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Quantum simulation of quantum field theory in the light-front formulation
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Quantum chromodynamics (QCD) describes the structure of hadrons such as the proton at a fundamental level.
The precision of calculations in QCD limits the precision of the values of many physical parameters extracted
from collider data. For example, uncertainty in the parton distribution function is the dominant source of error
in the W mass measurement at the Large Hadron Collider. Improving the precision of such measurements is
essential in the search for new physics. Quantum simulation offers an efficient way of studying quantum field
theories (QFTs) such as QCD nonperturbatively. Previous quantum algorithms for simulating QFTs have qubit
requirements that are well beyond the most ambitious experimental proposals for large-scale quantum computers.
Can the qubit requirements for such algorithms be brought into range of quantum computation with several
thousand logical qubits? We show how this can be achieved by using the light-front formulation of quantum
field theory. This work was inspired by the similarity of the light-front formulation to quantum chemistry, first
noted by Wilson [Nucl. Phys. B, Proc. Suppl. 17, 82 (1990)].
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I. INTRODUCTION

Feynman first proposed using one quantum system to
simulate another [1]. A decade later, the first general quan-
tum algorithms appeared [2–6], with applications to quan-
tum chemistry [7], condensed matter [8], and high-energy
physics [9]. Quantum simulation is now recognized as a sig-
nificant future application of quantum computation [10–12],
especially in the context of near-term devices. Quantum al-
gorithms for quantum simulation with almost optimal scaling
are now known [13–17]. Applications of these methods to
condensed matter and quantum chemistry are well developed
theoretically [18–27], and experiments have been performed
on many different quantum architectures [28–45].

Quantum simulation of relativistic quantum field theory
poses new challenges. Among these challenges are the ab-
sence of any fixed particle-number formulation of relativistic
quantum theory, multiple particle types with varying statistics,
complicated interactions and observables, nontrivial vacuum
structure, and gauge invariance. Nevertheless, quantum sim-
ulation is the only efficient approach to the study of general
quantum field theories (QFTs) in the nonperturbative regime.

Quantum simulation of high-energy physics can be ap-
proached via analog simulation of lattice gauge theories in
cold atoms or ions [46–52], analog simulation using contin-
uous variable quantum systems [53,54], or digital simulation
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of quantum field theories using conventional qubits and
gates [9,55–57]. Theoretical proposals for digital quantum
simulation of quantum field theory [9,56,58–60] were fol-
lowed by experimental implementations of simple models
such as the Schwinger model in 1 + 1 dimensions [(1 +
1)D] [37,61].

However, ab initio digital quantum simulation of general
QFTs using existing techniques requires hundreds of thou-
sands of logical qubits [62,63]. This is far beyond what is
required for Shor’s algorithm, which has been the subject of
serious architectural studies estimating requirements of sev-
eral thousand logical qubits [64,65].

Can the ideas explored for quantum simulation of quantum
chemistry be used to enable simulation of QFT on quantum
computers with several thousand logical qubits? Fortunately,
we can be guided by Wilson, who suggested [66] that the
light-front formulation of QFT [67–70] is amenable to the
orbital representations used in chemistry. The light-front for-
mulation is now well developed [71]. Among its notable
advantages are a trivial vacuum and the absence of ghost
fields. The linearity of equations of motion further reduces the
number of independent variables. While the discretized light-
front quantization (DLCQ) [72] provides a natural framework
for simulating fundamental interactions ab initio [73], the
basis light-front quantization (BLFQ) [73] approach is well
suited for constructing effective theories; in this work, we
focus on the former.

The main goal of this paper is to demonstrate that the
light-front formulation is advantageous for digital quantum
simulation. First, the second-quantized form of the light-
front Hamiltonian permits a highly efficient encoding scheme,
with qubit requirements scaling logarithmically with the
space-time dimension. This reduces qubit requirements by
several orders of magnitude: for example, the qubit numbers
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for the calculation in [62] are reduced from ∼400 000 to
∼1360 qubits. Second, the Hamiltonian in this encoding is
sparse1 [72,74], so one can employ sparsity-based simulation
algorithms that are almost optimal in all parameters [13,16].
Third, the light-front approach is well adapted to calcula-
tion of static quantities such as parton distribution functions,
hadronic tensors, form factors, and decay constants [75].
All of these can be calculated directly from the light-front
wave function, within the Fock space sector with some fixed
light-front momentum.2 This leads to a simple form for the
corresponding qubit measurement operators.

These advantages apply to any light-cone formulation of
a relativistic field theory. In this work we focus on the DLCQ
approach, which amounts to solving the fundamental theory in
the plane-wave basis [72]. Within a complementary approach,
BLFQ, one instead chooses the set of basis functions and
effective interactions that are most suitable for a particular
problem of interest. Quantum simulation algorithms based on
this latter technique will be investigated in subsequent work.

We focus on the quantum computation of static quanti-
ties, which in our context refers to single-particle properties
such as parton distribution functions (PDFs) [72,77,79], form
factors [76], and decay constants [78]. PDFs constitute the
dominant source of uncertainty on multiple cross-section
predictions at the Large Hadron Collider (LHC) [80,81], sub-
stantially affecting the reach of searches for new physics at
high final-state masses. They affect experimental results as
they limit the accuracy to which precision electroweak observ-
ables can be extracted from LHC data. To give an example, the
difference in the W + and W − masses as measured at the LHC
is 29.2 ± 28 MeV, with the PDF uncertainty accounting for
23.9 MeV, or 85%, of the uncertainty [82].

Lattice calculation techniques on a classical computer have
been very successful at calculating static properties of quan-
tum chromodynamics (QCD) in nonperturbative regimes. For
example, they provide the most precise way of determining
heavy-quark masses, improving the uncertainty on c-quark
mass over nonlattice predictions by more than a factor of
2 [83,84]. Similar improvement has been obtained on the
estimate of the strong coupling constant αS [83]. This has a
direct impact on the high-energy collider physics programs,
as the parametric uncertainty on heavy-quark masses is the
dominant uncertainty on the determination of the branching
ratio of most of the Higgs boson decay channels. However,
the static property that has the largest impact on physics at the
current energy frontier is PDF.

Exploiting the factorization of short-distance physics from
universal large-distance phenomena, the PDFs used at the
LHC are obtained from a parametrized asymptotic form at low
resolution (Q2), perturbatively evolved to higher resolution at
which cross sections in the partonic center-of-mass system are
calculated. This low-Q2 parametric form is largely responsi-
ble for the uncertainty in the knowledge of the PDF. A more

1Here, sparsity refers to the maximum number of off-diagonal
elements in any column (or row, since the Hamiltonian is Hermitian).

2This corresponds to switching to the Drell-Yan-West
frame [72,73,76–79].

precise prediction of the PDF in such a regime, and eventu-
ally at higher Q2, would therefore significantly improve the
precision of theoretical predictions and of many experimental
measurement results at LHC energies.

Currently, the dominant approach for performing ab initio
QCD calculations in the strong coupling regime is lattice
QCD (LQCD) [80,81]. Within the traditional approach to
LQCD, one evaluates the PDFs indirectly, by calculating the
matrix elements of local twist-two operators [80,81]. From
a sufficient number of these operators the Mellin moments
of PDFs can be reconstructed. In practice, one is limited
to the first three moments because power-divergent mixing
between the operators occurs due to the reduced symme-
tries of the space-time lattice. Considerable progress has
been made recently by applying large-momentum effective
theory techniques [85]. Quasidistributions [85–94] allow for
the equivalent of higher moment calculations, by matching
higher moment calculations to the effective field theory. More
recent approaches include finding PDFs from the hadronic
tensor [95–99] and Compton amplitude [100–104], using
pseudo-PDFs [105–111], and calculating good lattice cross
sections [112–114]. As noted above, these calculations are at
present not sufficient to reduce the theoretical uncertainty due
to the PDF in many high-energy physics measurements such
as [82].

Lattice QCD is based on path-integral quantization, and
thus requires Wilson gluon lines and loops to maintain
the color gauge invariance. Finite-size lattices with periodic
boundary conditions constrain the simulations (as do the pre-
scriptions for fermion sources), causing the fermion-doubling
problem. The numerical sign problem severely complicates
Monte Carlo sampling in strongly interacting fermionic sys-
tems. On the other hand, the second-quantized approach in
light-front formulation avoids Wilson loops and gauge group
discretization, but eventually must treat the gluon fields on an
equal footing with the quark fields and their interactions.

Previous work on digital simulation of QFT has mainly
focused on dynamic quantities like scattering cross sec-
tions [9,56,58,59]. The possibility of studying parton physics
on quantum computers was first explored in [62]. These au-
thors proposed an algorithm for calculating PDFs and the
hadronic tensor of the massive Thirring model, based on
equal-time quantization of the lattice Hamiltonian. However,
because these approaches are based on an equal-time lattice
formulation of QFT they lead to daunting qubit requirements.

We study the computation of static quantities by dig-
ital quantum simulation in the light-front formulation. In
Sec. II, we review the light-front treatment of a sim-
ple (1 + 1)D model containing coupled fermion and scalar
fields [115–117]. In the front form, the Hamiltonian matrix
of the field theory quantized in a box is block diagonal. Each
finite-size block approximates the Hilbert space of the theory
with a certain precision, the so-called harmonic resolution.
The harmonic resolution therefore plays the same role as
the number operator in, for example, simulations of quantum
chemistry. For this model, we introduce an analog of the QCD
parton distribution function, and propose an algorithm for its
calculation. In Sec. III, we present the algorithm for calculat-
ing this quantity on a quantum computer, and provide detailed
resource estimates for qubit and gate count. In Sec. IV, we
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discuss the generalization to (3 + 1)-dimensional [(3 + 1)D]
QCD, estimate the required qubit resources, and describe how
to calculate PDFs, decay constants, and form factors using our
algorithm.

II. LIGHT-FRONT QUANTIZATION OF THE (1 + 1)D
YUKAWA MODEL

We now consider a simple (1 + 1)D model with La-
grangian [116,117]

L = 1
2 (∂φ)2 − 1

2 m2
Bφ2 + iψγ μ∂μψ − mF ψψ − λφψψ.

(1)
Here φ and ψ are mutually interacting real boson and fermion
fields. As in QCD, due to confinement emerging at low ener-
gies, the eigenstates of the interacting theory can be thought of
as composite particles: bound states which are made of quanta
of fields φ and ψ , the partons. We will introduce analogs of
the QCD parton distribution functions in this model.

In [9,56,62], authors studied algorithms based on equal-
time quantization and spatial discretization of the wave
function. We instead use light-cone coordinates x± and work
with the second-quantized formulation of the theory known as
the discretized light-cone quantization (DLCQ) [72].

A. Model

Equal-time coordinates describe the Minkowskian space-
time as seen by a massive observer. The (1 + 1)D metric
and gamma matrices can be chosen as g00 = −g11 = 1,
g01 = g10 = 0, γ 0 = σ3, γ 1 = iσ2 where σ3 and σ2 are the
Pauli matrices in the standard basis. Light-front (LF) coor-
dinates are obtained by performing the following coordinate
transformation:

x± = x0 ± x1, (2)

thus switching to the so-called light-front time (x+) and
distance (x−). Physically, we may think of this as describ-
ing the experience of a massless observer. The metric is
g++ = g−− = 0, g+− = g−+ = 2, and the gamma matrices
are defined as γ ± = γ 0 ± γ 1. The only independent vari-
ables in the LF formulation of the theory (1) are the fields φ

and ψ (+), where ψ (±) = 	(±)ψ = 1
4γ ±γ ∓ψ . Here 	(±) act

on the spinor field as projectors since (	(±) )2 = 	(±) and
	(+) + 	(−) = 1 [116].

For a system quantized in a box x− ∈ (−L, L), the plane-
wave expansions of the free fields are

φ(x+, x−) =
	∑

n=1

1√
4πn

(ane−ipμ
n xμ + a†

neipμ
n xμ ) , (3a)

ψ (+)(x+, x−) = u√
2L

	∑
n=1

(bne−ipμ
n xμ + d †

n eipμ
n xμ ) , (3b)

where 	 is the momentum cutoff and u is a momentum-
independent spinor normalized to unity (unlike in equal-time
quantization, where un depends on the momentum quantum
number n). Following [116,117], in (3) we impose periodic
boundary conditions. The discretized momenta and energies

of the free particles are

p+
n = 2π

L
n, p−

n = m2

p+
n

, n = 1, 2, 3 . . . , 	 (4)

where m is either the boson or fermion bare mass. The cre-
ation and annihilation operators obey canonical commutation
relations: [am, a†

n] = δmn, {bm, b†
n} = δmn, {dm, d †

n } = δmn.
When quantizing in equal-time (x0, x1) coordinates, a

complete set of commuting observables (CSCO) for the the-
ory is given by the charge Q, momentum P, and energy E .
Under the transformation (2) to LF coordinates, these become
P± = E ± P. The charge Q, P+, and P− form a CSCO in the
light-cone coordinates [115].

The dimensionless operators K (the so-called harmonic
resolution) and H (which we shall call the Hamiltonian) are
defined by P+ = 2π

L K , P− = L
2π

H . In terms of these light-
front operators, the invariant mass operator of the theory can
be expressed as

M2 = E2 − P2 = P+P− = KH. (5)

A study of bound state masses and their renormalization was
performed in [117]. We defer this discussion until Sec. III F.

Note that as one switches from P+ and P− to the di-
mensionless operators K and H , the particular value of L
may only become important at the stage of converting from
light-cone coordinates to equal-time quantities. As it follows
from Eq. (5), the value of L is irrelevant for calculating the
mass spectrum. As we shall see later, neither will it enter the
expression for parton distribution functions (which is to be ex-
pected since the latter describe the relative parton momentum
distributions within the bound state).

The second-quantized expressions for H , K , and Q in terms
of the creation and annihilation operators are obtained from
Lagrangian (1) by means of the Noether procedure [116]. The
charge and harmonic resolution are

Q =
∑

n

(b†
nbn − d †

n dn), K =
∑

n

n(a†
nan + b†

nbn + d †
n dn).

(6)
The Hamiltonian H is a sum of four types of terms:

H = HM + HV + HS + HF . (7)

HM is a (diagonal) mass term, while HV , HS , and HF contain a
number of interaction terms qubic and quartic in creation and
annihilation operators (see Appendix A).

The elements of the Fock space are labeled by orbital occu-
pancies for the fermionic, antifermionic, and bosonic degrees
of freedom:

|{̂n j, ŵ j}〉 = |n1
w1 , n2

w2 , . . . , nN
wN ; n1

w1 , n2
w2 , . . . , nwN

N
;

ñw̃1
1 , ñw̃2

2 , . . . , ñw̃Ñ

Ñ
〉, n j, n j, ñ j = 1, 2, . . . , 	,

w j,w j ∈ {0, 1}, 0 � w̃ j � �	/̃n j�. (8)

In Eq. (8) we only list modes with nonzero occupancies, and
the hat is used to collectively denote all the particle species.

The crucial fact is that the spectrum of the operator P+ is
bounded from below, unlike that of the equal-time momen-
tum P. In the equal-time formulation, in an inertial reference
frame, the Fock space sector of any fixed total momentum
contains an infinite number of multiparticle states with that
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momentum since those states can contain arbitrary numbers of
left- and right-moving particles whose momenta cancel each
other. Therefore, in order to obtain a Hilbert space of a finite
dimension, one has not only to introduce a momentum cutoff,
but also to limit the number of bosonic quanta in a Fock state.

To see how this changes in the light front, consider an
observer moving at the speed of light to the left in equal-time
coordinates. In the light-front formulation, this observer has
constant light-front coordinate (i.e., is stationary), so to the
observer all massive particles appear to be moving to the right,
and have positive light-front momentum. Therefore, there can
be no cancellation of momenta due to left- and right-moving
particles. This implies that in a theory quantized in a box there
exists a finite number of states with a given value of K . Thus,
by restricting to a particular value of K one naturally obtains
a finite-dimensional Hilbert space without the need to cut off
the dimension of the Hilbert space by hand. For a fixed eigen-
value of Q, it turns out that the blocks of the Hamiltonian H
corresponding to larger eigenvalues of K represent the Hilbert
space of the system with a higher resolution.

Within a block of fixed harmonic resolution, the Hamil-
tonian is proportional to the mass matrix, Eq. (5). Diagonal-
ization of a fixed-K block of M2 gives a set of bound states
|�K,s〉 with masses MK,s: these are the physical states of the
interacting theory:

M2|�K,s〉 = KH |�K,s〉 = (MK,s
)2|�K,s〉. (9)

Increasing K results in considering more bound states, with
higher resolution. Each state s = s∗ first appears at some Ks∗ ,
and is also contained in all the blocks with K > Ks∗ . By
diagonalizing Hamiltonian blocks of relatively small K one
can get a good idea of the general form of the spectrum (see
Fig. 1 in [117] and the accompanying discussion).

For a fixed K , the lowest eigenvalues of the mass matrix
in the Q = 0 and 1 sectors correspond to the physical (renor-
malized) boson and fermion masses. This gives a constraint
(the so-called renormalization condition), obtained by insist-
ing that these physical masses match their known empirical
values. From this constraint we determine the bare masses
appearing in the Hamiltonian matrix, which produces the rest
of the physical spectrum upon diagonalization; see the discus-
sion in Sec. III F.

Although the momentum cutoff 	 in (8) is not used to
truncate the Hamiltonian matrix it corresponds to, it explicitly
appears in the Hamiltonian due to the presence of the so-called
self-induced inertias (see Appendix A). These play an impor-
tant role in the mass renormalization [117], and are related to
vacuum polarization and self-energy terms in the equal-time
quantization [68]. In the next section we will show how the
wave functions of mass eigenstates can be used to calculate
the analogs of QCD PDFs in this model.

B. Parton distribution functions

The light-front approach to QCD is appealing because nu-
merous quantities of practical interest, such as PDFs, elastic
form factors, and decay constants can be calculated directly
from the light-front wave function [72,73]. The PDF, f(x),
represents the probability of finding a parton of type  carry-
ing a certain momentum fraction x = p+

n /P+ = n/K , where

0 < x � 1, inside a bound state (hadron) with total light-front
momentum P+ = 2πK/L. Given a bound state of the inter-
acting theory, the PDF can be calculated as an expectation
value of the single-mode number operator summed over all
the quantum numbers other than the longitudinal momen-
tum [75,118,119] (see also Sec. IV B). However, since in
our model the longitudinal momentum is the only quantum
number, the PDFs of a particular bound state |�K〉 can be
calculated simply as

f(x) = f(p+
n /P+) = f(n/K ) = 〈�K |N|�K〉, (10)

with the number operators of different parton species given by

N f (n/K ) = b†
nbn, Na(n/K ) = d †

n dn, Nb(n/K ) = a†
nan.

(11)

These define the number of partons carrying momentum frac-
tion x = n/K inside a hadron studied at harmonic resolution
K . Measuring the expectation values as in (10) results in eval-
uating PDFs at K points: x = 1/K, 2/K, . . . , 1. For a properly
normalized state (with 〈�K |�K〉 = 1) of total charge Q, the
normalization of PDFs is given by

K∑
n=1

n[ f f (n/K ) + fa(n/K ) + fb(n/K )] = K,

K∑
n=1

[q f f f (n/K ) + qa fa(n/K )]

= q f

K∑
n=1

[ f f (n/K ) − fa(n/K )] = Q, (12)

which reflects that fact that momenta and charges of partons
should add up to those of the hadron.

The PDF is also a function of the probing scale Q2, which
is the magnitude of momentum exchanged in a scattering
process. The probing scale Q2 can be introduced by imposing
a cutoff on bound states [72]. A particular way of doing
this is achieved by only considering Fock states |{ p̂ j, ŵ j}〉 of
invariant momentum squared below Q2 in the expansion of
the bound state |� (Q)

K 〉. In the absence of spin and transverse
directions this constraint is

P+P−
free =

(∑
j

ŵ j p̂+
j

)(∑
j

ŵ j p̂−
j

)

= K

(∑
j

ŵ j

m2
j

n̂ j

)
� Q2, (13)

where the sums go over all the excited parton modes.3 As
follows from Eq. (2), in the LF formalism the states of large
equal-time momentum are those with either p+ → ∞ or
p+ → 0. While the former option is automatically excluded in
a block of fixed K , condition (13) ensures that the light-front

3Note that in Eq. (13) for the (1 + 1)D theory, the only dimen-
sionful quantities on the left-hand side are the masses (but not the
box size L). In higher dimensions, the left-hand side of Eq. (42) also
depends on 	⊥ and L⊥.
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FIG. 1. At fixed harmonic resolution K , one can calculate PDFs
up to the energy scale Q2

max(K ). Once calculated at some energy
scale, the PDFs can be evolved according to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations.

momenta are not too small. In terms of truncated bound states,
one calculates the PDFs at probing scale Q2 as

f(n/K,Q) = 〈� (Q)
K

∣∣N

∣∣� (Q)
K

〉
. (14)

This quantity is simply an expectation value of an unintegrated
number operator, which may be calculated using a quantum
computation that we discuss in Sec. III.

For a fixed K , there exists an upper bound on the free in-
variant mass squared [the left-hand side of Eq. (13)]. This sets
the maximum energy scale Q2

max(K ) up to which one can cal-
culate PDFs at the given harmonic resolution. PDFs calculated
at a particular value of Q2 can be evolved according to the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions [75,79,120–123], including beyond Q2

max(K ) if needed:
this is illustrated in Fig. 1. We show bosonic and fermionic
parton distribution functions for the massive Yukawa model
defined in Sec. II evaluated at harmonic resolution K = 14 in
Fig. 2.

III. QUANTUM SIMULATION IN THE LIGHT FRONT

In this section we present an algorithm for simulation of
QFT in the front form on a digital quantum computer. In
Sec. III A we describe the scaling with harmonic resolution

FIG. 2. Bosonic and fermionic parton distribution functions, as
defined in Eq. (10), for the massive Yukawa model defined by (1)
evaluated for harmonic resolution K = 14. The values of parame-
ters are chosen as in [117]: m̃B = 6.7, m̃F = 1, λ = 1, 	 = 2048.
Shown for the M = 18.96 eigenstate with different values of momen-
tum cutoff: Q2 = Q2

max, 202, 172, where Q2
max = 40.22. The choice

Q2 = Q2
max corresponds to taking all the Fock states from the K = 14

sector into account.

of the dimension of the Hilbert space. In Sec. III B we present
three encodings, and explain the tradeoffs between efficiency
of encoding and simplicity of encoded operations. In Sec. III C
we discuss the cost of time evolution. In Sec. III D we discuss
the preparation of bound states: the eigenstates of the interact-
ing Hamiltonian. In Sec. III E, we discuss the measurement
procedure used to obtain PDFS which, as was explained in
Sec. II B, reduce in the DLCQ formalism to evaluating the
expectation value of the number operator (14). The methods
we describe in this section are optimal in both qubits and gates
up to logarithmic factors.

In what follows all the resource requirements will be
given in terms of the harmonic resolution K (the dimension-
less light-cone momentum), for two reasons. First, numerous
quantities of physical interest can be calculated within a single
Fock space sector with fixed K . In (1 + 1)D, one example is
given by the PDF, our focus in this paper; another example is
the hadronic tensor [62]. A straightforward generalization to
(3 + 1)D would allow one to calculate electromagnetic form
factors and decay constants: this is discussed in Sec. IV. In
such calculations, K will define the number of points at which
these quantities are evaluated. The calculation of dynamical
quantities like cross sections requires wave packets expanded
in a basis of states having different total light-front momenta.
In this case one would consider all the blocks of size up to
some maximum K . In both cases K controls the resolving
power of the theory in the light front, and so is a natural
quantity with which to express computational cost.

A. Hilbert space dimension

In (1 + 1)D, for each harmonic resolution K we have a
finite-dimensional Hilbert space Dk , which can be further split
into blocks Dk,Q of fixed charge Q. A lower bound on the di-
mension of Dk is given by considering bosonic configurations
only, which belong to the DK,0 subblock. These are labeled by
integer partitions of K , where the momenta ñ j are the parts of
the partition, and the occupancies w̃ j are the multiplicities:{

(̃n j, w̃ j )|1 � j � Ñ |
∑

j

w̃ j ñ j = K

}
. (15)

The number of partitions of K is denoted p(K ): its asymptotic
behavior is log2 p(K ) = �(

√
K ) (see, for example, Chap. 5

of [124]). Therefore, dim Dk � dim DK,0 � p(K ).
Adding fermions and antifermions gives a subleading cor-

rection to the dimension of Dk since their occupancies are
w j,w j ∈ {0, 1} due to the Pauli exclusion principle. Restrict-
ing to a particular value of Q does not change the asymptotic
behavior either: for nonzero Q we have

dim Dk � dim DK−Q(Q+1)/2,0 � p[K − Q(Q + 1)/2] (16)

since all purely bosonic configurations of the DK−Q(Q+1)/2,0

sector can be turned into those of Dk,Q by adding fermions
with momenta ranging from 0 to Q. Therefore, independent of
whether or not we restrict to a fixed value of Q, the asymptotic
behavior of the Hilbert space dimension is �[exp(

√
K )].
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TABLE I. Dependence on K of properties of the three encodings of the Fock space in (1 + 1)D. The direct mappings (which store the
occupancies of all momentum modes) require Õ(K ) qubits to encode K modes. In these schemes the Hamiltonian is a sum of Pauli terms of
locality O(log K ). The compact mapping stores the occupancies of only nonempty momentum modes, giving an asymptotic scaling of Õ(

√
K )

qubits [which is optimal up to logarithmic factors (see Sec. III A)]. However, the Hamiltonian is no longer local in this encoding, so we must
instead use sparsity-based techniques for simulation (discussed in Sec. III D and Appendix C).

Mapping Qubit number Q Hamiltonian locality Hamiltonian sparsity

Direct-direct O(K log K ) O(log K )
Direct-compact O(K ) O(log K )
Compact O(

√
K log K ) O(K2)

B. State encoding

The light-front representation of the theory has given us
a formulation in terms of orbitals representing fermions,
antifermions, or bosons with given momentum. We can use an
analog of the direct mapping as in quantum chemistry [7,125],
which amounts to assigning a particular qubit register to each
momentum mode. For fermions, this means having a single
qubit for each fermionic degree of freedom. The anticommut-
ing creation and annihilation operators can be defined with
the aid of the Jordan-Wigner, Bravyi-Kitaev, or other related
mappings [23,25,126–129]. The mapping of bosonic degrees
of freedom has been previously studied in [130–133]. We con-
sider two variations of the direct scheme which differ in how
the bosons are encoded. The resulting encoding schemes will
be referred to as the direct-direct or direct-compact mappings.

Within a block of harmonic resolution K , the occupancy
w̃n of the bosonic mode of momentum n is bounded by the
requirement that the maximum momentum carried by that
mode is at most the total light-front momentum: w̃ j � r̃n,
where r̃n = �K/n�.

The direct-direct mapping, first introduced in [130], uses
a unary encoding requiring r̃n qubits for storing r̃n + 1 levels
of each bosonic mode. This results in a total of O(K log K )
qubits. The bosonic creation and annihilation operators acting
on the nth mode are represented by a sum of r̃n 2-local terms.
However, since the locality of the fermionic operators is at
least logarithmic in K , one may naturally want to trade locality
of bosonic operators for a reduced number of qubits.

We therefore describe the direct-compact mapping, which
uses a binary encoding of the occupation number of the
bosonic modes and requires �log2 r̃n� qubits for encoding r̃n
levels, giving a total of O(K ) qubits. In this case, the creation
and annihilation operators contain a sum of r̃n terms, each
of which is log2 r̃n-local. This encoding was recently used to
describe molecular vibrations [131–133] and is described in
detail in [132]. A related mapping is described in [131].

The optimal encoding in terms of qubit resources is the
compact encoding scheme. This was first described for chem-
istry in [7] and efficient algorithms were given in [21,24]. For
our model the compact mapping stores only the momentum
modes with nonzero occupancies:

|(̂n1, ŵ1), (̂n2, ŵ2), . . .〉. (17)

For such an encoding, the number of qubits scales as
O(

√
K log K ); by comparing this to the Hilbert space dimen-

sion (see Sec. III A) we can see that it is indeed optimal up
to logarithmic factors. The compact encoding is discussed

in detail in Appendix B. Use of this fully compact scheme
requires simulation algorithms which depend on the sparsity
of the Hamiltonian in the chosen basis. Fortunately, methods
based on sparsity scale optimally with almost all simulation
parameters [13,17]. The sparsity of the Hamiltonian of our
model is shown in Fig. 3 and discussed in detail in Sec. III C.
We focus our efforts on quantifying the simulation complexity
of the compact mapping because of its optimality. The prop-
erties of the three mappings are summarized in Table I.

C. Time evolution at constant harmonic resolution

The goal of our simulation algorithm is first to prepare the
eigenstates of the interacting quantum field theory described
by Lagrangian given in Eq. (1). In each sector of fixed har-
monic resolution K and charge Q, the lowest mass-energy
particle is a physical particle of the theory. We then aim to
perform measurements on the state to determine properties of
these composite particles such as PDFs and form factors.

State preparation is a basic element of any quantum simu-
lation algorithm. In this section we give bounds on the cost in
terms of quantum gates required to evolve a state in a subspace
of fixed harmonic resolution K for time t , to precision ε.
We use the methods of [13,17,134], which are optimal in all
relevant parameters.

Sparse Hamiltonians may be specified efficiently by two
oracles: functions that can be called to give the defining infor-

FIG. 3. Hamiltonian sparsity vs K . The curves label the upper
and lower bounds on the sparsity, while the data points mark the
exact sparsities for K = 3, 4, . . . , 19. The upper and lower bounds
are given by ηupper = 1

2 K2 + 3
2 K − 1 and ηlower = 1

2 K2 − 3
2 K + 1

(derived in Appendix A 2).
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mation for the Hamiltonian. In Appendix C we give details of
implementing two oracles needed by the methods of [13,17].
The first is OF , an oracle that enumerates the positions of
nonzero entries of the Hamiltonian in a given row. OF is
defined in Appendix C 1 where we show that the cost of OF

for the compact mapping is O(
√

K log K ). The second is OH ,
an oracle that computes the value of a nonzero entry to p bits
of precision given its indices. OH is defined in Appendix C 2
where we show that the cost of OH for the compact mapping
is O(K log K + p2 log p).

Using Theorem 1 from [13], simulation of time evolution
for time t under a Hamiltonian on n qubits of sparsity d and
maximum matrix element ||H ||max to precision ε is given in
terms of the parameter τ = d||H ||maxt . The number of calls
to OH and OF is

O

(
τ

log τ/ε

log log τ/ε

)
, (18)

and an additional

O

(
τ [n + log5/2(τ/ε)]

log τ/ε

log log τ/ε

)
(19)

gates are required.
To simulate time evolution in a subspace of constant

harmonic resolution K for time t in the compact mapping
we have n = O(

√
K log K ), ||H ||max = O(K log K/	), d =

O(K2) and, hence, τ = O(tK3 log K/	). The number of or-
acle calls required is then Õ(tK3), and the number of gates
required for this number of calls is Õ(tK4) if p is polylogarith-
mic in K . The number of additional gates required is Õ(tK7/2)
and so the overall simulation cost up to logarithmic factors is
Õ(tK4).

D. State preparation

State preparation by any of the standard schemes requires
simulation of time evolution. These schemes include phase
estimation, adiabatic state preparation [9,135,136], as well
as variational approaches [40] and quantum imaginary-time
evolution [137]. Adiabatic state preparation performs time-
dependent evolution under a Hamiltonian varying along a
path connecting the target Hamiltonian to some initial, simple
Hamiltonian. The minimum time this evolution can take while
preserving the system in the ground state is determined by
the minimum gap along the path. To determine the cost of
adiabatic state preparation we must bound the spectral gap
along a chosen adiabatic path, either rigorously or by invoking
physical arguments. Assuming a gapped adiabatic path can
be found, one must quantify the cost of simulation of evolu-
tion under a time-dependent Hamiltonian to perform adiabatic
state preparation.

In our system, K controls the precision with which the
theory describes the field theory in the front form. We consider
adiabatic paths such that the max norm of the Hamiltonian is
everywhere upper bounded by the max norm of the Hamilto-
nian with the final K . We conjecture that amongst such paths
a gapped adiabatic path exists that connects the theory at low
K to the theory at high K . The property of the space of paths
that we shall use in the analysis below is that the max norm of

the Hamiltonian varies as O(tK/T ) for t ∈ [0, T ], where T is
the length of the adiabatic evolution.

We will use the results of [134] to bound the cost of
adiabatic state preparation. Specifically, we use Theorem 10
of [134] which, given a Hamiltonian on n qubits, with sparsity
d and a bound on the integral of the maximum matrix element
of ||H ||max along the path, ||H ||max,1, gives the number of
queries to HF and HO required as

O

(
d||H ||max

log d||H ||max,1/ε

log log d||H ||max,1/ε

)
(20)

and a number of additional gates scaling as Õ(d||H ||max,1n).
This method requires two additional oracles: one to compute
a scaling factor, and one to compute the time-dependent max
norm. Many paths obeying our max norm condition can by
realized with O(log K ) gates and so only change the scaling
by logarithmic factors.

The cost of adiabatic evolution for time T by this method is
given by setting d = Õ(K2), ||H ||max,1 = KT , and using the
costs of the oracles OH and OF above to obtain a total cost
of Õ(K4T ), which is the same as that for time-independent
simulation. It remains a matter of future work to provide
rigorous results on the efficiency of this and other adiabatic
state preparation procedures.

Our Hamiltonian commutes with both K and Q, and we are
interested in preparing states of specific charge in a sector of
fixed K . Our compact encodings do not restrict to states of
fixed charge. Exact evolution under the Hamiltonian will pre-
serve the expectation values of these quantities given by the
initial state. However, time-dependent evolution or approx-
imate evolution under the Hamiltonian may cause leakage
to states of different K and Q for the direct mappings, and
states of different Q in the case of compact mappings. We
can therefore improve our state preparation by using phase
estimation of K and Q after adiabatic evolution to project
back to the desired sector. If the leakage to sectors of incorrect
K or Q is small, then with high-probability phase estimation
of those operators will project us to the desired value. In
the low-probability case that phase estimation results in the
incorrect value of K or Q, we simply discard the result and
start the state preparation procedure again.

The existence of small example problems for small K
makes the implementation of such calculations on noisy in-
termediate scale quantum (NISQ) computers a possibility.
Such calculations would attempt to variationally minimize the
expectation of the invariant mass in a given sector of K and Q,
and then perform measurements to estimate the PDFs in this
variational ansatz [40]. An alternative to variational optimiza-
tion of an ansatz is to use another heuristic such as quantum
imaginary-time evolution (QITE) [137,138]. The BLFQ for-
mulation [73] is particularly useful when one considers NISQ
implementations [139].

E. Measurement

One of the benefits of the LF formulation of QFT for
quantum simulation is the simple form of measurement op-
erators. This is due to the fact that one can calculate various
observables directly from the LF wave function [72]. The
determination of PDFs values at a fixed total light-front
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momentum K can be accomplished by estimation of single-
mode operators, as can be seen from Eq. (10).4 This task can
be performed efficiently on a quantum computer.

For the direct mappings, Eq. (11) could be written simply
as a sum over projectors on the qubit registers corresponding
to the occupancies of modes of momentum n. For the compact
mappings, we also wish to construct an operator whose eigen-
states are the compact Fock states, and whose eigenvalue for
a particular Fock state is the occupation of a particular mode
n. The task is more complicated for the compact encoding
because a particular momentum mode is not always encoded
in the same register of qubits, but it is still efficiently tractable.
In brief, if we wish to extract the occupancy of a momentum
mode n, then on each register that encodes a mode nj and its
occupation w j we must perform a locally controlled operation
that adds w j to a fixed ancillary register if and only if n j = n.
After performing this task on the fermions, antifermions, and
bosons, the ancillary register will encode the total occupation
of n, which we can then simply read out. This method is
efficient. By employing a slightly more complicated scheme,
we can further improve the efficiency of this operation; de-
tails are given in Appendix C 3, and the resulting number of
controlled-NOT (CNOT) and single-qubit operations required
is Õ(

√
K + p) for p bits of precision.

The dependence of the PDF on the probing scale Q2 is
introduced by imposing a momentum cutoff as in Eq. (13).
This is also easily accomplished within the second-quantized
formalism. Indeed, since the Fock states are the eigenstates of
the free Hamiltonian, calculating the quantity on the left-hand
side of (13) can be achieved by running the phase estimation
algorithm for the free Hamiltonian. It only remains to intro-
duce an ancillary register storing the information on whether
the particular Fock state has to be kept in the expansion.

F. Mass renormalization

Up to this point we have not discussed the issue of mass
renormalization in our model, which was studied in detail
in [117]. Thus, we have implicitly assumed that the parame-
ters in the Lagrangian are also those which would be measured
in a thought experiment. This is only approximately correct
for weak couplings and fails in the strong coupling regime. In
order to correctly determine the eigenvalues and eigenstates
of the M2 operator for arbitrary values of coupling we must
proceed as follows. Given as input the finite renormalized
(i.e., physically observed) masses m̃B and m̃F and the coupling
λ, we first determine the values of the bare constants mB

and mF appearing in the Lagrangian. At a given harmonic
resolution K , this is achieved by varying the bare masses mB,
mF for fixed λ to satisfy the condition

lowest eigenvalue
{
M2

K,Q=0(mB, mF , λ,	)
} = m̃B,

lowest eigenvalue
{
M2

K,Q=1(mB, mF , λ,	)
} = m̃F , (21)

4As we mentioned above, in a more general case one needs to mea-
sure the sum of single-mode operators over the transverse directions
and additional quantum numbers [Eqs. (38) and (39) below]. This
only changes the complexity polynomially.

which implies that the lowest eigenvalues in the Q = 0 and
1 sectors of the mass matrix are associated with the physical
boson and fermion masses. Having thus determined the bare
couplings mB and mF , the M2 operator now reproduces the
spectrum of the theory at harmonic resolution K .

To solve (21) one performs a gradient search in the two-
dimensional space (mB, mF ) [117]. The starting value m(0)

B
can be analytically calculated from the K = 2 sector of the
model:

m2
B = m̃2

B − α2

4π
λ2, (22)

where α2 is a function of 	 defined as in (A6) below. The
starting value m(0)

F is then found by substituting m(0)
B into the

second line of (21) and performing gradient search in mF :

lowest eigenvalue
{
M2

K,Q=1(m(0)
B , mF , λ,	)

} = m̃F . (23)

Each iteration of the gradient search corresponds to a run of
an algorithm described in the previous section. When condi-
tions (18) are satisfied with the desired precision, the wave
functions can be used for calculating the PDFs.

The renormalizability of the theory guarantees the conver-
gence of the method in the 	 → ∞ limit: the physical masses
do not depend on the cutoff 	 [117]. Moreover, the fact that
the Hamiltonian norm only depends on 	 logarithmically (see
Appendix A 3) means that choosing sufficiently large 	 to
obtain convergence does not require exorbitant resources.

If one moves further to calculating dynamic quantities,
such as cross sections, one would similarly have to per-
form the renormalization of the coupling constant λ, which
would amount to performing a gradient search in the three-
dimensional space of bare couplings with an additional
condition on a certain amplitude.5

IV. AB INITIO SIMULATION OF QCD
IN THE LIGHT FRONT

We now discuss how the machinery developed in Secs. II
and III can be generalized to QCD in (3 + 1)D. We briefly
review the notations of QCD, discuss the qubit requirements,
and present the expressions for observables in a form suit-
able for quantum simulation. We will see that our method
gives asymptotic improvement in the scaling of qubit re-
sources with cutoffs over previous simulation methods based
on equal-time formulation [63]. This results in several orders
of magnitude fewer qubits for the smallest physically mean-
ingful cutoffs [62].

A. Light-front QCD in (3 + 1)D

QCD is a field theory of Dirac fermions (quarks) interact-
ing via an SU(3) “color” gauge field. Due to the non-Abelian

5Strictly speaking, since the coupling constant also has to be de-
termined from an experiment (similar to the masses), one needs to
implement this procedure even to calculate static quantities. Calcu-
lating cross sections amounts to expanding the wave packets within
Hamiltonian blocks of different K . However, due to the exponential
growth of the Hilbert space size with

√
K , the qubit asymptotics will

remain unchanged.
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nature of the gauge group, the mediators of the color inter-
action (gluons) carry the color charges themselves and can
directly interact with each other. The fermionic field �c,α

transforms under the fundamental representation of the gauge
group c = 1, 2, 3 being the index in the color space, and
α = 1, 2, 3, 4 being the Dirac spinor index. The spinor �c,α

of color c and its adjoint �c,α = �
†
c,β (γ 0)βα each have four

complex components. The gauge field vector potentials Aμ

cc′

transform under the adjoint representation of the gauge group,
and can be expanded as Aμ

cc′ = Aμ

a
T a

cc′ , where Aμ
a are the eight

real vector fields, while T a
cc′ are the generators of the gauge

group obeying6

[T r, T s]
cc′ = i f rsaT a

cc′ , Tr (T aT b) = 1
2δab, (24)

f rsa being the structure constants of the su(3) algebra.
For Nf flavors of quarks, the QCD Lagrangian acquires the following form:

L = −1

4
Gμν

a Ga
μν +

Nf∑
f=1

1

2

[
�

f
c,α

(
γ αβ

μ Dμ
cc′ − mfδcc′

)
� f

c′,β + H.c.
]
, (25)

where

Gμν
a = ∂μAν

a − ∂νAμ
a − gf arsAμ

r Aν
s (26)

is the color-electromagnetic field tensor, mf are the masses of different quark flavors, and

Dμ

cc′ = δ
cc′ ∂

μ + igAμ

cc′ (27)

is the covariant derivative.
In DLCQ, we shall use the collective label ξ containing the following degrees of freedom for gluons and quarks:

ξ = {n, �n⊥, λ, a} (gluons), (28a)

ξ = {n, �n⊥, λ, c, f} (quarks), (28b)

where a is the color index in the adjoint representation, c is the color index in the fundamental representation, f is the flavor
index, and λ is polarization or helicity. The discretized light-front momentum n = 2πkz/L is analogous to that in (1 + 1)D, while
�n⊥ = (nx, ny) is the dimensionless internal momentum, defined by �k⊥ = (kx, ky) = 2π �n⊥/L⊥, which is introduced in order to
separate the center-of-mass motion of the composite state. For a Fock state |{ξ j,w j}〉,

�k⊥ j = �p⊥ j − x j �P⊥,
∑

j

w j �k⊥ j = 2π

L⊥

∑
j

w j �n⊥ j = 0, (29)

where the sum goes over all the partons.
In (3 + 1)D, one immediately benefits from using the light-front formulation of non-Abelian gauge theories because of

the vacuum triviality and the absence of ghost fields [72]. However, the presence of the transverse directions necessitates an
additional momentum cutoff 	⊥. The Hamiltonian matrix remains sparse [74], allowing one to use the algorithms discussed
above.

Furthermore, in the DLCQ all the momentum modes, including those of massless bosons, necessarily carry a nonzero light-
front momentum [72], i.e., n > 0 in Eq. (28a).7 Hence, although the qubit requirements in arbitrary dimension increase relative
to the (1 + 1)D case, their scaling with harmonic resolution K only increases to Õ(K ) since in the worst case the state may be
composed of K modes with light-front momentum one, all having distinct transverse momenta. Note that using the compact
encoding (in the sense of only storing the occupied modes) is crucial: the number of unoccupied modes scales as the product of
the momentum cutoffs over all dimensions.8

6Note that one only has to be careful when raising and lowering space-time indices because their metric is nontrivial.
7The light-front zero mode a0 requires special treatment; in particular, it carries the information about the equal-time vacuum of the

theory [72,140–145]. By imposing antiperiodic boundary conditions on the LF fields, one may by able to completely eliminate the effect
of zero modes [146].

8Technically, the scaling including dimension in the light-front formulation is Õ(dK ), whereas the scaling including dimension in equal time
is Õ(K	d−1

⊥ ). The factor of d in the light-front scaling is due to the necessity of encoding the value of each component of momentum for each
occupied mode. However, for a fixed theory, d is a constant, so we may ignore it in the light-front scaling.
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In order to simulate the full QCD Lagrangian with harmonic resolution K and transverse momentum cutoff 	⊥, an upper
bound on the number of required qubits to store the light-front wave function for QCD in 3 + 1 dimensions is

Q ≤
fermion/antifermion modes︷ ︸︸ ︷

2K︸︷︷︸
number of
occupied

fermion/antifermion
modes

[
�log2 K� + 2�log2 Λ⊥�︸ ︷︷ ︸

momentum

+ 1︸︷︷︸
helicity

+ �log2 nf�︸ ︷︷ ︸
flavors

+ �log2 nc�︸ ︷︷ ︸
colors

]

+

boson modes︷ ︸︸ ︷
K︸︷︷︸

number of
occupied

boson modes

[
�log2 K� + 2�log2 Λ⊥�︸ ︷︷ ︸

momentum

+ �log2 K�︸ ︷︷ ︸
occupancy

+ 1︸︷︷︸
helicity

+ �log2(n
2
c − 1)�︸ ︷︷ ︸

colors

]
,

(30)

[see Appendix C for a more detailed analysis in the (1 + 1)D
case]. The helicity is encoded by a single qubit because the LF
Dirac spinor has two “good” (independent) components [147].
The number of flavors n f taken into consideration depends on
the probing scale Q2. Evaluation of Eq. (30) for the computa-
tion of [62], which requires 400 000 qubits for an equal-time
calculation on a 203 lattice, yields Q = 1360 qubits [after
additionally including ancillas required for the computations
(see Appendix C)]. This reduction in qubit numbers will
become even more dramatic with increasing lattice size and
cutoffs.

B. Parton distribution functions

In QCD, all the information about the hadronic part of a
scattering process is encoded within the so-called hadronic
tensor W μν , also known as the forward Compton ampli-
tude [123]

W μν = i
∫

d4x eiqx〈P|T {[Jμ†(x)Jν (0)}|P〉, (31)

where |P〉 is a hadronic state of four-momentum P (av-
eraging over spins is implied unless |P〉 is spinless), and
Jμ(x) =∑f qf� f(x)γ μ�f(x) is the quark current operator (qf
being the quark charges; the sum is taken over all the quark
flavors).

In the case of deep inelastic scattering
l (k) + p(P) → l (k − q) + X (P + q), where l is the lepton of
momentum k, p is the proton of momentum P, and X is the
final hadronic state of momentum P + q, one can write W μν

in terms of two scalar structure functions W 1,2 as

W μν =
(

−gμν + qμqν

q2

)
W1(x,Q2)

+
(

Pμ − qμ P · q

q2

)(
Pν − qν P · q

q2

)
W2(x,Q2),

(32)

where q2 = −Q2, and x = Q2/(2Pq) [123]. According to the
optical theorem, the cross section of such an inclusive process
is given by the imaginary part of W μν , and hence of W1 and
W2.

Within the parton model (i.e., to the zeroth order in the
strong coupling constant αS), Im W1 and Im W2 can be ex-

pressed as

Im W1(x,Q2) = Pq

2x
Im W2(x,Q2) = π

∑
f

q2
f ff(x,Q2),

(33)
where ff(x,Q2) are the parton distribution functions (PDFs),
and the sum is taken over all the quark flavors contributing at
the energy scale Q2.9

In the light-front formalism, PDFs represent the probability
of finding a parton of a given type carrying the longitudinal
momentum fraction

x = p+

P+ = n

K
, 0 < x � 1 (34)

inside a hadron of a total longitudinal momentum P+. For-
mally, quark PDFs are defined as matrix elements of the quark
field operators10 [75]:

ff(x) =
∑
λ,c,f

∫
dp−

4π
e−ixP+p−

× 〈P|ψλ,c,f(0
+, p−, �0⊥)γ +ψλ,c,f(0)|P〉, (35)

where we suppress the Q2 dependence and assume that
〈P|P〉 = 1.

The gluon PDF emerges as one further evaluates Eq. (33)
to the first order in αS . It is defined as

fg(x)=
∑

a

∫
dp−

2πxP+ e−ixP+p−〈P|G+i
a (0+, p−, �0⊥)G a

+i(0)|P〉.
(36)

The normalization of PDFs is given by∫ 1

0
dx x

[∑
f

ff(x)+ fg(x)

]
=1 ,

∫ 1

0
dx
∑

f

qf ff(x) = Q ,

(37)
which reflects the fact that that the individual momenta and
charges of partons sum up to those of the hadron.

9For example, nf = 3 at Q2 = (1 GeV)2 and nf = 5 at Q2 =
(90 GeV)2.

10Equations (35) and (36) are written in the light-cone gauge A+
a =

0, and, therefore, do not contain the Wilson line operator [75].
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Upon substituting the LF free-field expansion, (35)
and (36) acquire a simple form in terms of the number op-
erators [75,118,119]

ff(x) = 〈P|Nf(x)|P〉 , fg(x) = 〈P|Ng(x)|P〉, (38)

where

Nf(x) = Nf(n/K ) =
∑
λ,c,�n⊥

b†
ξbξ,

Ng(x) = Ng(n/K ) =
∑
λ,a,�n⊥

a†
ξaξ. (39)

In (39), the operator b†
ξ creates a quark with quantum numbers

ξ = {n, �n⊥, λ, c, f}, while a†
ξ creates a gluon with quantum

numbers ξ = {n, �n⊥, λ, a}.
As in (1 + 1)D, within the discretized light-front for-

malism, introducing the momentum transfer Q2 amounts to
cutting off the total four-momentum of the Fock states in the
expansion of the hadronic state [72]:

ff(x,Q2) = 〈P(Q)|Nf|P(Q)〉, fg(x,Q2) = 〈P(Q)|Ng|P(Q)〉.
(40)

For a Fock state |{ξ j,w j}〉 whose total four-momentum is
given by

P+ =
∑

j

w j p+
j = 2π

L

∑
j

w jn j = 2π

L
K,

�P⊥ =
∑

j

w j �p⊥ j = 2π

L⊥

∑
j

w j �n⊥ j,

P−
free =

∑
j

w j

(
m2

j + �p2
⊥ j

p+
j

)
, (41)

a particular Lorentz-invariant cutoff is provided by only con-
sidering Fock states of total invariant mass below Q2 [72]:

P+P−
free − ( �P⊥)2 =

∑
j

w j

(
m2

j + �k 2
⊥ j

x j

)
� Q2, (42)

where m j , x j = n j/K , and w j are the parton masses, light-
front momentum fractions, and occupancies, respectively; the
intrinsic momenta �k⊥ are defined as in (29), and the sum goes
over all the occupied parton modes.

As we discussed in Sec. II B and illustrated in Fig. 1, for
fixed harmonic resolution [and transverse cutoff in (3 + 1)D]
the left-hand side of Eq. (42) is bounded above by some
energy scale Q2

max(K,	⊥). Once calculated at some scale
Q2 � Q2

max(K,	⊥), the PDFs can be evolved according to
the DGLAP equations [75,79,120–123].

Expression (39) is appealing from the quantum compu-
tational perspective because the number operator can be
measured efficiently (see Appendix C 3). This remains true
if one wants to exclude certain Fock states from consideration
according to (42). In Appendix C we illustrate this by pro-
viding an explicit realization of these measurements for the
model (1).

As we mentioned above, the right-hand side of Eq. (33)
is the zero-order term in the perturbative expansion of the
hadronic tensor in the powers of the strong coupling constant.

It is obtained from Eq. (31) by replacing the full Heisenberg
currents Jμ(x) with the currents jμ(x) of the noninteracting
theory. Within the traditional approach, one calculates the
hadronic tensor by obtaining higher-order perturbative cor-
rections to Eq. (33). The paradigm of quantum simulation
naturally suggests a different way to proceed: by switching
to the interaction picture, we can move all of the complex-
ity of the interacting theory into the state preparation stage.
Doing so will have a minor effect on computational re-
sources while allowing us to keep the measurement operators
unchanged. Most importantly, such a calculation would be
nonperturbative.

C. Form factors and decay constants

In this section we derive expressions for the electromag-
netic form factor of a hadronic state [similar to (39) for the
PDF] and for the decay constant. For a spinless state, such
as a meson, the electromagnetic form factor F (Q2) is defined
as [72,148]

〈P ′|Jμ(0)|P〉 = (P ′
μ + Pμ)F (Q2),

qμ = P ′
μ − Pμ, Q2 = −qμqμ. (43)

Switching to the Drell-Yan frame implies directing the inci-
dent hadron along the z axis, and setting photon’s momentum
qμ transverse to this direction:

Pμ = (P+, �0⊥, M2/P+), qμ = (0, �q⊥, 2qP/P+), (44)

where M is the hadron’s mass. In the LF the full Heisen-
berg current Jμ(0) in Eq. (43) can be set equal to the free
quark current jμ(0) [72]. Similarly to (43), one can define the
electroweak form factor by replacing Jμ(x) with the chiral cur-
rent J 5

μ (x) =∑f qf� f(x)γμγ 5�f(x). In the LF, the expression
for the form factor then takes the following form [76]:

F (Q2) = 1

2P+〈P ′|J+(0)|P〉

= 1

2P+
∑

|{ξ j ,w j}〉

∑
ξst

′
qξst〈P|{ξ ′

j,w j}ξst〉〈{ξ j,w j}|P〉,

(45)

where the first sum goes over all the Fock states, while ξst

indicates the choice of the struck quark in |{ξ j,w j}〉 and
varies over all the quark modes (with charges qξst ). The state
|{ξ ′

j,w j}ξst〉 differs from |{ξ j,w j}〉 only in its transverse mo-
menta:

�l⊥ j =
{�k⊥ j − x j �q⊥ + �q⊥ for the struck quark (ξ ′

j = ξst),

�k⊥ j − x j �q⊥ for all other partons (ξ ′
j �= ξst).

(46)
Note that the final expression for the form factor in (45)

involves state |P〉, but not |P ′〉 [72,76]. To describe the corre-
sponding measurement, we can formally rewrite (45) as

F (Q2) = 1

2P+〈P|F (Q2)|P〉,

F (Q2) =
∑

|{ξ j ,w j}〉

∑
ξst

′
qξst |{ξ ′

j,w j}ξst〉〈{ξ j,w j}|. (47)
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Note that F (Q2) is not a Hermitian operator, which should
not surprise us since the form factor is generally allowed
to take complex values. Nonetheless, the real and imaginary
parts of F (Q2) can be obtained by measuring the following
Hermitian operators:

Re F (Q2) = 1

2P+〈P| 1

2

[
F (Q2) + F†(Q2)

]|P〉,

Im F (Q2) = 1

2P+〈P| 1

2i

[
F (Q2)−F†(Q2)

]|P〉. (48)

Such measurements can be performed efficiently (see the
discussion in Appendix C for the analogous case of PDFs).
This would amount to constructing a circuit identifying the
Fock state and transforming it according to (46). Importantly,
the final state of each mode in (46) depends only on its
initial state, and is not conditioned on the rest of the modes.
Moreover, since each initial Fock state is mapped onto a linear
combination of a small number (at most �√2K�) of final
states, the matrix F (Q2) is sparse.

The LF wave functions can also be used to calculate meson
decay constants. For scalar (s) and pseudoscalar (p) mesons,
those can be written in terms of the vector and axial quark
current operators as [72,78,149]

〈0|Jμ(0)|Ps〉 = Pμ fs, 〈0|J 5
μ (0)|Pp〉 = iPμ fp. (49)

Since decay constants are linear in the wave function, their
measurement has to be designed somewhat differently from
that of PDFs and form factors, which are bilinear in the wave
function [see Eqs. (38) and (43)]. Up to a constant coefficient
dependent on a particular state, the decay constant is the
integral of the wave function over all the two-particle Fock
states. For example, for π± one has [72]

fπ = 2
√

3
∑
x, �k⊥

〈{x, �k⊥}︸ ︷︷ ︸
d

, {1 − x,−�k⊥}︸ ︷︷ ︸
ū

|P〉. (50)

Since only the magnitude of the decay constant is physi-
cally significant, its calculation reduces to evaluating |〈v|P〉|
for some fixed vector |v〉. This measurement can be performed
efficiently as long as one can efficiently prepare the state |v〉
from a computational basis state. Since, as we noted above,
the decay constant only requires integrating over two-particle
Fock states, the vector |v〉 turns out to be itself a linear combi-
nation of two-particle Fock states. Thus, it is indeed efficiently
preparable.

V. DISCUSSION AND PERSPECTIVES

We have demonstrated several advantages of the light-front
formulation for quantum simulation of quantum field theory.
The qubit requirements in the light-front approach are greatly
reduced as compared with those in equal-time quantization.
This is due to the smaller number of physical degrees of
freedom, and the fact that the sum of occupancies in a Fock
state is upper bounded by K for fixed harmonic resolution K .

The Hamiltonian matrix at fixed harmonic resolution in
the LF formalism is sparse [72,74], enabling us to make use
of optimal simulation algorithms [13,134]. These algorithms
require Õ(tK4) gates to simulate time evolution for time t ,
with logarithmic dependence on error. For state preparation

by simulation of adiabatic evolution, in the case of adiabatic
paths whose max norm is bounded by K , we require Õ(T K4)
gates. Proving that such paths in fact obey the adiabatic theo-
rem is a topic for future work.

The LF formalism allows one to calculate various measur-
able quantities directly from the bound-state wave functions.
We demonstrated how such observables can be efficiently
calculated on a quantum computer, using as our main exam-
ple the analog of the parton distribution function. Quantum
computation of these observables has been considered by
other authors prior to this work in [62,150]. Some of the
advantages of the light-front discussed in detail here were
presented in [151]. We hope future work will further develop
all approaches to these problems.

In (1 + 1)D for harmonic resolution K the qubit require-
ments scale as O(

√
K log K ) in the compact encoding, which

is optimal up to logarithmic factors. The compact encoding
of light-front Fock states was shown to be extendable to
higher-dimensional field theories. The qubit scaling increases
to Õ(K ), which is a significant improvement compared to
equal-time quantization. For a 203 grid in momentum space
with n f = 5 and nc = 3, Eq. (30) gives 1360 qubits, much
less than 4 × 105 qubits on the grid of the same size in equal-
time quantization estimated in [62]. This is comparable to the
number of logical qubits required to factor a 1024-bit RSA
key using Shor’s algorithm [64].

In higher dimensions, more observables can be calcu-
lated within a Hamiltonian block of a fixed longitudinal
momentum. Those include decay constants, form factors, gen-
eralized parton distribution functions, transverse-momentum-
dependent distributions. As a possible direction of future work
one could consider direct evaluation of the hadronic tensor.
Instead of calculating it perturbatively (with the zeroth order
being the parton-model approximation considered in this pa-
per), one could switch to the interaction picture, thus keeping
the measurement operators unchanged while slightly compli-
cating the state preparation.

Further development and optimization of the simulation
techniques is warranted. Encoding schemes that restrict to
a particular block of both K and Q would not change the
asymptotic scaling of the qubit requirements but might be
practically useful. Similarly, improvements to the implemen-
tation schemes given herein could yield significant reduction
in gate numbers even if scaling improvements cannot be
achieved. Such improvements likely require the development
of software allowing the simulation of this algorithm, as has
been developed for quantum algorithms for quantum chem-
istry [152].

An important issue arising within the DLCQ approach
to QCD, which we have not addressed in this work, is the
effect of gluon zero modes, whose absence in the free-field
expansion is critical to our ability to use the compact encoding
scheme. Zero modes play an important role in the light-front
formulation, incorporating all the complexity of the theory
related to the nontriviality of the vacuum in the equal-time
formulation [140–145]. In the context of DLCQ, taking zero
modes into account may result in the appearance of new,
noncanonical interactions [72]. As noted in [72], while the
longitudinal confinement is immanent in the light-cone quani-
tization of QCD due to the linear growth of effective potential

032418-12



QUANTUM SIMULATION OF QUANTUM FIELD THEORY IN … PHYSICAL REVIEW A 105, 032418 (2022)

in the x− direction, the interactions arising from zero modes
may be responsible for the transverse confinement.

As an alternative to the fundamental QCD Lagrangian, one
can use effective low-energy theories. At the level of simula-
tion, this amounts to changing the set of basis states to the one
better resembling the bound-state wave function. The latter
approach seems to be particularly appealing due to the recent
success of the so-called basis light-front quantization (BLFQ)
technique [73]. Within this method, the effective Lagrangian,
respecting all the symmetries of the full QCD, is solved
in the basis provided by an exactly solvable model emerg-
ing from the AdS/QCD [72,153–164]. We leave these, and

other further details of the application to (3 + 1)D, to future
work.
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APPENDIX A: HAMILTONIAN

Following [116,117], we write the Hamiltonian as

H = HM + HV + HS + HF , (A1)

where

HM =
∑

n

1

n

[
a†

nan

(
m2

B + g2αn
)+ b†

nbn

(
m2

F + g2βn
)+ d †

n dn

(
m2

F + g2γn
)]

, (A2)

HV = gmF

∑
k,l,m

[(b†
kbmc†

l + b†
mbkcl)({k + l| − m} + {k| + l − m}) + (d †

k dmc†
l + d †

mdkcl)({k + l| − m} + {k| + l − m})

+ (bkdmc†
l + d †

mb†
kcl)({k − l| + m} + {k| − l + m})], (A3)

HS = g2
∑

k,l,m,n

[b†
kbmc†

l cn({k − n|l − m} + {k + l| − m − n}) + d †
k dmc†

l cn({k − n|l − m} + {k + l| − m − n})

+ (dkbmc†
l c†

n + b†
md †

k cncl){l − k|n − m}], (A4)

HF = g2
∑

k,l,m,n

[(b†
kbmc†

l c†
n + b†

mbkcncl){k + l|n − m} + (d †
k dmc†

l c†
n + d †

mdkcncl){k + l|n − m}

+ b†
kd †

mc†
l cn

({k − n|m + l} + {k + l|m − n})+ dmbkc†
ncl

({k − n|m + l} + {k + l|m − n})], (A5)

where cn = an/
√

n. The expressions in (A2)–(A5) are called the mass, vertex, seagull, and fork parts of the Hamiltonian,
respectively.

1. Self-induced inertias

The mass term contains the so-called self-induced inertias αn, βn, γn, the cutoff-dependent quantities whose appearance is a
general phenomenon in the LF framework not specific to the particular theory under consideration. Those are defined as

αn =
	∑

m=1

({n − m|m − n} − {n + m| − m − n}), βn =
	∑

m=1

n
m

{n − m|m − n}, γn =
	∑

m=1

n
m

{n + m| − m − n}, (A6)

where

{n|m} =
⎧⎨⎩

0 if n = 0 or m = 0,

1

n
δm,−n otherwise.

(A7)

We must upper bound these quantities as they contribute to the norm of the Hamiltonian, which in turn determines the simulation
complexity. We can first evaluate the sums as follows:

αn = −1

n
− H	−n − H2n + 2Hn,

βn = −2

n
+ Hn + H	 − H	−n,

γn = − 1

2n
+ Hn + H	 − H	+n,
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where Hn is the nth harmonic number. Using the well-known bounds on the harmonic numbers we can upper and lower bound
the self-induced inertias as a function of the cutoff [117]:

ln
n

2(	 − n)
− 2 + 1

n
� αn � ln

n

2(	 − n)
+ 2 − 3

2n
− 1

(	 − n)
,

ln
	n

	 − n
− 1 − 1

n
+ 1

	
� βn � ln

	n
	 − n

+ 2 − 2

n
− 1

	 − n
,

ln
n	

	 + n
− 1 + 1

2n
+ 1

	 + n
� γn � ln

n	

	 + n
+ 2 − 1

2n
− 1

	 + n
. (A9)

Because n � K these bounds show that all self-induced inertias scale with K and 	 as �[ln(K/	)].

2. Hamiltonian sparsity

The sparsity of the Hamiltonian in the Fock basis is the
maximum number of final states onto which a single initial
Fock state is mapped under the action of the Hamiltonian.
The mass terms in the Hamiltonian HM [Eq. (A2)] are propor-
tional to number operators, hence, are diagonal in the Fock
basis, and so do not contribute to the sparsity. We analyze the
sparsity of the terms in the Hamiltonian HV [Eq. (A3)], HS

[Eq. (A4)], and HF [Eq. (A5)], by separately finding the num-
bers of nonzero images of each set of terms with a given form,
for a generic initial state, then summing these and maximizing
the resulting expression. We call the state whose number of
nonzero images is maximal the sparsity-determining state
(SDS).

Each Hamiltonian term contains annihilation operators that
will map a state to zero unless they act on an occupied
mode. Thus, the number of nonzero images is largest for a
state in which all bosons have distinct momenta because this
maximizes the number of Hamiltonian terms in which the
annihilation operators do not map the state to zero. Therefore,
all occupation numbers in the SDS are zero or one, so the SDS
is determined by the sets F , F , and B̃ of occupied fermionic,
antifermionic, and bosonic momenta (respectively).

To obtain an upper bound on the sparsity, we assume
that every term whose annihilation operators act on occupied
modes maps the initial state to a distinct nonzero image.
This is a relaxation of the actual condition in two respects:
first, some of the nonzero images thus obtained may not
be distinct and, second, fermionic and antifermionic creation

operators acting on occupied modes will map the state to 0
rather than to a nonzero image. However, we will see that
the upper bound we obtain by ignoring these reductions to
the sparsity will nonetheless turn out to be asymptotically
tight.

We consider sets of terms of a fixed form, e.g.,
{b†

kbmc†
l | k, l, m ∈ {1, 2, . . . , K}, k + l = m}. These sets are

represented in Eqs. (A10a)–(A10p) by a characteristic ele-
ment, e.g., b†

kbmc†
l . In each set, the modes for each ladder

operator vary over {1, 2, . . . , K}, under the constraint that
total momentum is conserved, i.e., the sum of the momenta of
the annihilation operators is equal to the sum of the momenta
of the creation operators, which is equal to the transferred
momentum. Each term is thus associated to a particular value
of transferred momentum.

For each set of terms, the transferred momentum will be a
sum over the possible sets of occupied modes corresponding
to the annihilation operators in the set of terms. The summand
will be the sum over the possible assignments of the trans-
ferred momentum to the creation operators in the set of terms.
We can thus tabulate the numbers of nonzero images for each
set of terms. We will use the following facts repeatedly: if
some transferred momentum m is to be divided between two
outgoing modes, this may be accomplished in m − 1 ways
(since each mode must have nonzero momentum), obtaining
m − 1 nonzero images. If there is only one outgoing mode,
then clearly it must possess all of the transferred momentum,
giving only one nonzero image. The numbers of nonzero
images for each set of terms are given by

b†
kbmc†

l ⇒
∑
m∈F

(m − 1) =
∑
m∈F

(m) − |F |, (A10a)

d †
k dmc†

l ⇒
∑
m∈F

(m − 1) =
∑
m∈F

(m) − |F |, (A10b)

b†
kd †

mcl ⇒
∑
l∈B̃

(l − 1) =
∑
m∈B̃

(m) − |B̃|, (A10c)

bkb†
mcl ⇒

∑
k∈F

∑
l∈B̃

1 = |F ||B̃|, (A10d)

dkd †
mcl ⇒

∑
k∈F

∑
l∈B̃

1 = |F ||B̃|, (A10e)

bkdmc†
l ⇒

∑
k∈F

∑
m∈F

1 = |F ||F |, (A10f)
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b†
kbmc†

l cn ⇒
∑
m∈F

∑
n∈B̃

(m + n − 1) = |B̃|
∑
m∈F

(m) + |F |
∑
n∈B̃

(n) − |F ||B̃|, (A10g)

d †
k dmc†

l cn ⇒
∑
m∈F

∑
n∈B̃

(m + n − 1) = |B̃|
∑
m∈F

(m) + |F |
∑
n∈B̃

(n) − |F ||B̃|, (A10h)

b†
md †

k cncl ⇒
∑
l∈B̃

∑
n∈B̃

(l + n − 1) = 2|B̃|
∑
n∈B̃

(n) − |B̃|2, (A10i)

bmdkc†
l c†

n ⇒
∑
m∈F

∑
k∈F

(m + k − 1) = |F |
∑
m∈F

(m) + |F |
∑
n∈F

(n) − |F ||F |, (A10j)

b†
kbmc†

l c†
n ⇒

∑
m∈F

m−2∑
k=1

(m − k − 1) =
∑
m∈F

(m − 1)(m − 2)

2
=
∑
m∈F

(
m2 − 3m

2

)
+ |F |, (A10k)

d †
k dmc†

l c†
n ⇒

∑
m∈F

m−2∑
k=1

(m − k − 1) =
∑
m∈F

(m − 1)(m − 2)

2
=
∑
m∈F

(
m2 − 3m

2

)
+ |F |, (A10l)

b†
kd †

n c†
l cm ⇒

∑
m∈B̃

m−2∑
k=1

(m − k − 1) =
∑
m∈B̃

(m − 1)(m − 2)

2
=
∑
m∈B̃

(
m2 − 3m

2

)
+ |B̃|, (A10m)

b†
mbkcncl ⇒

∑
k∈F

∑
n∈B̃

∑
l∈B̃

1 = |F ||B̃|2, (A10n)

b†
mbkcncl ⇒

∑
k∈F

∑
n∈B̃

∑
l∈B̃

1 = |F ||B̃|2, (A10o)

dmbkc†
ncl ⇒

∑
k∈F

∑
m∈F

∑
l∈B̃

1 = |F ||F ||B̃|. (A10p)

Here the term on the left is the representative element of an entire set of terms of that type.
Our upper bound on the total number of nonzero images of the full Hamiltonian is the sum of these:

∑
m∈F

(m) +
∑
m∈F

(m) +
∑
m∈B̃

(m) +
∑
m∈F

∑
n∈B̃

(m + n) +
∑
m∈F

∑
n∈B̃

(m + n) +
∑
m∈B̃

∑
n∈B̃

(m + n) +
∑
m∈F

∑
n∈F

(m + n)

+
∑
m∈F

(
m2 − 3m

2

)
+
∑
m∈F

(
m2 − 3m

2

)
+
∑
m∈B̃

(
m2 − 3m

2

)
+ |F ||B̃|2 + |F ||B̃|2 + |F ||F ||B̃| − |B̃|2. (A11)

To simplify the above expression, let

KF ≡
∑
m∈F

m, KA ≡
∑
m∈F

m, KB ≡
∑
m∈B̃

m (A12)

denote the total momenta possessed by fermions, antifermions, and bosons (respectively) in the initial state. The sum of these
must be the total momentum, i.e., KF + KA + KB = K . Furthermore, by (B4), the constraints on the sizes of the sets of momenta
are 1 � |F | = IF � √

2KF , 1 � |F | � √
2KA, and 1 � |B̃| � √

2KB.
Thus, our upper bound on the number of nonzero images of the Hamiltonian becomes

1

2

∑
m∈F

(m2) + 1

2

∑
m∈F

(m2) + 1

2

∑
m∈B̃

(m2) + (|F | + |F | − 1)|B̃|2 + |F ||F ||B̃|

+ KF |B̃| + KB|F | + KA|B̃| + KB|F | + 2KB|B̃| + KF |F | + KA|F | − 1

2
K

= 1

2

∑
m∈F

(m2) + 1

2

∑
m∈F

(m2) + 1

2

∑
m∈B̃

(m2) + (|F | + |F | − 1)|B̃|2 + |F ||F ||B̃|

+ (K − KF )|F | + (K − KA)|F | + (K + KB)|B̃| − 1

2
K . (A13)
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Since |F |, |F |, |B̃| scale at most as the square root of K ,
only the first three terms in this expression grow as K2: all
others grow at most as K3/2. Thus, for large K , the sparsity is
maximized by maximizing the first three terms in (A13):

1

2

∑
m∈F

(m2) + 1

2

∑
m∈F

(m2) + 1

2

∑
m∈B̃

(m2). (A14)

But this expression is clearly maximized when all of the initial
momentum is carried by a single particle, i.e., one of F , F ,
or B̃ is {K}, and the other two are empty. Which we should
choose is determined by the remaining terms in (A13): the
maximizing choice is B̃ = {K}, |F | = |F | = 0. Substituting
these assignments into (A13) gives

1

2
K2 + 3

2
K − 1, (A15)

which is thus our upper bound for the sparsity. Direct evalua-
tion of the sparsity of the Hamiltonian for small K shows that
this bound holds for all K . The results are plotted in Fig. 3.

To obtain a lower bound, note that out of all contributions
to the sparsity in (A10a)–(A10p), the largest is∑

m∈B̃

(
m2 − 3m

2

)
+ |B̃| (A16)

in (A10m); the maximizing term type is b†
kd †

n c†
l cm. We choose

this set of terms rather than that in (A10k) or (A10l) because
for the terms b†

kd †
n c†

l cm all creation operators act on different
kinds of particles, which removes the possibility of double
counting nonzero images. The SDS that maximizes (A10m) is
the same as the SDS for the full Hamiltonian: a single initial
boson with momentum K . Therefore, the fermion and an-
tifermion creation operators b†

k, d †
n can create a nonzero image

for each allowed value of (k, n) since all initial fermion and
antifermion occupation numbers are zero. Thus, the sparsity
of the set of terms b†

kd †
n c†

l cm is exactly the value of (A10m)
when B̃ = {K}, and forms our lower bound on the sparsity of
the full Hamiltonian:

ηlower =
∑
m∈B̃

(
m2 − 3m

2

)
+ |B̃| = 1

2
K2 − 3

2
K + 1. (A17)

Figure 3 (in Sec. III B) plots the upper and lower bounds
together with exact values for the sparsity, which we cal-
culated directly from the Hamiltonians with Q = 0 and
K = 3, 4, . . . , 19. The sparsity of the Hamiltonian is therefore
tightly bounded by Eqs. (A15) and (A17), is 1

2 K2 at leading
order in K , and is �(K2).

3. Hamiltonian norm

We define ‖H‖max as the largest matrix element of H in
absolute value:

‖H‖max = max
j,k

|Hj,k|. (A18)

As follows from Eq. (A2), the Fock states having largest
eigenvalues (considered as the eigenstates of the free Hamil-
tonian) are the ones with high bosonic occupancy, such as

|; ; 1̃K−2, 2̃〉 or |1; 1; 1̃K−2〉11. When acting on those, the num-
ber operator a†

nan produces a factor of order O(K ).
The same logic is applicable to the interaction terms (A3)–

(A5), none of which can result in more than a linear
dependence on K . Lastly, the self-induced inertias scale
asymptotically with K and 	 as O(log K/	) [Eq. (A9)]. Alto-
gether, this results in the following bound for the Hamiltonian
norm:

‖H‖max = O(K log K/	) = Õ(K ). (A19)

We may use the relations amongst the various Hamiltonian
norms in [165] and the sparsity of the Hamiltonian from
Appendix A 2 to bound the spectral norm of H as

||H || = O(K3 log K/	) = Õ(K3). (A20)

APPENDIX B: COMPACT MAPPING

In this Appendix, we describe how to efficiently encode
an occupation number state (i.e., a partition of momentum) in
(1 + 1)D at fixed harmonic resolution as a qubit state. This
construction may be applied to bosons (with occupancies in
[0, K]), or fermions, or antifermions (with occupancies in
{0, 1}). We encode an occupation number state as a list of
pairs: {(n1,w1), (n2,w2), . . . , (nI ,wI )}, where the ni are the
distinct momenta (part sizes) that appear, and the wi = [1, K]
are the corresponding occupancies numbers (we do not store
modes with wi = 0). Each ni,wi is an integer in [1, K], so we
encode each pair (ni, mi ) in a register of size 2�log2 K� qubits.
The total number of qubits required is then

QK = 2I�log2 K� (B1)

since we use I registers.
Label the ith register Xi: then the complete qubit states

used to encode the momentum partitions may be written
|X1, X2, . . . , XI〉. I should be equal to the maximum number
of distinct part lengths in any partition of K , but most parti-
tions will not have I distinct part lengths, so in general the
states will not use all of the registers XI . In order to uniquely
associate an encoding state to each partition, we choose the
following conventions:

(1) Occupied momenta will be arranged in decreasing or-
der of size.

(2) If I ′ � I momenta are occupied, they are encoded in
the first I ′ of the Xi.

How do we determine I , the maximum number of distinct
part lengths in any partition of K? Simply adding up the
momenta gives

I∑
i=1

niwi = K, (B2)

so we may obtain a tight bound on I by noting that the least
value of K for a given I is obtained by setting ni = i and
wi = 1 for i ∈ {1, 2, . . . , I}. In this case, K is a triangular

11We do not use |; ; 1̃K 〉 for it is the so-called angel state which
decouples from the rest of the spectrum [117].
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number, i.e.,

K =
I∑

i=1

niwi =
I∑

i=1

i = I (I + 1)

2
, (B3)

so

I �
√

2K . (B4)

The bound (B4) is satisfactory for analyzing the asymptotic
qubit requirements, but to set the number of qubits we want to
choose the minimum possible integer I such that a partition of
K contains at most I distinct parts: this turns out to be

I =
⌊√

2K + 1

4
− 1

2

⌋
. (B5)

To see that (B5) gives the minimal I , let K� be the largest
triangular number less than or equal to K ; then the minimal I
exactly satisfies

I (I + 1)

2
= K�, (B6)

since for K�, (B3) applies exactly. From this we obtain

4I2 + 4I = 8K� ⇒ (2I + 1)2 = 8K� + 1, (B7)

i.e., 8K� + 1 is an odd square. This implication reverses: if
8K ′ + 1 = J2 for odd J , then we can choose I = 1

2 (J − 1)
and we obtain K ′ = I (I+1)

2 , so K ′ is triangular. The largest odd
integer less than or equal to some arbitrary x is 2� x−1

2 � + 1, so
for arbitrary K the largest odd J whose square is less than or
equal to 8K + 1 is

J = 2

⌊√
8K + 1 − 1

2

⌋
+ 1. (B8)

Thus, 8K� + 1 = J2 for J determined in this way, so

2I + 1 = J = 2

⌊√
8K + 1 − 1

2

⌋
+ 1

⇒ I =
⌊√

2K + 1/4 − 1

2

⌋
, (B9)

which is (B5).
For example, suppose the momentum is K = 6 (chosen to

be a triangular number, for convenience). Then I = 3, and the
possible partitions are encoded as

|X1, X2, X3〉 = |(6, 1), (0, 0), (0, 0)〉,
|(5, 1), (1, 1), (0, 0)〉,
|(4, 1), (2, 1), (0, 0)〉,
|(4, 1), (1, 2), (0, 0)〉,
|(3, 2), (0, 0), (0, 0)〉,
|(3, 1), (2, 1), (1, 1)〉,
|(3, 1), (1, 3), (0, 0)〉,
|(2, 3), (0, 0), (0, 0)〉,
|(2, 2), (1, 2), (0, 0)〉,
|(2, 1), (1, 4), (0, 0)〉,
|(1, 6), (0, 0), (0, 0)〉, (B10)

where each Xi = (ni,wi ) is encoded in 2�log2(6)� = 6 qubits,
3 to encode each of ni and wi.

In the case of our algorithm the momentum is partitioned
among fermions, antifermions, and bosons. Let K continue
to denote the total momentum, summed over the fermions,
antifermions, and bosons. For bosons, we use exactly the
mapping of Fock states to qubit states described above; we
still require Ibosons = I as given in (B5), since in some states
all of the momentum K is possessed by bosons. For fermions
and antifermions, we use the mapping described above, but
with the occupation numbers restricted to be 0 or 1. Since
only momenta that are present are represented in the state, this
means that for all momenta that are present, wi restricted to be
1. Thus, we may drop the occupation numbers wi entirely, and
simply keep a list of the fermion and antifermion momenta
that are present. We still require Ifermions = Iantifermions = I as
given in (B5) since in some states all of the momentum K is
possessed by fermions or antifermions. Thus, our complete
Fock states are stored as

{n1, n2, . . . , nI ; n1, n2, . . . , nI ; (̃n1, w̃1), (̃n2, w̃2),

. . . , (̃nI , w̃I )}, (B11)

where ni, ni, ñi ∈ {1, . . . , K} denote the fermion, antifermion,
and boson momenta that are present in the state, and w̃i ∈
{1, . . . , K} denote the occupation numbers of the occupied
boson momenta. Thus, the total number of qubits that this
encoding requires is

Q = 4I�log2 K� � 4
√

2K�log2 K�. (B12)

APPENDIX C: IMPLEMENTATION

In this Appendix we describe the details of the imple-
mentation of two oracles necessary for the sparse simulation
algorithm in (1 + 1)D. These oracles are ubiquitous in meth-
ods for simulation of sparse Hamiltonians and were defined
for the electronic structure problem in [21,24]. There are two
differences in the definition of these oracles for the model
defined in Sec. II. First, we do not rely on any analog of
the Slater rules that define the nonzero matrix elements of
the configuration-interaction (CI) matrix. Instead, we use the
second-quantized representation of the Hamiltonian to enu-
merate nonzero elements of a row or column. Second, for
the electronic structure Hamiltonian the matrix elements are
defined in terms of integrals over basis functions whereas ours
are simple functions of the momenta.

One could adapt the methods of [21,24] to the enumer-
ation of nonzero matrix elements. This would require the
computation of the analog of the Slater rules and their im-
plementation in the Hamiltonian oracle. This analysis would
be more complex than that for electronic structure due to the
presence of bosons and fermions and the more complex form
of the second-quantized Hamiltonian. The analysis would also
need to be repeated for each model considered, whereas the
results we give here can be generalized more directly to any
Hamiltonian in second-quantized form.

We describe three quantum subroutines:
(1) A subroutine that enumerates the positions of the

nonzero matrix elements of given row of the Hamiltonian in
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the Fock basis. This subroutine is described in Appendix C 1,
and requires Õ(

√
K ) local gates.

(2) A subroutine that, given a pair of Fock states each with
total momentum K , computes the first p bits of the matrix
element connecting the states in an ancilla register. This sub-
routine is described in Appendix C 2, and requires Õ(p + K )
local gates.

(3) A subroutine that permits evaluation of the number
operator for a given momentum mode (see also Sec. III E).
This subroutine is described in Appendix C 3, and requires
Õ(

√
K + p) local gates.

1. Matrix element enumeration

The Hamiltonian connects a pair of Fock states only if
they are the same or the difference between them is exactly
two fermions or antifermions (i.e., either two fermions, two
antifermions, or a fermion and an antifermion) and either one
or two bosons. In other words, given a Fock state

|ψ〉 = |n1, n2, . . . , nI〉 ⊗ |n1, n2, . . . , nI〉
⊗ |(̃n1, w̃1), (̃n2, w̃2), . . . , (̃nI , w̃I )〉, (C1)

we may generate the state |ψ〉 is connected to by listing the
possible changes the various terms in the Hamiltonian may
make to |ψ〉.

We represent these possible changes as lists, which we will
denote �. The nonzero elements of a row or column in the
Hamiltonian will be indexed by ordering the set of changes
giving rise to the nonzero elements starting from the Fock
state labeling the row. The ith nonzero element of the row will
be labeled by �i. Each � has the form

� = (k+
1 , t1; k±

2 , t2; k±
3 , t3; k−

4 , t4), (C2)

where k+
1 is the momentum of the first momentum state

whose occupancy will be increased by one (by a creation
operator), and t1 indicates what type of particle it is (fermion,
antifermion, or boson). Similarly, k±

2 and k±
3 are the momenta

of the second and third momentum states whose occupancies
are changed, which may be added or removed (since a term
in the Hamiltonian possesses between one and three creation
operators); t2 and t3 indicate their types. Finally, k−

4 is the
momentum of the fourth momentum state whose occupancy
changes, which, if present, must be lowered since no term in
the Hamiltonian contains four creation operators; t4 indicates
its type. Note that the ordering of increases and decreases in
occupancy here is not that given by order of the creation and
annihilation operators in the second-quantized representation
of Hamiltonian terms.

If one or more of these is not needed (because the change
being described involves fewer than four particles), then the
corresponding k±

j is set to zero. Thus, either all four k±
j are

nonzero (describing changes due to terms containing four lad-
der operators), only first three are nonzero (describing changes
due to terms containing three ladder operators), or all k±

j are
zero [describing the connection of |ψ〉 to itself via the number
operators in (A2)]. Finally, in order to ensure that the �

associated to any particular change is unique, we require that
particles added appear first, followed by particles removed,
and subject to that rule, types are ordered as fermions in
increasing order of momentum, then antifermions in increas-

ing order of momentum, then bosons in increasing order of
momentum. This induces an ordering on the �, which lets us
enumerate the �i, and hence the nonzero matrix elements in a
row.

Let the ti encode fermions, antifermions, and bosons as 0,
1, 2, respectively. Allowed changes in occupancy are then

(1) k+
1 = k±

2 = k±
3 = k−

4 = 0;
(2) k+

1 , k±
2 , k±

3 �= 0, k−
4 = 0, and exactly one of t1, t2, t3 is

2 (boson); or
(3) k+

1 , k±
2 , k±

3 , k−
4 �= 0, and exactly two of t1, t2, t3, t4 are

2 (bosons).
In addition to these rules, the change must conserve mo-

mentum, i.e.,

k1 ± k±
2 ±′ k±′

3 − k4 = 0. (C3)

Since k±
i ∈ {1, 2, . . . , K} (together with a bit encoding the

sign) and ti ∈ {0, 1, 2} for each i, the number of distinct � ap-
pears to scale like K4. However, the momentum conservation
constraint (C3) means that one of the k±

i is determined by the
other three, so in fact there are fewer than 34K322 = 324K3

distinct �’s (34 possible valuations for the ti, K3 possible
valuations for the ki, and 22 possible valuations for the two
±s). This still overcounts the nonzero elements because the
sparsity of the Hamiltonian in the Fock basis is �(K2). This
is because the full set of �’s considered here can act on certain
states to produce unphysical occupancies, either fermion oc-
cupancies greater than one, boson occupancies above cutoff,
or negative occupancies. Hence, not every � returns a matrix
element. We denote the number of � by L = O(K3), and
index them as �i for 0 � i � L − 1.

Operations. We enumerate the �i as follows. First we
note that the Hamiltonian is a sum of O(1) types of term
labeled by tuples of momentum orbitals subject to momentum
conservation constraints. For example, consider vertex terms
of type b†

kbmc†
l , where k = m + l and 3 � k � K . Given the

tuple k, m, l we can construct the � corresponding to this
term with O(log K ) operations. It only remains to show how
to enumerate all tuples (k, l, m). In fact, we only need to
enumerate (k, l ) with k > l and compute m = k − l . The first
few tuples (k, l ) are (2, 1), (3, 1), (3, 2), (4, 1). Let n(k, l )
be the number of the tuple (k, l ), with n(2, 1) = 1. Then,
n(k, l ) = (l − 1) + n(k, 1) and

n(k, 1) = 1 +
k−1∑
j=2

( j − 1) = k(k − 1)

2
− (k − 2) (C4)

from which we obtain

k(n) =
⌊

3 + √
8n − 7

2

⌋
,

l (n) = n − k(n)(k(n) − 1)

2
− [k(n) − 2]. (C5)

Hence, k, l, m can be computed from n by O(1) elementary
arithmetic operations, the most costly of which is the square
root. Therefore, the enumeration of the �i corresponding to
terms of type b†

kbmc†
l requires O[(log K )2 log log K] elemen-

tary gates. Similar arguments apply to seagull and fork terms.
We can now implement the oracle OF with action:

OF : |ψ〉 ⊗ |i〉 ⊗ |0〉F �→ |ψ〉 ⊗ |i〉 ⊗ |φi〉F , (C6)
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where i enumerates the Fock states |φi〉 such that 〈ψ |H |φi〉 �=
0. The index i runs over all types of terms in the Hamiltonian
and all labelings of each type of term by momentum tuples
as discussed above. The mapping (C6) may be implemented
in three steps, using an additional ancillary register capable of
encoding a �, also initialized to 0:

OF : |ψ〉 ⊗ |i〉 ⊗ |0〉 ⊗ |0〉F �→ |ψ〉 ⊗ |i〉 ⊗ |�i〉 ⊗ |ψ〉F

�→ |ψ〉 ⊗ |i〉 ⊗ |�i〉 ⊗ |φi〉F

�→ |ψ〉 ⊗ |i〉 ⊗ |0〉 ⊗ |φi〉F .

(C7)

The first step computes �i from i and copies the Fock state
|ψ〉 to an ancilla register. Note that this Fock state ψ is a
computational basis state of the qubits and so the no-cloning
theorem does not forbid this operation. The Fock state |φi〉
is obtained by changing |ψ〉 according to �i if the resulting
state |φi〉 is physical, or |φi〉 = |0〉 if changing |ψ〉 according
to �i results in an unphysical state (for example, if �i would
remove a particle from a mode that is unoccupied in |ψ〉).
Finally, we invert the first mapping.

We now describe the second step in this mapping in detail.
There are two substeps. First, we must check whether |ψ〉 can
be changed according to �i. We check that for each fermion
and antifermion added by �i, the corresponding mode in |ψ〉
is empty, and for each particle removed by �i, the corre-
sponding mode in |ψ〉 is nonempty. To determine this by a
reversible computation that can be made coherent, we append
to �i = (k+

1 , t1; k±
2 , t2; k±

3 , t3; k−
4 , t4) four ancillary qubits

|c1, c2, c3, c4〉, initially all 0, and for each particle change
(k±

i , ti ), flip the corresponding bit ci if the particle change

cannot be performed on |ψ〉. Thus, if c1 = c2 = c3 = c4 = 0,
then |ψ〉F can be changed according to � j . If any one of the ci

is nonzero, then |ψ〉F cannot be changed according to �i, so
we set φi = 0. We first consider adding particles to |ψ〉, then
consider removing them.

For each (k+
j , t j ) ∈ �i, the mode is either present or absent

in |ψ〉. This can be determined by O(
√

K ) gates. If the mode
is present and t j is 2 (indicating that the added particle is a
boson) then we simply increase its occupation by one. If the
mode is not present, we must add it to |ψ〉F . Because the
modes must appear in order of increasing momentum, adding
a new mode requires shifting all modes with particle type
t j and momentum greater than k j over by O(log K ) qubits.
We append the new mode to the register containing particles
of type t j above the highest momentum mode present, k′.
We check if k j > k′: if so, we have updated |ψ〉. If not, we
exchange the new mode and mode k′, requiring O(

√
K ) gates,

and compare k j with the next smallest momentum mode. In
the worst case the new mode has the smallest momentum and
so this operation requires O(

√
K log K ) gates.

For each (k−
j , t j ) ∈ �i, we must remove a particle of type t j

and momentum k j . To do this, we reverse the method we used
to add a mode, thus requiring O(

√
K log K ) gates. Beginning

from the mode k′ of type t j with lowest momentum in |ψ〉F ,
check whether k j = k′: if it is, then if its initial occupation is
greater than one, decrease its occupation by one. If its initial
occupation is one, remove this mode by setting the state of
the corresponding mode register to 0, and then swap it to
the end of the register. This completes the implementation
of the second step in (C7), which in turn completes the full
mapping (C6).

2. Computing matrix elements

We take the first set of terms in HS [Eq. (A4)] as our example: we call this set of terms HS,1. The matrix elements due to the
remaining sets of terms in the Hamiltonian may be computed using similar methods. Substituting the explicit expressions for cn
and {·, ·} into the first line of (A4) gives

HS,1 =
∑

k,l,m,n

δk+l,m+n√
ln

(
1 − δk,n

k − n + δk,n
+ 1

k + l

)
(b†

kbma†
l an). (C8)

Note that the term δk,n appears in the denominator so that the first term is unambiguously zero if k = n. Assuming |ψ〉 and |ψ ′〉
both have total momentum K , 〈ψ ′|HS,1|ψ〉 �= 0 if and only if for

|ψ〉 = |n1, n2, . . . , nI〉 ⊗ |n1, n2, . . . , nI〉 ⊗ |(̃n1, w̃1), (̃n2, w̃2), . . . , (̃nI , w̃I )〉 ,

‖ψ ′〉 = |n′
1, n′

2, . . . , n′
I〉 ⊗ |n′

1, n′
2, ..., n′

I〉 ⊗ |(̃n′
1, w̃

′
1), (̃n′

2, w̃
′
2), ..., (̃n′

I , w̃
′
I )〉 , (C9)

the sets {n1, n2, . . . , nI} and {n′
1, n′

2, . . . , n′
I} each contain exactly one element not in the other, the sets {n1, n2, . . . , nI} and

{n′
1, n′

2, . . . , n′
I} are identical, and

{(̃n1, w̃1), (̃n2, w̃2), . . . , (̃nI , w̃I )} � {(̃n′
1, w̃

′
1), (̃n′

2, w̃
′
2), . . . , (̃n′

I , w̃
′
I )}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(̃ni, 1), (̃n′

j, 1)} s.t. ñi �= ñ′
j, or

{(̃ni, w̃i ), (̃n′
j, w̃

′
j ), (̃n′

j′ , 1)} s.t. (̃n′
j , w̃′

j ) = (̃ni , w̃i − 1), or
{(̃ni, w̃i ), (̃n′

j, w̃
′
j ), (̃ni′ , 1)} s.t. (̃n′

j , w̃′
j ) = (̃ni , w̃i + 1), or

{(̃ni, w̃i ), (̃n′
j, w̃

′
j ), (̃ni′ , w̃i′ ), (̃n′

j′ , w̃
′
j′ )} s.t. (̃n′

j , w̃′
j ) = (̃ni , w̃i + 1)

and(̃n′
j′ , w̃

′
j′ ) = (̃ni′ , w̃i′ − 1),

(C10)

for some set of indices i, j, i′, j′ (� denotes symmetric difference).
Operations. Given the input states

|ψ〉 ⊗ |ψ ′〉, (C11)
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we wish to evaluate the corresponding matrix element. To do this, we attach ancillary registers whose state has the form(| f1, f2, . . . , fI〉 ⊗ |s〉 ⊗ |m〉 ⊗ | f ′
1, f ′

2, . . . , f ′
I 〉 ⊗ |s′〉 ⊗ |k〉)⊗ (| f 1, f 2, . . . , f I〉 ⊗ |s〉)

⊗(|( f̃1, g̃1), ( f̃2, g̃2), . . . , ( f̃I , g̃I )〉 ⊗ |̃s〉 ⊗ |n〉 ⊗ |( f̃ ′
1, g̃′

1), ( f̃ ′
2, g̃′

2), . . . , ( f̃ ′
I , g̃′

I )〉 ⊗ |̃s ′〉 ⊗ |l〉 ⊗ |w̃, w̃′〉), (C12)

where the fi, f ′
j, f i, f̃i, f̃ ′

j are each qubits initially set to |1〉. The s, s′, s, s̃, s̃ ′ are each registers capable of encoding I as a binary
number. The k, l, m, n, w̃, w̃′ are each registers capable of encoding K as a binary number, initially set to 0. The g̃i, g̃′

j are each
registers capable of encoding K as a binary number, initially set to 1. We then perform the following operations:

(1) For each pair (i, j) ∈ {1, 2, . . . , I}2, perform the following mapping on the registers encoding |ni, n′
j, fi, f ′

j〉 (initially in
the state |ni, n′

j, 1, 1〉):
|ni, n′

j, 1, 1〉 �→ {|ni, n′
j, 0, 0〉 if ni = n′

j ,‖ni, n′
j, 1, 1〉 if ni �= n′

j . (C13)

There are O(I2) pairs and so the cost of this step is O(K log K ) gates.
(2) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | fi, s〉 and | f ′

i , s′〉:
| fi, s〉 �→ | fi, s + fi〉,
| f ′

i , s′〉 �→ | f ′
i , s′ + f ′

i 〉. (C14)

The cost of this step is O(
√

K log K ) gates.
(3) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | fi, ni, m〉 and | f ′

i , n′
i, k〉:

| fi, ni, m〉 �→ | fi, ni, m + fini〉,
| f ′

i , n′
i, k〉 �→ | f ′

i , n′
i, k + f ′

i n′
i〉. (C15)

The cost of this step is O(
√

K log K ) gates.
(4) For each pair (i, j) ∈ {1, 2, . . . , I}2, perform the following mapping on the registers encoding |ni, n′

j, f i〉 (initially in the
state |ni, n′

j, 1〉):
|ni, n′

j, 1〉 �→ {|ni, n′
j, 0〉 if ni = n′

j ,‖ni, n′
j, 1〉 if ni �= n′

j . (C16)

The cost of this step is O(K log K ) gates.
(5) For each i = 1, 2, . . . , I , perform the following mapping on the registers encoding | f i, s〉:

| f i, s〉 �→ | f i, s + f i〉. (C17)

The cost of this step is O(
√

K log K ) gates.
(6) For each pair (i, j) ∈ {1, 2, . . . , I}2, perform the following mapping on the registers encoding |(̃ni, w̃i ), (̃n′

j, w̃
′
j ), f̃i, g̃i〉

[initially in the state |(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, 1〉]:

|(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, 1〉 �→

⎧⎪⎪⎨⎪⎪⎩
|(̃ni, w̃i ), (̃n′

j, w̃
′
j ), 1, 1〉 if̃ni �= ñ′

j,

|(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 0, 0〉 if̃ni = ñ′

j, andw̃i = w̃′
j or w̃′

j − 1,

|(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, w̃i〉 if̃ni = ñ′

j, andw̃i = w̃′
j + 1,

|(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, 0〉 if̃ni = ñ′

j, and|w̃i − w̃′
j | > 1.

(C18)

The cost of this step is O(K log K ) gates. t
(7) For each pair (i, j) ∈ {1, 2, . . . , I}2, perform the following mapping on the registers encoding |(̃ni, w̃i ), (̃n′

j, w̃
′
j ), f̃ ′

j, g̃′
j〉

[initially in the state |(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, 1〉]:

|(̃ni, w̃i ), (̃n′
j, w̃

′
j ), 1, 1〉 �→

⎧⎪⎪⎨⎪⎪⎩
|(̃ni, w̃i ), (̃n′

j, w̃
′
j ), 1, 1〉 if ñi �= ñ′

j ,
|(̃ni, w̃i ), (̃n′

j, w̃
′
j ), 0, 0〉 if ñi = ñ′

j , and w̃i = w̃′
j or w̃′

j + 1,
|(̃ni, w̃i ), (̃n′

j, w̃
′
j ), 1, w̃′

j〉 if ñi = ñ′
j , and w̃i = w̃′

j − 1,
|(̃ni, w̃i ), (̃n′

j, w̃
′
j ), 1, 0〉 if ñi = ñ′

j , and |w̃i − w̃′
j | > 1.

(C19)

The cost of this step is O(K log K ) gates.
(8) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | f̃i, g̃i, s〉 and | f̃ ′

i , g̃′
i, s〉:

| f̃i, g̃i, s〉 �→ | f̃i, g̃i, s + f̃iδ̃gi,0〉,
| f̃ ′

i , g̃′
i, s〉 �→ | f̃ ′

i , g̃′
i, s + f̃ ′

i δ̃g′
i,0〉. (C20)

The cost of this step is O(
√

K log K ) gates.
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(9) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | f̃i, s̃〉 and | f̃ ′
i , s̃ ′〉:

| f̃i, s̃〉 �→ | f̃i, s̃ + f̃i〉,
| f̃ ′

i , s̃ ′〉 �→ | f̃ ′
i , s̃ ′ + f̃ ′

i 〉. (C21)

The cost of this step is O(
√

K log K ) gates.
(10) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | f̃i, ñi, l〉 and | f̃ ′

i , ñ′
i, n〉:

| f̃i, ñi, l〉 �→ | f̃i, ñi, l + f̃ĩni〉,
| f̃ ′

i , ñ′
i, n〉 �→ | f̃ ′

i , ñ′
i, n + f̃ ′

i ñ′
i〉.. (C22)

The cost of this step is O(
√

K log K ) gates.
(11) For each i = 1, 2, . . . , I , perform the following mappings on the registers encoding | f̃i, w̃i, w̃〉 and | f̃ ′

i , w̃
′
i, w̃

′〉:
| f̃i, w̃i, w̃〉 �→ | f̃i, w̃i, w̃ + f̃iw̃i〉,

| f̃ ′
i , w̃

′
i, w̃

′〉 �→ | f̃ ′
i , w̃

′
i, w̃

′ + f̃ ′
i w̃

′
i〉. (C23)

The cost of this step is O(
√

K log K ) gates.

When steps 2 and 3 have been completed, the fermionic
part of the condition for the states to be connected is satisfied
if and only if s = s′ = 1, i.e., if exactly one of the fi and one
of the f ′

j is 1. k and m store the fermionic momenta whose
occupations are changed in the case when the states may be
connected.

When steps 4 and 5 have been completed, the antifermionic
part of the condition for the states to be connected is satisfied
if and only if s = 0. When steps 6 and 7 have been completed,
if the final case in (C18) or (C19) holds for any i (or j), then
the two states are not connected. Step 8 therefore adds at least
1 to s if and only if the final case in (C18) or (C19) holds
for some i or j. Thus, after these operations are complete, the
states can only be connected if s = 0.

When step 9 has been completed, the states can be con-
nected only when s̃ = s̃ ′ = 1, i.e., if exactly one of the f̃i and
one of the f̃ ′

j is 1. Thus, when step 10 has been completed,
l and n store the bosonic momenta whose occupations are
changed in the case when the states may be connected; and
when step 11 has been completed, w̃, w̃′ store the (larger)
occupation numbers of the two bosonic momenta that change
between the two states.

Having implemented all of the preceding operations, the
matrix element 〈ψ ′|HS,1|ψ〉 may be computed as follows:

(1) 〈ψ ′|HS,1|ψ〉 �= 0 if and only if s = s′ = s̃ = s̃ ′ = 1
and s = 0.

(2) If the above condition holds, then

〈ψ ′|HS,1|ψ〉 =
√

w̃w̃′

ln

(
1 − δk,n

k − n + δk,n
+ 1

k + l

)
=
√

w̃w̃′

ln
×
{ 1

k−n + 1
k+l if k �= n,

1
k+l if k = n.

(C24)

(3) The matrix element (C24) is a function of the numbers
k, l, m, n, w̃, w̃′, each of which has already been stored in its
own register of �log2 K� qubits. Thus, we may compute the
matrix element to any desired number of bits p and store
it in a register of the same length, by an operation on the
6�log2 K� + p qubits involved. Computation of the square
root requires two multiplications of two O(log K )-bit num-
bers, costing O(log K2) gates. These two numbers are then

divided, yielding a result with O(p) bits of precision, requiring
O(p2) operations. We then take the square root of this p-bit
number, requiring O(p2 log p) gates. To compute the second
term in the case k �= n we can either perform one addition
and one subtraction of two O(log K )-bit numbers, followed
by two divisions, or compute the common denominator and
numerator, and perform one division. In either case the cost is
O(log K + p2). Thus, calculating the matrix element requires

O[(log K )2 + p2 log p] (C25)

gates.
The matrix elements due to other terms in the Hamiltonian

may be evaluated using similar methods. Similar analyses will
apply for each term, so the overall cost to evaluate a matrix
element of the full Hamiltonian will be

O(K log K + p2 log p) = Õ(p2 + K ) (C26)

gates, where the dependence on p comes from the final calcu-
lation of the matrix element. We can also calculate the total
number of qubits required for these operations. The input
states in (C9) each require I�log2 K� qubits for fermions,
I�log2 K� qubits for antifermions, and 2I�log2 K� qubits for
bosons, for a total of

8I�log2 K� � 8
√

2K�log2 K� � 12
√

K�log2 K� (C27)

qubits to encode the input states; as we would hope (since
we have two input states) this is twice the number required
to encode a single state in the compact mapping, as de-
scribed in Appendix B, Eq. (B12). The ancillary registers
in (C12) require 5I qubits for the {| fi〉, | f ′

j〉, | f i〉, | f̃i〉, | f̃ ′
j〉},

5�log2 I� qubits for {|s〉, |s′〉, |s〉, |̃s〉, |̃s ′〉}, 6�log2 K� qubits
for {|k〉, |l〉, |m〉, |n〉, |w̃〉, |w̃′〉}, and 2I�log2 K� qubits for the
{̃gi, g̃′

j}, for a total of

5I + 5�log2 I� + 6�log2 K� + 2I�log2 K�
� 2

√
2K�log2 K� + 5

√
2K + 11�log2 K� + p (C28)
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qubits. Thus, the total number of qubits required is upper
bounded by

10
√

2K�log2 K� + 5
√

2K + 11�log2 K�
� 15

√
K�log2 K� + 8

√
K + 11�log2 K� + p (C29)

(where, again, p is the number of bits desired in the output
matrix element).

3. Measurement of an occupation number

In order to evaluate PDFs, we need to be able to mea-
sure the number operator N, to estimate the expectation
value (10). This means that for an encoded Fock state

|n1, n2, . . . , nI〉 ⊗ |n1, n2, . . . , nI〉
⊗ |(̃n1, w̃1), (̃n2, w̃2), . . . , (̃nI , w̃I )〉, (C30)

we want to perform a measurement of the occupation num-
ber of some particular momentum mode n, summed over
fermions, antifermions, and bosons.

To do this, we employ an ancillary register whose states
have the form

| f1, f2, . . . , fI〉 ⊗ | f 1, f 2, . . . , f I〉 ⊗ | f̃1, f̃2, . . . , f̃I〉 ⊗ |s〉,
(C31)

where the fi, f i, f̃i are each qubits initially set to |0〉, and s is
a register of O(log K ) qubits, initially set to 0. For the desired
n, we iterate over the ni, ni, and ñi, checking whether each is
equal to n: if it is, then we set the corresponding fi, f i, or f̃i

to 1. This requires 3I operations on O(log K ) qubits, requiring
O(I log K ) gates.

Now, we iterate over the fi and f i, adding their values to s.
Each such operation is a binary addition on O(log K ) qubits,
and we implement 2I of them, so the total number of gates
required is again O(I log K ). After this step is complete, s will
encode the total number of fermions and antifermions with
momentum n (between 0 and 2).

Finally, we iterate over the pairs (w̃i, f̃i ), adding the prod-
ucts of their values to s, i.e.,

s �→ s +
I∑

i=1

w̃i f̃i. (C32)

Each such operation is a binary addition on O(log K ) qubits,
and we implement I of them, so the total number of gates
required is again O(I log K ). After this step is complete, s
will encode the total number of fermions, antifermions, and
bosons with momentum n. Once this routine is complete, we
can sample the occupation number of mode n by measuring
the qubits encoding s. The total cost is O(I log K ) = Õ(

√
K ).

The situation becomes only slightly more complicated
when we impose the probing scale Q2 as in (13). Now we
wish to estimate the expectation value of the number operator
N for the cutoff state |� (Q)〉, as in (14). We use the following

version of the cutoff condition (13):

I∑
j=1

(
m2

j

n j
+ m2

j

n j
+ w̃ j

m̃2
j

ñ j

)
� Q2

K
. (C33)

To calculate the left-hand side of this expression, we employ
an additional ancillary register whose states have the form

|s′〉 ⊗ |t〉, (C34)

where |s′〉 is a register of p qubits (which we will use to store
a floating point number, initially 0), and |t〉 is a single qubit.

To evaluate the cutoff condition, note the following:
(1) For each j = 1, 2, . . . , I , perform the following map-

pings on the registers encoding |nj, s′〉 and |n j, s′〉:

|n j, s′〉 �→
∣∣∣∣n j, s′ + m2

j

n j

〉
, ‖n j, s′〉 �→

∣∣∣∣∣n j, s′ + m2
j

n j

〉
.

(C35)
(2) For each j = 1, 2, . . . , I , perform the following map-

pings on the registers encoding |(̃nj, w̃ j ), s′〉:

|(̃n j, w̃ j ), s′〉 �→
∣∣∣∣(̃n j, w̃ j ), s′ + w̃ j

m̃2
j

ñ j

〉
. (C36)

(3) Perform the following mapping on the registers encod-
ing |s′, t〉 (which will be in the state |s′, 0〉 for some s′ set by
the previous steps):

|s′, 0〉 �→ {|s′, 0〉 if s′ > Q2/K, ‖s′, 1〉 if s′ � Q2/K.

(C37)
When steps 1 and 2 have been completed, s′ will be an

encoding (to the desired precision, set by its number of qubits
p) of

s′ ≈
I∑

j=1

(
m2

j

n j
+ m2

j

n j
+ w̃ j

m̃2
j

ñ j

)
. (C38)

Thus, the third step merely checks whether the value of s′

is bounded or not by the quantity Q2

K , which is classically
precomputed, and updates the qubit t accordingly. Then, in
order to get the expectation value of the number operator for
the cutoff state |� (Q)〉, as in (14), we compute the number
operator as above for the noncutoff state, but only for pairs
(s, t ) where t = 1; when t = 0 we throw away the sample.

This avoids sampling values corresponding to disallowed
states. Note that if in some superposition of Fock states, those
above the cutoff Q2

K possess too much of the total proba-
bility, it may become inefficient to sample only from the
allowed states. This situation can be avoided by keeping the
imposed cutoff Q2 not too far below the maximum energy
scale Q2

max(K ); see Fig. 1 and the associated discussion.
Each of the operations in step 1 above involves a division

and an addition on p + log2 K qubits: log2 K for the n j or n j ,
and p for s′. Each of the operations in step 2 above involves
a division, a multiplication, and an addition on p + 2 log2 K
qubits: log2 K for each of ñ j and w̃ j , and p for s′. We perform
2I of the first type, and I of the second; the final step is just
a multiply controlled NOT on p + 1 qubits, so the total num-
ber of CNOTs and single-qubit gates required is Õ(I + p) =
Õ(

√
K + p).
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