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Induced on-demand revival in coined quantum walks on infinite d-dimensional lattices
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The study of recurrences and revivals in quantum systems has attracted a great deal of interest because of its
importance in the control of quantum systems and its potential use in developing new technologies. In this paper,
we introduce a protocol to induce full-state revivals in a huge class of quantum walks on a d-dimensional lattice
governed by a c-dimensional coin system. The protocol requires two repeated interventions in the coin degree of
freedom. We also present a characterization of the walks that admit such a protocol. Moreover, we modify the
quantity known as the Pólya number, typically used in the study of recurrences in classical random walks and
quantum walks, to create a witness of the first revival of the walk.

DOI: 10.1103/PhysRevA.105.032413

I. INTRODUCTION

Quantum walks (QWs) were introduced as quantum
analogs of classical random walks [1]. Similarly to their clas-
sical counterpart, they have been an important framework for
theoretical and practical understanding of quantum algorithms
[2–5] and quantum computing [6,7]. They have also been used
in the modeling of transport in biological systems [8–10] and
physical phenomena, such as Anderson localization [11–15]
and topological phases [16,17].

Recurrences have been a subject of extensive study in
the QW literature [18–31]. In particular, it is worth noting
that classical random walks, standard QWs, open QWs, and
quantum Markov chains in general can be analyzed within the
same mathematical framework [30,31].

To characterize the existence of recurrences in classical
random walks, a quantity that refers to the probability that
the walker returns to its initial position at any point of its
evolution was introduced [32]. This quantity is known as the
Pólya number, and its use was extended to study recurrences
in QWs [21,22].

Recurrence of an arbitrary state is sometimes referred to
as revival. Thus, one can consider full-state revivals of a
QW, which means that both the coin system and the walker
return to a given joint state. In fact, several studies have
been conducted on state revivals in QWs [33–37]. In partic-
ular, the conditions for a quantum walker on a cyclic path
to exhibit state revival are presented in Ref. [33]. Also, two
periodic state revivals in a single-photon one-dimensional QW
governed by a time-dependent coin-flip operator were exper-
imentally observed [34]. Later, a theoretical explanation of
QWs with quasiperiodic-time-dependent coin-flip operators,
which includes the previous experiment, was presented [35].
Moreover, it has been shown that the two-dimensional Grover
walk (which is governed by a four-dimensional coin system)
results in a two-step full-state revival [24]. In contrast, the
Hadamard walk in a cycle exhibits full-state revivals only for
two-, four-, and eight-step periods [36].

That said, it seems that full-state revivals in higher-
dimensional QWs have not been explored enough yet. Pre-
vious work has shown that there exists a (time-independent)
coin-flip operator such that revivals with any desirable even
period are a built-in feature of the resultant QW [37]. It is
important to point out that this result concerned a class of
walks for which these revivals occur without any intervention.

In this paper, however, we introduce an intervention proto-
col to induce revival on QWs that, generally speaking, would
not present such property otherwise. More specifically, we
prove that a large class of QWs on a d-dimensional lattice
governed by a c-state coin-flip operator admits an interven-
tion protocol that induces on-demand full-state revivals. The
induced revivals correspond to recurrences of the joint state
of the walker and coin system. With only two interventions
on the coin system, these revivals are manifested after an arbi-
trary even number of steps. Furthermore, we extend the notion
of Pólya numbers to define a quantifier for revivals in QWs.
We also introduce the partial Pólya number to characterize
the first revival of the walk.

The paper is organized as follows. In Sec. II, we develop
our revival scheme for a QW on a line governed by a two-
dimensional coin system and present some of its important
properties. We also discuss these revivals in terms of partial
Pólya numbers. The generalization of this result to a QW on
a d-dimensional lattice governed by a c-dimensional coin is
given in Sec. III. The final discussion and outlook are given in
Sec. IV. The Appendices provide details on technical deriva-
tions of the results presented in the core portion of the paper.

II. QW ON A ONE-DIMENSIONAL LATTICE
WITH A TWO-DIMENSIONAL COIN

Consider the standard QW on a line, i.e., the evolution of a
system (the walker) on a one-dimensional lattice conditioned
on the state of a two-level system (the coin). The Hilbert space
associated with the joint system will be denoted by Hc ⊗ Hw,
where Hc is the space of the coin and Hw is the space of
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FIG. 1. Revival in a one-dimensional quantum lattice with a two-dimensional coin. With periodic interventions given by a specially
designed coin-flip operator G, revival is induced in a quantum walk system with an arbitrary coin-flip operator C. This is the case because the
intervention with G in the first step followed by l steps with the regular coin flip of the walk, which characterizes the unitary Wl , is, up to a
phase, equivalent to the reverse process in time, i.e., W †

l . (a–d) Probability distribution of a Hadamard walk with a walker initially localized at
|0〉 and a coin started in the state (|0〉 + i|1〉)/

√
2. Positions on the lattice are shown in the x axis, while the y axis displays the evolution in time.

(a) Walk with no intervention, i.e., only the Hadamard coin flip C is used. (b) A single intervention in the first step with G = |0〉〈1| − |1〉〈0| is
made. Because of the initial state of the coin, no change to the probability distribution of the system is observed. (c) Two interventions made
in the displayed time window, which characterizes W7. (d) Interventions characterized by W3—a total of 4 in the displayed time window. (e)
Partial Pólya number analysis of the walk with different periodicities of intervention. The quantity becomes 1 upon achievement of the first
full-state revival.

the walker. A single-step progression of the system consists
of a transformation applied to the coin system (i.e., the coin
is tossed) followed by a conditional shift of the walker (the
walker moves either to the left or right upon conditioning on
coin outcome). We write the unitary operator corresponding
to this single-step evolution as U = SC, where S and C are
the shift and coin-flip operators, respectively. Here, we focus
on the conventional shift operator, defined as

S =
∑
x∈Z

∑
z∈Z2

|z〉〈z| ⊗ |x − (−1)z〉〈x|. (1)

A general coin-flip operator of a two-dimensional coin system
can be written as [38]

C = cos θ |0〉〈0| + eiφ1 sin θ |0〉〈1|
+ eiφ2 sin θ |1〉〈0| − ei(φ1+φ2 ) cos θ |1〉〈1|. (2)

Then, assuming the joint system starts in the state |�0〉,
its state after t steps is |�(t )〉 = Ut |�0〉. Now, we introduce
an intervention on the coin degree of freedom consisting of
applying a different coin-flip operator at specific time steps
during the evolution of the joint system. For such an interven-
tion, consider the “coin-flip” operator

G = eiφ1 |0〉〈1| − eiφ2 |1〉〈0|. (3)

Also, write V = SG. Combining U and V accordingly, we
model a scheme of QWs in which interventions on the coin
space are introduced at specific time steps as

|�(τ )〉 = (Wl )
r |�0〉, (4)

where Wl = U lV , τ = r(l + 1), and l, r ∈ N.
However, our choice for the coin-flip operators C and G,

together with the symmetry of the walk imposed by the shift
operator S, gives a very special property to Wl . In fact, observe

that

G†CG† = C† (5)

and G2 = −ei(φ1+φ2 )I . Moreover, G has important relations to
the topology of the walk, which is manifested through the
identities G†SG = S† and GSG† = S†. As a result,

Wl = ei�(l+1)W †
l , (6)

where � = φ1 + φ2 + π . This is proven in Appendix A. It
means that Wl is almost self-adjoint. In fact, if � = 2πn/(l +
1) for some integer n, the unitary Wl is self-adjoint.

The above characteristic of Wl is what leads to the revival
property we want to obtain with the coin interventions. This
is the case because it implies that

W 2
l = ei�(l+1)I. (7)

Note that to backpedal the QW to its initial state, we need to
apply the operator V two times during a single cycle. This is
the case regardless of the initial state of the system.

For illustration purposes, consider the example of a
Hadamard walk with the walker starting localized at |0〉 and
the initial state of the coin being (|0〉 + i|1〉)/

√
2. The evolu-

tion of the probability distribution of this walk is represented
in Fig. 1(a). Now, suppose the coin-flip operator G = |0〉〈1| −
|1〉〈0| is used before the first step of the walker instead of
the Hadamard coin flip C, as is the case of Fig. 1(b). Then,
as can be seen, the probability distribution of the walker at
later times is not affected by this initial replacement of the
coin-flip operator. This is a special case due to the initial
state of the coin. Interestingly, however, if G is again used
after l applications of C, the walk will present revival after l
other coin flips given by C. The time evolutions of particular
examples of periodic interventions associated with W7 and W3

are displayed in Figs. 1(c) and 1(d), respectively.
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In Fig. 1(e), we provide an alternative way to observe how
fast the first revival of the walk takes place. For that, we start
from the idea of a Pólya number [32]. While this quantity was
originally associated with the study of recurrences on classical
random walks, its use was extended to QWs in Refs. [21,22].
However, as it is explained in Appendix B, this concept can
be further generalized to study full-state revival on QWs. In
this case, the generalized Pólya number becomes

PFSR ≡ 1 − �∞
t=1{1 − tr[π�(t )π�0 ]}, (8)

where π� = |�〉〈�|, |�0〉 is the initial state of the walk, i.e.,
the initial joint state of the walker and the coin system, and
|�(t )〉 is the state of the walk at instant t . Observe that this
quantity becomes 1 if a revival occurs at any step of the walk.
However, the quantity displayed in Fig. 1(e) corresponds to
partial Pólya numbers

P(n)
FSR ≡ 1 − �n

t=1{1 − tr[π�(t )π�0 ]}. (9)

The faster this quantity becomes 1 with the increase of n, the
faster the walk presents revival, as explained in Appendix B
and clearly seen in Fig. 1(e). Observe that, without interven-
tion, the partial Pólya number of the walk considered in Fig. 1
never reaches 1, i.e., the walk does not present revival.

III. GENERAL CASE

We want to generalize the previous result to an arbitrary
translationally invariant QW on a lattice of any dimension d
where d ∈ N. For that, like in Refs. [21,22], assume {|m〉},
where m ∈ Zd , is a basis of Hw for which each element
corresponds to the walker being at m. Also, let c be the
number of possible translations of the walker after a single
step, which corresponds to the dimension of Hc. Denoting
these translations by e j , the “computational” basis for the coin
space can be written as {|e j〉}. Then, the shift operator can be
written as

S =
∑

m∈Zd

∑
j∈Zc

|e j〉〈e j | ⊗ |m + e j〉〈m|. (10)

In addition to the translational invariance, we also assume that

e j + ec−1− j = 0 (11)

for every j ∈ Zc. In words, we assume that if the walker is
allowed to walk a certain number of units in a given direction
at each step, it must also be allowed to walk the same quantity
of units in the opposite direction.

With the defined notation, the state of the system at any
instant of time can be written as

|�(t )〉 =
∑

m∈Zd

∑
j∈Zc

ψ j (m, t )|e j〉 ⊗ |m〉. (12)

Moreover, it is possible to introduce the vector

ψ (m, t ) = (
ψ0(m, t ), ψ1(m, t ), · · · , ψc−1(m, t )

)T
. (13)

Then, if C is the coin-flip operator, it follows that

ψ (m, t ) =
∑
j∈Zc

Cjψ (m − e j, t − 1), (14)

where the components of the matrices Cj are given by
〈ek|Cj |el〉 = δ jk〈ek|C|el〉.

Because of the translational invariance we are assuming in
this paper, the recurrence relation in Eq. (14) is independent
of m. Then, its analysis can be vastly simplified with the study
of its Fourier transform ψ̃ (k, t ), as suggested in Refs. [21,22].
In fact, the recurrence relation becomes

ψ̃ (k, t ) = C̃(k)ψ̃ (k, t − 1), (15)

where C̃(k) ≡ D(k)C and D(k) ≡ ∑
j∈Zc

e−ik·e j |e j〉〈e j |. To
give a more concrete example of this exposition, in
Appendix C, we provide the Fourier analysis of the one-
dimensional QW considered in the previous section.

Like in the special one-dimensional case we just studied,
we intend to introduce a second coin-flip operation G in order
to induce a state-independent revival on the QW. For that,
there should exist at least one requirement over G to establish
how it is related to C and the topology of the walk, similarly
to the properties G satisfied in the previous section. In this
regard, it is shown in Appendix D that if

G̃†(k)C̃(k)G̃(k) = ei�C̃†(k) (16)

then

W̃ 2
l (k) = ei�l G̃2(k), (17)

where W̃l ≡ C̃l G̃. In Appendix E, we show that an operator G
that satisfies Eq. (16) for some � only exists if there exists a
real � such that

G̃2(k) = ei�I. (18)

More precisely, it is shown that

G =
∑

m∈Zc

eiφm |em〉〈ec−1−m|, (19)

where the phases φm satisfy φm + φc−1−m = � for every m ∈
Zc. Moreover, Appendix E proves that our protocol only
works for walks the coin-flip operator C of which is such that

Cmn = ei(�+φm−φn )Cc−1−n,c−1−m, (20)

where Cmn ≡ 〈em|C|en〉.
This means that, for the appropriate walks, revival is

achieved with two interventions. In addition to showing these
results, Appendix E also presents two examples of higher-
dimensional Hadamard and Grover walks that admit the type
of intervention required in our protocol.

Finally, although we consider a protocol starting with an
intervention, which implies that the walker and the coin sys-
tem will return to their state when the intervention was first
made, it is also possible to engineer a protocol that leads to the
revival of the state of the joint system a certain number of steps
prior to the first intervention. This is proved in Appendix F.

IV. DISCUSSION

In this paper, we have introduced a procedure to generate
on-demand state revival in QWs on a d-dimensional lattice
governed by a c-dimensional coin system. With only two
interventions in the coin degree of freedom, the joint system of
the walker and the coin is backpedaled to their initial state. As
a potential application of the proposed intervention scheme,
one may introduce, for instance, a delay in the propagation of
a given quantum state for a desired time period. This could be
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helpful, e.g., when attempting to coordinate several correlated
QWs, possibly as part of a quantum simulation scheme.

From a practical perspective, our scheme may simulate a
periodically driven quantum system [39]. Indeed, revival or
recurrence of a given state in periodically driven systems is
a well-known and helpful concept [40]. With this in mind,
we hope that the protocol we have just presented will be
experimentally implemented soon. A potential platform for
this involves optical setups, like the one used in Ref. [41] to
realize cyclic QWs.

A limitation of our procedure is that the type of inter-
vention we require does not exist for every QW if c > 2.
Even though the class of walks for which our scheme is valid
includes notable cases, like higher-dimensional Hadamard
walks, a remaining open question concerns the existence of
different protocols to induce revivals in a larger class of walks.
For instance, if the two considered interventions were not re-
quired to be the same, would it be possible to extend the class
of QWs for which on-demand revival is induced? Moreover,
to relax even more the conditions assumed here, if a larger
number of not necessarily repeated interventions is allowed, is
there a protocol to induce revival on an arbitrary QW on a d-
dimensional lattice? These are questions that deserve further
investigation.

Finally, we have also considered the notion of Pólya num-
bers. These quantities had previously been used to classify
QWs as recurrent or transient. Here, we have extended this
notion to categorize QWs that present state revival and, more-
over, to determine the instant of first revival. We hope this
notion could be fruitful in the future for studying revivals in
additional types of quantum walks.
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APPENDIX A: PROOF OF THE ALMOST
SELF-ADJOINTNESS OF Wl

In this Appendix, we show that Eq. (6) holds. This result
follows from direct computation using the properties of G
mentioned in Sec. II. In fact,

Wl = (SC)l SG

= −ei(φ1+φ2 )(SC)l−1SGG†CG†G†SG

= −ei(φ1+φ2 )(SC)l−1SGC†S†

= −ei(φ1+φ2 )Wl−1(SC)†. (A1)

Iterations of this process lead to

Wl = (−1)l−1ei(φ1+φ2 )(l−1)W1[(SC)†]l−1. (A2)

Moreover, since

W1 = SCSG

= e2i(φ1+φ2 )G†GSG†G†CG†G†SG

= e2i(φ1+φ2 )G†S†C†S†

= e2i(φ1+φ2 )W †
1 , (A3)

we conclude that

Wl = (−1)l+1ei(φ1+φ2 )(l+1)W †
1 [(SC)†]l−1

= (−1)l+1ei(φ1+φ2 )(l+1)W †
l ,

(A4)

which completes the proof.

APPENDIX B: PÓLYA NUMBER AND STATE REVIVAL

Recurrence in a classical random walk is characterized by
the Pólya number [32], which can be written as

P = 1 − 1∑∞
t=1 p0(t )

, (B1)

where p0(t ) is the probability that the walker returns to the
origin at time step t . If P = 1, the walk is said to be recurrent.
Otherwise, i.e., if 0 � P < 1, the walk is called transient.
Observe that the walk is recurrent if and only if the series∑∞

t=1 p0(t ) diverges. Moreover, the expression

P = 1 − �∞
t=1[1 − p0(t )] (B2)

can also be used as a definition for the Pólya number as it pro-
vides the same criteria for the classification of the walk [22].
With the above formula, this notion can be extended to the
study of recurrence in QWs, as shown in Refs. [21,22]. If the
walker starts at |0〉 and its state after t steps is given by ρW (t ),
the probability p0(t ) can be written as p0(t ) = tr[ρW (t )π0],
where π0 = |0〉〈0|. Hence,

P = 1 − �∞
t=1{1 − tr[ρW (t )π0]}. (B3)

Here, however, we are interested in the study of revival in
QWs. Nevertheless, the definition of the Pólya number can be
easily adapted to a generic revival of the walker. In fact, since
|0〉 is just an element of an arbitrary orthonormal basis of the
space of the walker and any given state can also be seen as
such, it follows that, if |ψ0〉 is the initial state of the walker
(which is typically assumed to be pure), the number

P = 1 − �∞
t=1{1 − tr[ρW (t )πψ0 ]}, (B4)

where πψ0 = |ψ0〉〈ψ0|, equals 1 if and only if the walker
presents “recurrence to |ψ0〉,” i.e., if there exists a revival of
|ψ0〉.

Now, to include the state of the coin in the analysis and
obtain a quantifier for the full-state revival, let |�0〉 and |�(t )〉
be the initial state and the state at an instant t of the system
composed by the walker and the coin. Then, the quantity
defined in Eq. (8) quantifies the probability of full-state revival
of the walk.

We can also define a partial Pólya number for full-state
revival as in Eq. (9). Observe that, if the first full-state revival
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occurs deterministically in the nth step, P(s)
FSR < 1 for every

s < n and P(s)
FSR = 1 for every s � n. Then, the partial Pólya

number helps to determine the first full-state revival of the
walk.

APPENDIX C: FOURIER ANALYSIS
OF THE ONE-DIMENSIONAL QW

Here, for clarity, we present the Fourier analysis of the one-
dimensional QW considered in Sec. II. First, we write the state
of the system at an instant of time t as

|�(t )〉 =
∑
x∈Z

[ψ0(x, t )|0〉 ⊗ |x〉 + ψ1(x, t )|1〉 ⊗ |x〉]. (C1)

This allows us to introduce the vector

ψ (x, t ) = (ψ0(x, t ), ψ1(x, t ))T . (C2)

Then, if C is the coin-flip operator and, hence, can be written
as in Eq. (2), it follows that

ψ (x, t ) = C0ψ (x + 1, t − 1) + C1ψ (x − 1, t − 1), (C3)

where C0 = cos θ |0〉〈0| + eiφ1 sin θ |0〉〈1| and C1 =
eiφ2 sin θ |1〉〈0| − ei(φ1+φ2 ) cos θ |1〉〈1|.

With that, we are in a position to use the translational in-
variance of the walk, which makes the recurrence in Eq. (C3)
independent of n. As mentioned in Sec. III, this suggests
a simplification of the analysis with the use of the Fourier
transform ψ̃ (k, t ) of ψ (x, t ). In fact, Eq. (C3) implies that

ψ̃ (k, t ) = e−ikC0ψ̃ (k, t − 1) + eikC1ψ̃ (k, t − 1)

= C̃(k)ψ̃ (k, t − 1), (C4)

where C̃(k) = D(k)C and D(k) = e−ik|0〉〈0| + eik|1〉〈1|.
With that, Eq. (4) leads to

ψ̃ (k, m(l + 1)) = W̃ d
l (k)ψ̃ (k, 0), (C5)

where W̃l (k) = C̃l (k)G̃(k) and G̃(k) = D(k)G.
To conclude, observe that the coin-flip operator of inter-

vention G defined in Sec. II is such that

G̃2(k) = ei�I, (C6)

where � = φ1 + φ2 + π . Moreover, the requirement in
Eq. (16) is met. This can be easily checked since the
above equation allows us to rewrite this requirement as
G̃†(k)C̃(k)G̃†(k) = C̃†(k), which holds if and only if Eq. (5)
holds. Combined, these two properties lead to induced revival
of the walk with two interventions, as is discussed in Sec. III.

APPENDIX D: PROOF OF THE MAIN PROPERTY OF W̃l (k)

The aim of this Appendix is to show that if the identity in
Eq. (16) is satisfied, then Eq. (17) holds. This follows from
direct computation. In fact,

W̃l (k) = C̃l (k)G̃(k)

= C̃l−1(k)G̃(k)G̃†(k))C̃(k)G̃(k)

= ei�C̃l−1(k)G̃(k)C̃†(k)

= ei�W̃l−1(k)C̃†(k), (D1)

which leads to

W̃l (k) = ei�(l−1)W̃1(k)(C̃†(k))l−1. (D2)

Moreover, since

W̃1(k) = C̃(k)G̃(k)

= G̃(k)G̃†(k)C̃(k)G̃(k)

= ei�G̃(k)C̃†(k)

= ei�G̃2(k)W̃ †
1 (k), (D3)

we have

W̃l (k) = ei�l G̃2(k)W̃ †
l (k), (D4)

which implies Eq. (17).

APPENDIX E: PROOF THAT G̃2(k) IS PROPORTIONAL TO
THE IDENTITY

Writing a generic coin flip C as C = ∑
mn cmneiθmn |em〉〈en|

and a generic G as G = ∑
mn gmneiφmn |em〉〈en|, the constraint

in Eq. (18) implies that, for every m and n,
∑

s

ei(−k·es+θms+φsn )cmsgsn = ei(�+k·en )
∑

s

ei(φms−θns )gmscns.

(E1)
Recalling the symmetry imposed in Eq. (11), we observe that
a consequence of the above expression is that

cmsgsn = 0 (E2)

for every m and n and every s 	= c − 1 − n.
Now, suppose that there exists G such that, for a given n

and s 	= c − 1 − n, we have gsn 	= 0. Then, the above relation
implies that cms = 0 for every m, i.e., C contains a null col-
umn. Such a matrix cannot be a unitary. Therefore, the only
non-null elements of G are the ones in its secondary diagonal,
i.e., gn,c−1−n. As a result, we can simplify the notation and
write Eq. (19).

With that, Eq. (E1) becomes

Cm,c−1−n = ei(�+φm−φc−1−n )Cn,c−1−m, (E3)

where Cmn = ei(θmn )cmn. On the one hand, by replacing n →
c − 1 − n, this allows us to write Eq. (20). On the other hand,
taking the complex conjugate of Eq. (E3) and replacing m →
c − 1 − n and n → m, we obtain

Cmn = ei(�+φc−1−n−φc−1−m )Cc−1−n,c−1−m. (E4)

Together, Eqs. (20) and (E4) imply that φm + φc−1−m = φn +
φc−1−n for every m and n. We, then, let � be such that

� ≡ φm + φc−1−m (E5)

for every m. This means that if there exists G that satisfies
Eq. (16), it must be of the form given by Eq. (19) with the
constraint in Eq. (E5). Moreover, a direct calculation shows
that Eq. (18) holds.

Furthermore, Eqs. (16) and (18) imply that

G†CG† = ei(�−�)C†. (E6)

In particular, if � equals �, Eq. (18) reduces the requirement
in Eq. (16) to the relation in Eq. (5) satisfied by coin-flip
operators in the case studied in Sec. II.
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Another conclusion drawn from the results in this Ap-
pendix is that the protocol proposed in this paper is only valid
for symmetric walks the coin-flip operator of which is charac-
terized by a matrix C that satisfies Eq. (20)—or Eq. (E4) since
they are equivalent.

To illustrate, consider unbiased walks, which constitute a
subclass of symmetric walks the coin-flip operators of which
satisfy

|Cmn| = 1√
c
. (E7)

It is clear that a subset of these walks meets the condition in
Eq. (20). This subset includes, for instance, Hadamard and
Grover walks.

To give a more concrete example, in the case c = 4, the
Hadamard coin of a walk on a two-dimensional lattice is
characterized by Cmn = (−1)m·n/2, where m · n denotes the
bitwise dot product of the binary representation of the indices
m and n. It can be checked by direct computation that this
coin-flip operator satisfies Eq. (20). We also conclude that
the intervention operator in Eq. (19) is such that φ0 = φ3 and
φ0 − φ1 = φ0 − φ2 = π . Then, up to a global phase G can be
written as

G =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠. (E8)

Another notable example, as already mentioned, consists
of Grover walks. To illustrate it further, we consider the
walk on a two-dimensional lattice with a Grover coin, which
is given by Cmn = 1/2 − δmn, where δmn is the Kronecker
delta. Direct calculation also shows that this operator satisfies
Eq. (20). Moreover, it leads to an intervention operator of the
form shown in Eq. (19) such that φm = φn for every m and n.

Then, up to a global phase, we can write

G =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠. (E9)

APPENDIX F: COIN INTERVENTIONS IN ARBITRARY
TIME STEPS

Here, we show that a protocol characterized by

Z̃l,m(k) = C̃l−m(k)G̃(k)C̃m(k), (F1)

where 0 � m � l , can also lead to revivals in a similar manner
obtained with W̃l (k).

First, observe that

Z̃l,m(k) = C̃l−m−1(k)G̃(k)G̃†(k)C̃(k)G̃(k)C̃(k)C̃m−1(k)

= ei�C̃l−m−1(k)G̃(k)C̃m−1(k),
(F2)

where Eq. (16) was used.
On the one hand, if m � l/2, repeated iterations of this

process lead to

Z̃l,m(k) = ei�mC̃l−2m(k)G̃(k) = ei�mW̃l−2m(k). (F3)
Hence, with Eq. (17), we conclude that

Z̃2
l,m(k) = e2i�mW̃ 2

l−2m(k) = ei�l G̃2(k). (F4)

On the other hand, if m > l/2, repeated iterations of
Eq. (F2) allow us to write

Z̃l,m(k) = ei�(l−m)G̃(k)C̃2m−l (k)

= ei�(l−m)G̃(k)C̃2m−l (k)G̃(k)G̃†(k)

= ei�(l−m)G̃(k)W̃2m−l (k)G̃†(k). (F5)

Therefore, using Eq. (17), we obtain

Z̃2
l,m(k) = e2i�(l−m)G̃(k)W̃ 2

2m−l (k)G̃†(k) = ei�l G̃2(k). (F6)

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[2] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[3] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Quantum
random-walk search algorithm, Phys. Rev. A 67, 052307
(2003).

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and
D. A. Spielman, Exponential algorithmic speedup by a quantum
walk, in Proceedings of the Thirty-Fifth Annual ACM Sym-
posium on Theory of Computing (Association for Computing
Machinery, New York, 2003), pp. 59–68.

[5] S. D. Berry and J. B. Wang, Quantum-walk-based search and
centrality, Phys. Rev. A 82, 042333 (2010).

[6] A. M. Childs, Universal Computation by Quantum Walk, Phys.
Rev. Lett. 102, 180501 (2009).

[7] A. M. Childs, D. Gosset, and Z. Webb, Universal com-
putation by multiparticle quantum walk, Science 339, 791
(2013).

[8] A. C. Oliveira, R. Portugal, and R. Donangelo, Decoherence
in two-dimensional quantum walks, Phys. Rev. A 74, 012312
(2006).

[9] S. Hoyer, M. Sarovar, and K. B. Whaley, Limits of quantum
speedup in photosynthetic light harvesting, New J. Phys. 12,
065041 (2010).

[10] S. Lloyd, Quantum coherence in biological systems, J. Phys.:
Conf. Ser. 302, 012037 (2011).

[11] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex,
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Bednarska, Quasiperiodic Dynamics of a Quantum Walk on the
Line, Phys. Rev. Lett. 93, 180601 (2004).

[20] O. Buerschaper and K. Burnett, Stroboscopic quantum walks,
arXiv:quant-ph/0406039 (2004).
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