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Quantum state transport is an important way to study the energy or information flow. By combining the
unconventional Rydberg pumping mechanism and the diagonal form of van der Waals interactions, we construct
a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the
ground-state manifold of neutral atoms systems. With the adjustment of the Rabi frequencies and the interatomic
distance, this model can be used to simulate various single-body physics phenomena such as a Heisenberg
XX spin chain restricted in the single-excitation manifold, coherently perfect quantum state transfer, the
parameter-adjustable Su-Schrieffer-Heeger model, and chiral motion of atomic excitation in a triangle by varying
the geometrical arrangement of the three atoms, which effectively avoids the influence of atomic spontaneous
emission at the same time. Moreover, the influence of atomic position fluctuation on the fidelity of quantum state
transmission is discussed in detail, and the corresponding numerical results show that our work provides a robust

and easily implemented scheme for quantum state transport with neutral atoms.
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I. INTRODUCTION

Quantum state transport plays an important role in under-
standing the energy or information flow at the microscopic
particle level. Because of its simplicity, spin-chain systems
with nearest-neighbor hopping have been extensively used
to realize quantum state transmission [1-10]. To achieve
high-fidelity transfer of quantum information, various trans-
port protocols have been put forward, such as modulation
of the couplings between neighboring spins [11-16], ex-
ploitation of the chiral topological edge states [17,18],
and construction of a stimulated Raman adiabatic passage
[19-21], especially combined with the topologically protected
edge states [22,23]. Among many physical systems, Rydberg
atoms have been regarded as good candidates to simulate
spin-chain models on account of their remarkable proper-
ties [24-30]. In particular, the long-range interactions are
capable of causing diverse consequences such as Rydberg
blockade [31-33] and antiblockade [34-38] over long-range
molecules [39,40].

Recently quantum state transfer schemes based on
Rydberg atoms have made rapid progress both theoretically
and experimentally [41-52]. According to different coding
modes of qubits, these schemes can be divided into three
categories: One is the spin-exchange between Rydberg states
[41-44]; for instance, Barredo et al. [41] studied this hop-
ping in a spin chain constructed by individually addressable
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Rydberg atoms by utilizing long-range resonant dipole-dipole
coupling. The second category is the quantum state transfer
between the ground state and Rydberg state which remains
as a second-order process in terms of laser-spin coupling
[45-48]. To reach this target, Yang et al. [47] constructed
an exchange interaction between the ground state and Ry-
dberg state, mediated by synthetic spin exchange arising
from the diagonal van der Waals (vdW) interaction. The last
category is the excitation transport taking place in the ground-
state manifold through a fourth-order process [49-51], where
the effective spin-spin interactions between ground-state
atoms are obtained by dressing Rydberg states with dipole-
dipole interactions, vdW interactions, and Forster-resonance
interactions.

In this work, we make use of the diagonal vdW interactions
and unconventional Rydberg pumping [53,54] to realize co-
herent excitation transport inside the ground-state manifold of
a series of three-level Rydberg atoms. The simple energy-level
structure can help reduce the complexity of the experiment op-
eration. Because the evolution dynamics of the whole system
is a second-order process, we can easily modulate the effective
coupling strength between adjacent sites. Consequently, the
current system can be used to simulate various single-body
physics phenomena such as a Heisenberg XX spin chain re-
stricted in the single-excitation manifold [55-57], coherently
perfect quantum state transfer, and the parameter-adjustable
Su-Schrieffer-Heeger (SSH) model [58—60] by rearrangement
of the atoms. The advantage of our system is that no fine tun-
ing of atomic position is required because the deviation from
the unconventional Rydberg pumping condition will only alter

©2022 American Physical Society
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FIG. 1. Experimental setup. (a) N Rydberg atoms arranged as
a linear chain at equal intervals with same energy-level configura-
tion. Atoms are driven by two global laser fields propagating along
the z axis from two sides. Meanwhile, local laser fields €2; and
Q;, propagating along the x axis are focused onto individual sites.
(b) Level structure for the proposed atomic system. We consider
87Rb with |g) = [5S1,2, F = 1,mp = 0), |e) = |5810, F =2, mp =
1), and |r) = [73S,,2, my = 1/2). (c) The equivalent system after
adiabatically eliminating the intermediate states.

the evolution period of the quantum state without destroying
the realization of the scheme.

In addition, focusing on three Rydberg atoms arranged in
an equilateral triangle, a chiral motion of atomic excitation
can be achieved by periodically switching on and off the
weak driving fields [61], where the excitation hops from site
to site in a preferred direction induced by a synthetic gauge
field, breaking the time-reversal symmetry. Compared with
the recent experimental observation of chiral motion in a
spin-orbit-coupled Rydberg system [62], our scheme does not
require precise control of electric or magnetic fields.

The remainder of this paper is organized as follows:
In Sec. II we introduce the details of the system and de-
rive its effective dynamics via effective operator method. In
Sec. III we provide a protocol to realize a one-dimensional
SSH model by regulating the detuning of the strong driving
field. In Sec. IV, the chiral motion of atomic excitation in the
triangle is accomplished via Floquet driving. In Sec. V we
further analyze the feasibility of our scheme by considering
a realistic experimental setup from multiple perspectives. Fi-
nally, we give a conclusion in Sec. VI.

II. ONE-DIMENSIONAL CHAIN OF ATOMS

The considered system is illustrated in Fig. 1(a), it incor-
porates N Rydberg atoms (*’Rb) with the same configuration
arranged as a linear chain at equal intervals. The position of
the jth atom is labeled as r; and the distance between the jth

and kth atoms is 7 = |r; — r¢|. The configuration of each
atom is shown in Fig. 1(b). The ground states here are chosen
as |g) =I5812, F =1, mp =0), le) =[5810, F =2, mp =
1) and the Rydberg state is selected as |r) = [73S,2, m; =
1/2). The transition between ground states and the
Rydberg state |r) are driven by two-photon processes, where
state |g) is individually addressed to the intermediate state
[p1) = I5P1y2, F =2, mp = 0) with a -polarized laser field
;1 at 795 nm, and then coupled to |r) with another lo-
cal m-polarized dressing laser €2;; at 474 nm, state |e) is
driven by two global laser fields propagating from two sides,
where €2, at 780 nm with o*-polarized drives |e) to the
intermediate state |py) = |SPs3, F =2, mp = 2) and Q) at
479 nm with o ~-polarized coupled |p;) to the Rydberg state
|r) [63,64]. After adiabatically eliminating the intermediate
states |p1(2)), the configuration of each atom can be simplified
as a three-level structure shown in Fig. 1(c). The ground state
|g) is dispersively coupled to |r) by a laser field of effective
Rabi frequency 2; at site j, detuning &, while the transition
between |e) and |r) is driven by a global laser field of effec-
tive Rabi frequency €2,, detuned by A. In a rotating frame
with respect to U = exp[—izyzl(Slgj)(gﬂ + Alej){e;t],
the Hamiltonian of the system reads (& = 1)

N
H™ =3 Qjlrj){gjl + Qlrj) e + Hee. + 81g;) (g
j=1

+Alej) el + D Upelrire) (rirl. ()
Jj<k

It should be noticed that, to be more intuitive, the phases
caused by the wave vectors have been ignored here but will
be discussed in Sec. VA. The vdW interaction between
atoms in the Rydberg state spaced r;; takes the form of
Ujr = Cs/ rjé.q - The second-order nondegenerate perturbation
theory gives the dispersion coefficient Cy of the vdW interac-
tion as about 1.416 THz /,LII16 for state [73S7,2) [65]. So the
vdW interaction continuously varies from 2w x 1943 MHz
to 2w x 1.416 MHz with r; ;4 adjusted from 3 to 10 pum.
Unless otherwise specified, we assume that distance between
the nearest-neighbor atoms r; ;1 = 4.1 um for the following
numerical simulation, which corresponds to U} j;1 >~ 2w x
300 MHz.

In the limit of large detuning A 3> 2, and the un-
conventional Rydberg pumping condition U; ;1 = A, the
high-frequency oscillating terms proportional to A can be
neglected and the computational space is reduced for an initial
state |egg . . . g). Meanwhile, the limiting condition {£2,, 6} >
Q; allows us to further adiabatically eliminate the Rydberg
states via the effective operator method to obtain the effective
dynamics of the system [66,67].

A. Two-atom case

To explain the physical mechanism of the proposed model
more clearly, we take the case of N =2 as an example and
assume 2 = 2, = 2, then the Hamiltonian can be simpli-
fied as

HI(Z) = Qp(ler)(rr| + |re)(rr]) + Q(|re)(ge| + |er)(egl)
+H.c. + d(Jeg)(egl + |ge)(gel), 2)
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if the system is initialized in the state |eg), where the high-
frequency oscillating terms have been neglected under the
condition Ui, = A and A > Q,,. After shifting the levels of
states in this subspace to make the energy of ground states
|ge) and |eg) become zero, the Hamiltonian can be further
rewritten as H = Hy + V4 + V_, where

Hy = Q(ler)(rr| + |re)(rr]) + H.c. — 8(|er){er|

+lre)(re| + |rr)(rr|), 3)
and

Vi = VI = Q(re) (gel + ler)(eg])- )
Here V,.(V_) are assumed to be perturbative terms under the
condition  « {2, §}. Generally speaking, the calculation
of dissipation is very complicated if the fine structure of the
system is adopted, so we first make a simple assumption that
the Rydberg state decays directly into |g) and |e) with the
same branching ratio of the spontaneous emission rate, i.e.,
Ly = Vy/218)(nl, Lo = Vv /2182)(r2|, Ly = /'y /2]er) (],
and Ly = /y/2|e;)(rz|. Thus the evolution of the system is
now governed by the Markovian master equation

4
1

LipL] — ~{L{Li, p}). 5

p]+; pL = SAL{Li. p}. (5)

The excited states |er), |re), and |rr) can be further adia-

batically eliminated when the excited states are not initially

populated. Under the second-order perturbation theory, the
dynamics is given by the effective operators

dhp = —i[H”,

Her = —2[V_HGVy +V_(Hgh) V4], (6)

and
LYy = LHGV,, (7
where Hyy = Z LTL Within the subspace of con-

sideration, the effectlve Hamlltoman and master equation can
be obtained as
2 - .
HE = Jia(0]05 + 07 07), (8)
and
2
at/) = He(ff)’

+ZLff'0Leff {LéffLéffv Lo

where

Ll = Tilge)(gel + T'alge) (egl + T'3(1gr)(gel + lgr){egl),
(10

L2 = Tileg) (egl + Taleg) (gel + Ts3(Irg) (gel + Irg)(eg)),
(11)

Lz = Tilee) (ge| + Talee)(egl + T3(ler) (gel + ler)(eg)),
12)

Liy = T'1lee)(egl + Talee) (gel + Ts(Ire) (gel + |re) (eg)),
13)

in which o*;r is a pseudospin operator reading as a;r =

lej)(g;l, while Ji; = Q%Q7/(8° —28Q7) describes  the
effective coupling between ground states, I'j = iQx (y? —
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FIG. 2. (a) Populations of the two-atom states |eg) (solid) and
|ge) (dashed) governed by the full Hamiltonian of Eq. (1) and the
effective Hamiltonian of Eq. (8), respectively. (b) Population evolu-
tions dominated by the full master equation (5) and effective master
equation (9) with y = 2m x 0.005 MHz, respectively. (c¢) Popula-
tions of states |eg) and |ge) together with the singly (purple) and
doubly (green) excited states governed by the full Hamiltonian of
Eq. (1), where “excited state” refers to the Rydberg state |r). The
other parameters are taken as § = 2, = 27 x 1 MHz, Q = 0.05%2,,,
and A =300L,. (d) Populations of states |eg) and |ge) together
with the singly (purple) and doubly (green) excited-states under the
protocol in Ref. [49] with parameters Ay = A, = 50 MHz, Q, =
Q, =7MHz, and U = 92.5 MHz.

3iys —28% + 2522)/()/ —2i8), I' = —ZiQQf,X/(y — 2i6),
and I'; =QQ,x are effective spontaneous emission
rates with x = /2y /(y* — 3iy8 — 25> +4Q2). The term
[2192(8% —Q2)/(8% — 2692) + 81(leg)(egl + lge)(gel)
appearing in the effective Hamiltonian has been disregarded
because it only acts as a unit operator in the subspace we
consider.

B. Numerical simulations

The resulting population oscillation between states |eg) and
|ge) can be clearly seen in Fig. 2(a) without considering the
dissipative parts under parameters § = 2, = 27 x 1 MHz,
2 =0.05€,, and A = 300£2,. The evolution governed by the
effective Hamiltonian of Eq. (8) is well consistent with the full
one of Eq. (1). Figure 2(b) shows the evolution dominated by
the full master equation (5) and effective master equation (9)
with y = 27 x 0.005 MHz, respectively. The dynamics are
identical to each other, illustrating that the system can still
be well described by a two-level form. To be more realistic,
we introduce an uncoupled state |«) to represent the leakage
levels outside qubit basis {|g), |e)}, the decay term now reads

2
-3 ¥ i -

n=1 j=ge,a

1 1
)7y (n) )7y (n)

(14)
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with L;") = /b vl ju){ral, where y, is the decay rate of the
Rydberg state and bj,. denotes the branching ratios to the
lower level |j). The transmission efficiency corresponding
to the first Rabi oscillation can be denoted T = Tr[p(t)]; ®
les) (€21, where t = 87 /2Q2, and 1 is the unit operator. With-
out dissipation, the excitation can be transported perfectly to
the second atom, and hence 7 = 1 for an ideal Heisenberg X X
spin-chain model. In the presence of dissipation, we use T*
to denote the transmission efficiency with different branching
ratio A = by + b,,. In the hyperfine structure, by assuming
that the dissipation rates from the Rydberg state to any ground
state are equal to each other, we have b, = 1/8, b,, = 1/8,
and b, = 3/4 [68]. The corresponding transmission effi-
ciency is calculated as T°?° = 0.9736. With the pessimistic
approximation that by, + b, = 0, by, = 1, we still have 7O =
0.9716, which proves that the spontaneous radiation out of
space has little effect on the system. In Figs. 2(c) and 2(d),
we further compare our scheme with the method provided
in Ref. [49], where the populations of singly (purple) and
doubly (green) excited states (where “excited state” refers to
the Rydberg state |r)) are simulated by the full Hamiltonian
(1) and the Hamiltonian (4) in Ref. [49], respectively. Under
the condition of realizing the same Rabi oscillation period
between |eg) and |ge), it can be clearly seen that our scheme
has a better effect on inhibiting atomic excitation. In addition,
this diatomic model can also be used to implement the /SWAP
gate which, together with single-qubit rotations, form a set of
universal gates for quantum computation [69-73] (please see
Appendix A for details).

Since the long-range vdW interaction between the next-
nearest neighbor atoms is too weak to fulfill the condition A =
U, i+2, these terms can be neglected as high-frequency oscillat-
ing terms with detuning A — Uf; ;;». The effective Hamiltonian
for arbitrary N particles reduces to

N—1
N - _
He(ff) = ZJ.i,.i+1(0j+Uj+1 +o0; 0;1): (15)
j=1

where J; ;41 = Q;Qj4192%/(8% — 2893). Note that, when ),
and § are the same magnitude, the form of the coupling
strength between ground states is simplified as —$2;$2;,/5
which is only related to the properties of the weak driving
fields. As J; ;11 =J, Eq. (15) is equivalent to a Heisenberg
XX spin chain restricted in the single-excitation manifold.
Figure 3(a) depicts the spin-chain dynamics of five parti-
cles governed by the full Hamiltonian of Eq. (1) from the
initial state |egggg). The corresponding parameters are taken
as 6 = Q, =2m x 1 MHz, A =27 x 300 MHz, and Q; =
0.05€2,. Meanwhile, the perfect quantum state transfer can
be also achieved by tuning the Rabi frequencies 2; to meet
the condition J; ;11 = J+/j(N — j) [11]. For five particles,
the corresponding parameters can be selected as Q2 = Q5 =
Q, Q = Qu =2Q, and Q3 = /3/2Q, where Q = 0.025Q,,.
The populations of single-excited states under the full Hamil-
tonian of Eq. (1) are shown in Fig. 3(b).

Experimentally, there may be a systematic error in the
position of atoms destroying the condition U; ;1 = A. To
investigate the influence of this factor, we introduce the degree
of deviation AU =U; ;11 — A. To ensure that the near-
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FIG. 3. Transport dynamics of the multi-atomic model with N =
5 without considering spontaneous emission. (a) Populations of
ground states with same separation and coupling strength governed
by the full Hamiltonian of Eq. (1) with Q; =0.05%,. (b) The
evolution of ground states governed by the full Hamiltonian un-
der the perfect transmission condition Q) = Q5 = Q, Q, = Q4 =
2Q, Q5 = /3/2Q with © = 0.0252,,, while the other parameters
are taken as Q, =27 x 1 MHz, § = Q,, and U ;11 = A =27 X
300 MHz.

resonance terms kept before are still dominant, we assume
that AU is not very large. After calculation by the effective
operator method, the effective Hamiltonian keeps the same
form as Eq. (8) but with an updated coupling strength related
to AU:

Q202
)4
83 —26Q2 — S2AU

Jio = (16)

Setting § = Q, =2m x 1 MHz, A =27 x 300 MHz, and
2 = 0.05€2,, the dynamical evolution modeled by different
AU is shown in Fig. 4. With such parameters, we have
83— 23912, < 0. According to Eq. (16), when AU > 0, the in-
creased value of | AU | will lead to the decrease of the coupling
coefficient J|, and the extension of the evolution period. When
AU < 0, the evolution period is shortened under the con-
dition 0 < [AU| < (1 42897 — §%)/8” and extended under
the condition |[AU| > (1 + 2652[2, — 83)/8%. Note that AU =
—(1428Q2 — §%)/8” is a singularity of Eq. (16), which will
destroy the condition of second-order perturbation and should
be avoided when considering the actual physical parameters.
On the whole, in the presence of a small deviation, the above
derivation process is still valid and the effective coupling
strength J; ;11 becomes a function of AU which will only
change the evolution cycle of the system but will not invalidate
the scheme. Here, we only consider the case where the atomic
position is fixed for simplicity; the random fluctuation of vdW
interaction caused by the atomic vibration will be further
discussed in Sec. V B.
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FIG. 4. The mismatch of the unconventional Rydberg pumping
condition governed by full Hamiltonian (1). The parameters are taken
as § = Q, =27 x 1 MHz, A =27 x 300 MHz, @ = 0.05€2,, and
AU = uj,j+l — A.

III. TOPOLOGICAL SPIN MODEL

Inspired by the inherent adjustable coupling of the system,
we show that the following one-dimensional (1D) SSH model
can be constructed [58-60,74-77]

g -1

Hyn = ZJ 03105 + Zjbazz 0341 +He, a7
i=1 i=1

with regard to even number of particles, where J, and J,
represent real intra- and interunit-cell hopping coefficients, re-
spectively. Different from the previous scheme (i.e., U = A),
we here take the deviation of the unconventional Rydberg
pumping condition AU as a control parameter to achieve our
goal. When U; ;. is significantly different from A (AU is
relatively large), the extra coupling induced by doubly “ex-
cited” states with two atoms in state |e) while others in |g)
should also be taken into account. For the simplest system
composed of three particles with nonidentical coupling, the
transition paths are shown in Fig. 5(a). Thus the form of Hxy
and V, should be rewritten as

Hwn = (AU, — 8)|rrg)(rrg| — 8(lerg)(erg| + |reg)(reg|

+ |ger)(ger| + |gre)(grel) + (AU, — 8)|grr)(grr|

+ (A — 5)(Jeeg) (eeg| + |gee)(gee|)

+Q,(Iger)(grr| + |gre)(grr| + |ger)(gee]

+ |gre)(gee| + |erg)(rrg| + |reg)(rrgl

+ |erg)(eeg| + |reg){eeg| + H.c.), (18)

and
Vi = Qalerg)(eggl + 21|reg)(gegl| + 23lger) (gegl

+$2,|gre) (ggel, (19)

leeg) lgee)

lgeg) lgge)

Q < QO
¥ Az
lerg) [reg) Iger)\ ﬂ Igre)

lgrr)

Q” —\eggg) with He, |

--|gegg) with Hgp
|ggeg) with He,yyl
\ggge) Wlth He gyl

Populations

(3)10 315 320 325 330
A /27 (MHz)
d) % o leggg) with Hog]
q < |gegg) with Hg
0.8 RN \ggeq)wnhHﬂ /".
" o |ggge) with H g 1

Energy (kHz)
(=]

Populations

FIG. 5. (a) The effective coupling processes for topological spin
model. (b) The ratio of J, to J, is shown as a function of detuning A.
(c) Populations of ground states |eggg) (solid), |gegg) (dot-dashed),
|ggeg) (dotted), and |ggge) (dashed) governed by full and effective
Hamiltonian shown as Egs. (1) and (17) with A = 27 x 330 MHz.
(d) The population evolutions of ground states with A = 2w x
310 MHz. (e) The energy spectrum with topological phase with
N =100, where A =2 x 310 MHz. The other parameters are
taken as § = Q, = 2 x 1 MHz, Q; = 0.0582,, r;_; »; = 4 um, and
g1 = 4.1 pm.

where AU, =Uy — A, k=a,b, U, x 1/”%—1,21" and U,
1/ rgl.’zl. +1- Assuming Q; =  and applying the effective op-
erator method again, the Rydberg states can be adiabatically
eliminated and the effective coupling strength between ground
states can be obtained as

Qzﬂf,(uk —26)
— U8 — 82 + ZL{leZ,S’

= (20)

where n; = 452?) + A% — U A. If the two distances between
atoms are set to be ry;_j 2 =4 pum and ry i1 = 4.1 um,
the corresponding vdW interactions are U, ~ 2w x 346 MHz
and U, >~ 27 x 300 MHz. Therefore, after setting other pa-
rameters as § = Q, =27 x 1 MHz and Q2 = 0.05€2,,, the
effective coupling strength J; becomes a single-valued func-
tion of A. As illustrated in Fig. 5(b), the ratio |J,/Jp| is
related to the topological phase. When A € 27 x [310, 323)
MHz, the system corresponds to a nontrivial topological phase
for |J,/Jp| < 1, where an additional state localized at the
boundaries around zero energy can be observed. When A €
2w x [323,330] MHz, the system corresponds to a trivial
phase for |J,/Jp| > 1 with two discrete energy bands. So
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FIG. 6. The transport dynamics and the edge states of the system
with N = 8. Panels (a) and (b) correspond to the probability ampli-
tudes of two edge states governed by the effective Hamiltonian (17).
(c) Populations of the edge state |A) governed by the full Hamiltonian
(1) (solid line) and the populations of states |geg- - - g) and |gge - - - &)
governed by the full (dashed and dotted) and effective (diamonds and
circles) Hamiltonian initially excited at the second particle, respec-
tively. The parameters are § = 2, =27 x 1 MHz, Q = 0.05%2,,
A =21 x 310 MHz, ry;_1 2 = 4 um, and ry; 5;41 = 4.1 pm.

the system can be modulated from the nontrivial topological
phase to trivial topological phase by regulating the detuning
A from 27 x 310 MHz to 2 x 330 MHz within the current
parameter setting range. Figures 5(c) and 5(d) respectively
show the evolution of ground states of N = 4 with A = 2x x
330 MHz and A = 27 x 310 MHz. The evolution governed
by the effective Hamiltonian (17) is well consistent with the
full Hamiltonian (1), which proves that the approximation is
valid. In Fig. 5(e), we characterize the energy spectrum of a
multiparticle (N = 100) SSH model in the case of a single
excitation with A =27 x 310 MHz. The gap between the
edge state and bulk is about 1.2 kHz, which corresponds to a
nontrivial topological phase with two zero-energy edge states.

Figure 6 further reveals the edge states and the transport
dynamics of the system with eight particles. Figures 6(a)
and 6(b) correspond to the probability amplitudes of two
edge states governed by the effective Hamiltonian, which
are mainly distributed on two sides. Figure 6(c) shows the
evolution results for two different initial conditions, the edge
state |A) and |gegg. . .). The edge state |A) does not transfer to
other states and oscillates around 1, but the population of state
|geg - - - g) transfers to the intermediate particles except the two
sides. This behavior characterize as the topological structure.
We can also see from Fig. 6 that the dynamics described by the
effective Hamiltonian (marked with a circle and diamond) is
the same as the full Hamiltonian. Therefore, using the ground
state of Rydberg atom can construct an effective SSH model
and help to further provide an alternative way for realization
of quantum state transmission based on topological model
[22,23].

]

e

T 2T

legg) lgge) lgeg)
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\
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Q Q
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» 77—y lerg) ) N~ Pireg) \

lrgr) legr) lrge) SN lgre)y S lger) |grr)
QP QP

FIG. 7. (a) Schematic representations of Rydberg atoms ar-
ranged as an equilateral triangle form, Jj; describes the effective
coupling between the jth and kth atoms. (b) Periodic modulated
pulses for realizing the chiral motion of atomic excitation. (c) The
effective coupling processes have been chosen for realizing the chiral
motion.

IV. CHIRAL MOTION OF ATOMIC EXCITATION

Compared with the tight-binding model with open bound-
ary conditions, the tight-binding model with periodic bound-
ary conditions can exhibit more abundant physical properties.
For three particles arranged in an equilateral triangle shown in
Fig. 7(a), the following form of Hamiltonian can exist under
the induction of a gauge field:

Ho, = —J.(e90, 05 + "0} 05 + P05t o]) + He,
where J. is a positive real number and ©, = ¢ + ¢o3 —|—%§1)
can be seen as a synthetic flux behaving similarly to a physical
magnetic flux. When &, = 7 /2, the atomic excitation |e)
propagates in the counterclockwise direction 1 — 3 — 2 —
1. When &, = —x /2, the direction of transmission reverses.
Ever the synthetic flux ®, # 0, the dynamics of the system
breaks the time-reversal symmetry known as chiral motion
[61,62].

In our scheme, this chiral motion can be simulated by
periodic modulation under the Floquet theorem [78-83], and
the phase of the hopping amplitude between adjacent sites can
be induced through the noncommutativity between Hamilto-
nians. To be specific, the piecewise constant Hamiltonian is
shown in the form of

Hi, te[0,T/3)
H,, t€[T/3,2T/3) (22)
Hs, t €[2T/3,T),

H(t) =

where
3

H; = Qilr;){gil + ZQp|rj><ej| + H.c. +6lg;) (gl
=1

+Ale;)(e;l +Zujk|rjrk>(rjrk|~ (23)
Jj<k
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FIG. 8. (a) The quasienergy spectrum of the effective Hamiltonian Hey = i In(e~ 37 ¢=H27 ¢=117) /37 under various time intervals 7. Panels
(b) and (c) show the enlarged view of the quasienergy spectrum, which respectively show the energy-splitting process and the position the chiral
motion generated. Panels (d)—(f) show the populations of the ground states under different time intervals, respectively corresponding to the
quasienergy spectrum with two degenerate eigenenergies, arbitrary split three eigenenergies, and the eigenenergy with the same separations,
where 7 = 0.01 us, 0.1 us, and 0.12425 us. The parameters are § = 2, = 2 x 1 MHz, @ = 0.0582,,, and A = 27 x 300 MHz.

In this case, the evolution period of the system has been set
to T, it contains three processes and each one is described
by H; corresponding to the evolution time v = T /3. This
can be achieved by switching on and off the weak fields
coupled to the transition between states |g) and |r) of atoms in
sequence. Considering the effect of all 27 states on the system
dynamics during alternation, the effective Hamiltonian is
presented as H. = iln(e M Te H2Te=MTy /T [84]. The
quasienergy spectrum of this effective Hamiltonian under
various time intervals is displayed in Fig. 8(a), keeping only
the eigenenergies in the ground-state manifold constructed by
legg), |geg), and |gge) for the sake of clarity. When in the time
interval T < 0.035 us, there exists a double-degenerate
quasienergy spectrum and the effective Hamiltonian
can be well described by the Trotter product formula

1imN_)oo{efiH3T/3NefinT/3NefiH1T/3N}N — e iH\+H+H;)T/3
3 _

[85,80], then we have Her=) _,J;;, (0] 0, +

o0 +1) where i = Qij+1§2i/9(83 — 2552?,)

(4 = Q). This condition is identical to the population
evolution of ground states with 7 =0.01 us shown in
Fig. 8(d). Due to the influence of the hopping phase, the
degeneracy is removed as 7 gets longer and the population
evolution is shown in Fig. 8(e) with 7 = 0.1 us. When the
difference between the eigenenergies is equal as indicated
in Fig. 8(c), the phase induced by the alternate evolution is
just £ /2, resulting in a directional chiral motion of atomic
excitation, as shown in Fig. 8(f) for 7 = 0.12425 us.

A combination of numerical and analytical methods can
be employed to determine the specific value of @23 31) cor-
responding to various time intervals. According to Eq. (23),
under the condition U; ;11 = A > {Q,, §} > Q;, we can ne-
glect the high-frequency oscillating terms and the dynamics of
the system are mainly restricted in the subspace constructed
by |egg), legr), |rgr), |rge), |gge), |gre), |grr), |ger), |geg),
|reg), |rrg), and |erg), as shown in Fig. 7(c). To simplify
computational space, we complete the following calculations
in the subspace composed of the above 12 states. Once the

interval 7 is given, the effective Hamiltonian can be numeri-
cally obtained via second-order perturbation theory. Keeping
the convergent results and discarding the divergent results, we
have the effective Hamiltonian form as

Her = —J 5" |egg) (gegl — J5e' ™ | geg) (ggel

effe“"“ |gge) (eggl + H.c., (24)

corresponding to a certain time interval . The average values
of Jegr [Jetr = 1/3( off i+ ff +J§f})] and @ [® =1/3(Dy, +
®y3 + P3p)] versus different time intervals are displayed in
Figs. 9(a) and 9(b), respectively. From which we can read the
specific value of Jer and & for any 7. For example, when
T = 0.01 us, we have Joy >~ 1.763 kHz, ® ~ 0, when t =
0.1 us, we have Joir >~ 1.7 kHz, & ~ 0.02637, and when 7 =
0.12425 pus, we have Joir ~ 1.55 kHz, ® ~ 0.16437. The sys-
tem dynamics corresponding to 7 = {0.01, 0.1, 0.12425} us
governed by the effective Hamiltonian (24) with the above Jes
and & shown in Figs. 8(d)-8(f). The evolutions of populations
coincide with the full one of Eq. (22), which indicates that
the effective results are reliable. According to the continuity
equation on the lattice [87—-89],

EO’;:i[Heﬁ, ] —V I —I]] 1 — ijj_;,_l, (25)
where a; =le;){ej|l — |g;){g;l, one can find that the expecta-
tion value of the current operator in the ground state of Eq.
(24) for the bond j — j + 1 on the lattice is given by

I in1) = 20050 (i a*a
Jsj+ eff

1) —cc). (26)

Corresponding to Figs. 8(d)-8(f), the ground-state current for
the bond 1 — 2 are measured as {0, —0.0596, —0.3376} kHz.

When & = +£7/6, the chiral motion holding a definite
direction can be successfully obtained since the effective
Hamiltonian of the system fits Eq. (21). As can be seen
from Fig. 9(b), multiple time intervals can be selected, and
we only choose the shortest time to discuss for convenience.
Figures 9(c) [9(e)] and 9(d) [9(f)] respectively show the
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FIG. 9. The chiral motion of atomic excitation under the equilateral-triangle structure. Panels (a) and (b) respectively show the average
value of the effective coupling strength and induced phases under different time intervals. Panels (c) and (d) intuitively represent the transfer
of the ground state between three positions. Panels (e) and (f) further show the populations of ground states as a function of time measured

for values of ®, = 7 /2, —m /2 while the time interval is respectively taken as 0.12425 us and 0.15025 us. The parameters are § = €2,

27 x 1 MHz, ; = 0.05Q2,, and A =27 x 300 MHz. Panels (g) and (h) show the time interval 7 as functions of parameters § and €2,

respectively.

excited population transport between different atoms gov-
erned by the full Hamiltonian (22) with 7,, = 0.12425 us
and 7. = 0.15025 us. Note that T represents the time interval
at which ® = £ /6 in later descriptions. From the atomic
arrangement shown in Fig. 7(a), we can see that T, leads to
the anticlockwise (clockwise) current. Thus, the direction of
motion can be controlled by changing 7. The parameters have
been taken as § = 2, = 27 x 1 MHz, 2 = 0.05Q2,,, and A =
Ujr =2 x 300 MHz, and the effective coupling strength

Jelf(fz) ~ 1.55 (3.14) kHz matching %,.). Since the effective
coupling strength is a function of 2, €2,,, and §, the time inter-
val T required to get this directional chiral motion is possibly
related to these parameters. We have performed numerical
simulations under different parameters and the comparison
shows that T is closely related to § and £2,. With parameters
2 =0.05Q2, and A =U;; =27 x 300 MHz, Figs. 9(g) and
9(h) further characterize the change of T with & for a fixed
Q, = 2m x 1 MHz and with 2, for a fixed § = 27 x 1 MHz,
respectively. After polynomial fitting, we obtain T as a func-
tion of § and Q,, presented as T = psé* + psds® + p38% +
P28+ prand T = gsQ) + g4 + 32 + 4292, + q1, where
the coefficients corresponding to &, = £7 /2 are shown in
Table 1. Therefore, according to any § € [0.87, 27 ] MHz or
Q, € [1.67, 3.2 ] MHz, the time interval ¥ can be estimated
through the above functions.

V. DISCUSSION

Considering a realistic experimental setup, there are some
problems that should be addressed by further discussions,

such as the phase induced by wave vectors, the atomic position
fluctuation, and the effectiveness of the vdW interaction.

A. Phases induced by wave vectors

To be more intuitive, the phases caused by the wave vec-
tors have been ignored in above analysis. However, once the
wave vectors are specified, the corresponding phases should
be taken into account.

For the method of quantum state transport, ’Rb atoms are
arranged in a line along the quantization z axis. The phases
induced by the individual beams €2;; and 2> can be neglected,
but the global laser fields €2, propagating along the z axis
will induce phase factors ¢*'%i. Since the global laser beams
are counterpropagating along the z axis, the effective wave

TABLE I. Coefficients corresponding to numerical fitting results.

b, =m/2 P, =—-m/2

p1 = 0.23278 MHz ™!

p2 = —4.0934 x 1072 MHz >
p3 = 7.0238 x 107> MHz >
ps = —7.3771 x 10~* MHz™
ps = 3.4895 MHz ™3

g1 = 0.52719 MHz ™!

g» = —0.16104 MHz 2

g3 = 2.5016 x 1072 MHz 3
gs = —1.8631 x 10~ MHz ™
gs = 5.3498 x 10~ MHz ™

p1 = 0.24661 MHz™!

Py = —3.2661 x 1072 MHz 2
p3 = 7.3238 x 1073 MHz >
ps = —1.0702 x 10~> MHz™
ps = 5.4603 x 10~ MHz™>

g1 = 9.0639 x 1072 MHz™!
g> = 5.1437 x 1072 MHz 2
g3 = —1.1041 x 10~2 MHz?
gs = 8.3451 x 10~* MHz™*
gs = —2.2295 x 10~ MHz™>
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vector introduced by €, is k;/27 = [A | — A ]| = 5.062 x
10° m~!. Taking N = 2 as an example, after denoting the po-
sition of the two atoms as r; = (0,0, z;) and r, = (0, 0, 2),
the system Hamiltonian (1) is rewritten as

HY = Zsz Ir)(g;l + Q2™ |rj) (e + Hee. + 8lg;) (g1
j=1

+A|ej)<ej|+Zujk|rjrk)(rﬂ’k|- 27)
Jj<k

Meanwhile, the Hamiltonian shown in Egs. (3) and (4) should
be modified as

Hy, = Qe |er) (rr| + %% |re) (rr|) + H.c.
—8(ler)(er| + |re)(re| + |rr)(rrl), (28)

and
Vi = VI = Qilre) (ge| + Qler) (egl. (29)

Applying the effective operator method

Her = —[V_H, 'V, + Vo (H,')'V,], (30)

1
2
we have

Hetr = Ji2e™“7%) | ge) (eg| + H.c., (31)

where Ji, = 9192912,/(83 — 289%). Starting from the initial
state |eg), governed by the effective Hamiltonian of Eq. (31),
we have |W(1)) = cos(Jiat)|eg) — ie:@~2) sin(J1»t)|ge). The
wave vector introduces an extra relative phase e*:2=%) be-
tween state |eg) and |ge). It is apparent from the above form
that the effective phase factor caused by wave vectors is only
related to the relative position of the adjacent atoms. Therefore
it is easy to obtain the effective Hamiltonian for arbitrary N
particles read as

HY = "Jj e ™ otor,, +He., (32)

where J; 11 = Q; Qj+1§2§/(83
initial state o, |gg g)n, extra phases e are introduced
to states o j+| gg- ) . However, these relative phases do not
affect the transmission of the single-excited state, as shown in
Figs. 10(a) and 10(b), where the system dynamics is simulated
by Hamiltonian (27) for the case of N = 2 and 3.

From another perspective, by absorbing the phase factor
e *Gm1=%) into the redefined space-dependent state |&;) =
e*ile i), the effective Hamiltonian under the new basis vec-
tors can be written as

—28%7). Starting from the
ik

HN —

eff § :JJ j+10; ‘7

where 6 ; = |&;)(g,|, which remains to a Heisenberg X X spin
chain restricted in the single-excitation manifold.

For the topological model, a relative phase exists between
J, and J, owing to various spaces between atoms, which is

 +Hec., (33)

0.8 038
wn wn
=} =}
] ]
fﬁ 0.6 : :; 0.6
£ 04 £ 04
o ]
= =
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<107 Time (us)

2 2 d /
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= 2
g * without considering k|
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FIG. 10. The system dynamics with and without considering the
wave vectors (marked with subscript k after the ket symbol). Panels
(a) and (b) correspond to the dynamics of an isometric chain struc-
ture with N =2 and N = 3, respectively, where r = 4.1 um. The
evolutions are governed by Egs. (1) and (27). (c) The ratio of J, to J,
is shown as a function of the detuning A. (d) The energy spectrum of
the SSH model with N = 100, where ry;_52; = 4 pum and ry; iy =
4.1 pm. The other parameters are taken as § = 2, = 2w x 1 MHz,
Q2 =0.05Q,, and A = 30082,.

shown as

ja — Jael7<rz,>1.zi7 jb — Jbeikrzf,zm. (34)

As shown in Figs. 10(c) and 10(d), under the same param-
eters, the values of |J,/Jp| and the energy-band structures
of the system do not change, regardless of whether the
wave vector k is considered or not. It is just that the forms
of two edge states become |W)eqee = (e*%10;"|gg - g}y £
e o lgg- - g)n)//2 for large N.

For the chiral motion of atomic excitation, in order to avoid
introducing more relative phases, the propagation directions
of the laser fields are redetermined. By adjusting the direction
of the external magnetic field, the quantization z axis is re-
defined as the direction perpendicular to the regular triangle
plane. With r = 4.1 um, the radius of a circle surrounded by
three atoms is about 2.4 um. The collective or independent
addressing of atoms can be realized by adjusting the size
of the laser beam waist. Accordingly, the global laser fields
2, propagate along the z axis and the local laser fields £2;;
and Q;, propagate perpendicular to the z axis. After defining
the center-position coordinates of the regular triangular plane
as (0, 0, 0), the phase factors are brought by the weak laser
fields, while that brought by the strong fields can be ignored.
As shown in Figs. 11(a) and 11(b), we have discussed two
situations, one of which is that the effective wave vectors k;
of weak fields €2; are orthogonal to the atomic position r;,
while the other one is that the weak fields €2; propagate in
the same direction, such as along a straight line perpendicular
to atoms 1 and 2. The piecewise constant Hamiltonian (23)
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FIG. 11. The feasible experimental structure for the equilateral
triangle structure, where the global laser fields €2, and 2, are
counterpropagating along the z axis. (a) The effective wave vectors
k; of weak fields €2; are orthogonal to the atomic position r;. (b) The
weak fields €2; propagate along a straight line perpendicular to atoms
1 and 2.

can be rewritten as

4
Hi = Qie™ " r) (g + Y @7 el + Hee.
j=1

+3818;) (gl + Alej)e;l + Zujk|rjrk><rjrk|» (35
j<k

with effective wave vector k; >~ 5.35 x 10° m~! introduced
by ;. Taking 7, = 0.12425 us as an example, Figs. 12(a)
and 12(b) show the excited population transport between
atoms corresponding to the experimental structure shown in
Fig. 11(a) and 11(b), respectively. It proves that the relative
phases do not affect the chiral motion of atomic excitation.

Populations

2000 3000
Time (us)

—_

Populations
o o e
e ™ oo
T T T

=4
i}
T

0 1000 2000 3000 4000 5000
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FIG. 12. The dynamics of the chiral motion of atomic excitation
with ,, = 0.12425 us. Panel (a) corresponds to the experimental
structure shown in Fig. 11(a). Panel (b) corresponds to the exper-
imental structure shown in Fig. 11(b). The other parameters are
taken as 6 = Q, =27 x 1 MHz, Q = 0.05%2,, A =3002,, and
r=4.1 um.

As shown in Table II, we further study the effective coupling
strengths Jelf%(23,31) and the effective phases @523 31y in the
two cases above. When the wave vectors k; of €2; are orthog-
onal to the atomic position r;, we have k; - r; = 0. It equals
the method without considering k. In contrast, for the case
that the weak fields €2; propagate in the same direction, such
as along a straight line perpendicular to atoms 1 and 2, the
effective phases will change. However, the total phase ®, of
the system is basically unchanged, which ensures the chiral

motion of atomic excitation.

B. Atomic position fluctuation

In Sec. II, we only discuss the impact of systematic error
with a fixed atomic position. In fact, the atoms have a spatial
extent, which gives rise to fluctuation in position and results
in a random fluctuation on the vdW interaction. We repeat
numerical simulation of this stochastic process 50 times and
average the results, which are shown in Fig. 13.

Considering the random fluctuations, the vdW interac-
tion between nearest-neighbor atoms can be rewritten as
u},jﬂ(t) =Ujjq1 + F(t), where F(t) is assumed as uni-
formly distributed over the interval [—a, a], which is decided
by the fluctuation §r of relative distance caused by random
motion of atoms, shown as F(t)/2nr = —a + 2a&(t) MHz,

TABLE II. The effective coupling strengths and the effective phases correspond to different lighting modes with 7, = 0.12425 us.

Lighting mode JI2 (kHz) J2 (kHz) J3L (kHz) dy, (1) Dy; () ®3; () ®, (1)
Without considering k 1.5481 1.5481 1.5479 0.1651 0.1626 0.1651 0.4928
Orthogonal to position r; 1.5481 1.5481 1.5479 0.1651 0.1626 0.1651 0.4928
Perpendicular to atoms 1 and 2 1.5481 1.5481 1.5479 0.1651 0.1133 0.2144 0.4928
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FIG. 13. Transport dynamics considering the position fluctuations. Panels (a) and (e) correspond to populations of states |eg) and |ge)
together with considering the random fluctuation obeys the uniform density and standard normal density distribution, respectively. The
parameters are § = 2, =27 x 1 MHz, Q =0.052,, A =3002,, and Z/IJ/.J.+l =~ 30092, + F(t). (b)—(d) Populations of states |eg), |ge),
lee), and |gg) under the adjusted parameters with F(¢) uniformly distributed, respectively. (f)—(h) The dynamics of the system with F(¢)

obeying the standard normal density distribution. The optimized parameters are § = 2, = 27 x 10 MHz, Q = 0.1Q2,, A = 30Q

u’

Joj+1

~ 10R, + F(1).

in which &(¢) is a uniformly distributed random number in
the interval [0,1]. With F (¢) changing every microsecond, the
quantum state transport is damaged under the original parame-
ters 8 = 2, =27 x I MHz, 2 = 0.05Q,,and U} ;11 = A =
3002, with a = 3 as shown in Fig. 13(a). The correspond-
ing fluctuation of relative distance is about §r >~ 0.01 um.
To solve this problem and weaken the influence induced by
fluctuation, we take out the condition U} ;11 = A and ad-
just the parameters as § = 2, = 27w x 10 MHz, Q = 0.1€2,,,
A =302, and U; ;11 = 10L2,,. The corresponding dynamics
of the system after optimization is shown in Fig. 13(b). The
distinct Rabi oscillation of populations between states |eg)
and |ge) can be observed. In addition, we perform another
simulation with F(¢) obeying the standard normal distribu-
tion shown as F(t)/2x = +/—2In& (t)cos[27 &, ()] MHz with
8r >~ 0.01 um. The dynamics under original and optimized
parameters are shown in Figs. 13(e) and 13(f), respectively.
In addition, the evolutions of states |ee) and |gg) under
the optimized parameters with F(¢) considered as uniform
and standard normal distribution are respectively shown in
Figs. 13(c) [13(d)] and 13(g) [13(h)], which prove that the
dynamics of the system accord with the Heisenberg XX spin
chain for two particles.

The reason why the scheme based on the optimized param-
eters is more robust against position fluctuations can be clearly
understood by analyzing the relationship between the effective
coupling strength and the change of atomic position. The ef-
fective coupling strength holds the same form as Eq. (20) with
Uj i1 (F) =Uj j1 +F where F/2m € [-3,3] MHz repre-
sents the variation of the vdW interaction caused by the

p» and

change of atomic position. Thus we have the derivation of
ijj.;,.](F) to F

d]j7j+1(F) _ (6 - A)ZQZQ‘%

dF [8(8% — mj 1) — (82 — 292)U; 1 ()

(36)
where n; 1 = 493, + A2 —U; ;i1 (F)A. As shown in
Fig. 14, J; j+1(F) changes more dramatically with F under
the original parameters [there is a singularity which can be
found directly from Eq. (16) as U} j+1 = —4]. In contrast,
under the optimized parameters, dJ; j+1(F)/dF is close to
zero, which guarantees that the system dynamics is more
robust against the fluctuation of the vdW interaction.

C. Effectiveness of van der Waals interaction

Strictly speaking, the perturbative-calculation-based esti-
mation of the short-range vdW interaction intensity between
Rydberg states is not working at all, because splittings be-
tween energy levels are smaller than interaction energies. To
find a more practical system parameter, we rewrite the Hamil-
tonian of the system as

N
H™ =" Q)lr) (gl + Qplrj) (e + He. + 8lg;) (g1
j=1

+Alej)(e;| + Hiy, (37)

where H, presents the interactions between Rydberg state
|r) = 173S51,2) and the states with similar energy and quantum

numbers. After diagonalizing the Hamiltonian of these
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FIG. 14. The derivation of J; j;1(F) to F under the original and
optimized parameters. The original parameters are taken as § =
Q, =2m x  MHz, @ = 0.05%2,,, A = 30082,, and Uf; ;11 = 30082,.
The optimized parameters are taken as § = Q, =27 x 10 MHz,
Q2 =0.1Q,, A =302, and U ;1 = 1082,,.

quantum states (principal quantum number |n — 73| <5
and azimuthal quantum number |L| < 5) based on the
open software “ALKALI RYDBERG CALCULATOR” [65], the
energy map is shown in Fig. 15 and the population of
the state |rr) = [73S12,m; = 1/2;73S 2, mj =1/2) in
the diagonalized state increases as the red color deepens.
We focus on the three eigenstates denoted as |¢;), |¢2),
and |¢3) in Fig. 15 with highest population of |rr), where
|¢1) is mainly constructed by {|rr), [72P3p,m; =1/2;
73P3/2, mj; = 1/2), |73P3/2, mj; = 1/2, 72P3/2, mj; = 1/2)},

|¢2) is mainly constructed by {|rr), |73Psp,mj =
2.5 T T 1
2t { 0.9
< 15} \ < Mos
o I
= 1f q 0.7
=
>~
K 05F 0.6
<
2 of ! 0.5
g I
S .05f {1 Hoa
g 62) !
] 2
A 4 0.3
&
=
A -15f 02
|#3)
2F 0.1
Py . . . , . . . 0

Distance (um)

FIG. 15. The pair potentials of Rb atoms around the defined
pair state |rr) = |7382, m; = 1/2;73S,,,, m; = 1/2). The red color
denotes the overlap of the eigenstates with |rr).

— |eg) with {|¢2), [¢s)}
— |ge with {|¢72> |¢?>}

)

0.8 )
a o |eg) without {|¢2),|¢s)}
206 ¢ |ge) without {|¢»), \ﬁm
<
204
o
(=W

A ( L A d
0 50 100 150 200 250 300 350 400
Time (ps)

—[eg) with {|¢2), [¢s)}
- -‘gei with {|¢2), |¢3)}
)

o |eg) without {|@2),|¢s)}
¢ |ge) without {|¢), |#3)}
\d ¥

Populations

Time (us)

FIG. 16. Transport dynamics of states |eg) (red) and |ge) (blue)
with and without states |¢,), |¢3). Panel (a) corresponds to the sys-
tem with AU = 0. Panel (b) corresponds to the system with AU =
—2m x 50 MHz. The other parameters are taken as 2; = 0.05€2,,

E, =2m x 300 MHz, E, = —2m x 511.25 MHz, E; = —271 X
1258.83 MHz, a1 = +/0.72, ar = +/0.126, and a3 = +/0.088.

1/2, 72P3/2, m; = 1/2), |72P3/27 mj; = 1/2, 73P3/2, mj; =
1/2), 174812, mj = 1/2;72810,m; = 1/2), 1281, mj =
1/2;7481)2, mj = 1/2)}, while |¢3) is mainly constructed by
{|rr), |74Sl/2, m; = 1/2;7251/2, m; = 1/2), |72S1/2, m; =
1/2;7451/2, mj; = 1/2) |73P1/2, mj = 1/2;72Pl/2, mj =
1/2)). Then we have HJ%~ Eil¢1)(gi| + Ealgo) (ol +
E3|g3) (3| and |rr) ~ ay|¢1) + az|én) + asl¢s), where oy,
o, and «3 are the probability amplitudes of state |rr).
Taking into account the large detuning and weak-coupling
strength 032, between {ler),|re)} and {|¢2), [¢3)},
only |¢;) contributes and {|¢,), |¢3)} can be neglected as
high-frequency terms.

The dynamics of systems with and without considering
{l¢2), |¢3)} are shown in Fig. 16 for r; j;1 = 3.99 um. Figure
16(a) corresponds to the system satisfying the resonance con-
dition E; = A, while Fig. 16(b) includes the deviation of un-
conventional Rydberg pumping conditions with E; # A and
AU = E; — A = —2m x 50 MHz. The other parameters are
taken as § = Q, = 27 x 1 MHz, Q; = 0.052, MHz, E| =
2w x 300 MHz, E, = -2 x 511.25 MHz, E5 = —27 X
1258.83 MHz, oy = +/0.72, oy = 4/0.126, and ez = +/0.088.
The corresponding numerical results prove that, within a cer-
tain range of detuning AU, {|¢»), |¢3)} can always be safely
neglected. Incorporating the effective operator method with
the above analysis, we obtain the effective coupling strength
with and without AU as

7. . Qij+1(¥12912, (38)
PSS 250202
and
Q;Q119Q%¢
i = L (39)

828 — AU)(S — A) — 20892
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where ¢ =8 + @38 —a?A — AU. The correction shown in
Eqgs. (38) and (39) will not affect the conclusions we ob-
tained before. For perfect quantum state transfer protocol
and the chiral motion of atomic excitation, by comparing the
forms of J; ;41 in Egs. (38) and (15), it can be found that
the system dynamics remains unchanged by setting 2, =
27 (1/a;) MHz. For the topological model, the corresponding
topological phase can always be achieved by modulating the
parameter A and the atomic separations.

VI. CONCLUSION

In conclusion, we have proposed a theoretical frame-
work for studying quantum state transfer schemes inside
the ground-state manifold of neutral atoms by only combin-
ing the diagonal vdW interaction with the unconventional
Rydberg pumping condition. The scheme successfully real-
izes the Heisenberg XX spin-chain dynamics restricted in
the single-excitation manifold. Meanwhile, depending on the
choice of parameters, the system dynamics can be equivalent
to a second-order process only related to weak fields and the
perfect quantum state transfer is realized by simply regulating
the weak fields of atoms. A 1D SSH model is then constructed
by changing the distance between atoms, and the system can
be flexibly changed from the topological trivial phase to a non-
trivial phase by adjusting the detuning A. Finally, a method to
realize the chiral motion of atomic excitation is provided in the
equilateral triangle structure. A total flux &, = £ /2 can be
obtained by periodically modulating the weak pulses without
introducing any other external fields. In a word, we can get
abundant physical pictures by using such a simple physical
system, and we hope that our work may pave a new avenue
for quantum simulation of neutral atomic system.
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APPENDIX A: THE ./swAP GATE

For a diatomic model, our method can also be used to
realize the ./SWAP gate shown as

1 0 0 0
0 fa+n la-i o
SWAP = f( +l.) f( l.) ) (A1)
0 s1-9 0+ 0
0 0 0 1

1 T T T T 4
N JRERAMN
o<
o . o’?- i’
0.95F o~7 .
Ozo/ }
y o
09F ') ) i
7 bd Q
3 9 Q
e
= 0ssf b4 R -
3 t \
& b4 N
(4 )
0.8 9/ o
/d R
0.75F /’ o [¥(0)) with Hyg
ﬁ ¢ |\Ijtm'get) with Heﬁ
" —|T(0)) with Hgyyy
= -l\IJtargef> with Hfull
07 L L L 1
0 10 20 30 40 50

Time (us)

FIG. 17. Transport dynamics of diatomic model governed by the
full Hamiltonian (A2) after shifting the energy of |e;) and |g;) and
the effective Hamiltonian of Eq. (A4), respectively. The initial state
is |W(0)) = 1/«/§(|eg) + |gg) + |ee)) and the parameters are taken
as 6 = Q, = 2n x 1 MHz, Q@ = 0.05%2,,, and A = 300%2,,.

In the interaction picture, the Hamiltonian of the system reads

2
H = Z Qe |rj) (g1 + 2pe'™rj) ()] + Hee.
j=1
+U|rr)(rr], (A2)

and the effective Hamiltonian is

Heir = Jetr|ge) (egl + H.c. + S1(|ge) (ge| + |eg) (eg])
+ 521gg) (88l 4 Ssee) (ee], (A3)

where Jeg = 9152252;,/(83 — 2852?,), S1 = Q1282 — le,)/
(8% =28Q0) + Q22 /A, S, = (2 4 93)/8, S5 = 22 /A. The
energy of states |ee) and |gg) can be shifted to zero by Stark
shifts through coupling to extra states off-resonantly. Un-
der the condition § = ), and Q| = —2;, = , the effective
Hamiltonian can be simplified as

QZ QZ
Her = ?(Iegﬂgel + [ge)(egl) — F(IEg) (egl + Ige)(gel)
(A4)
The system governed by this Hamiltonian can realize a quan-
tum +/SWAP gate witht = 87 /4Q2. Corresponding population
evolutions under the Hamiltonians (A2) and (A4) are respec-
tively shown in Fig. 17, where the parameters are § = Q, =
2w x 1 MHz, 2 = 0.0582,, and A =30022,. Atz =50 us,
the population of state 1/+/3(|eg) + |gg) + |ee)) is transferred
t0 [Wiarger) = 1/8/3[1/2(1 + i)leg) + 1/2(1 — i)|ge) + |gg) +
lee)].
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APPENDIX B: BUILDING BLOCK FOR CHIRAL MOTION
OF ATOMIC EXCITATION

To construct the chiral motion of atomic excitation, we
introduce the piecewise Hamiltonian:

H,, 1€]0,7/3)
H(t)= {H,, 1 €[T/3,2T/3) (B1)
Hs, 1 €[2T/3,T),
where
3
H; = Qe ™ |r;)(gil + Y Qpe ™ |rj)(e;] + Hee.
j=1
+Zujk|rjrk)(rjrk|- (B2)

j<k

Since H; (i =1, 2, 3) do not commute with each other, this
periodical driving will induce the effective coupling strengths

J

associating with the period T and the phases between ground
states. Because the computational space is very large, we
calculate the effective Hamiltonian by bonding analytic and
numerical methods together. For a given t, the system Hamil-
tonian can be numerically obtained as a large matrix and
the effective Hamiltonian can be expressed in logarithmic
form as

Heff — %1n(€7tH3T€7iH2T€7iH]T). (B3)
According to Eq. (B1), under the unconventional Rydberg
pumping condition and in the limit A >> €2, the highly os-
cillating term proportional to A can be neglected. Thus, the
dynamics is restricted in states |egg), |egr), |rgr), |rge), |gge),
|gre), |grr), |ger), |geg), |reg), |rrg), and |erg). To simplify
computational space, we only consider the subspace con-
structed by these 12 states in the subsequent calculations.
To obtain the specific value of phases, we first numerically
expend the effective Hamiltonian as a 12 x 12 matrix with
some definite value of 7 read as

PL1 | P12 P13 Pr4a | P15 | P66 PLT P18 | P19 | PLI0O P11 PLI2
Pia | P22 P23 P24 | P25 | P26 P27 P28 | P29 | P10 P21l P12
PT,3 P;g 3,3 P3.4 3,5 3,6 P37 3.8 03,9 3,10 P3,11 P3,12
Pl P4 P34 P4.4 P4,5 4,6 P4,7 4,8 £4,9 4,10 P4,11 P4,12
Pis | P3s  P3s  Pis | pss | pse  psa Pss | P59 | Ps1o Psal P52
H— Piﬁ Pé:ﬁ Pé:ﬁ ,04}:,6 ,03:,6 Pos P61 P68 | Peo | Polo Aol o2 (B4)
P17 P27 P37 Ps7 P57 Ps,7 P77 07,8 07,9 £7,10 P7,11 £7,12
Pis | Prg  Pig  Pag | Pss | Pos Prs P88 | P89 | Ps10 P81l P12
Plo | Pro  Pio  Pig | Pso | Poo  Pro  Pgo | P99 | Po10 P91l Po12
Piio | Pio Piio Piro /0;10 Ps1o Plio Psio | Po1o | P00 Pl011 10,12
P | Poin P Pian | Psan | Peat Prar Paar | Poar | Ploar  PiLil LI
L Pl | Pl Pz Pinn | Psin | Peiz Praz Psiz | Poiz | Plogz Pl P21z

The order of basis vectors is taken as |egg), |erg), |rrg),
reg), |geg), Iger), |grr), |gre), |gge), rge), |rgr), and |egr).
Then the Hamiltonian corresponding to the coupling between
arbitrary ground states respectively read

PLL | P2 PL3 PL4 | PLs
Pia | P22 P23 P24 | P25
Hy=| pis| Pz P33 P34 | P3s |, (B5)
Pla | Pra  Pia  Paa | Pas
L Pis | Pas P35 Pis | Pss |
055 | P56 P57 P58 | P59
,0;6 P66 P67 P68 | £6,9
Ho=| p57 | P67 P17 P18 | P19 |, (B6)
P53 | Pog Pig  Pss | P89
| P59 | Peo Pl Pio | P99 |
099 | Po10 Poil P91z | Pl
P10 | L1010 P01 L1012 | Plo
Hz=| pgq | Plor Pl P12 | Pl (B7)
Po1x | Plotz  Pliin  P1212 | Pl
£1,9 £1,10 P1,11 1,12 P11

Combined with above three 5 x 5 matrices, the effective cou-
plings between any two ground states of {|egg), |geg), |gge)}

(

can be obtained via second-order perturbation theory. Taking
Hy; as an example, the specified calculation process is illus-
trated below. First we diagonalized the strong-coupling part
which correspond to the 3 x 3 matrix in the middle of Hj;.
Then the Hamiltonian of this part can be represented by its
eigenvalues and eigenvectors as

Hye = E\|[Yn) (V1| + Ex|¥n) (Yol + E3|¥s3) (3], (B8)

where the eigenvectors are given by

[Yr1) = Ciilerg) + Cialrrg) + Cizlreg),
[Vr2) = Cotlerg) + Caalrrg) + Caslreg),

[Y3) = CGsilerg) + Caalrrg) + Cszlreg).

Through the transformation of representation, the basis vec-
tors can be changed to states |egg), |geg), and |¥;) (i = 1, 2, 3),
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FIG. 18. The effective coupling strengths and phases between arbitrary ground states induced by periodical driving. The parameters are
taken as § = Q, = 27 x 1 MHz, @; = 0.05%2,,, and A = 27 x 300 MHz.

and Eq. (B5) changes to

[ p11 | P2 P13 Pra | P15 ]
bia | En 0 0 | P25
Hy=| pi3| O E, 0 | p3s |, (B9)
pia| O 0  Es | Das
L ois | Pos Pis  Pis | pss

where

P12 = p12Cn + p1,3C12 + p1.4C13,
P13 = p12C + p13C2 + p1.4C3,
P14 = p12C31 + p13C3 + p1,4C33,
P25 = P2.5C1y + p3.5C15 + pa 5Cs,
P35 = p2.5C5) + p35C5) + 45055,
Pas = p25C3 + p3,5C3y + pa5C3;.
According to Eq. (B9), the Raman transition between

ground states |egg) and |geg) is assisted by multiple channels,
the Hamiltonian of each channel can be written as

HD = pyoe 1 |egg) (Y1 | + Pase™ ' [¥1) (gegl + Hoc.,
(B10)
H? = p1 37 |egg) (V2| + p3.5¢™ |¥2) (geg| + Hec.,

(B11)

HD = py 4™ |egg) (V3| + pa.se™ |¥13) (geg| + H.c.
(B12)

In the limit of large detunings with E; > p1202.5), E2 >
P133.,5), and E3 >> Py a5, the excited states |y;) can be
adiabatically eliminated, and the effective coupling constant
of the ground-state transition |geg) — |egg) is

; P12025  P13P35  Pr4aPas
J — _J12 lq)]z — _ ’ ) _ ) ’ _ ) » .
12 off€ P1,5 E; B, E
(B13)
Thus, the coupling strength and the induced phase read
1 Im(J12)
J12 = |Jps|, @1, = — arctan ) B14
i = 12l 2= |:Re(J12) (B14)

The same operations can be performed for the other two
processes |egg) — |gge) and |gge) — |geg) and the effective
Hamiltonian of the whole system can be obtained as

Her = —Joge'® | egg) (gegl — Jore' > |geg) (ggel

—J e | gge) (eggl + Hec., (B15)

which can successfully lead to a chiral motion of atomic ex-
citation with @, + &,3 + &3, = + /2. Figure 18 shows the
numerical results of the effective couplings Jé{f and induced
phases ®;; (ij =12, 23, 31) between arbitrary ground states
with different time intervals t, in which we calculate the
original Hamiltonian shown as a 27 x 27 matrix for higher
precision. To promise results consistent with the ground-state
dynamics, we keep the convergent results and discard the
divergent results. Figures 19(a)-19(c) characterize the change
of ¥ with @, §, and 2, respectively. It illustrates that
is mainly related to § and €2,. Meanwhile, on average, the
homologous effective coupling strengths Jei are shown in
Figs. 19(d)-19(f). The corresponding 7 here has ideal values
which may be difficult to accurately control in experiments.
To test the maneuverability, we reduce the accuracy of the
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FIG. 19. Panels (a) and (d) respectively show the change of T and J. with 2. The other parameters are § = 2, =27 x 1 MHz, A =
300£2,. Panels (b) and (e) respectively show the change of T and Ji with §. The other parameters are 2, = 27 x 1 MHz, Q = 27 x 0.05 MHz,
A = 30022, Panels (c) and (f) respectively show the change of ¥ and J.; with €,. The other parameters are § = 27 x 1 MHz, Q = 27 x

0.05 MHz, A =27 x 300 MHz.

time intervals %) shown in Figs. 9(e) and 9(f) to three
decimal places and plot the corresponding evolution as shown
in Fig. 20. The chiral motion of atomic excitation can still be
clearly observed.

As discussed before, the chiral motion can be achieved for
triangle structure and a special current with definite direction

—legg) = -lgeg) - |gge) Fae = 0.124 ps
1 ——— —
E N EARA
0s @) -
2 Poi
£ 06} B
o i
204F L
S A
02f ¢ )i ;
RSN A ey T
LN N S V,
0 1000 2000 3000 4000 5000 6000
Time (us) 7o =0.15 us
1 % A
0.8
w0
z
-2 0.6
=
204
o
[a W)
02
0
0 1000 2000 3000 4000 5000 6000
Time (us)

FIG. 20. Populations of ground states as a function of time corre-
sponding to &, = /2, —m /2 while the time interval is respectively
0.124 s and 0.15 ps. The parameters are § = 2, = 27 x 1 MHz,
Q; =0.05Q,,and A =27 x 300 MHz.

can be reached by adjusting time intervals. Thus, a natural
question to ask is what will happen for larger lattices under
our protocol. For a square geometry, the effective coupling

0.01 0.5
(a) (b)
< 0.008
£0.006 N &
2 : g 0
& 0.004 §oe &
2 i 2
] i
@ 0.002 ,
0 -0.5
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Interval (us Interval (us
0 (1) 07 (ps)
(¢ d
0.6 (
N-0.1 N
@ @0,5
5_0'2 50.4
0.3
0 0.5 1 2 -1.8 -16 -14 -12 -1 -0.8
@, (m) @ (m)

FIG. 21. The chiral motion of atomic excitation under a tight-
binding model with N = 4 arranged in a square. Panels (a) and (b)
respectively show the average value of the effective coupling strength
and induced phases under different time intervals. Panels (c) and (d)
show the chiral current (/; ;) of ground-state governed by the peri-
odical Hamiltonian from the initial state |eggg). The corresponding
time intervals are t € [0.001,0.096] us and 7 € [0.13,0.199] us,
respectively. The other parameters are § = Q, =27 x 1 MHz, Q =
0.05%2,, and A = 300%2,,.
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strength between the nearest neighbor atoms are basically the
same with the periodical Hamiltonian read as

Hi, te[0,T/4)
H, t €[T/4,T/2)

HO=\n,, 1 e[1/2,37/4) (B16)
Hy, t€[3T/4,T),
where
4
H; = Qilri){gil + Y _ Qplr;){ejl + He. + 81g;) (g,
j=1
+Alej) (el + Zujk|rj"k)(rﬂ’k|- (B17)

Jj<k

Under the same operations, the average value of the effec-
tive coupling strength Jegr [Jerr = 1/4(J13 + J2 + 134 + J4D)]
and @ [ = 1/4(D 1 + Doz + D34 + D41)] according to dif-
ferent time intervals are shown in Figs. 21(a) and 21(b).
By tuning the time interval 7, the chiral motion of atomic
excitation can be obtained for &, # 0, £27. As shown in
Figs. 21(c) and 21(d), the ground-state current for bond
1 — 2 has been measured with 7 € [0.001, 0.096] us and
T € [0.13,0.199] us, respectively. The other parameters are
8 =Q, =2nm x 1 MHz, Q = 0.05Q2,, and A = 3002,. It is
easy to find that the direction of the ground-state current is
related to the sign of ®,. However, the chiral motion with each
atom reaching the maximum population close to unity in the
clockwise or anticlockwise order only exists in the triangle
structure with ®, = +m /2.
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