞) can
be expressed as

K (∞) =
√

1 − γ 2
√

η̄2(λ1na − λ2ng)2 + � − √
�−�+

Z ,

(54)

where η̄ has been defined in Eq. (39), na = (η1 + η2 − 2)/2,
ng = √

(η1 − 1)(η2 − 1), and

�± = 1

2
[η̄2 − (1 − γ 2)(λ2ng + λ1)2](η1 ± 1)(η2 ± 1) + 1

2
[(λ2ng + λ1 − η̄λ1)2 − γ 2(λ2ng + λ1 ± λ1)2]

+ 2λ1λ2ng sin2

(

θ

2

){
η̄ ± 1 + (1 − γ 2)

[
η1η2 ± (2na + 1) − λ1λ2ng cos2

(

θ

2

)]}
, (55)

� = 4λ1λ2ng sin2

(

θ

2

){
η̄2na + λ1λ2ng cos2

(

θ

2

)[
[λ1(na + 1 − naγ

2) − λ2ng(na + 1)(1 − γ 2)]2

− 2η̄2γ 2 − 2η̄2(1 − γ 2)(na + 1)2 + 4λ1λ2ng(na + 1)(1 − γ 2)(na + 1 − naγ
2) cos2

(

θ

2

)]/
η̄2

}
, (56)

Z = (1 − γ 2)λ1[λ1na + λ2ng(na + 1) cos(
θ )] + λ2
1 − η̄2 + �− + �+. (57)

Here, 
θ = θ1 − θ2. Thus, as long as K (∞) > 0, the steady
state is entangled, regardless of whether the initial state is
entangled or separable. In the following, we discuss the

conditions for steady-state entanglement independent of the
initial state.
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TABLE I. Necessary and sufficient conditions for steady-state entanglement related to the initial state. No entry denotes no constraints.

Conditions

Case � λq ηq θq γ Initial state Steady-state concurrence

1 � = 0 C(0) > 0 C(0)

2 � 
= 0 λ1 = λ2 = 1 η1 = η2 ≡ η θ1 = θ2 γ = 0 ρaa(0) >
3(η2−1)
2(3η2−1)

2(3η2−1)
3η2+1

ρaa(0) − 3(η2−1)
3η2+1

3 � 
= 0 λ1 = 1 η1 = η2 = 1 |γ | 
= 0, 1 ρaa(0) + ρee(0) 
= 0
√

1 − γ 2[ρaa(0) + γ 2ρee(0)]

First of all, we can give a necessary condition for steady-
state entanglement, that is,

{η1 
= η2 ‖ λ1 
= λ2 ‖ θ1 
= θ2}
& {η1 
= 1 ‖ η2 
= 1} & {λ1 
= 0}. (58)

See Appendix C for the proof. An example that satisfies the
necessary condition (58) is when a two-qubit system in an
arbitrary initial state is placed in a common stationary envi-
ronment out of thermal equilibrium composed of a dielectric
body whose temperature is different from its surroundings
[35,36]. It is shown that the absence of equilibrium leads to the
generation of steady-state entanglement, which is inaccessible
when the environment is in thermal equilibrium.

Since the expression K (∞) [Eq. (54)] is very complicated,
here we analyze a relatively simple case, i.e., {η1 = η2 ≡
η 
= 1} & {γ = 0}, which means that the individual upward
(nonzero) and downward transition rates of the two subsys-
tems are the same. According to Eq. (54), we can obtain the
necessary and sufficient condition for K (∞) > 0 as

λ1 > λc =
√

η2
(
η2λ2

2 + 4η+4
)−Q+(4−η2−2η)λ2 cos(
θ )

4 + (η − 1)λ2
2 sin2(
θ )

,

(59)

where

Q = λ2
2

{
(η2 − 4)

[
(η − 1)2λ2

2 + 4η − 3
] + 4

}
sin2(
θ ).

Moreover, some concise constraints on the parameters λ1,2,
η, and 
θ can be derived from the condition (59) together
with η � 1 and 0 � λ1,2 � 1. First, it is easy to prove that
∂λc/∂η � 0. Then a necessary condition for steady-state en-
tanglement is λ1 > λc|η=1, which can be equivalently written
as

λ1[2λ1 − λ2 cos(
θ )] > 1. (60)

Second, it can be proved that λc is always larger than or equal
to 1 when η �

√
2, so λ1 > λc cannot be satisfied since 0 �

λ1 � 1. As a result,

η <
√

2 (61)

is also a necessary condition for steady-state entanglement.
Third, it can be proved that λc reaches its minimum 1

2 when
η = 1, λ2 = 1, and 
θ = ±π , which indicates that another
necessary condition for steady-state entanglement is

λ1 > 1
2 . (62)

The conditions (61) and (62) suggest that a large enough
λ1 and a small enough η (but larger than 1) is the key to
obtaining steady-state entanglement. The relevant proofs of

the conditions (60)–(62) are given in Appendix D. These con-
ditions (59)–(62) are helpful in judging whether steady-state
entanglement exists in specific scenarios. For example, the
entanglement dynamics of a pair of atoms rotating in coaxial
orbits with the same radius and with their separation per-
pendicular to the rotating plane was studied in Refs. [48,49],
in which numerical calculations were done systematically in
the ultrarelativistic limit (v/c → 1), and the phenomenon of
steady-state entanglement was not found. However, it can
actually be predicted directly with the necessary conditions
(60)–(62) that steady-state entanglement is impossible in the
ultrarelativistic limit and high angular velocity limit (i.e., the
angular velocity � is much greater than the energy-level spac-
ing of the atoms ω), as we will show elsewhere [50]. For more
general cases, we can investigate numerically the steady-state
concurrence coefficient K (∞) in Eq. (54). In Fig. 1 we plot
the contour maps of the steady-state entanglement C(∞) as
a function of λ1 and an another parameter (γ , η1,2, 
θ , or
λ2) when the rest of the parameters are fixed. Numerical
calculations, as shown in Fig. 1, suggest that C(∞) is always
a nondecreasing function of λ1. We conjecture that this propo-
sition is true, although we do not have a rigorous proof for it
at the moment. Then the necessary and sufficient condition for
steady-state entanglement independent of the initial state can

FIG. 1. Contour maps of the steady-state entanglement C(∞) as
a function of (a) λ1 and γ (with η1 = 1.1, η2 = 1.005, λ2 = 0.5,
and 
θ = π ), (b) λ1 and η1 (with γ = 0.5, η2 = 1.005, λ2 = 0.5,
and 
θ = π ), (c) λ1 and cos(
θ ) (with γ = −0.1, η1 = 1.12, η2 =
1.08, and λ2 = 0.9), and (d) λ1 and λ2 (with γ = 0.1, η1 = 1.04,
η2 = 1.08, and 
θ = 0).
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FIG. 2. Time evolution of concurrence C as a function of �τ

when λ1 = 0.99, λ2 = 0.98, γ = 0, η1 = 1.01, η2 = 1.02, and 
θ =
π . Here |S〉 = (|10〉 + |01〉)/

√
2 and |A〉 = (|10〉 − |01〉)/

√
2.

be formally written as

{λ1 > λc} & {η1 
= η2 ‖ λ1 
= λ2 ‖ θ1 
= θ2}
& {η1 
= 1 ‖ η2 
= 1} & {λ1 
= 0}, (63)

where λc is a function of η1, η2, γ , λ2, and 
θ . Therefore, a
large enough λ1 is the key to obtaining steady-state entangle-
ment.

VI. DISCUSSION

It should be pointed out that, in the present work, we
have neglected the environment-induced energy shift, which
is related to the effective Hamiltonian in the GKLS master
equation (5). Here we would like to note that such a term
will affect the entanglement dynamics but will not affect the
asymptotic state [51]. Moreover, the interaction Hamiltonian
does not include terms leading to pure dephasing. Neverthe-
less, in principle, all these factors can be included and our
approach can be extended to more general cases if more phys-
ical parameters are introduced. This is left for future work.

An important question is whether the steady-state entangle-
ment obtained from dissipative dynamics is useful in practice.
As has been shown by Horodecki et al., any two-qubit state
is distillable if and only if it is entangled [1,13]. In fact,
the efficiency of distillation from the steady entangled state

obtained from dissipation into the maximal entangled states is
an interesting question.

Another question of interest is how much time it takes
to establish steady-state entanglement. This is related to the
evolution rate �ev. Actually, from the general solution (44),
the evolution rate �ev can be estimated as

�ev = χη̄�, (64)

where χ is the minimum of the nonzero eigenvalues of ξi

and ζi. Then the evolution time tev, which characterizes the
time to establish steady-state entanglement, can be estimated
as tev = �−1

ev . In Fig. 2 we numerically study the evolution
of concurrence C as a function of �τ . It is shown that, in
this specific case, the quantum system is driven to the steady
entangled state at about τ ∼ 80�−1.

VII. SUMMARY

We have studied the dynamics of an open quantum sys-
tem composed of two identical two-level subsystems in a
common stationary environment undergoing Markovian dis-
sipation. With the help of a set of physical parameters defined
with the collective transition coefficients of the system, we
systematically investigated the steady-state entanglement that
a quantum system composed of two identical two-level sub-
systems can obtain from purely dissipative dynamics, which
can be classified into two categories, i.e., steady-state entan-
glement depending on and independent of the initial state of
the quantum system. We demonstrated that a variety of works
concerning entanglement dynamics reported in the literature
could be viewed as specific examples considered here and we
expect more in the future.
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APPENDIX A: PROOF OF THE NECESSARY AND
SUFFICIENT CONDITIONS FOR ξ1 = 0 AND ζ1 = 0

There are two definite eigenvalues for U1/η̄�, which are
labeled as ξ0 = 0 and ξ5 = 1. The remaining four eigenvalues
for U1/η̄� and all four eigenvalues for U2/η̄� satisfy the
characteristic root equations

ξ 4 − 5ξ 3 + G2ξ
2 − G1ξ + G0 = 0, (A1)

ζ 4 − 4ζ 3 + H2ζ
2 − H1ζ + H0 = 0, (A2)

respectively, and are labeled as ξ1, ξ2, ξ3, ξ4 and ζ1, ζ2, ζ3, ζ4, respectively, in increasing order with respect to their real parts.
Here G0, G1, and G2 (H0, H1, and H2) are the coefficients of the zero, first, and second power terms of ξ (ζ ), respectively. Here
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G0 and H0 can be written as

G0 = 1 − γ 2

2η̄4

{
4
(
η1η2 + λ2

1

)
η̄2 + 4η1η2(1 − γ 2)λ2

1 − 4(η1 − 1)(η2 − 1)(1 − γ 2)
(
η1η2 + λ2

1 sin2 
θ
)
λ2

2

− 2[4η̄ + (1 − γ 2)(4η1η2 − η1 − η2)]
[
λ2

1 + λ1λ2

√
(η1 − 1)(η2 − 1) cos 
θ

]}
, (A3)

H0 = 1 − γ 2

16η̄4

{
8η1η2

(
η̄2 − λ2

1

) + 8η̄
[
(η1 + η2 − 2)λ2

1 − 2
√

(η1 − 1)(η2 − 1)λ1λ2 cos 
θ
]

− (1 − γ 2)
[
2
(
η2

1 + η2
2

)
λ2

1 − (
η1η2 + λ2

1

)2 + 4(2η1η2 − η1 − η2)
√

(η1 − 1)(η2 − 1)λ1λ2 cos 
θ

+ 4(η1 − 1)(η2 − 1)
(
η1η2λ

2
2 + λ2

1

)] + 4i[(1 + γ )2η2 − (1 − γ )2η1]
√

(η1 − 1)(η2 − 1)λ1λ2 sin 
θ
}
, (A4)

with η̄ = [η1 + η2 + (η2 − η1)γ ]/2 and i the imaginary unit. Also, the coefficients G1 and H1 can be expressed as

G1 = 4 + 1 − γ 2

η̄3

[
3η1η2η̄ − (η̄ + 2)λ2

1 − 4(η1 − 1)(η2 − 1)η̄λ2
2 − 2(4η̄ + 1)λ1λ2

√
(η1 − 1)(η2 − 1) cos 
θ

]
, (A5)

H1 = 2 + 1 − γ 2

η̄3

{
η1η2η̄ − λ2

1 − (η1 − 1)(η2 − 1)η̄λ2
2 − [(2η̄ + 1) cos 
θ − iγ sin 
θ ]λ1λ2

√
(η1 − 1)(η2 − 1)

}
. (A6)

According to the eigenvalue equations of the two coefficient matrices U1/η̄� and U2/η̄� (A1), we obtain the following two
conclusions.

Conclusion 1. There is at most one zero root in ξi (i = 1, 2, 3, 4), i.e., only ξ1 can be equal to zero, and the necessary and
sufficient condition for ξ1 = 0 can be written as

{|γ | = 1} ‖ {λ1 = λ2 = 1 & γ = 0 & η1 = η2 
= 1 & θ1 = θ2} ‖ {λ1 = 1 & |γ | 
= 1 & η1 = η2 = 1}. (A7)

Conclusion 2. There is at most one zero root in ζ j ( j = 1, 2, 3, 4), i.e., only ζ1 can be equal to zero, and the necessary and
sufficient condition for ζ1 = 0 can be written as

{|γ | = 1} ‖ {λ1 = 1 & |γ | 
= 1 & η1 = η2 = 1}. (A8)

1. Proof of conclusion 1

In Eq. (A1), according to Vieta’s theorem, the necessary and sufficient condition that ξi (i = 1, 2, 3, 4) has zero root is G0 = 0.
However, G0 can be written in the non-negative form

G0 = 1 − γ 2

2η̄4

(
A1(1 − λ1) + A2(1 − λ2) + {

A3[1 − cos(
θ )] + A4 + (1 − γ 2)
(√

A5 + A2
6 − A6

)}
λ1λ2

)
, (A9)

where

A1 = (1 + λ1)(1 − λ2)[(1 − γ )2η1 + (1 + γ )2η2 + 2(1 − γ 2)η1η2] + η1η2λ2(1 − λ1){4(1 − γ 2)(η1 + η2 − 1)

+ [(1 + γ )η2 − (1 − γ )η1]2} + λ1λ2{2(1 − γ 2)(η1 + η2 − 2) + (η1η2 − 1)[η2 − η1 + γ (η1 + η2 − 2)]2

+ 4(η1η2 + 1) + 4η1η2[(1 − γ )(η1 − 1) + (1 + γ )(η2 − 1)]} > 0, (A10)

A2 = (1 − γ )2η1
[
η2

1η2 − 1 + (η1 − 1)λ2
1

] + (1 + γ )2η2
[
η1η

2
2 − 1 + (η2 − 1)λ2

1

]
+ 2(1 − γ 2)η1η2[2(η1 − 1)(η2 − 1)λ2 + η1η2 − 1] � 0, (A11)

A3 = 2
√

(η1 − 1)(η2 − 1)

(
(1 − γ )2η1 + (1 + γ )2η2 + 2(1 − γ 2)

{
η1η2 + 1 + (η1 − 1)(η2 − 1)

+ (
√

η2 − 1 −
√

η1 − 1)2 + 2
√

(η1 − 1)(η2 − 1)

[
1 − λ1λ2 cos2

(

θ

2

)]})
� 0, (A12)

A4 = η1η2

[
(1 + γ )

√
η2

2 − 1 + (
√

η2 − 1 − √
η1 − 1)2

η1
− (1 − γ )

√
η2

1 − 1 + (
√

η2 − 1 − √
η1 − 1)2

η2

]2

� 0, (A13)

A5 = 8η1η2(
√

η2 − 1 −
√

η1 − 1)2(1 +
√

η1 − 1
√

η2 − 1)(η1η2 − 1 + 2η1η2

√
η1 − 1

√
η2 − 1) � 0, (A14)

A6 = 2η1η2[(
√

η1 − 1
√

η2 − 1 + 2)2 − (η1 + η2 + 2)]. (A15)
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Since η1,2 � 1, 0 � λ1,2 � 1, and |γ | � 1, it is obvious that A1 > 0, A2,3,4,5 � 0, and

A2 = 0 ⇔ η1 = η2 = 1, (A16)

A3 = 0 ⇔ {η1 = 1} ‖ {η2 = 1}, (A17)

A4 + (1 − γ 2)
(√

A5 + A2
6 − A6

) = 0 ⇔ {η1 = η2 = 1} ‖ {η1 = η2 
= 1 & γ = 0}. (A18)

Furthermore, applying the conclusions (A16)–(A18) to Eq. (A9), it is easy to obtain that G0 � 0, and the necessary and sufficient
condition of G0 = 0 can be written as

{|γ | = 1} ‖ {λ1 = λ2 = 1 & γ = 0 & η1 = η2 
= 1 & θ1 = θ2} ‖ {λ1 = 1 & |γ | 
= 1 & η1 = η2 = 1}. (A19)

Now we prove that there is at most one zero root in ξi (i = 1, 2, 3, 4), that is, that G1 
= 0 when G0 = 0. According to
Eq. (A19), there are three cases when G0 = 0.

Case 1. If |γ | = 1, a direct calculation of Eq. (A5) shows that G1 = 4 > 0.
Case 2. If λ1 = λ2 = 1, γ = 0, η1 = η2 ≡ η, and θ1 = θ2, then it is found that G1 = 3 + η−2 > 0.
Case 3. If λ1 = 1, |γ | 
= 1, and η1 = η2 = 1, then G1 = 4 > 0.
Thus, G1 > 0 when G0 = 0. Q.E.D.

2. Proof of conclusion 2

Similarly, according to Vieta’s theorem, the necessary and sufficient condition for ζ j to have a zero root is H0 = 0. Also, H0

can be written in the form

H0 = 1 − γ 2

16η̄4
[B1(1 − γ )2 + B2(1 + γ )2 + B3(1 − γ 2) + iB4], (A20)

where

B1 = 2η1
{
2
√

(η1 − 1)(η2 − 1)[1 − λ1λ2 cos(
θ )] + (
√

η2 − 1 −
√

η1 − 1)2

+ (η1 − 1)(η1η2 + η2 − 1) + (η1 − 1)λ2
1 + (

1 − λ2
1

)}
� 0, (A21)

B2 = 2η2
{
2
√

(η1 − 1)(η2 − 1)[1 − λ1λ2 cos(
θ )] + (
√

η2 − 1 −
√

η1 − 1)2

+ (η2 − 1)(η1η2 + η1 − 1) + (η2 − 1)λ2
1 + (

1 − λ2
1

)}
� 0, (A22)

B3 = 4η1η2
{
2
√

(η1 − 1)(η2 − 1)[1 − λ1λ2 cos(
θ )] + (
√

η2 − 1 −
√

η1 − 1)2 + (η1 − 1)(η2 − 1)
(
1 − λ2

2

)}
+ 2

(
1 − λ2

1

)
(η1η2 + 1) + (η1η2 − 1)(η1η2 + 3) + (

1 − λ2
1

)2 � 0, (A23)

B4 = 4λ1λ2

√
(η1 − 1)(η2 − 1)[(1 + γ )2η2 − (1 − γ )2η1] sin(
θ ). (A24)

With the help of η1,2 � 1, 0 � λ1,2 � 1, and |γ | � 1, it is obvious that B1,2,3 � 0 and

B1,2,3 = 0 ⇔ λ1 = 1 & η1 = η2 = 1. (A25)

Moreover, it is found that B4 = 0 when λ1 = 1 and η1 = η2 = 1. Therefore, according to the conclusions above, it is easy to
obtain that the necessary and sufficient condition for H0 = 0 can be written as

{|γ | = 1} ‖ {λ1 = 1 & |γ | 
= 1 & η1 = η2 = 1}, (A26)

which is also the necessary and sufficient condition for ζ j to have a zero root.
Furthermore, from Eq. (A6), we find that H1 = 2 > 0 when H0 = 0. Thus, there is at most one zero root in ζi (i =

1, 2, 3, 4). Q.E.D.

APPENDIX B: EXPRESSIONS OF THE ENTANGLED STEADY STATE IN THE UNCOUPLED BASIS {|11〉, |10〉, |01〉, |00〉}
For convenience, we give the expressions of the entangled steady state obtained in this paper in the uncoupled basis

{|11〉, |10〉, |01〉, |00〉}.

1. Entangled steady state corresponding to Eq. (50)

First, when λ1 = λ2 = 1, η1 = η2 ≡ η 
= 1, θ1 = θ2, γ = 0, and the corresponding initial condition is satisfied, we obtain an
entangled steady state related to the initial state, which has been shown in Eq. (50) in the coupled basis. In the uncoupled basis
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{|11〉, |10〉, |01〉, |00〉} it takes the form

ρ(∞) =

⎛
⎜⎝

ρ11(∞) 0 0 0
0 ρ22(∞) ρ23(∞) 0
0 ρ32(∞) ρ33(∞) 0
0 0 0 ρ44(∞)

⎞
⎟⎠. (B1)

Then the nonzero density matrix elements in Eq. (B1) can be written as

ρ11(∞) = (η − 1)2

3η2 + 1

{
1 − ρ22(0) + ρ33(0) − [e−iθ1ρ23(0) + eiθ1ρ32(0)]

2

}
,

ρ22(∞) = ρ33(∞) = η2 + 1

3η2 + 1

{
1 + ρ22(0) + ρ33(0) − [e−iθ1ρ23(0) + eiθ1ρ32(0)]

2

}
− η2 + 3

2(3η2 + 1)
,

ρ44(∞) = (η + 1)2

3η2 + 1

{
1 − ρ22(0) + ρ33(0) − [e−iθ1ρ23(0) + eiθ1ρ32(0)]

2

}
,

ρ23(∞) = ρ32(∞)∗ = η2[ρ23(0) + e2iθ1ρ32(0)]

3η2 + 1
+ eiθ1

{
η2 − 1

2(3η2 + 1)
− η2[ρ22(0) + ρ33(0)]

3η2 + 1

}
. (B2)

2. Entangled steady state corresponding to Eq. (52)

Second, when λ1 = 1, η1 = η2 = 1, |γ | 
= 0, 1, and the corresponding initial condition is satisfied, we also obtain an
entangled steady state which has been shown in Eq. (52) in the coupled basis. In the uncoupled basis {|11〉, |10〉, |01〉, |00〉},
this state takes the form

ρ(∞) =

⎛
⎜⎝

0 0 0 0
0 ρ22(∞) ρ23(∞) ρ24(∞)
0 ρ32(∞) ρ33(∞) ρ34(∞)
0 ρ42(∞) ρ43(∞) ρ44(∞)

⎞
⎟⎠, (B3)

where

ρ22(∞) = 1 + γ

2

{
γ 2ρ11(0) + (1 + γ )ρ22(0) + (1 − γ )ρ33(0) −

√
1 − γ 2[e−iθ1ρ23(0) + eiθ1ρ32(0)]

2

}
,

ρ33(∞) = 1 − γ

2

{
γ 2ρ11(0) + (1 + γ )ρ22(0) + (1 − γ )ρ33(0) −

√
1 − γ 2[e−iθ1ρ23(0) + eiθ1ρ32(0)]

2

}
,

ρ44(∞) = 1 − [ρ22(∞) + ρ33(∞)], ρ23(∞) = ρ32(∞)∗ = −
√

1 − γ 2

2
eiθ1 [ρ22(∞) + ρ33(∞)], (B4)

ρ24(∞) = ρ42(∞)∗ = (1 + γ )[ρ24(0) + γ ρ12(0)] +
√

1 − γ 2[eiθ1ρ34(0) − γ ρ13(0)]

2
,

ρ34(∞) = ρ43(∞)∗ = (1 − γ )[eiθ1ρ34(0) + γ ρ13(0)] −
√

1 − γ 2[ρ24(0) + γ ρ12(0)]

2
e−iθ1 .

3. Entangled steady state independent of the initial state

Third, when � 
= 0, ξ1 
= 0, ζ1 
= 0, and the corresponding condition (63) is satisfied, we obtain an entangled steady state
independent of the initial state, which takes the same form as Eq. (B1) in the uncoupled basis {|11〉, |10〉, |01〉, |00〉}, and the
nonzero density matrix elements are

ρ11(∞) = �−
2Z , ρ44(∞) = �+

2Z , ρ22(∞) = η̄(2Z − �+ − �−) + W

4η̄Z ,

ρ23(∞) = [ρ32(∞)]∗ = −
√

1 − γ 2(P1 + iP2)

4η̄Z , ρ33(∞) = η̄(2Z − �+ − �−) − W

4η̄Z , (B5)
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where �± and Z have been defined in Eqs. (55) and (57) respectively, and P1,2 and W can be expressed as

P1 = 2η̄2(naλ1 cos θ1 − ngλ2 cos θ2) + 2λ1λ2ng sin(
θ ){[1 + na(1 − γ 2)]λ1 sin θ1 + ng(na + 1)(1 − γ 2)λ2 sin θ2}, (B6)

P2 = 2η̄2(naλ1 sin θ1 − ngλ2 sin θ2) − 2λ1λ2ng sin(
θ )

× {[1 + na(1 − γ 2)]λ1 cos θ1 + ng(na + 1)(1 − γ 2)λ2 cos θ2}, (B7)

W = 2γ λ1η̄(λ1na − λ2ng) + (η1 − η2)η̄
[
η̄2 − λ2

1 − (1 − γ 2)
(
2λ1λ2ng + λ2

2n2
g

)]
+ 4ngλ1λ2 sin2

(

θ

2

){
γ η̄ − ng(1 − γ 2)

[
(η2 − η1)η̄ + 2γ λ1λ2 cos2

(

θ

2

)]}
, (B8)

with 
θ = θ1 − θ2, na = 1
2 (η1 + η2 − 2), ng = √

(η1 − 1)(η2 − 1), and η̄ = 1
2 [η1 + η2 + (η2 − η1)γ ].

APPENDIX C: PROOF OF A NECESSARY CONDITION OF THE STEADY-STATE ENTANGLEMENT
INDEPENDENT OF THE INITIAL STATE

To prove that a necessary condition for steady-state entanglement independent of the initial state is

{η1 
= η2 ‖ λ1 
= λ2 ‖ θ1 
= θ2} & {η1 
= 1 ‖ η2 
= 1} & {λ1 
= 0}, (C1)

that is, to prove that K (∞) � 0 [Eq. (54)] when {η1 = η2 & λ1 = λ2 & θ1 = θ2} ‖ {η1 = 1 & η2 = 1} ‖ {λ1 = 0}, we have the
following.

(i) When η1 = η2 & λ1 = λ2 & θ1 = θ2, if the conditions shown in Table I are not satisfied, then direct calculations show that
K (∞) = 1

2 (η−2
1 − 1) � 0.

(ii) When η1 = 1 & η2 = 1, we can directly obtain that K (∞) = 0.
(iii) When λ1 = 0, K (∞) can be written as

K (∞) = U1 − U2

2η1η2
{
[η2 − η1 + γ (η1 + η2)]2 + 4(1 − γ 2)

[
η1η2

(
1 − λ2

2

) + (η1 + η2 − 1)λ2
2

]} , (C2)

where

U1 = 4η̄λ2

√
(1 − γ 2)(η1 − 1)(η2 − 1),

U2 = 4
√(

η2
1 − 1

)(
η2

2 − 1
)[

η̄2 − (1 − γ 2)Q(η1η2 + η1 + η2)λ2
2

][
η̄2 − (1 − γ 2)(η1η2 − η1 − η2)λ2

2

]
, (C3)

with Q = (η1 − 1)(η2 − 1)/(η1 + 1)(η2 + 1). It is obvious that the denominator in Eq. (C2) is positive. Thus, to prove K (∞) �
0, we just need to prove U2

1 � U2
2 , which can be written as

U2
2 − U2

1 = (η2
1 − 1)

(
η2

2 − 1
)
V+V−, (C4)

where

V± = 4η̄2 +
4(1 − γ 2)λ2

2

[
(η1η2 − 1) − (

η2
1 − 1

)(
η2

2 − 1
) ±

√
3
(
η2

1 − 1
)(

η2
2 − 1

) + (η1η2 − 1)2
]

(η1 + 1)(η2 + 1)
. (C5)

It is obvious that V+ > 0 and V− = 1 > 0 if η1 = η2 = 1. When η1 
= 1 and η2 
= 1, V− can be written as

V− = [(η1 − η2)2 + W]

[
γ + η2

2 − η2
1

(η1 − η2)2 + W

]2

+ W (4η1η2 − W )

(η1 − η2)2 + W , (C6)

where

W =
4λ2

2

[(
η2

1 − 1
)(

η2
2 − 1

) +
√

3
(
η2

1 − 1
)(

η2
2 − 1

) + (η1η2 − 1)2 − (η1η2 − 1)
]

(η1 + 1)(η2 + 1)
� 0 (C7)

and W = 0 if and only if η1 = η2 = 1. Now we prove 4η1η2 > W , as long as 4η1η2 > W|λ2=1. It can be obtained that

4η1η2 − W|λ2=1 =
√
X 2 + 16(η1 + 1)(η2 + 1)[(η1 − η2)2 + (η1 + η2)2(η1η2 + η1 + η2 − 2)] − X

(η1 + 1)(η2 + 1)
, (C8)

where X = 4
√

3(η2
1 − 1)(η2

2 − 1) + (η1η2 − 1)2. It is obvious from Eq. (C8) that 4η1η2 − W|λ2=1 > 0, so 4η1η2 > W . There-
fore, V− > 0, U1 � U2, and K (∞) � 0. Moreover, K (∞) = 0 if and only if η1 = 1 or η2 = 1. Q.E.D.
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APPENDIX D: PROOF OF SEVERAL NECESSARY CONDITIONS FOR STEADY-STATE ENTANGLEMENT
WHEN η1 = η2 ≡ η �= 1 AND γ = 0

When η1 = η2 ≡ η 
= 1 and γ = 0, some concise necessary conditions for steady-state entanglement can be derived from the
condition (59) together with η � 1 and 0 � λ1,2 � 1, i.e.,

λ1[2λ1 − λ2 cos(
θ )] > 1, η <
√

2, λ1 > 1
2 . (D1)

Proof. First, we prove ∂λc/∂η � 0. When η1 = η2 ≡ η 
= 1 and γ = 0, λc can be written as

λc =
√
J + (4 − η2 − 2η)λ2 cos(
θ )

4 + (η − 1)λ2
2 sin2(
θ )

, (D2)

where J is a positive parameter defined as

J = η2
(
4 + 4η + η2λ2

2

)[
1 − λ2

2 sin2(
θ )
] + {

7 + λ2
2 + (η − 1)[(2η − 1)(η + 3)λ2

2 + 7(η − 1) + 30]
}
λ2

2 sin2(
θ ). (D3)

Then the first derivative of λc with respect to η can be expressed as

∂λc

∂η
=

√
N + M2 − M

√
J

[
4 + (η − 1)λ2

2 sin2(
θ )
]2 , (D4)

where

M = cos(
θ )
√
J λ2

{
8(η + 1) + sin2(
θ )λ2

2[(η − 1)2 + 1]
}
, (D5)

N = [
4 + (η − 1)λ2

2 sin2(
θ )
]2{

λ8
2 sin4(
θ )(η2 + 6η + 8)2

+ 8λ6
2 sin2(
θ )

[
1 − λ2

2 sin2(
θ )
]
(η + 1)(η2 + 6η + 6)

+ (
1 − λ2

2

)
λ6

2 sin4(
θ )(2η5 + 15η4 + 32η3 + 15η2 + 96η + 80)

+ (
1 − λ2

2

)
λ4

2 sin4(
θ )η(7η3 + 58η2 + 157η + 80)

+ 4
(
1 − λ2

2

)[
1 − λ2

2 sin2(
θ )
]
η2

[
η2(2η + 1)λ2

2 + (3η + 2)2
]

+ 4
(
1 − λ2

2

)
λ2

2 sin2(
θ )
[
1 − λ2

2 sin2(
θ )
]
η(η + 1)[(η − 1)3 + 19η + 17]

+ (
1 − λ2

2

)
λ4

2 sin2(
θ )
[
1 − λ2

2 sin2(
θ )
]
[(η − 1)2η4 + 19η4 + 24η3 + 20η2 + 96η + 64]

}
. (D6)

Since 0 � λ2 � 1 and η � 1, it is obvious that N � 0. Thus ∂λc/∂η � 0.
Second, we prove ∂λc(1, λ2,
θ )/∂[λ2 cos(
θ )] > 0. From Eq. (D2) we easily obtain that

λc(1, λ2,
θ ) = 1
4

[
λ2 cos(
θ ) +

√
8 + λ2

2 cos2(
θ )
]
. (D7)

Then

∂λc(1, λ2,
θ )

∂[λ2 cos(
θ )]
=

√
λ2

2 cos2(
θ ) + 8 − λ2 cos(
θ )

4
√

λ2
2 cos2(
θ ) + 8

> 0. (D8)

Now, according to 0 � λ1,2 � 1, η � 1, ∂λc/∂η � 0, ∂λc(1, λ2,
θ )/∂[λ2 cos(
θ )] > 0, and the condition (59) (i.e., λ1 > λc),
we obtain

1 � λ1 > λc(η, λ2,
θ ) � λc(1, λ2,
θ ) � λc(1, 1,±π ) = 1
2 , (D9)

in which λ1 > λc(1, λ2,
θ ) can be equivalently expressed as

λ1[2λ1 − λ2 cos(
θ )] > 1. (D10)

From the inequality (D9), 1 > λc(η, λ2,
θ ) can be equivalently expressed as

cos(
θ ) >
η2 + 2η − 4 −

√
4(η − 1)3 + (3η − 4)2 + (η2 − 3)(η − 1)2λ2

2

(η − 1)λ2
. (D11)

Combining the inequality (D11) with cos(
θ ) � 1, we can further obtain that

1 > λ2 >
4 − η3 − η2

(η − 1)(η2 − 4)
& η < 2. (D12)
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When λ2 → 1, we can obtain from the inequality (D12) that the maximal upper limit of η to guarantee λ1 > λc is
√

2, i.e.,

η <
√

2 (D13)

is a necessary condition for steady-state entanglement. Q.E.D.
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