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Generating Greenberger-Horne-Zeilinger (GHZ) states of solid-state spins is of great significance for quantum
metrology and quantum error correction. We propose here an efficient scheme for generating high fidelity
GHZ states in a solid-state setup where multiple silicon-vacancy (SiV) centers are embedded in a quasi-one-
dimensional acoustic diamond waveguide. The lattice distortion gives rise to a strong strain coupling between
the orbital degree of freedom of SiV centers and the continuum phonon modes. Due to the permutation symmetry,
we can take advantage of the decoherence-free subspace to avoid dissipation. Under the quantum Zeno regime,
two control fields are used to achieve a ladderlike coupling structure in decoherence-free subspace along with an
off-resonant two-photon Raman transition process. We calculate the pulse sequences for N = 4 and at the same
time analyze the effect of different collective decay rates. Moreover, we consider the disorder in the imperfect
position of SiV centers and the inhomogeneous strain coupling. This paper may provide a feasible protocol for
the generation of GHZ states in a solid-state system.
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I. INTRODUCTION

Entanglement is one of the most remarkable and signifi-
cant characteristics of quantum physics, which has become a
main resource for various quantum technology tasks including
quantum information processing [1–3], quantum commu-
nication [4,5], and quantum cryptography [6–8]. Besides,
entanglement has also provided new insights for under-
standing other phenomena, such as superradiance [9,10] and
superconductivity [11]. For these reasons, great effort has
been devoted to preparing various multipartite entangled
states over the past few years [12–23]. In particular, the
Greenberger-Horne-Zeilinger (GHZ) state [24–26] has at-
tracted much attention for its potential applications ranging
from quantum metrology [27–31] to quantum error correction
[32,33]. So far, such states have been generated experimen-
tally involving superconducting qubits [34,35] and Rydberg
atoms [36]. Despite these impressive progresses, generating
high fidelity GHZ states with multiple qubits still remains
challenging. To achieve this goal, several schemes have
been proposed based on the Ising model [17,37,38], Bose-
Hubbard model, and one-axis twisting model with Rydberg
atoms [37,39], ultracold atoms [20], and trapped ions [40],
respectively.

Recently, the silicon-vacancy (SiV) center has [41–50]
composed a promising platform to generate entangled states
of solid-state spins. Due to the inversion symmetry, the
negatively charged SiV center in diamond presents strong
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zero-phonon line emission, narrow inhomogeneous broaden-
ing, as well as stable optical transition frequencies [51–57].
Furthermore, it is demonstrated that the coherence time of the
SiV center has been improved to ∼10 ms at 100-mK tempera-
ture [58]. However, the coupling between SiV centers and the
external environment or bath will inevitably induce decoher-
ence, which causes information loss from the SiV centers to
the environment by means of dephasing or dissipation, and,
thus, affects the realization of quantum information process-
ing. Much effort has been devoted to protecting the system
from the effect of decoherence, and various strategies have
already been proposed so far. Among them, a promising solu-
tion to avoid decoherence in quantum information processing
is to encode quantum information in decoherence-free sub-
space (DFS) [59–67], over which the evolution of the states is
unitary and robust against noncollective perturbation as well.
A crucial characteristic of the existence of DFS is the dynamic
symmetry [68–71], i.e., the coupling between the SiV center
and the environment possesses permutation symmetry, which
gives rises to collective decoherence.

In this paper, we propose an efficient scheme to generate
the GHZ state in a hybrid quantum system, where an array of
N + 1 SiV centers are embedded in a one-dimensional (1D)
phononic diamond waveguide. As an auxiliary, the (N + 1)th
SiV center far right of the waveguide needs to be addressed
individually in this scheme. The electronic ground state of
SiV centers has a strong strain coupling between its orbital
degree of freedom and the phonon modes of the waveg-
uide [72]. As the instinct feature of the solid waveguide, we
can modulate the phase difference by choosing the position
of the SiV centers [73,74]. Particularly, when the distances
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between the centers equal to the integer multiples of the
phonon wavelength, the dipole-dipole interaction can be
switched off due to the destructive interference, thus, realizing
a Dicke superradiance model [73]. Due to the permutation
symmetry, there exists a special DFS in which the states are
immune to decoherence [59]. We here need to apply two
control fields: One allows to control the ancilla center inde-
pendently, and the other needs to control all of SiV centers,
which can ensure an off-resonant two-photon transition pro-
cess in DFS. We can generate the GHZ state by alternating
between the two-photon Raman transition and the control field
of ancilla center. We give the pulse sequences for the ideal
case and analyze the errors that may occur within each step.
We also simulate the fidelity of the target GHZ state. This
scheme provides a promising and convenient avenue for the
generation of high fidelity GHZ states.

II. MODEL

We consider a chain of N SiV centers plus an individual
ancillary SiV center equally spaced in a 1D phononic waveg-
uide at position xn (n = 1, 2, . . . , N, N + 1), as depicted in
Fig. 1(a). The electronic ground states of SiV centers as a
result of the lattice distortion, permit a direct and strong strain
coupling to the continuum phonon modes. In addition, we
can apply the classical optical fields to drive the transitions
between the ground states and the excited states resonantly or
near resonantly.

FIG. 1. (a) Sketch of an array of N SiV centers plus one ancilla
center embedded in a 1D phononic waveguide at fixed positions
xn. The distance between two arbitrary adjacent SiV centers are
the same. The length, width, and thickness of the waveguide are
L, w, and t , respectively. (b) Atomic structure of the SiV color
center in diamond. The external magnetic field is tilted from the
symmetry axis of SiV centers with an angle of 70.5◦. (c) Electronic
level scheme of the SiV center at B = 0 and B = 0.21 T. Optical
Raman driving schemes: the transition between |1〉 ↔ |2〉 is realized
by making use of excited-state |A〉 with amplitudes �A1, �A2, and
detuning δ1. Another two optical drivings with amplitudes �′

A2, �A3,
and detuning δ2, realize the transition between |2〉 ↔ |3〉.

A. Hamiltonian

The silicon-vacancy center consists of a silicon atom and
a split vacancy replacing two neighboring carbon atoms, dis-
played in Fig. 1(b). In the absence of external magnetic fields,
the energy levels are featured by orbitally split ground and ex-
cited states [56], i.e., |e+ ↓〉, |e− ↑〉 and |e+ ↑〉, |e− ↓〉, with
a separation of � = 46 GHz between the two branches of
ground states. Here |e±〉 are the eigenstates of the angular
momentum operator, and the up (or down) arrow denotes the
spin-up (or spin-down) state of the spin projections, respec-
tively [41,42]. In the presence of external magnetic-fields 	B,
the spin degeneracy is lifted, and its ground and excited states
can be characterized by fourfold states |s〉 due to the Zeeman
effect [Fig. 1(c)] with s = 1–4 for ground states and s =
A, B, C, D for excited states. We take the fourfold ground
states and a single excited state |A〉 into our consideration, and
the Hamiltonian of SiV centers reads (we set h̄ = 1)

ĤSiV =
N+1∑

n

(∑
s

ωs|s〉n〈s| + ωA|A〉n〈A|
)

. (1)

Here, ωs and ωA are the energies of the ground-states |s〉 and
excited state |A〉, and the symbol n denotes the nth SiV center
at the position 	rn = (xn, yn, zn). The quantized Hamiltonian
of phonon modes is described by

ĤB =
∑

j,k

ω j,kâ†
j,k â j,k, (2)

where â†
j,k (â j,k ) is the bosonic creation (annihilation) oper-

ator of the kth mode of the jth branch at frequency of ω j,k .
In addition, the lattice distortion of longitudinal compression
modes affects the electronic structure of the defect, which
gives rise to strain coupling between the phonons and the
orbital degrees of freedom of the SiV centers. When consid-
ering the small displacement of the defect atoms, the coupling
between the phonon modes and the orbital degrees of freedom
is linear in the Born-Oppenheimer approximation [53,72,75].
In this case, the strain interaction is given by

ĤSB =
∑
n, j,k

gn
j,k â j,k Ĵn

+eikxn + H.c. (3)

Here, for the nth SiV spin, Ĵ− = Ĵ†
+ = |1〉〈3| + |2〉〈4| is the

spin-conserving lowering operator, and the coupling strength
is gn

j,k = d
√

h̄k2/2ρLAω j,kξ j,k (yn, zn) with the strain sensitiv-
ity d/2π = 1 PHz, the mass density ρ, the transverse area
A = wt , and the length L of the waveguide, respectively.
The dimensionless coupling profile ξ j,k (yn, zn), caused by the
specific strain distribution, is approximately unity for the ho-
mogeneous compression mode.

B. Driving scheme

Note that the optical transitions between the ground and
the excited states are spin conserving, that is, transitions can
only be achieved between states with the same spin pro-
jections [42]. When the magnetic field is aligned with the
SiV center symmetry axis, all states have the unity spin po-
larization; the transition between states with opposite spin
projections are forbidden [42,55]. We further consider a
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misalignment between the magnetic field and the SiV axis
in which case all electronic states have both spin-up compo-
nents and spin-down components. As a consequence, optical
transitions between all levels are permitted. We here apply a
magnetic field of 0.21 T at an angle of 70.5◦ with respect to
the SiV symmetry axis [55]. In our scheme, we need to realize
the transitions |1〉 ↔ |2〉 (|2〉 ↔ |3〉), and we can introduce
the so-called 	-type Raman processes to obtain these transi-
tions effectively. As illustrated in Fig. 1(c), by using the laser
fields to excite resonant transitions |A〉 ↔ |1〉 and |A〉 ↔ |2〉
(|A〉 ↔ |2〉 and |A〉 ↔ |3〉) simultaneously, we can deduce the
Hamiltonian with the driving fields as

Ĥ12 = �A1

2
|1〉〈A|eiωA1t + �A2

2
|2〉〈A|eiωA2t + H.c.,

Ĥ23 = �′
A2

2
|2〉〈A|eiω′

A2t + �A3

2
|3〉〈A|eiωA3t + H.c., (4)

where �As(s = 1–3) and �′
A2 are the tunable Rabi frequen-

cies of the optical driving fields with the frequencies ωAs

and ω′
A2, respectively. We assume that all of the fields are

on the two-photon off-resonance in Raman transitions with
δ1 = ωA − ω1 − ωA1 = ωA − ω2 − ωA1 and δ2 = ωA − ω2 −
ω′

A2 = ωA − ω3 − ωA3 + δ. In the condition of δ1 � �A1,�A2

and δ2 � δ,�′
A2,�A3, the effective driving Hamiltonian can

be written as

Ĥ eff
12 = �1

2
|2〉〈1| + H.c.,

Ĥ eff
23 = �2

2
|3〉〈2| + H.c. + δ|3〉〈3|, (5)

with the effective Rabi frequencies �1 = −�∗
A1�A2/2δ1 and

�2 = −�A3�
′∗
A2(2δ2 − δ)/4δ2(δ2 − δ). Here, we ignore the

additional Stark-shift terms, which can be compensated by
engineering the detuning, and Eq. (5) is obtained in a rotat-
ing frame with the unitary operation U = e−iδ|3〉〈3|t . In our
scheme, the ancillary center needs to be addressed individu-
ally, and the detuning for (N + 1) SiV centers are all identical.
The final effective control fields are given by

ĤC
12 = �1

2
σ N+1

21 + H.c.,

ĤD
23 =

(
�2

2

N∑
n=1

σ n
32 + �′

2

2
σ N+1

32 + H.c.

)
+ δ

N+1∑
n=1

σ n
33,

(6)

where σ n
i j = |i〉n〈 j|.

C. Master equation

We define ρ̂ as the density operator, which describes
the SiV degrees of freedom. As the 1D waveguide has a
much faster relaxation timescale than the SiV centers, we can
eliminate the phononic modes in the limit of Born-Markov
approximation and obtain an effective master equation [76] to
present the dynamics of the SiV centers of the form d ρ̂/dt =
L[ρ̂], with the superoperator,

L[ρ̂] =
∑
n,m

Gnm(2σ̂ n
−ρ̂σ̂ m

+ − σ̂ n
+σ̂ m

− ρ̂ − ρ̂σ̂ n
+σ̂ m

− ). (7)

Here we define the Pauli matrices σ n
− = |1〉n〈3|, σ n

+ = |3〉n〈1|,
and Gnm = �

2 eik(�)(xn−xm ) is the collective decay rate. � =

γ (�) characterizes the phonon-induced decay rate for the
higher-energy orbital state |3〉 with γ (ω) = d2h̄ω/(ρAv3) in
a linear dispersion ωk = vk, where v is the group velocity
and � is the energy difference between states |1〉 and |3〉.
We precisely choose the position of the SiV centers such that
xn = nλ0 = 2nπ/k(�) (n ∈ N), where λ0 ≈ 200 nm is the
phonon wavelength, the coherent dipole-dipole interactions
are eliminated due to the destructive interference [73,74,77],
and Eq. (7) reduces to a pure Dicke superradiant decay de-
scribed by

˙̂ρ = LD[ρ̂]

= �

2
(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−), (8)

where Ŝ± = ∑N+1
n=1 σ̂ n

± are the collective spin operators.

III. DECOHERENCE-FREE SUBSPACE

Decoherence arises from the instinctive coupling between
quantum systems and the surrounding bath, and this detri-
mental factor leads to a nonunitary system dynamic evolution
[61,78]. This effect is undesirable since it results in an
inevitable decay of the coherent system. Fortunately, DFS
[59–67,77] provides a powerful approach to preserve delicate
quantum information from decoherence. The essential idea of
DFS is to look for a special noiseless subspace of the full
system Hilbert space. Several works have put forward various
methods to create a DFS [78]. Here, we follow the method
proposed in Ref. [77] to establish such a DFS in our model
through the Lindblad master equation Eq. (8). It is obvious
that the master equation separates the unitary and decoherence
dynamics, and all of the nonunitary decoherence dynamics
accounts for the Lindblad term LD[ρ]. Clearly, an intuitive
DFS condition is supposed to vanish with the LD[ρ] term, and
the system, hence, will undergo a pure unitary evolution [77].
From this point, the necessary and sufficient conditions can be
derived. Specifically, the DFS is made up of these states |ψ〉
satisfying

Ŝ−|ψ〉 = 0. (9)

These states can be easily described in the collective angular
momentum basis {|J, mJ〉}, which is the eigenstates of the
collective operators Ŝ2 and Ŝz with J = N/2, N/2 − 1, . . . , 0
and mJ = −J,−J + 1, . . . , J .

Subsequently, it is necessary to find out all the
decoherence-free states from Eq. (9). Due to the high sym-
metry of those decoherence-free states, we make use of the
following notation to describe arbitrary symmetric states over
N centers:

|Mα,β〉 = N (α, β )−1/2sym{|2〉⊗α

⊗|3〉⊗β ⊗ |1〉⊗N−α−β}, (10)

where the multinomial coefficient N (α, β ) = ( N
α,β,N−α−β

)
gives the normalization of these states [77]. This notation
denotes that there are α centers at state |2〉, β centers at state
|3〉, and the rest N − α − β centers at state |1〉. In addition,
we use an individual notation |s′〉A to describe the ancilla
center, where s′ = 1–3 represent the three possible states of
the ancilla center. Due to the collective spin operator Ŝ− acts
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on states |1〉 and |2〉 equal to zero, we can easily guess that
all the superposition states of |1〉 and |2〉 of the N + 1 SiV
centers are the possible decoherence-free states. We further
consider the states including excited-state |3〉. One can find
that for each α if and only if there is one center in excited-state
|3〉 among the N + 1 SiV centers, the combination of the
state Mα,1 with the ancilla fulfilling the permutation symmetry
belongs to DFS [77]. To summarize, these states are∣∣�α

1

〉 = |Mα,0〉 ⊗ |1〉A,∣∣�α
2

〉 = |Mα−1,0〉 ⊗ |2〉A,

∣∣�α
3

〉 =
√

Nα+1

Nα+1 + 1
|Mα,0〉 ⊗ |3〉A

−
√

1

Nα+1 + 1
|Mα,1〉 ⊗ |1〉A, (11)

where Nα = N − α + 1. Acting Hamiltonian ĤD
23 on the first

two states, we have

ĤD
23

∣∣�α
1

〉 = �2

2

√
α|Mα−1,1〉 ⊗ |1〉A,

ĤD
23

∣∣�α
2

〉 = �2

2

√
α − 1|Mα−2,1〉 ⊗ |2〉A

+ �′
2

2
|Mα−1,0〉 ⊗ |3〉A. (12)

By projecting the atomic state into the DFS, we obtain states
|�α

1,2〉 coupled with |�α
3 〉 as follows:

ĤD
23

∣∣�α
1

〉 = −�2

2

√
α

Nα + 1
|�α−1

3 〉 + �2

2

√
αNα

Nα + 1

∣∣χα−1
1

〉
,

ĤD
23

∣∣�α
2

〉 = �′
2

2

√
Nα

Nα + 1

∣∣�α−1
3

〉 + �′
2

2

√
1

Nα + 1

∣∣χα−1
1

〉
+ �2

2

√
α − 1

∣∣χα−1
2

〉
, (13)

where two states |χα−1
1 〉 =

√
1

Nα+1 |Mα−1,0〉 ⊗ |3〉A +
√

Nα

Nα+1

|Mα−1,1〉 ⊗ |1〉A and |χα−1
2 〉 = |Mα−2,1〉 ⊗ |2〉A are outside the

DFS [77]. It is obvious that these two states show an enhanced
decay rate �e = (Nα + 1)� by acting the collective operator
Ŝ− on them [77]. Therefore, |χα

1/2〉s are only virtually pop-
ulated so that we can neglect them. Thus, we can obtain an
effective 	 scheme within the DFS via far-detuned state |�α

3 〉
with effective Raman intensities,

�α
13 = 〈

�α−1
3

∣∣ĤD
23

∣∣�α
1

〉 = −�2

2

√
α

Nα + 1
,

�α
23 = 〈

�α−1
3

∣∣ĤD
23

∣∣�α
2

〉 = �′
2

2

√
Nα

Nα + 1
. (14)

We can realize an off-resonance two-photon transition by
setting |�α

13| = |�α
23|, which yields |�′

2| = |�2|
√

α/Nα . In
the condition δ � �α

13,�
α
23, we can eliminate excited-state

|�α
3 〉 and obtain the effective Hamiltonian for the αth

FIG. 2. (a) The population of the states |�α
1 〉 and |�α

2 〉 change
with the time. The line with blue triangle (|�α

1 〉) and red rectangle
(|�α

2 〉) are based on the effective Hamiltonian (15), and the dashed
blue line (|�α

1 〉) and solid red line (|�α
2 〉) are based on the original

Hamiltonian (6). Under the condition � � δ � �α
13, �α

23, state
|�α−1

3 〉 can be eliminated and, thus, obtain an effective transition
between |�α

1 〉 and |�α
2 〉. Here, we take N = α = 2 for an example,

and δ = 10 �2, � = 1000 �2. (b) The main step for generating any
state |�α

1,2〉 by a far-detuning state |�α−1
3 〉 within the DFS.

excitation,

ĤD = �α

2

∣∣�α
2

〉〈
�α

1

∣∣ + H.c., (15)

where |�α| = |�d |α/(Nα + 1) and |�d | = |�2|2/2δ. We dis-
play this off-resonance two-photon transition process in
Fig. 2(a). The lines with solid symbols represent the results
simulated by the effective Hamiltonian (15). It presents a
perfect Rabi oscillation between the states |�2

1 〉 (blue triangle)
and |�2

2 〉 (red rectangle). In addition, we also plot the evolu-
tion of those two states based on the original Hamiltonian (6),
denoted by the dashed blue line for |�2

1 〉 and the solid red
line for |�2

2 〉. Different from the ideal case, we can find a tiny
decay of the Rabi oscillation because a few population leaks
out of the DFS. So far, we can flip state |�α

1 〉 → |�α+1
2 〉 of

the ancilla center by applying the control field �1 and then flip
|�α+1

2 〉 → |�α+1
1 〉 with �α+1 at the same time re-initialize the

process [77]. Therefore, we can generate any |�α
1,2〉 by using

a combination of α off-resonance Raman transitions and α

control fields. In Fig. 2(b), we sketch the protocol steps for
this process.

IV. PREPARATION OF GHZ STATES

We follow the approach given in Ref. [79] to produce the
effective Rabi-frequency sequences. We assume that the initial
state is |F0〉 = |�0

1 〉, i.e., all the SiV centers are in state |1〉.
After a target time t∗, the system evolves into a GHZ state
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with the form

|GHZ〉N = 1√
2

(

N︷ ︸︸ ︷
|1 · · · 1〉 + |

N︷ ︸︸ ︷
2 · · · 2〉) ⊗ |1〉A

≡ 1√
2

(∣∣�0
1

〉 + ∣∣�N
1

〉)
. (16)

We first divide the time interval into 2N subintervals, and
all subintervals have equal lengths τ = t∗/2N . From the
previous section, one can find that �α and �1 are ap-
plied alternately. We, thus, prescribe that for 2(l − 1)τ < t <

(2l − 1)τ , �1(t ) = �1l , �α (t ) = 0, and for (2l − 1)τ < t <

2lτ , �1(t ) = 0, �α (t ) = �α
l , where 1 � l � N . The time-

evolution operator of the SiV centers can be expressed as

U (t∗) = DNCN DN−1CN−1 · · · D2C2D1C1, (17)

where Cl and Dl describes the evolution due to the con-
trol field ĤC

12 and the effective Hamiltonian ĤD, respectively.
These two operators can be expressed in the form of a 2 × 2
matrix in the basis of {|�α−1

1 〉, |�α
2 〉} and {|�α

2 〉, |�α
1 〉},

Cl =
[

cos |�1l |τ
2 −ieiθl sin |�1l |τ

2
−ie−iθl sin |�1l |τ

2 cos |�1l |τ
2

]
,

Dl =
[

cos |�α
l |τ
2 −ieiφl sin |�α

l |τ
2

−ie−iφl sin |�α
l |τ
2 cos |�α

l |τ
2

]
. (18)

Here, �1l = |�1l |eiθl and �α
l = |�α

l |eiφl . In order to deter-
mine the values for {�1l} and {�α

l }, we can calculate the
inverse evolution from the target state |FN 〉, that is |F0〉 =
C†

1 D†
1 · · ·C†

N−1D†
N−1C

†
N D†

N |FN 〉. We assume that state |Fl−1〉 =
C†

l D†
l C†

l+1D†
l+1 · · ·C†

N D†
N |FN 〉 is a middle state. When C+

l D+
l

acts on |Fl〉, all populations in |� l
1〉 and |� l

2〉 are transferred to
|� l−1

1 〉 and |� l−1
2 〉. Repeating this process, state |FN 〉 can be

brought to |F0〉 eventually. Thus, we can obtain the following
equations for each state |Fl〉:〈

� l
1

∣∣D†
l |Fl〉 = 0,〈

� l
2

∣∣C†
l D†

l |Fl〉 = 0. (19)

Here, these two equations are complex number equations and
can be rewritten as four real number equations corresponding
to each l from which we can numerically solve the four pa-
rameters |�1l |, θl , |�α

l |, and φl . Note that the solutions of the
four parameters are not unique, and we can obtain the pulse
sequence by running l from N to 0.

Next, we take N = 4 as an example. In Table I, we show
the pulse sequences for generating the specific GHZ state of
N = 4, i.e., |GHZ〉4 = 1√

2
(|1111〉 + |2222〉) ⊗ |1〉A and plot

the evolution process in Fig. 3. We apply the Hamiltonian
ĤC

12 in the white background and Hamiltonian ĤD in the gray
background of Fig. 3(a). We stop the pulse at the vertical
dashed black line. For generating |GHZ〉N , we need to apply
2N operations. We find that the fidelity (the line with the red
rhomboid) reaches one, which means entangled state |GHZ〉4

can be perfectly generated. A more precise process of the
states evolution is shown in Fig. 3(b). The initial state is
|�0

1 〉. Under each pulse, the Hilbert space is always divided
into several independent two-dimensional subspaces, and the
transition occurs only within each subspace. On the one hand,

TABLE I. N = 4. The pulse sequences of {�1lτ } and {�dlτ } for
the generation of state |GHZ〉4 = 1√

2
(|1111〉 + |2222〉) ⊗ |1〉A. Here,

|�α
l | = |�dl |α/(Nα + 1). And we apply the pulse from the top of the

table to bottom in sequence.

l |�1lτ | arg(�1lτ ) |�dlτ | arg(�dlτ )

C1 1 π π

D1 1 8.33 π

C2 2 π π

D2 2 7.48 π

C3 3 π π

D3 3 3.14 π

C4 4 π π

D4 4 1.57 π

each HC
12 causes a complete transition between the two states

in the Hilbert subspace. On the other hand, the first pulse of
HD transfers part of probabilities (more than half) from |�1

2 〉
to |�1

1 〉, whereas the other part remains in state |�1
2 〉. During

the second pulse of HD, the probability of state |�0
1 〉 remain

unchanged as it does not participate in the transition under HD,
and the probability of state |�2

1 〉 becomes 0.5. The residual
probability will be integrated into state |�1

2 〉 in the third pulse
of HD. Now, states |�1

2 〉 and |�3
1 〉 have the same population.

Subsequently, the system evolves into target state |GHZ〉4.

FIG. 3. The generation of |GHZ〉4 = 1√
2
(|1111〉 + |2222〉) ⊗

|1〉A. (a) Time evolution of the fidelity (the line with the red rhom-
boid) of |GHZ〉4 and the populations of state |�0

1 〉 (the line with the
green circle), and|�4

1 〉 (the line with the blue triangle). The white
and gray background corresponds to the Hamiltonian ĤC

12 and ĤD,
respectively. The vertical dashed black line indicates that the pulse is
stopped. (b) Evolution of the corresponding probability distribution.
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FIG. 4. The fidelity under the original Hamiltonian (6) for
(a) N = 3 and (b) N = 4. Here, we choose δ = 50 max{�d} and
� = 20δ. The fidelity of N = 3 and N = 4 can reach 0.866 and
0.849, respectively.

So far, we have analyzed the ideal situation. Next, in order
to estimate the realistic fidelities with the finite collective
decay rate �, we need to take the errors into consideration.
We can consider this error intuitively via the original Hamil-
tonian (6) where we do not make any approximations. And
the master equation is described by

˙̂ρ = −i[Ĥ , ρ̂] + �D[Ŝ−]ρ̂, (20)

where Ĥ = ĤC
12 + ĤD

23 is from the original Hamiltonian (6).
We plot the fidelity and population for the preparation of
states |GHZ〉3 and |GHZ〉4 in Fig. 4. Here, the line with the
red rhomboid, green cycle, and blue triangle still denotes
the fidelity and the population of |�0

1 〉, |�N
1 〉. In this case, the

fidelity of states |GHZ〉3 and |GHZ〉4 can reach up to 0.866
and 0.849, respectively, and it decreases with the increase
in the particle number. In addition, Fig. 4(b) has the same
parameters as Fig. 3(a) for N = 4 except for the collective
decay rate. Although the finite collective dissipation rate leads
to a decrease in the fidelity, the final state is in the decoherence
free subspace and is not affected by dissipation.

V. ERROR AND DISORDER

In this section, we consider the effect of collective de-
cay rate, imperfect position, and the inhomogeneous strain
coupling on fidelity. In Figs. 5(a) and 5(b), we analyze the
effect of different collective decay rates � = 20δ and � =
200δ within the two-photon transition process for N = 2, and
α = 2. Actually, we separate the whole Hilbert space into

FIG. 5. Error analysis within the two-photon transition for differ-
ent decay rates: (a) � = 20δ, (b) � = 200δ with N = α = 2. (c) Time
evolution of the fidelity (the line with the red rhomboid) of |GHZ〉3

and the populations of state |�0
1 〉 (the line with the green circle), |�3

1 〉
(the line with the blue triangle) for � = 200δ.

two subspaces by projecting: DFS states (|�α
1 〉, |�α

2 〉, |�α
3 〉)

(α = 0–2) and non-DFS states (e.g., |χα−1
1 〉, |χα−1

2 〉). The
Hamiltonian HD

23 drives the damped oscillation of the popu-
lation between states |�2

1 〉 (dot-dashed blue line) and |�2
2 〉

(solid red line). A small part of the population leaks into
states |χ1

1 〉 and |χ1
2 〉 and then decays to |�1

1 〉 (the line with the
orange triangle) and |�1

2 〉 (the line with the green rectangle)
due to the enhanced decay rate �e = (Nα + 1)�. In addition,
the Hamiltonian HD

23 will drive the transition between |�1
1 〉

and|�1
2 〉 at the same time, resulting in a slight oscillation

between them. As |�1
1 〉 and|�1

2 〉 are inside the DFS, their total
populations will accumulate over time constantly. The loss for
the off-resonance two-photon transition process of each α is
given by two parts [77],

εα
1 = �e

αNα|�2|2
4(Nα + 1)

(
δ2 + �2

e

) + �e
α|�2|2

4Nα (Nα + 1)
(
δ2 + �2

e

) ,

εα
2 = �e

(α − 1)|�2|2
4
(
δ2 + �2

e

) . (21)

The damping e−εαt (dotted black line) with the rate εα =
εα

1 + εα
2 perfectly fits the dynamic envelope as shown in

Figs. 5(a) and 5(b). In addition, we can find that the error
εα for the fixed α will be slightly reduced with increasing
the number of the center in the case of � � δ. Note that in
optical waveguides, emitters have an irreversible lost to free
space, which can be characterized by the Purcell factor, the
ratio of the emission rate into the waveguide modes and the
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one into nonguided modes [80]. For a too small Purcell factor,
each quantum emitter would have a non-negligible free-space
emission, leading to a faster decay of the DFS. This is not
the case for the phonon waveguide in this scheme as phonons
cannot exist in free space [75,81]. And, thus, we here do not
need to consider the error from the emitter radiating into the
vacuum.

By comparing Figs. 5(a) and 5(b), we show the effect of
different collective decay rate � on the error. We find that
the error significantly decreases with the enhancement of the
collective decay rate �. We can explain this conclusion from
the perspective of the quantum Zeno effect, which suggests
that frequent measurements of the initial state hinder its dy-
namics to evolve to other states [82–84]. The 1D waveguide
and the SiV centers behave as a system under observation
where the time between two consecutive measurements is
proportional to ∼1/�e. We are interested in the regime of
strong collective dissipation, i.e., �e � �1, �2, �′

2, δ [77].
It means the time between two consecutive measurements is
short enough, and the 1D waveguide, thus, can be considered
as a bath and continuously monitor the atomic state just as in
the quantum Zeno regime [77,85,86]. In this case, any process
that would lead the state out of the DFS is forbidden by the
measurement and always projects the system back into a DFS
state [87]. Besides, we find that the loss rate εα ∝ 1/�e, which
shows that the infinite collective decay rate guarantees lossless
decoherence free subspaces. And we can improve the fidelity
by increasing the collective decay rate �. In addition, we plot
the fidelity in the case of the enhanced collective decay rate
� = 200δ for N = 3 in Fig. 5(c). When the collective decay
rate increases by tenfold, the fidelity is improved to 0.907, and
this only requires a threefold increase in the coupling strength
of the SiV center to the waveguide.

For experimental realizations, we study the effect of two
types of disorder: One appears in the position of SiV centers,
and the other appears in the strain coupling. First, we consider
the imperfect position xn of the nth SiV center with a disorder
wχi, where χi is a random number uniformly distribution in
[−1, 1] and w is the disorder strength. We plot in Figs. 6(a)
and 6(b) the evolution for the situation w = 0.03π/k(�) and
w = 0.06π/k(�). When w is very small, there is almost
no observable effect. With the increase in w, the popula-
tion of states |�0/2

1 〉 is almost constant, but the fidelity has
a obvious decay. Actually, due to the collective decay rate
Gnm ∝ eik(�)(xn−xm ), the imperfect position mainly affects the
phase of the final state. We, thus, can assume the final state is
|FN 〉 = 1√

2
(|�0

1 〉 + eiθ |�N
1 〉) [88], where θ is a small relative

phase and depends on the disorder. Therefore, the population
of states |�0/N

1 〉 remain unchanged, whereas the fidelity re-
duces to 1 − θ2/8. We only present the results for N = 2 as
it takes too long a time to simulate a large system, but it is
obvious that disorder will accumulate with the increase in the
center number, which results in a more significant decay of
fidelity.

Next, we analyze the effect of inhomogeneous coupling.
This effect is reflected mainly on the amplitude of the fi-
nal state because of the collective decay rate Gnm ∝ gn

j,kgm
j,k .

We consider a small error η in the amplitude, i.e., |FN 〉 =
1√
2
(
√

1 + η|�0
1 〉 + √

1 − η|�N
1 〉). The population becomes

FIG. 6. Evolution of the fidelity (solid red line), population of
|�0

1 〉 (dashed green line), and |�2
1 〉 (dot-dashed blue line) with-

out and with disorder with the standard deviations marked in gray
shadows when (a) w = 0.03π/k(�), (b) w = 0.06π/k(�) for the
imperfect position, (c) w = 0.025g, and (d) w = 0.15g for inho-
mogeneous coupling with 400 random configurations. Here, N = 2,
δ = 10 max{�d}, and � = 100δ.

(1 ± η)/2, whereas the fidelity has a second-order error η2/8.
Therefore, there is a significant broadening on populations but
a slight decay on fidelity in Figs. 6(c) and 6(d) even with a
disorder w = 0.15g.

In order to intuitively discuss the impact of position imper-
fection and inhomogeneous coupling, we also plot the fidelity
in different disorder strength w for N = 2 in Fig. 7 with

FIG. 7. Fidelity with different disorder strength w for (a) and
(c) position imperfections and (b) and (d) inhomogeneous couplings
with 100 random configurations. In (c) and (d), the solid red line
is the mean value by averaging over 100 random configurations,
and the standard deviations are marked in gray. Here, N = 2, ζ =
1/k(�), δ = 10 max{�d}, and � = 100δ.
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100 random configurations. In Figs. 7(a) and 7(b), each cross
corresponds to the fidelity of the final steady state. We can
conclude that the disorder would have an increasing impact
for larger systems with the increase in w. In Figs. 7(c) and
7(d), the solid red line presents the mean value of the fidelity,
and the standard deviations are marked in gray shadows. This
shows that the system is sensitive to positional imperfections
but more tolerant to inhomogeneous coupling.

VI. EXPERIMENTAL FEASIBILITY

This hybrid spin-phononic system consists of an array of
N + 1 SiV centers embedded in a 1D waveguide, and the
auxiliary center needs to be addressed individually. With the
development of state-of-the-art nanofabrication techniques,
it has been demonstrated that SiV center arrays can be ef-
ficiently generated through ion implementation techniques
[89,90]. This means that the proposed setup can be achieved
experimentally. For the acoustic diamond waveguide, the
length and cross section are L = 100 μm and A = 80 ×
80 nm2 [75]. In addition, the material properties of the dia-
mond waveguide are ρ = 3500 kg/m3, E = 1050 GPa, and
ν = 0.2. The SiV center mainly couples to the longitudinal
compression mode with the group velocity v ∼ 104 m/s [75].
Under these conditions, we can calculate the strain coupling
strength g/2π ≈ 8.2 MHz and phonon-induced decay rate
�/2π ≈ 8.5 MHz.

We then take N = 3 and N = 4 as examples to simulate
the fidelity of the GHZ state. In the quantum Zeno regime,
we have �e � �1, �2, �′

2, δ [77]. Therefore, we assume
the detuning δ = �/20 ≈ 2π × 0.4 MHz, and max{�d} =
δ/50 = 2π × 8.5 kHz, which corresponds to the maximum
dimensionless pulse sequences 8.33 of Table I for N = 4.
We can derive the realistic total time t∗ = 2Nτ = 1.2 ms for
generating |GHZ〉4 = 1√

2
(|1111〉 + |2222〉) ⊗ |1〉A, which is

shorter than the spin coherence time.
In this scheme, we need to precisely choose the positions

of the SiV centers such that xn = nλ0 = 2nπ/k(�) (n ∈ N).
However, such a condition cannot be perfectly realized ex-
perimentally, and we have discussed the effect of imperfect
positions in Sec. V. It shows that this scheme can tolerate the
error of 6%, at least, which means a 12-nm uncertainty of the
position of the SiV centers. In addition, the precise positioning

of SiV centers with tens of nanometers accuracy was reported
in Ref. [89]. Moreover, the fidelity is almost unaffected for
inhomogeneous strain coupling even with the error of 15%.

VII. CONCLUSION

In conclusion, we have proposed a scheme to generate
GHZ states based on a solid-state setup where an array of
N + 1 SiV centers are embedded in a 1D diamond waveguide.
We here apply two driving fields HC

12 and HD
23, which control

the ancilla center and the first N SiV centers. By projecting
the spin states into DFS, the whole Hilbert space is divided
into two parts: the states inside the DFS and the states outside
the DFS. The states inside the DFS can avoid the collective
dissipation. We next achieve a ladderlike coupling structure in
DFS by alternating between a two-photon Raman transition
and the control fields on the ancilla. Here, we need to apply
2N operations to generate |GHZ〉N , and the final state is within
the DFS. Compared with some dynamical methods for prepar-
ing GHZ states [34,91], this scheme generates a steady-state
entangled state. This is because the target state |GHZ〉N is
prepared in DFS, which is immune to decoherence.

We also analyze the errors that may occur within each step
α. As phonons cannot spread in the vacuum, we only need
to consider the errors due to the phonons emitted from the
states out of the DFS. In this scheme, the fidelity is sensitive
to the collective decay rate �. We can improve the fidelity by
enhancing the coupling strength between the SiV centers and
the waveguide. In addition, using ion implementation tech-
niques to accurately locate the color centers can also reduce
the effect of position imperfections on the fidelity. Moreover,
we analyze the effects due to the position imperfection of SiV
centers and the inhomogeneous coupling between the center
and waveguide modes. This paper may provide a realistic and
feasible platform for generating the GHZ state in a solid-state
system.
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