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Device-independent certification schemes have gained a lot of interest lately, not only for their applications in
quantum information tasks, but also their implications towards foundations of quantum theory. The strongest
form of device-independent certification, known as self-testing, often requires for a Bell inequality to be
maximally violated by specific quantum states and measurements. In this work, using the techniques developed
recently [S. Sarkar et al., npj Quantum Inf. 7, 151 (2021)], we provide a self-testing scheme for the multipartite
Greenberger-Horne-Zeilinger states of arbitrary local dimension that does not rely on self-testing results for
qubit states and that exploits the minimal number of two measurements per party. This makes our results
interesting as far as practical implementation of device-independent certification methods is concerned. Our
self-testing statement relies on maximal violation of a Bell inequality proposed recently [R. Augusiak et al.,
New J. Phys. 21, 113001 (2019)].
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I. INTRODUCTION

Quantum theory has presented us with numerous counter-
intuitive predictions, most of which have been verified by
experiments until date. Many of them have been shown to
have no classical analog. One such prediction of quantum
theory is the existence of certain correlations that arise by
performing local measurements on a joint entangled quantum
state, which violate assumptions which any classical theory
must abide. Such correlations are termed Bell nonlocal or
simply nonlocal and are detected by violating Bell inequalities
[1,2]. Interestingly, nonlocal correlations constitute a power-
ful resource for numerous applications, in particular within the
device-independent framework in which one does not need
to make any assumptions on the devices used to perform a
given task except that they follow the rules of quantum theory.
A prominent example of such applications is the device-
independent quantum cryptography [3] (see also Ref. [4]).

Another such application that has gained a lot of interest
within the quantum community is device-independent certi-
fication. It is actually an umbrella term encompassing a few
tasks whose general aim is to make nontrivial statements
about the underlying quantum system based only on the
observed nonlocal correlations. This last fact makes device-
independent (DI) certification schemes interesting from the
practical point of view as they require much less information
about the underlying system to deduce its relevant properties.
For instance, Bell nonlocality has been shown to enable DI
certification of quantum system’s dimension [5], that a given
state is entangled [6] or even the amount of entanglement
present in it [7]. It allows to certify that the outcomes of
quantum measurements are truly random [8,9].

The most fascinating and at the same time most com-
plete form of device-independent certification is self-testing.
Introduced in [10], it aims to harness the observed quan-

tum correlations to provide almost full characterization of
the underlying joint quantum state as well as the measure-
ments performed on it; here, almost refers to the fact that,
being based on the obtained statistical data, such certifica-
tion can only be made up to certain undetectable degrees of
freedom such as invariance under the action of local unitary
transformation or adding an extra system that gives no contri-
bution to the observed nonlocality. Within recent years there
has been a substantial effort to propose self-testing schemes
for various quantum states and/or measurements (see, e.g.,
Refs. [11–24]). However, most of them have been designed for
bipartite entangled systems, whereas the multipartite scenario
remains highly unexplored, in particular when quantum sys-
tems of arbitrary local dimension are concerned. The existing
multipartite methods are devised for N-partite Greenberger-
Horne-Zeilinger (GHZ) states [20–22], the stabilizer states
[19,23] or stabilizer subspaces [25], and the Dicke states
[26,27], all of them being nevertheless locally qubits. To the
best of our knowledge, the only known self-testing scheme for
multipartite states of local dimensions higher than two con-
cerns the so-called Schmidt states including the well-known
N qudit the Greenberger-Horne-Zeilinger (GHZ) state [27]

|GHZN,d〉 = 1√
d

d−1∑
i=0

|i〉⊗N (1)

with N and d being arbitrary integers such that N, d � 2.
However, this scheme, being an adaptation of the results of
Ref. [24] to the multiparty scenario, relies on application
of many self-testing schemes for the two-qubit states, and
requires the parties to perform three or four measurements
in order to certify the state. It is thus a vital problem in the
domain of DI certification whether it is possible to design
schemes that require less effort to be practically implemented.
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The main aim of our work is to provide a self-testing
strategy for the N-partite GHZ states of local dimension d ,
which is based on maximal violation of a Bell inequality
involving an arbitrary number of truly d-outcome measure-
ments. Moreover, in the simplest case, our scheme requires
measuring only two observables at each site, which is in fact
the minimal number of measurements necessary to observe
quantum nonlocality and thus to make nontrivial self-testing
statements. On the other hand, we generalize some previous
results in a few ways: (i) first, our results generalize the recent
self-testing statement for the two-qudit maximally entangled
states [17] to an arbitrary number of parties as well as an
arbitrary number of measurements; (ii) it also generalizes the
results of Ref. [15] derived for the chained Bell inequali-
ties to an arbitrary number of parties and an arbitrary local
dimension.

II. PRELIMINARIES

Before getting to results, let us first describe the scenario
and introduce the relevant notions.

A. Multipartite Bell scenario

We consider here the multipartite Bell scenario comprising
N spatially separated parties, denoted Ai (i = 1, . . . , N ), and
one preparation device distributing among them an N-partite
state ρN that acts on H1 ⊗ · · · ⊗ HN with each Hi being
a finite-dimensional Hilbert space representing the physical
system of party Ai. On their shares of the state the observers
perform measurements and register the obtained outcomes.
We consider here a general scenario in which each party Ai

can freely choose to perform one of m measurements, each
having d outcomes, where both m and d are arbitrary. The
measurements are denoted Mi,xi with xi = 1, . . . , m labeling
the measurement choices of party Ai, whereas the outcomes
are denoted ai with ai = 0, . . . , d − 1.

The correlations observed by the parties are encoded into a
vector of joint probability distributions,

�p = {p(a1, . . . , aN |x1, . . . , xN )} ∈ R(md )N
, (2)

where p(a1, . . . , aN |x1, . . . , xN ) ≡ p(a|x) denotes the joint
probability of obtaining ai by the party Ai after performing
the measurement xi and is given by the well-known Born’s
formula

p(a1, . . . , aN |x1, . . . , xN )

= Tr
[
ρN
(
Ma1

1,x1
⊗ · · · ⊗ MaN

N,xN

)]
, (3)

where Mai
i,xi

are the measurement operators corresponding to
the outcome ai of the measurement xi; recall that these are
positive semidefinite and satisfy

∑
ai

Mai
i,xi

= 1 for all xi and
i. The set of joint probability distributions achievable using
quantum states and quantum measurements is usually referred
to as the set of quantum correlations or simply the quantum
set; we denoted it by QN,m,d .

Let us consider a certain subset of the set of quantum corre-
lations Qm,d,N which can be represented using local-realistic
descriptions of the underlying system, commonly referred to
as the set of classical or local correlations, denoted Lm,d,N .
Precisely, the latter contains those correlations that admit the

following representation:

p(a1, . . . , aN |x1, . . . , xN ) =
∑

λ

μ(λ)
N∏

i=1

p(ai|xi, λ), (4)

where λ is a random variable distributed according to a dis-
tribution μ(λ) and p(ai|xi, λ) ∈ {0, 1} for every xi, ai, and i.
Similarly to QN,m,d , the set LN,m,d is convex; in fact, it is a
polytope for any choice of N , m, and d .

B. Bell inequalities

As it was first observed by Bell in 1964 [1], in the scenario
with two parties, each performing two 2-outcome measure-
ments the local set L2,2,2 is a proper subset of Q2,2,2. To this
end, he considered certain inequalities that are linear in p(a|x)
that constrain the set of local correlations. These are typically
termed Bell inequalities and their general form reads as

I := �t · �p � βL, (5)

where

�t = {ta1,...,aN ,x1,...,xN } (6)

is a vector consisting of real numbers �t ∈ R(md )N
. The number

appearing on the right-hand side of (5) is the maximal value
of the Bell expression I over all classical strategies βL =
max �p∈Lm,d,N I, and is typically referred to as the classical or
local bound. Analogously, by βQ = sup �p∈Qm,d,N

I one denotes
the maximal value of I achievable by quantum correlations
and refers to it as the quantum or the Tsirelson bound; the
quantum set is in general not closed [28,29], which explains
the supremum in the definition of βQ.

Importantly, violation of (5) by some �p implies that the
latter is nonlocal. Moreover, if �p violates a Bell inequality
maximally or, in other words, achieves the maximal quantum
value βQ, then it necessarily lies at the boundary of the corre-
sponding quantum set QN,m,d .

In what follows, it will be more convenient for us to
express Bell inequalities in terms of correlators instead of
probabilities. Due to the fact that here we deal with quan-
tum measurements with an arbitrary number of outcomes, we
will use generalized expectation values, which are in general
complex numbers defined as the multidimensional Fourier
transform of p(a|x) (see, e.g., Refs. [30,31]):

〈
Ak1

1,x1
. . . AkN

N,xN

〉 = d−1∑
a1,...,aN =0

ωa·k p(a|x), (7)

where ω is the dth root of unity ω = exp(2πi/d ) and k is an
N-component vector composed of ki = 0, . . . , d − 1 for all i,
and, finally, a · k = a1k1 + · · · + aN kN stands for the standard
scalar product of two real vectors.

Crucially, if the measurements performed by the observers
are projective, the expectation values (7) can be represented
as 〈

Ak1
1,x1

. . . AkN
N,xN

〉 = Tr
[(

Ak1
1,x1

⊗ · · · ⊗ AkN
N,xN

)
ρN
]
, (8)

where now Ai,xi are unitary operators defined as
one-dimensional Fourier transforms of the measurement
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operators Ma
xi

,

Aki
i,xi

=
d−1∑
ai=0

ωaiki Mai
i,xi

, (9)

for ki = 0, 1, . . . , d − 1 and i = 1, . . . , N . Due to the fact
that for projective measurements the operators Mai

i,xi
are pair-

wise orthogonal for any xi and i, it is not difficult to realize
that all Aki

i,xi
are unitary operators with eigenvalues ωi for

i = 0, . . . , d − 1. Moreover, Aki
i,xi

is simply the kith power of
Ai,xi ; in what follows we refer to Ai,xi as quantum observables.

In fact, as discussed below, since we are concerned with
self-testing we can safely restrict our attention to projective
measurements; on the same basis we can also assume that the
shared state is pure.

C. Self-testing

Let us finally define the task of self-testing. To this end, we
consider again the Bell experiment described above, assuming
this time that the functioning of all the devices involved is
unknown. That is, the parties have no knowledge about the
shared state ρN as well as the corresponding Hilbert space, and
they do not know the measurements their devices perform; in
fact these can be treated as black boxes which when supplied
with an input xi = 1, . . . , m return one of possible outputs
ai = 0, . . . , d − 1. Yet, the measuring devices are assumed to
behave according to the rules of quantum theory. Now, due to
the fact that the local Hilbert spaces are uncharacterized we
can make here the standard assumption that the shared state is
pure, that is, ρN = |ψN 〉〈ψN | for some |ψN 〉 ∈ H1 ⊗ · · · ⊗ HN

and that the measurements are projective.
Now, based on the observed correlations represented by

�p or, equivalently, by the expectation values (7), the parties
aim at making nontrivial statements about the state ρN and/or
the measurements Ai,xi performed on it. This general task
is usually referred to as device-independent certification. Its
strongest form is self-testing in which the parties use the
observed correlations to certify that the shared state |ψN 〉 as
well as the measurements performed on it are equivalent, up
to some well-understood equivalences, to some known state
|ψ̃N 〉 ∈ (Cd )⊗N and known observables Ãi,xi acting on Cd . To
be more precise, let us formulate the following definition.

Definition. Consider a Bell experiment consisting of N
parties, each performing m d-outcome measurements repre-
sented by observables Ai,xi on their shares of a joint state
|ψN 〉 ∈ H1 ⊗ · · · ⊗ HN , where Hi denotes the Hilbert space
of the ith party. We say that the observed correlations self-
test the reference state |ψ̃N 〉 ∈ (Cd )⊗N and observables Ãi,xi

acting on Cd if one can deduce from them that (i) each local
Hilbert space decomposes as Hi = Cd ⊗ H′′

i for some finite-
dimensional H′′

i , and (ii) there exist local unitary operations
Ui : Hi → Hi such that

U1 ⊗ · · · ⊗ UN |ψN 〉 = |ψ̃N 〉 ⊗ |auxN 〉 (10)

for some auxiliary state |auxN 〉 ∈ H′′
1 ⊗ · · · ⊗ H′′

N and

Ui Ai,xi U †
i = Ãi,xi ⊗ 1′′

i , (11)

where 1′′
i is an identity acting on H′′

i .

Notice that in our case the reference state |ψ̃N 〉 is the GHZ
state (1), whereas the reference observables Ãi,xi are provided
explicitly below in Eqs. (15)–(17).

A necessary condition to derive a self-testing statement
based on the observed correlations �p is that they violate some
Bell inequality maximally. Hence, the first task is to identify
a Bell inequality that is maximally violated by the multipar-
tite GHZ state of arbitrary dimension with arbitrary number
of measurements per party. Quite recently, a Bell inequality
meeting this requirement was derived in [30]. In the correlator
picture it can be stated in the following form:

〈ÎN,m,d〉 � βL, (12)

where ÎN,m,d is the Bell operator given by

ÎN,m,d : =
m∑

α1,...,αN−1=1

d−1∑
k=1

(
akAk

1,α1
⊗

N⊗
i=2

A(−1)i−1k
i,αi−1+αi−1

+a∗
k Ak

1,α1+1 ⊗
N⊗

i=2

A(−1)i−1k
i,αi−1+αi−1

)
, (13)

where the complex coefficients ak are given by

ak = ω(2k−d )/4m

2 cos(π/2m)
, (14)

and we assume the convention that Ai,m+1 = ωAi,1 and αN =
1.

The maximal quantum value of this inequality is known
to be βQ = mN−1(d − 1). At the same time, the local bound
βL has been computed numerically only for some cases in
[30]; yet, it was shown that βL < βQ for all finite N and d .
The maximal quantum value can be achieved by the N-partite
GHZ state of local dimension d defined in Eq. (1) and the
following measurements:

O1,x = UxFd 	d F †
d U †

x , O2,x = VxF †
d 	d FdV †

x (15)

for the first two parties, and

Oodd,x = WxFd 	d F †
d W †

x (16)

and

Oev,x = W †
x F †

d 	d FdWx (17)

for all other parties Ai with i = 3, . . . , N numbered by odd
and even numbers, respectively. Here

Fd = 1√
d

d−1∑
i, j=0

ωi j |i〉〈 j|, 	d = diag[1, ω, . . . , ωd−1] (18)

with ω = exp(2πi/d ). Then, the unitary operations Ux, Vx,
and Wx are defined as

Ux =
d−1∑
j=0

ω− jαM (x)| j〉〈 j|, Vx =
d−1∑
j=0

ω jβM (x)| j〉〈 j|, (19)

and

Wx =
d−1∑
j=0

ω− jγM (x)| j〉〈 j|, (20)

032416-3



SHUBHAYAN SARKAR AND REMIGIUSZ AUGUSIAK PHYSICAL REVIEW A 105, 032416 (2022)

where

γm(x) = 1

m

(
x − 1

2

)
, ζm(x) = x

m
, θm(x) = x − 1

m
.

(21)

It is worth noticing that the above observables are by the
very definition unitary and that their eigenvalues are ωi, with
i = 0, . . . , d − 1, and thus they perfectly match our scenario.
Moreover, for the particular case N = m = 2, they repro-
duce the well-known Collins-Gisin-Linden-Massar-Popescu
(CGLMP) measurements [32,33].

In the next section, we prove that the above-mentioned
state and the measurements are the only realizations up to the
freedom of local unitaries and some auxiliary system which
can saturate the quantum bound of the inequality (12).

III. RESULTS

We are now ready to present our main result, that is, the
self-testing statement for the GHZ state (1) of arbitrary local
dimension and the corresponding measurements (15), (16),
and (17). The key ingredient in establishing this result is
a sum-of-squares decomposition of the Bell operator ÎN,m,d

provided in Ref. [30]. Indeed, for any choice of the local
observables Ai,xi acting on Hi one has

βQ1 − ÎN,m,d = 1

2

m∑
α1,...αN =1

d−1∑
k=1

(
P(k)

α1,...,αN

)†
P(k)

α1,...,αN

+ mN−2

2

m−2∑
α=1

d−1∑
k=1

(
R(k)

α

)†
R(k)

α , (22)

where

P(k)
α1,...,αN

=1 − (
akAk

1,α1
+a∗

k Ak
1,α1+1

)⊗
N⊗

i=2

A(−1)i−1k
i,αi−1+αi−1 (23)

and

R(k)
α = μ∗

α,k Ak
1,2 + ν∗

α,k Ak
1,α+2 + τα,k Ak

1,α+3 (24)

for α = 1, . . . , m − 2 and k = 1, . . . , d − 1, and 1. The coef-
ficients μα,k, να,k , and τα,k are given by

μα,k = ω(α+1)(d−2k)/2m

2 cos(π/2m)

sin(π/m)√
sin(πα/m) sin[π (α + 1)/m]

,

να,k = − ω(d−2k)/2m

2 cos(π/2m)

√
sin[π (α + 1)/m]√

sin(πα/m)
,

τα,k = 1

2 cos(π/2m)

√
sin(πα/m)√

sin[π (α + 1)/m]
(25)

for all k and α = 1, 2, . . . , m − 3. For α = m − 2, we have

μm−2,k = − ω−kω−(d−2k)/2m

2 cos(π/2m)
√

2 cos(π/m)
,

νm−2,k = − ω(d−2k)/2m

2 cos(π/2m)
√

2 cos(π/m)
,

τm−2,k =
√

2 cos(π/m)

2 cos(π/2m)
. (26)

Before stating our main result, let us introduce two uni-
tary observables with eigenvalues ωi. The first one is the
d-dimensional generalization of σz-Pauli matrix given by

Zd =
d−1∑
i=0

ωi|i〉〈i|, (27)

whereas the second one is defined as

Td,m =
d−1∑
i=0

ωi+ 1
m |i〉〈i| − 2i

d
sin

(π

m

)

×
d−1∑

i, j=0

(−1)δi,0+δ j,0ω
i+ j

2 − d−2
2m |i〉〈 j|, (28)

where hollow i denotes the imaginary unit, δi, j is the
Kronecker delta such that δi, j = 1 for i = j and δi, j = 0 other-
wise. Note that for m = d = 2, T2,2 = −σx, which is another
Pauli matrix.

Now, we can state our main theorem.
Theorem. Assume that the Bell inequality (12) is max-

imally violated by some state |ψN 〉 ∈ H1 ⊗ · · · ⊗ HN and
unitary observables Ai,αi for i ∈ {1, 2, . . . , N} and αi ∈
{1, 2, . . . , m}. Then, each local Hilbert space decomposes as
Hi = Cd ⊗ H′′

i for some finite-dimensional Hilbert spaces
H′′

i , and there exist local unitary transformations Ui : Hi →
Hi such that

UiAi,αiU
†
i = Oi,αi ⊗ 1′′

i , (29)

where Oi,αi are the d × d observables defined in Eqs. (15)–
(17), and 1′′

i are the identity matrices acting on H′′
i for all i′s,

and, finally,

U1 ⊗ · · · ⊗ UN |ψN 〉 = |GHZN,d〉 ⊗ |auxN 〉, (30)

for some |auxN 〉 ∈ H′′
1 ⊗ · · · ⊗ H′′

N .
Proof. The proof is highly technical and makes use of

several lemmas that are proven in the Appendix.
The proof is divided into three major steps. In the first one

we concentrate on the first party and characterize its Hilbert
space as well as the observables measured by them; in fact, we
show that in H1 one can identify a qudit Hilbert space Cd and
prove the existence of a unitary operation that brings all A1,x

to the ideal measurements (15). Then, we extend the above
observations to the remaining parties. In the third part of the
proof we focus on the state |ψN 〉, and exploiting the explicit
form of the observables that have just been characterized,
we show that up to some additional degrees of freedom it is
unitarily equivalent to the N-qudit GHZ state.

The Hilbert space structure and characterization of observ-
ables. We begin by noting that without any loss of generality
we can assume here that the local reduced states ρi of |ψN 〉
are full rank; in other words, we assume that the dimensions
of Ai,xi and the corresponding ρi are equal.

Let us now show that maximal violation of the Bell in-
equality (12) allows one to identify a qudit in each local
Hilbert space in the sense that Hi = Cd ⊗ H′′

i for any i, and,
simultaneously, to obtain the form of Ai,2 and Ai,3 for any
i = 2, . . . , N .

We concentrate on the first party A1, the proof for the other
Ai’s follow exactly the same lines. The departure point for our
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considerations are certain relations for the observables Ai,xi

and the state |ψN 〉 that are induced by the sum-of-squares
decomposition (34). Precisely, this decomposition implies that
any |ψN 〉 and Ai,xi maximally violating the Bell inequality (12)
must necessarily satisfy

P(k)
α1,...,αN

|ψN 〉 = 0 (31)

for any configuration of the indices αi, which through (23)
implies that

A
(k)
1,α1

⊗
N⊗

i=2

A(−1)i−1k
i,αi−1+αi−1|ψN 〉 = |ψN 〉 (32)

for all k and αi, where we have denoted

A
(k)
1,α = akAk

1,α + a∗
k Ak

1,α+1. (33)

Since Ai,αi are unitary for all i and αi, we then straightfor-
wardly conclude that the operators acting on the first party’s
Hilbert space must satisfy the following relations:

A
(k)
1,αA

(d−k)
1,α = 1A1 and A

(k)
1,α = [

A
(1)
1,α

]k
(34)

for any k = 1, . . . , d − 1 and α = 1, . . . , m. By noting that
ad−k = a∗

k , one further obtains

A
(d−k)
1,α = A

(k)†
1,α (35)

for all k and α, and therefore the relations (34) imply
that the combinations of observables (33) are also quan-
tum observables, i.e., are unitary and their spectra are from
{1, ω, . . . , ωd−1}.

Additionally, we have another set of relations arising from
the sum-of-squares (SOS) decomposition (22) given by

R(k)
α |ψN 〉 = 0 (36)

which due to the fact that the single-site reduced density
matrices of the state |ψN 〉 are full rank, are equivalent to

R(k)
α = 0 (37)

for all k = 1, . . . , d − 1 and α = 1, . . . , m − 2. The relations
(34) and (37) are key factors in proving our self-testing state-
ment. In fact, these relations give rise to Lemma 1 presented
in the Appendix that says that the unitary observables An

1,α are
traceless for α = 2, 3 and for any n �= d which is a divisor of
d , that is,

Tr(An
1,α ) = 0 (α = 2, 3). (38)

Now, denoting by λi,α the multiplicities of the eigenvalues
ωi (i = 1, . . . , d − 1) of the two observables A1,2 and A1,3,
Eq. (38) implies that

d−1∑
i=0

λi,αωni = 0 (α = 2, 3), (39)

where n is a divisor of d such that n �= d . By virtue of Fact 1
stated in the Appendix, Eq. (39) allows us to conclude that the
multiplicities λi,α are all equal or, equivalently, λ0,α = · · · =
λd−1,α . As a consequence, we have that Tr(An

1,α ) = 0 for all
n = 1, 2, . . . , d − 1 and α = 2, 3. Moreover, by employing
the relation (37) the latter fact can be directly extended to any
observable A1,α measured by the first party. Precisely, taking

trace of Eq. (37) and using the explicit form of R(n)
α , one arrives

at

μ∗
α,nTr

(
An

1,2

)+ ν∗
α,nTr

(
An

1,α+2

)+ τα,nTr
(
An

1,α+3

) = 0, (40)

which for α = 1 implies that Tr(An
1,4) = 0. Analogously, for

α = 2 it gives Tr(An
1,5) = 0. Continuing this procedure recur-

sively for any α until α = m − 2, we conclude that Tr(An
1,α ) =

0 for all n and α.
The fact that the multiplicities of the eigenvalues of all the

observables measured by the first party are equal means that
the dimension of a Hilbert space these observables act on is a
multiple of d or, equivalently, that H1 = Cd ⊗ H′′

1 for some
finite-dimensional Hilbert space H′′

1. Moreover, as shown in
Lemma 2 in the Appendix, there exists a unitary V1 : H1 →
H1 such that V1 A1,2 V †

1 = Zd ⊗ 1′′
1 and V1 A1,3 V †

1 = Td,m ⊗
1′′

1 where Zd and Td,m are quantum observables defined in (28)
and 1′′

1 is an identity acting on H′′
1.

We then show in Lemma 3 in the Appendix that the ob-
servables A1,2 and A1,3 are unitarily equivalent to the optimal
measurements (15). In fact, one can check that for the unitary
matrix W1 : Cd → Cd given explicitly by

W1 = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− 3i
2m +i j+ j

2 |i〉〈 j|, (41)

the following relations hold true:

W1 Zd W †
1 = O1,2, W1 Td,m W †

1 = O1,3. (42)

As a consequence, there exist a local unitary transformation
U1 : H1 → H1 such that

U1 A1,α U †
1 = O1,α ⊗ 1′′

1 (α = 2, 3). (43)

To find the other measurements of the first party, we exploit
the relation (37). Plugging the obtained observables into (37)
for α = 1, we have

U1 A1,4 U †
1 = − 1

τ1,1
(μ∗

1,1 O1,2 + ν∗
1,1 O1,3) ⊗ 1′′

1 (44)

for all n. A key observation here is that the ideal observables
(15), (16), and (17) also satisfy the relations (37). This directly
implies that

U1 A1,4 U †
1 = O1,4 ⊗ 1′′

1. (45)

Again, after exploiting (37) for α = 2,

U1 A1,5 U †
1 = − 1

τ1,2
(μ∗

1,2O1,2 + ν∗
1,2O1,4) ⊗ 1′′

1, (46)

and using the relation (37) for the ideal observables one has

U1 A1,5 U †
1 = O1,5 ⊗ 1′′

1. (47)

Applying this reasoning recursively for α = 3, . . . , m − 2, we
conclude that

U1A1,αU †
1 = O1,α ⊗ 1′′

1 (48)

for all α = 1, . . . , m. This is explicitly shown in Lemma 4 in
the Appendix.

Observables of all the other parties. Following a similar
strategy, we now show that for all the other parties the ob-
servables are equivalent to the optimal measurements (15),
(16), and (17) up to some unitary transformation. To this end,
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we first find complementary SOS decompositions of the same
Bell operator ÎN,m,d (13),

βQ1 − ÎN,m,d = 1

2

∑
α1,...,αN =1,2

d−1∑
k=1

(
P(k)

n,α1,...,αN

)†
P(k)

n,α1,...,αN

+mN−2

2

m−2∑
α=1

d−1∑
k=1

(
R(k)

n,α

)†
R(k)

n,α, (49)

where

P(k)
n,α1,...αN

= 1 − A(k)
1,α1

⊗ A
(k)
n,αn−1+αn−1 ⊗

N⊗
i=2
i �=n

A(−1)i−1k
i,αi−1+αi−1 (50)

with n = 2, . . . , N and for odd n,

A
(k)
n,αn−1+αn−1 = akAk

n,αn−1+αn−1 + a∗
k Ak

n,αn−1+αn
, (51)

whereas for even n,

A
(k)
n,αn−1+αn−1 = akA−k

n,αn−1+αn−1 + a∗
k A−k

n,αn−1+αn−2. (52)

As before, in the above expressions we use the convention that
An,α+m = ωAn,α and An,0 = ω−1An,m for all n, α. Further, for
odd n,

R(k)
n,α = μ∗

α,kAk
n,2 + ν∗

α,kAk
n,α+2 + τα,kAk

n,α+3, (53)

whereas for even n,

R(k)
n,α = μα,kA−k

n,2 + να,kA−k
n,α+2 + τα,kA−k

n,α+3. (54)

As in the previous case, the above SOS decompositions
imply that the state |ψN 〉 as well as the observables Ai,xi which
maximally violate the Bell inequality (12) satisfy

P(k)
n,α1,...,αN

|ψN 〉 = 0. (55)

As concluded before using (32), we proceed in the similar way
to obtain the relations for the observables of all the parties,

An,αA
†
1,α = 1 and A

(k)
n,α = [

A
(1)
n,α

]k
(56)

for any α and any n = 2, . . . , N − 1. Also, using the fact that

ad−k = a∗
k we have A

(d−k)
n,α = A

(k)†
n,α for any k = 1, . . . , d − 1

and α = 1, . . . , m. Furthermore, we have

R(k)
n,α = 0 (57)

for all k = 1, . . . , d − 1 and α = 1, 2, . . . , m − 2. Note that
for any observable An,α we obtained exactly the same relations
as those derived previously for A1,α given in Eq. (34). Conse-
quently, we can straightforwardly conclude that for each party
An the corresponding Hilbert space decomposes as Hn =
Cd ⊗ H′′

n for some finite-dimensional H′′
n and, moreover, that

there exists a unitary operation Vn : Hn → Hn such that

Vn An,2 V †
n = Zd ⊗ 1′′

n,

Vn An,3 V †
n = Td,m ⊗ 1′′

n, (58)

where 1′′
i is the identity matrix acting on H′′

n for any n. In
Lemma 3 of the Appendix, we show that the obtained Zd and
Td,m are equivalent to the ideal measurements (15), (16), and
(17) up to local unitary transformations, that is,

O2,2 = W2 Zd W †
2 , O2,3 = W2 Td,m W †

2 (59)

for the second party A2,

Oodd,2 = Wodd Zd W †
odd, Oodd,3 = WoddTd,mW †

odd (60)

for all the parties numbered by odd numbers, and

Oev,2 = Wev Zd W †
ev, Oev,3 = Wev Td,m W †

ev (61)

for the “even” parties. The unitary operators are given by

W2 = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− 2i
m +i j+ j

2 |d − 1 − i〉〈 j|,

Wodd = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− i
m +i j+ j

2 |i〉〈 j|,

Wev = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− i
m +i j+ j

2 |d − 1 − i〉〈 j|. (62)

As a result, we conclude that there exist local unitary transfor-
mations Ui : Cd ⊗ H′′

i → Cd ⊗ H′′
i such that

Ui Ai,αi U †
i = Oi,αi ⊗ 1′′

i (63)

for αi = 2, 3. As concluded for the first party, exploiting the
relations (53) and (54) one infers that (63) holds true for all
αi = 1, . . . , m. This is explicitly shown in Lemma 4 in the
Appendix. This concludes the part of the proof devoted to
finding all the observables that violate the Bell inequality (12)
maximally.

The state. Finally, using the derived optimal measurements
and the relations (34) we now show that the state which
maximally violates the Bell inequality (12) is, up to local uni-
tary transformations and some additional irrelevant degrees of
freedom, the N-partite GHZ state (1) of local dimension d .

To this aim, we exploit the fact that each local Hilbert space
is Hn = Cd ⊗ H′′

n , and therefore the state can be decomposed
as

|ψN 〉 =
d−1∑

i1,...,iN =0

|i1, . . . , iN 〉|ψi1,...,iN 〉, (64)

where |ψi1,...,iN 〉 are some, in general, unnormalized vectors
from H′′

1 ⊗ · · · ⊗ H′′
N .

Now, considering the relations (34) for k = 1 and different
values of αi’s we demonstrate that |ψi1,...,iN 〉 = 0 whenever
there is a pair of indices ik �= il for some k �= l . Moreover,
all components with i1 = · · · = iN turn out to be equal. We
thus find that the only state which maximally violates the Bell
inequality (12) is given by

U1 ⊗ · · · ⊗ UN |ψN 〉 = |GHZN,d〉 ⊗ |auxN 〉, (65)

where |auxN 〉 ∈ H′′
1 ⊗ · · · ⊗ H′′

N . A more detailed explana-
tion of this part of the proof can be found in Lemma 5 in
the Appendix. This completes the proof of our self-testing
statement. �

IV. CONCLUSIONS

We proposed a self-testing statement for quantum states
shared among arbitrary number of parties and of arbitrary
local dimension that utilizes a truly d-outcome Bell inequality.
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Contrary to the previous approach to self-testing of the GHZ
states of Ref. [27], which is a generalization of the results of
Ref. [24], our method does not rely on self-testing results for
two-dimensional systems. Moreover, it allows for a device-
independent certification of the GHZ states based on only two
observables per observer, which is in fact the minimal number
of observables allowing to observe quantum nonlocality and
thus to make nontrivial self-testing statements. This lowers
the experimental effort necessary to implement our scheme.
Let us also notice that our self-testing method generalizes
some previous results in a couple of ways. On one hand, we
generalize the self-testing statement for two-qudit maximally
entangled states derived in Ref. [17] to an arbitrary number of
observers as well as an arbitrary number of measurements. On
the other hand, we generalize the self-testing statement based
on the chained Bell inequalities given in Ref. [15] to quantum
systems of an arbitrary local dimension as well as an arbitrary
number of parties.

Our considerations provoke some further questions. First,
as far as the possibility of experimental implementations of
our results is concerned, it would be interesting to study how
robust is our self-testing statement to noises and experimental
imperfections and how its robustness scales with the number
of parties N . Deriving analytically such robust statements for
any d and N is certainly a hard task, hence, we leave it for
future publications. Let us notice, nevertheless, that for the

particular case of N = m = 2 and d = 3, the robustness of a
self-testing statement for various two-qutrit entangled states
based on violation of the Bell inequality (12) and its variants
was investigated in Refs. [17,34] by using the numerical ap-
proach of Ref. [35]. Another route for future research would
be to explore whether our self-testing scheme can be used
for device-independent certification of randomness. In fact, it
was shown in Ref. [17] that in the bipartite case the maximal
violation of the Bell inequality (12) certifies log2 d bits of
local randomness which by using the results of this work can
be generalized to the GHZ states. It would be interesting to
see whether our self-testing statement allows for certification
of more randomness from these states by taking into account
measurements performed by groups of parties, not only a
single one as in Ref. [17]. Finally, it would be interesting to
see whether our scheme can be further generalized to obtain
self-testing methods for other genuinely entangled multipar-
tite states; in fact, no general scheme allowing to self-test any
multipartite genuinely entangled state is known.
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APPENDIX: PROOF OF LEMMAS REQUIRED FOR SELF-TESTING

Before proceeding towards the lemmas, let us recall a fact proven in [17].
Fact 1. Consider a real polynomial

W (x) =
d−1∑
i=0

λix
i (A1)

with rational coefficients λi ∈ Q. Assume that ωn with ω = e2πi/d is a root of W (x) for any n being a proper divisor of d , i.e.,
n �= d such that d/n ∈ N. Then, λ0 = λ1 = · · · = λd−1.

Below we state and prove all lemmas used in the proof of our main result. Some of the proofs are long and technical and
therefore we divided them into steps marked as observations.

Lemma 1. Consider two unitary observables A1,α such that α = 2, 3 acting on a finite-dimensional Hilbert space whose
eigenvalues are ωl (l ∈ {0, . . . , d − 1}). If they satisfy the conditions (34), then for any n �= d which is a divisor of d ,

Tr
(
An

1,α

) = 0 (α = 2, 3). (A2)

Proof. First, we substitute the explicit forms of A1,2 and ak into both relations in (34) for α = 2, which after some algebra
gives us two sets of equations for k = 1, . . . , d − 1:

ω
2k−d

2m Ak
1,2A−k

1,3 + ω− 2k−d
2m Ak

1,3A−k
1,2 = 2 cos

(π

m

)
1 (A3)

and

ωk/mA2k
1,2 + ω−k/mA2k

1,3 = Ak
1,2Ak

1,3 + Ak
1,3Ak

1,2. (A4)

Multiplying then Eq. (A4) by A−k
1,2 and taking trace on both sides, one obtains

ωk/mTr
(
Ak

1,2

)+ ω−k/mTr
(
A2k

1,3A−k
1,2

) = 2 Tr
(
Ak

1,3

)
. (A5)

On the other hand, multiplying Eq. (A3) by Ak
1,3 and taking the trace on both sides, we get

ω
2k−d

2m Tr
(
Ak

1,2

)+ ω− 2k−d
2m Tr

(
A2k

1,3A−k
1,2

) = 2 cos
(π

m

)
Tr
(
Ak

1,3

)
. (A6)
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Then, one eliminates the term Tr(A2k
1,3A−k

1,2) from (A5) and (A6) to arrive at

Tr
(
Ak

1,2

) = 2ω−k/m 1 − cos(π/m)ω−d/2m

1 − ω−d/m
Tr
(
Ak

1,3

)
(A7)

which can be further simplified to

Tr
(
Ak

1,2

) = ω−k/mTr
(
Ak

1,3

) (
k = 1, . . . ,

⌊
d

2

⌋)
. (A8)

We have thus established a relation between traces of powers of the observables A1,2 and A1,3. It is thus enough to prove that
they vanish for one of these observables. To this end, we prove the following observation.

Observation 1.1. The following identities hold true for any non-negative integer t ∈ N ∪ {0} and x = 1, . . . , �d/2�:

Tr
(
Ax

1,2

) = ω
2tx
m Tr

(
A(2t+1)x

1,2 A−2tx
1,3

)
. (A9)

Proof. We prove this relation using mathematical induction. First, let us notice that it is trivially satisfied for t = 0. Now, let
us suppose that (A9) holds true for t = s − 1,

Tr
(
Ax

1,2

) = ω
2(s−1)x

m Tr
(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)
(A10)

for x = 1, . . . , �d/2�. We will prove that the relation (A9) holds also true for t = s. For this purpose, let us look at the right-hand
side of Eq. (A9) for t = s and consider (A3) for k = 2sx, multiply it by Ax

1,2, and take the trace on both sides. This gives

ω
4sx−d

2m Tr
(
A(2s+1)x

1,2 A−2sx
1,3

) + ω
d−4sx

2m Tr
(
A2sx

1,3A(−2s+1)x
1,2

) = cos
(π

m

)
Tr
(
Ax

1,2

)
. (A11)

We consider again Eq. (A3) for k = (2s − 1)x, multiply it by Ax
1,3, and then take the trace on both sides, which results in

ω
2(2s−1)x−d

2m Tr
(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)+ ω
d−2(2s−1)x

2m Tr
(
A2sx

1,3A(−2s+1)x
1,2

) = cos
(π

m

)
Tr
(
Ax

1,3

)
, (A12)

which after employing Eq. (A8) for k = x simplifies to

ω
4(s−1)x−d

2m Tr
(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)+ ω
d−4sx

2m Tr
(
A2sx

1,3A(−2s+1)x
1,2

) = cos
(π

m

)
Tr
(
Ax

1,2

)
. (A13)

Note that the above expression is valid only for x = 1, . . . , �d/2�. After subtracting Eq. (A13) from Eq. (A11) we arrive at

Tr
(
A(2s+1)x

1,2 A−2sx
1,3

) = ω− 2x
m
(
A(2s−1)x

1,2 A−2(s−1)x
1,3

)
, (A14)

which together with Eq. (A10) gives

Tr
(
A(2s+1)x

1,2 A−2sx
1,3

) = ω− 2sx
m Tr

(
Ax

1,2

)
. (A15)

This completes the proof of Observation 1.1. �
We are now in a position to prove Eq. (A2). Let n be a divisor of d , that is, d/n ∈ N. Note that any divisor of d (except d

itself) is always smaller or equal to d/2. There are two possibilities of d/n being even or odd. Whenever d/n is even, that is,
there exists some integer t such that n = d/2t , we substitute x = n = d/2t in Eq. (A9), which gives

Tr
(
An

1,2

) = ωd/m Tr
(
Ad+n

1,2 A−d
1,3

)
. (A16)

Using the fact that Ad
1,α = 1, the above relation simplifies to

Tr
(
An

1,2

) = ωd/mTr
(
An

1,2

)
. (A17)

As a consequence, for any m � 2, we have that for any n such that d/n is even, Tr(An
1,2) = 0. Using then Eq. (A8) one can

similarly conclude that Tr(An
1,3) = 0.

Now, for any divisor n of d such that d/n is odd, we choose x = n = d/(2t + 1) in Eq. (A9), which leads us to

Tr
(
An

1,2

) = ωd/mω−n/m Tr
(
An

1,3

)
. (A18)

Comparing the above expression with Eq. (A8), one directly concludes that Tr(A1,α ) = 0 for any n such that d/n is odd and
n � d/2. Thus, we have shown that for any n which is a divisor of d , Tr(An

1,α ) = 0 for α = 2, 3. This completes the proof. �
Lemma 2. Let us consider two unitary operators A1,2 and A1,3 acting on Cd ⊗ H′′

1 with eigenvalues ωl for l = 0, 1, . . . , d − 1
satisfying the conditions (34). Then, there exists a unitary V1 : H1 → H1 such that V1 A1,2 V †

1 = Zd ⊗ 1′′
1 and V1 A1,3 V †

1 = Td,m ⊗
1′′

1 where Zd , Td,m are defined in (28).
Proof. We begin by proving the following relation for A1,2 and A1,3:

Ak
1,3 = −(k − 1)ω

k
m Ak

1,2 + ω
k−1

m

k−1∑
t=0

At
1,2A1,3Ak−1−t

1,2 (A19)
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for k = 1, . . . , d . To this end, we use the mathematical induction. First, it is not difficult to see that for k = 1, the relation (A19)
is trivially satisfied as both its sides equal A1,3. Assuming then that (A19) holds true for k, we will prove that it k → k + 1. With
this aim, we consider (34) for α1 = 2 and rewrite it as

A
(k+1)
1,2 = A

(k)
1,2A

(1)
1,2 (k = 1, . . . , d − 1). (A20)

Plugging in the explicit form of A
(k)
1,2 we arrive at

Ak+1
1,3 = −ω

k+1
m Ak+1

1,2 + ω
k
m Ak

1,2A1,3 + ω
1
m Ak

1,3A1,2, (A21)

which after substituting Ak
1,3 from Eq. (A19) into it gives

Ak+1
1,3 = −ω

k+1
m Ak+1

1,2 + ω
k
m Ak

1,2A1,3 − ω
1
m A1,2

[
(k − 1)ω

k
m Ak

1,2 − ω
k−1

m

k−1∑
t=0

At
1,2A1,3Ak−1−t

1,2

]

= −kω
k+1

m Ak+1
1,2 + ω

k
m

k∑
t=0

At
1,2A1,3Ak−t

1,2 . (A22)

Now, from the fact that the multiplicities of all the eigenvalues of A1,α are equal, we conclude that there exists a unitary
operation V ′

1 : H1 → H1 such that V ′
1 A1,2 V ′†

1 = Zd ⊗ 1′′
1. Moreover, we can always write V ′

1 A1,3 V ′†
1 in the following way:

V ′
1 A1,3 V ′†

1 =
d−1∑

i, j=0

|i〉〈 j| ⊗ Fi j, (A23)

where Fi j are some matrices acting on H′′
1. In order to make our further considerations simpler and easier to follow we drop the

unitary V1 acting on the observables for now and bring it back at the end of the proof; analogously, we write 1 instead of 1′′
1.

Our aim now is to determine Fi j using relations (A19). First, we calculate Fii and then proceed to Fi j for i �= j. Equation (A19)
for k = d − 1 gives us

A†
1,3 = −(d − 2)ω

d−1
m A†

1,2 + ω
d−2

m

d−2∑
t=0

At
1,2A1,3Ad−t−2

1,2 . (A24)

Taking then A1,2 = Zd ⊗ 1′′
1 and A1,3 as given in Eq. (A23), the above expression (A24) can be rewritten as

d−1∑
i, j=0

| j〉〈i| ⊗ F †
i j = −(d − 2)ω

d−1
m

d−1∑
i=0

ω−i|i〉〈i| ⊗ 1 + ω
d−2

m

d−1∑
i, j=0

d−2∑
t=0

ω−2 j+t (i− j)|i〉〈 j| ⊗ Fi j . (A25)

We can now project the first subsystem onto |i〉〈i| to obtain the following relation:

F †
ii = −(d − 2)ω

d−1
m ω−i1 + (d − 1)ω

d−2
m ω−2iFii. (A26)

Taking the Hermitian conjugation of the above equation,

Fii = −(d − 2)ω− d−1
m ωi 1 + (d − 1)ω− d−2

m ω2iF †
ii , (A27)

and substituting F †
ii from Eq. (A26) into it, we obtain

Fii = −(d − 2)ω− d−1
m ωi 1 − (d − 2)(d − 1)ω

1
m +i1 + (d − 1)2Fii, (A28)

which after some manipulations can be stated as

Fii = 1

d
ωi+ 1

m
(
d − 1 + ω− d

m
)
1

= ωi+ 1
m

[
1 − 2i

d
sin

(π

m

)
ω− d

2m

]
1. (A29)

Now we focus on determining the matrices Fi j for i �= j. Our derivation is based on a sequence of observations. First, taking
the | j〉〈i| elements of Eq. (A25) for i �= j, one finds the equation

F †
ji = ω

d−2
m ω−2 j

d−2∑
t=0

ωt (i− j)Fi j, (A30)
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which after taking into account that

d−2∑
t=0

ωt (i− j) = −ω−(i− j) (i �= j) (A31)

reduces to

Fi j = −ω− d−2
m ωi+ jF †

ji . (A32)

Note that (A24) only relates the symmetric elements of A1,3 in the form (A32). To find the explicit form of Fi j , we need to consider
equations similar to Eq. (A25), however, with higher-order terms in Fi j . To this end, let us prove the following observation.

Observation 2.1. The following conditions hold true for any k = 1, . . . , d − 1 and m � 2:

ω− 1
m

d−1∑
i, j=0

|i〉〈 j| ⊗

⎡⎢⎣d−1∑
l=0
l �=i

(
ωki − ωkl

ωi − ωl

)
Fil Fl j + kω(k−1)iFiiFi j

⎤⎥⎦− (k − 1)
d−1∑

i, j=0

ωki|i〉〈 j| ⊗ Fi j

= −kω
1
m

d−1∑
i=0

ω(k+1)i|i〉〈i| ⊗ 1 +
d−1∑

i, j=0

|i〉〈 j| ⊗
k∑

t=0

ωk j+t (i− j)Fi j . (A33)

Proof. Let us consider a trivial relation Ak+1
1,3 = Ak

1,3A1,3 and substitute in it Ak+1
1,3 and Ak

1,3 using Eq. (A19). This leads us to

−kω
1
m Ak+1

1,2 +
k∑

t=0

At
1,2A1,3Ak−t

1,2 = −(k − 1)Ak
1,2A1,3 + ω− 1

m

k−1∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3. (A34)

We now evaluate the sum appearing on the right-hand side by substituting the explicit forms of A1,2 and A1,3:

k−1∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3 =
d−1∑

i, j=0

|i〉〈 j| ⊗
d−1∑
l=0

k−1∑
t=0

ωl (k−1)ωt (i−l )Fil Fl j . (A35)

Splitting the sum over l into two parts, l = i and l �= i, and using the fact that

k−1∑
t=0

ωt (i−l ) = 1 − ωk(i−l )

1 − ωi−l
, (A36)

we obtain

k−1∑
t=0

At
1,2A1,3Ak−1−t

1,2 A1,3 =
d−1∑

i, j=0

|i〉〈 j| ⊗

⎡⎢⎣d−1∑
l=0
l �=i

(
ωki − ωkl

ωi − ωl

)
Fil Fl j + kω(k−1)iFiiFi j

⎤⎥⎦. (A37)

Then, using similar arguments, the sum on the left-hand side of Eq. (A34) can be expressed as

k∑
t=0

At
1,2A1,3Ak−t

1,2 =
d−1∑

i, j=0

ωk j
k∑

t=0

ωt (i− j)|i〉〈 j| ⊗ Fi j . (A38)

Plugging Eqs. (A37) and (A38) into Eq. (A34) one arrives at (A33) which completes the proof of Observation 2.1. �
Equipped with the relation (A33) we can now proceed with the characterization of Fi j . Precisely, the diagonal terms (A33)

can be used to prove the following observation.
Observation 2.2. The following conditions hold true for any pair i �= j:

Fi jF
†

i j = 4

d2
sin2

(π

m

)
1. (A39)

Proof. Let us first consider Eq. (A33) and project the first subsystem onto |i〉〈i| which, after simple algebra, gives

d−1∑
l=0
l �=i

(
ωki − ωkl

ωi − ωl

)
Fil Fli = kωki

[
2ω

1
m Fii − ω−iF 2

ii − ωi+ 2
m 1
]
. (A40)
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This after substituting Fii from Eq. (A29) simplifies to

d−1∑
l=0
l �=i

(
ωki − ωkl

ωi − ωl

)
Fil Fli = − k

d2
ωi(k+1)+ 2

m (1 − ω−d/m)21, (A41)

which, after a few manipulations, can be rewritten as

d−1∑
l=0
l �=i

(
1 − ωk(l−i)

1 − ωi−l

)
Fil Fliω

−(i+l+ 2
m )ω

d
m = k

d2
ω

d
m (1 − ω− d

m )21. (A42)

Then, after taking into account Eq. (A32), changing the index l to j, and simplifying the right-hand side, we have

d−1∑
j=0
j �=i

(
1 − ωk( j−i)

1 − ωi− j

)
Fi jF

†
i j = 4k

d2
sin2

(π

m

)
1, (A43)

for i, k = 0, . . . , d − 1. We then multiply the above expression by ωkn with k = 0, . . . , d − 1 and n = 1, . . . , d − 1, and then
sum the resulting relation over all k′s, which yields

−
d−1∑
j=0
j �=i

1

1 − ωi− j
Fi jF

†
i j

d−1∑
k=0

ωk( j−i+n) = 4

d2
sin2

(π

m

) d−1∑
k=0

kωkn1. (A44)

Exploiting the following identities

d−1∑
k=0

ωkn = 0,

d−1∑
k=0

kωkn = d

ωn − 1
, (A45)

and
d−1∑
k=0

ωk( j−i+n) = δ j,i−n mod d (A46)

that are satisfied for any n = 1, . . . , d − 1, we arrive at the following relation:

Fi(i−n mod d )F
†

i(i−n mod d ) = 4

d2
sin2

(π

m

)
1. (A47)

Note that for any i = 0, . . . , d − 1 there exist n = 1, . . . , d − 1 such that i − n mod d is any number from {0, . . . , d − 1} and
is different than i. This completes the proof of Observation 2.2. �

While (A39) tell us a lot about the matrices Fi j , it is still not enough to determine their explicit form. To complete the
characterization we consider a unitary operation Ṽ : H1 → H1 of the form

Ṽ =
d−1∑
i=0

|i〉〈i| ⊗ Ṽi, (A48)

where Ṽi : H′′
1 → H′′

1 are unitary operations defined as

Ṽ0 = 1, Ṽi = − di

2 sin(π/m)
ω− i

2 + d−2
2m F0i (A49)

for i = 1, . . . , d − 1. Importantly, Ṽ commutes with Zd and thus preserves the form of A1,2.
We then have

Ṽ A1,3 Ṽ † =
d−1∑

i, j=0

|i〉〈 j| ⊗ F̃i j, (A50)

where we denoted F̃i j = Ṽi Fi j Ṽ †
j . For a remark, all the algebraic relations for Fi j obtained so far hold true for F̃i j , and F̃ii = Fii.

Now, we see that

F̃0 j = Ṽ0 F0 j Ṽ †
j = 2i

d
sin

(π

m

)
ω

j
2 + 2−d

2m 1, (A51)

where we employed Eq. (A39) for i = 0. Now, using Eq. (A32) we obtain that F̃j0 = F̃0 j .
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In the remaining part of the proof of Lemma 2, we focus on the elements Fi j for i, j �= 0 and i �= j. To do so, we exploit the
off-diagonal elements of (A43).

Observation 2.3. The following conditions hold true:

d−1∑
i=1
i �= j

(
1 − ωki

1 − ωi

)
ω

i
2 Fi j = 1

d
(1 − ω− d

m )ω
j
2 + 1

m

(
k + 1 − ωk j

1 − ω j
ω j

)
1, (A52)

for k, j = 1, . . . , d − 1.

Proof. Taking the inner product with 〈i| · | j〉 (where i �= j) on the both sides of (A33) we obtain

−(k − 1)ωkiFi j + ω− 1
m

d−1∑
l=0
l �=i

(
ωki − ωkl

ωi − ωl

)
Fil Fl j + kω(k−1)iω− 1

m FiiFi j = ω(k+1)i − ω(k+1) j

ωi − ω j
Fi j . (A53)

Rearranging some terms and using Fii from (A29), we have

d−1∑
l=0
l �=i

ωki − ωkl

ωi − ωl
Fil Fl j = ω

1
m

{
ω(k+1)i − ω(k+1) j

ωi − ω j
+
[

k

d
(1 − ω−d/m) − 1

]
ωki

}
Fi j . (A54)

Next, we set i = 0 and obtain

d−1∑
l=1

1 − ωkl

1 − ωl
F0lFl j = ω

1
m

[
1 − ω(k+1) j

1 − ω j
+ k

d
(1 − ω−d/m) − 1

]
F0 j . (A55)

Substituting F0 j from (A51),

d−1∑
l=1

1 − ωkl

1 − ωl
ω

l
2 Fl j = ω

j
2 + 1

m

[
1 − ω(k+1) j

1 − ω j
+ k

d
(1 − ω−d/m) − 1

]
1. (A56)

Taking the term corresponding to l = j out of the sum and expressing Fj j with the aid of Eq. (A29) we arrive at the desired
formula Eq. (A52), which completes the proof of Observation 2.3. �

We can finally determine the form of Fi j for i �= j and i, j �= 0. To this end, we multiply Eq. (A52) by ω−kn with n =
1, . . . , d − 1 such that n �= j and then sum both sides of the resulting formula over k = 0, . . . , d − 1, obtaining

d−1∑
i=1
i �= j

ωi/2

1 − ωi
Fi j

d−1∑
k=0

(ω−kn − ωk(i−n) ) = 1

d
(1 − ω−d/m)ω

j
2 + 1

m

[
d−1∑
k=0

kω−kn + ω j

1 − ω j

d−1∑
k=0

(ω−kn − ωk( j−n) )

]
1. (A57)

Notice that in the above equation the first sum over k on the left-hand side as well as the last two sums on the right-hand side
simply vanish for n �= j. Now, exploiting Eq. (A45) as well as the fact that

d−1∑
k=0

ωk(n−i) = dδn,i, (A58)

and the identity

d−1∑
k=0

kωkn = d

ωn − 1
, n = 1, . . . , d − 1 (A59)

proven in [17], we obtain

− ωn/2

1 − ωn
Fn j = 1

d2
(1 − ω−d/m)

ω
j
2 + 1

m

ω−n − 1
1, (A60)

which after simple algebra leads us to

Fi j = − 1

d

(
1 − ω−d/m

)
ω

i+ j
2 + 1

m 1

= −2i

d
sin

(π

m

)
ω

i+ j
2 + 2−d

2m 1 (A61)
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for i, j = 1, . . . , d − 1 such that i �= j. Finally, taking into account Eqs. (A23), (A29), (A51), and (A61) we conclude that there
exists a unitary operation V1 = ṼV ′

1 such that V1 A1,2 V †
1 = Zd ⊗ 1 and

V1 A1,3 V †
1 = Td,m ⊗ 1 (A62)

with Td,m given by

Td,m =
d−1∑
i=0

ωi+ 1
m |i〉〈i| − 2i

d
sin

(π

m

) d−1∑
i, j=0

(−1)δi,0+δ j,0ω
i+ j

2 − d−2
2m |i〉〈 j|. (A63)

This completes the characterization of A1,2 and A1,3. �
Lemma 3. The following unitary operators acting on Cd ,

W1 = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− 3i
2m +i j+ j

2 |i〉〈 j|,

W2 = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− 2i
m +i j+ j

2 |d − 1 − i〉〈 j|,

Wodd = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− i
m +i j+ j

2 |i〉〈 j|,

Wev = 1√
d

d−1∑
i, j=0

(−1)δ j,0ω− i
m +i j+ j

2 |d − 1 − i〉〈 j| (A64)

transform Zd , Td,m defined in Eq. (28) to the ideal measurements given in Eqs. (15)–(17) in the following way:

Oi,2 = Wi Zd W †
i , Oi,3 = Wi Td,m W †

i , (A65)

where Wi = Wodd/ev for odd and even numbered party i, respectively.
Proof. Let us first notice that the ideal observables from (15)–(17) can be written in the matrix form as

O1,x =
d−2∑
i=0

ωγm (α)|i〉〈i + 1| + ω(1−d )γm (α)|d − 1〉〈0|,

O2,x =
d−2∑
i=0

ωζm (α)|i + 1〉〈i| + ω(1−d )ζm (α)|0〉〈d − 1| (A66)

for the first two parties, and

Oodd,x =
d−2∑
i=0

ωθm (α)|i〉〈i + 1| + ω(1−d )θm (α)|d − 1〉〈0|,

Oev,x =
d−2∑
i=0

ωθm (α)|i + 1〉〈i| + ω(1−d )θm (α)|0〉〈d − 1| (A67)

for the remaining parties. This allows us to find their eigendecompositions

On,x =
d−1∑
r=0

ωr |r〉〈r|n,x (A68)

with x = 2, 3 and n = 1, . . . , N , where the eigenvectors are defined as

|r〉1,x = 1√
d

d−1∑
q=0

ω[r−γm (x)]q|q〉,

|r〉2,x = 1√
d

d−1∑
q=0

ω−[r−ζm (x)]q|q〉,
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|r〉nodd,x = 1√
d

d−1∑
q=0

ω[r−θm (x)]q|q〉,

|r〉nev,x = 1√
d

d−1∑
q=0

ω−[r−θm (x)]q|q〉, (A69)

where γm(x), ζm(x), and θm(x) are given in Eq. (21) and {|q〉} is the computational basis of Cd . It should be noticed here that by
the very construction the vectors |r〉i,x are mutually orthogonal for any choice of i and x.

Let us now consider the spectral decompositions of Zd and Td,m:

Zd =
d−1∑
q=0

ωq|q〉〈q|, Td,m =
d−1∑
r=0

ωr |r〉〈r|T . (A70)

We know that the following spectral decomposition holds, where |q〉 form the computational basis in Cd , whereas |r〉T are the
eigenvectors of Td,m given by

|r〉T = 2i

d
sin

(π

m

)
ω− d

2m

d−1∑
q=0

(−1)δq,0
ω− q

2

1 − ωr−q− 1
m

|q〉. (A71)

For completeness, let us now verify that |r〉T are the eigenvectors of Td,m:

Td,m|r〉T = 2i

d
sin

(π

m

)
ω− d

2m

d−1∑
q=0

(−1)δq,0ω
q
2 + 1

m

[
1

1 − ωr−q− 1
2

− 2i

d
sin

(π

m

)
ω− d

2m

d−1∑
k=0

1

1 − ωr−k− 1
m

]
|q〉. (A72)

Using the formula for the sum of a geometric sequence we have the following relation:

d−1∑
l=0

ω(r−k− 1
m )l = 1 − ω− d

m

1 − ωr−k− 1
m

= 2 i sin
(π

m

) ω− d
2m

1 − ωr−k− 1
m

, (A73)

which can later be used to write

d−1∑
k=0

1

1 − ωr−k− 1
m

= ωd/2m

2i sin(π/m)

d−1∑
l=0

d−1∑
k=0

ω(r−k− 1
m )l . (A74)

Noting that the sum over k is nonzero iff l = 0, we obtain

d−1∑
k=0

1

1 − ωr−k− 1
2

= dωd/2m

2 i sin(π/m)
. (A75)

Substituting the above relation (A75) into Eq. (A72), we finally have

Td,m|r〉T = 2i

d
sin

(π

m

)
ω−d/2m

d−1∑
q=0

(−1)δq,0ω
q
2 + 1

m

(
1

1 − ωr−q− 1
m

− 1

)
|q〉

= ωr |r〉T . (A76)

Thus, the vectors |r〉T are the eigenvectors of Td,m.
Let us now show that the unitary operations (A64) transform Zd and Td,m to the optimal measurements Oi,2 and Oi,3 for any

i = 1, . . . , N . To this aim, it is sufficient to show that they transform the eigenvectors of one observable to the eigenvectors of
another observable up to a complex number. Let us first consider W1. The action of its Hermitian conjugation on the eigenvectors
of O1,2, |r〉1,2, given explicitly in Eq. (A69), can be expressed as

W †
1 |r〉1,2 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j)qω− j
2 | j〉. (A77)
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Using the fact that

d−1∑
q=0

ω(r− j)q = dδr, j, (A78)

the above simplifies to

W †
1 |r〉1,2 = ωδr,0− r

2 |r〉. (A79)

Since |r〉 are the eigenvectors of Zd we thus obtain that W †
1 O1,2 W1 = Zd .

Let us now determine the action of W †
1 on the eigenvectors of O1,3. Using Eqs. (A64) and (A69) one obtains

W †
1 |r〉1,3 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j− 1
m )qω− j

2 | j〉. (A80)

Taking into account Eqs. (A73) and (A71) we then have

W †
1 |r〉1,3 = 2i

d
sin

(π

m

)
ω− d

2m

d−1∑
j=0

(−1)δ j,0
ω− j

2

1 − ωr− j− 1
m

| j〉

= |r〉Td,m . (A81)

Let us then consider W2 given by the second formula in (A64) and apply W †
2 to the eigenvectors of O2,2. This leads us to

W †
2 |r〉2,2 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j)q+(d−1)( 2
m −r)− j

2 | j〉, (A82)

and, after employing Eq. (A78), to

W †
2 |r〉2,2 = (−1)δr,0ω(d−1)( 2

m −r)− j
2 |r〉. (A83)

Thus, up to some phases, W †
2 maps the eigenvectors of O2,2 to those of Zd ; in other words, W †

2 O2,2 W2 = Zd . Analogously, we
can write

W †
2 |r〉2,3 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j− 1
m )q+(d−1)( 2

m −r)− j
2 | j〉,

which after carrying out the sum over q using Eq. (A73) simplifies to

W †
2 |r〉2,3 = ω(d−1)( 2

m −r)|r〉T . (A84)

Next, we look at Wodd defined through the third formula in Eq. (A64). The action of W †
2 on the eigenvectors of the second

observable Oodd,2 of each odd party is given by

W †
odd|r〉nodd,2 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j)qω− j
2 | j〉, (A85)

which by using Eq. (A78) can be rewritten as

W †
odd|r〉odd,2 = (−1)δr,0ω−r/2|r〉. (A86)

Similarly, we have for Oodd,3,

W †
odd|r〉odd,3 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j− 1
m )qω− j

2 | j〉,

which by virtue of Eq. (A73) simplifies to

W †
odd|r〉odd,3 = |r〉T . (A87)

Let us finally consider Wev given by the fourth equation of (A64). We have

W †
ev|r〉ev,2 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j)q+(d−1)( 2
m −r)− j

2 | j〉, (A88)
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which after performing the summation over q simplifies to

W †
ev|r〉ev,2 = (−1)δr,0ω(d−1)( 2

m −r)− r
2 |r〉. (A89)

Consequently, W †
ev Oev,2 Wev = Zd .

Then, for the third observable Oev,3 we have

W †
ev|r〉ev,3 = 1

d

d−1∑
j,q=0

(−1)δ j,0ω(r− j− 1
m )q+(d−1)( 2

m −r)− j
2 | j〉, (A90)

which by using Eq. (A73) reduces to

W †
ev|r〉ev,3 = ω(d−1)( 2

m −r)|r〉T , (A91)

implying that W †
ev Oev,3 Wev = Td,m. This completes the proof. �

Lemma 4. Assume that the observables An,2 and An,3 are of the form

UiAi,αU †
i = Oi,α ⊗ 1′′

i (α = 2, 3) (A92)

for any i = 1, . . . , N , where Oi,α are the optimal observables given in Eqs. (15)–(17). If the observables Ai,αi for all i, αi satisfy
the relations (37) and (57), then

UiAi,αiU
†
i = Oi,αi ⊗ 1′′

i (A93)

for all i, αi.
Proof. Now, we can show that the measurements Ai,αi for all αi and i are equivalent to the optimal measurements (A66) and

(A67). To this end, we consider the relations (37) and (57), which for k = 1 give

R(1)
n,α = μ∗

α,1An,2 + ν∗
α,1An,α+2 + τα,1An,α+3 = 0 (A94)

for odd n, and

R(1)
n,α = μα,kA−1

n,2 + να,1A−1
n,α+2 + τα,1A−1

n,α+3 = 0 (A95)

for even n, where the coefficients μα,1, να,1, and τα,1 are given in Eqs. (25) and (26). A key observation here is that the ideal
observables On,α are known to maximally violate the above Bell inequality and thus satisfy the relations (A94) and (A95). Next,
we choose α = 1 and we observe from (A94) and (A95) that, for all n,

An,4 = − 1

τ1,1
(μ∗

1,1An,2 + ν∗
1,1An,3), (A96)

where we used the fact that A−1
i,α = A†

i,α . We showed in Lemma 3 that An,2 and An,3 are unitarily equivalent to the optimal
measurements On,2 ⊗ 1′′

n and On,3 ⊗ 1′′
n given in Eqs. (A66) and (A67). As a consequence, An,4 is equivalent to On,4 ⊗ 1′′

n up to
a unitary transformation. Similarly, we can put α = 2 in (A94) and (A95) and conclude that, for all n,

An,5 = − 1

τ2,1
(μ∗

2,1An,2 + ν∗
2,1An,4). (A97)

This implies that An,5 is equivalent to On,5 ⊗ 1′′
n up to some unitary transformation. We continue in a similar manner, and

conclude that there exist local unitary transformations Ui : Hi → Hi such that

∀ i, α, Ui Ai,α U †
i = Oi,α ⊗ 1′′

i , (A98)

which completes the proof. �
Lemma 5. Assume that Ai,αi are of the form (29) with Oi,αi defined in Eqs. (15)–(17). If these observables and some state

|ψN 〉 satisfy the relation (34), then there exist local unitary transformations Ui : Hi → Hi such that

U1 ⊗ · · · ⊗ UN |ψN 〉 = |GHZN,d〉 ⊗ |auxN 〉
for some |auxN 〉 ∈ H′′

1 ⊗ · · · ⊗ H′′
N .

Proof. Let us first consider the operator A
(1)
1,α defined in Eq. (33). Using (29) we can state it as

U1A
(1)
1,αU †

1 = a1O1,α + a∗
1O1,α+1

=
[

d−2∑
i=0

ωγm (α)(a1 + a∗
1ω

1
m )|i〉〈i + 1| + ω(1−d )γ2(α)(a1 + a∗

1ω
− d−1

m )|d − 1〉〈0|
]

⊗ 1′′
n. (A99)
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Using the fact that a1 + a∗
1ω

1/m = ω1/2m and a1 + a∗
1ω

−(d−1)/m = ω−(d−1)/2m, we get

U1A
(1)
1,αU †

1 =
[

d−2∑
i=0

ωζm (α)|i〉〈i + 1| + ω−(d−1)ζm (α)|d − 1〉〈0|
]

⊗ 1′′
n, (A100)

where we used the fact that γm(x) + 1/2m = ζm(x) [cf. Eq. (21)]. For ease of calculation, we first look at how each of the
measurements from (32) act on any vector from Cd ⊗ H′′

1 of the form | j〉|φ〉, where | j〉 is an element of the computational basis
of Cd whereas |φ〉 is an arbitrary vector from H′′

1,

U1A
(1)
1,αU †

1 | j〉|φ〉 = ω(1−dδ j,0 )(α/m)| j − 1〉|φ〉,
U2A−1

2,αU †
2 | j〉|φ〉 = ω−(1−dδ j,0 )(α/m)| j − 1〉|φ〉,

Unodd Anodd,αU †
nodd

| j〉|φ〉 = ω(1−dδ j,0 )θm (α)| j − 1〉|φ〉,
Unev A−1

nev,α
U †

nev
| j〉|φ〉 = ω−(1−dδ j,0 )θm (α)| j − 1〉|φ〉, (A101)

where | − 1〉 ≡ |d − 1〉.
Having determined the action of the measurements on the elements of the standard basis, let us then decompose the state

|ψN 〉 = U1 ⊗ · · · ⊗ UN |ψN 〉 as

|ψN 〉 =
d−1∑

i1,...,iN =0

|i1, . . . , iN 〉|ψi1,...,iN 〉 (A102)

for some, in general unnormalized, vectors |ψi1,...,iN 〉 ∈ H′′
1 ⊗ · · · ⊗ H′′

N , and consider the relations (32) for α1 = α2 = · · · =
αN = 1 and k = 1. Taking into account that θm(1) = 0, this relation gives

d−1∑
i1,...,iN =0

ω
d
m (δi2 ,0−δi1 ,0 ) |i1 − 1〉 . . . |iN − 1〉|ψi1,...,iN 〉 =

d−1∑
i1,...,iN =0

|i1, . . . , iN 〉|ψi1,...,iN 〉, (A103)

from which we directly obtain that for all i1, . . . , iN ,

ω
d
m (δi2 ,0−δi1 ,0 )|ψi1,...,iN 〉 = |ψi1−1,...,iN −1〉. (A104)

Again, considering the relations (32) for α1 = 2 and α2 = · · · = αN = 1 with k = 1, we have

∀ i1, . . . , iN , ω
2d
m (δi2 ,0−δi1 ,0 )|ψi1,...,iN 〉 = |ψi1−1,...,iN −1〉. (A105)

Simultaneously, solving the above equations (A104) and (A105), we have the following conditions. First, when δi2,0 = δi1,0,

|ψi1,i2...,iN 〉 = |ψi1−1,i2−1,...,iN −1〉 (A106)

for i1, i2 = 1, 2, . . . , d − 1 or i1 = i2 = 0 and for all i3, i4, . . . , iN . Second, when δi1,0 �= δi2,0,

|ψi1,0,i3,...,iN 〉 = 0, |ψ0,i2,...,iN 〉 = 0 (A107)

for i1, i2 = 1, 2, . . . , d − 1 and for all i3, i4, . . . , iN . Now consider (A106) for i2 = 1 and i1 �= 1,

|ψi1,1...,iN 〉 = |ψi1−1,0,...,iN −1〉 = 0. (A108)

Again considering (A106) for i2 = 2 and i1 �= 2,

|ψi2,2,...,iN 〉 = |ψi1−1,1,...,iN −1〉 = 0. (A109)

Continuing in a similar way, we have that

|ψi1,i2,...,iN 〉 = 0 ∀ i1, i2, . . . , iN s.t. i1 �= i2 (A110)

and

|ψi2−1,i2−1,i3−1,...,iN −1〉 = |ψi2,i2,i3,...,iN 〉 ∀ i2, i3, . . . , iN . (A111)

Using the above conditions (A111) and (A110) and considering the relations (32) for α1 = α3 = · · · = αN = 1 and α2 = 2, we
arrive at the following condition for all i2, . . . , iN :

ω
d
m (δi2 ,0−δi3 ,0 )|ψi2,i2,i3...,iN 〉 = |ψi2−1,i2−1,i3−1,...,iN −1〉. (A112)

For the case when δi2,0 = δi3,0 we have

|ψi2,i2,i3,...,iN 〉 = |ψi2−1,i2−1,i3−1,...,iN −1〉 (A113)
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for i2, i3 = 1, 2, . . . , d − 1 or i2 = i3 = 0 and for all i4, i5 . . . , iN . Second when δi2,0 �= δi3,0, using (A110) and (A116) we can
conclude that

|ψ0,0,i3,...,iN 〉 = 0, |ψi2,i2,0,...,iN 〉 = 0 (A114)

for i2, i3 = 1, 2, . . . , d − 1 and for all i4, i5 . . . , iN . Again considering (A114) for i2 = 1 and i3 �= 1,

|ψ1,1,i3,...,iN 〉 = |ψ0,0,i3,...,iN −1〉 = 0. (A115)

Again considering (A114) for i2 = 2 and i3 �= 2,

|ψ2,2,i3,...,iN 〉 = |ψ1,1,i3,...,iN −1〉 = 0. (A116)

Continuing in a similar way, we have that

|ψi2,i2,i3,...,iN 〉 = 0 ∀ i2, i3, . . . , iN s.t. i2 �= i3 (A117)

and

∀ i2, i4, . . . , iN , |ψi2−1,i2−1,i2−1,...,iN −1〉 = |ψi2,i2,i2,...,iN 〉. (A118)

Using the above conditions (A117) and (A118), we proceed in a similar manner by again considering the relations (32) for
α1 = α2 = α4 = · · · = αN = 1 and α3 = 2 and arrive at

ω
d
m (δi4 ,0−δi2 ,0 )|ψi2,i2,i2,i4,...,iN 〉 = |ψi2−1,i2−1,i2−1,i4−1,...,iN −1〉 (A119)

for all i2, i4, . . . , iN . For the case when δi2,0 = δi4,0 we have

|ψi2,i2,i2,i4,...,iN 〉 = |ψi2−1,i2−1,i2−1,i4,...,iN −1〉 (A120)

for i2, i4 = 1, 2, . . . , d − 1 or i2 = i4 = 0 and for all i5, i6, . . . , iN . For the case when δi2,0 �= δi4,0 along with (A106) and (A119),
we have

|ψ0,0,0,i4,...,iN 〉 = 0, |ψi2,i2,i2,0,...,iN 〉 = 0 (A121)

for i2, i4 = 1, 2, . . . , d − 1 and for all i5, i6 . . . , iN . In a similar manner as concluded above, we again have that

|ψi2,i2,i2,i4,...,iN 〉 = 0 ∀ i2, i4 . . . , iN s.t. i2 �= i4 (A122)

and for all i2, i5, . . . , iN ,

|ψi2−1,i2−1,i2−1,i2−1...,iN −1〉 = |ψi2,i2,i2,i2,...,iN 〉. (A123)

We proceed in a similar manner, considering N − 1 different equations with αn = 2 for all n �= N with the rest of coefficients as
α1 = α2 = α3 = · · · = αN = 1 and conclude that the only terms among |ψi1,i2,i3,...,iN 〉 which are nonzero are related as

∀ i, |ψi−1,i−1,i−1,...,i−1〉 = |ψi,i,i,...,i〉. (A124)

As a consequence, with the proper normalization we can conclude that

U1 ⊗ · · · ⊗ UN |ψN 〉 =
(

1√
d

d−1∑
i=0

|i〉⊗N

)
⊗ |ψ0,...,0〉 (A125)

which is the N-partite GHZ state of local dimension d along with some uncorrelated auxiliary state, denoted by |ψ0,...,0〉. This
completes the proof. �
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