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For the optimal success probability under minimum-error discrimination between r � 2 arbitrary quantum
states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and
specify the relations between these new general bounds and the known general bounds, lower and upper. We
also present the example where the values of the new general lower and upper bounds on the optimal success
probability are tighter than the values of most of the general analytical bounds known in the literature. The new
upper bound on the optimal success probability explicitly generalizes to r > 2 the form of the Helstrom bound.
For r = 2, each of our new bounds, lower and upper, reduces to the Helstrom bound.
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I. INTRODUCTION

Different aspects of quantum state discrimination have
been discussed in the literature ever since the seminal papers
of Helstrom and Holevo [1–5] and are now presented in many
textbooks and reviews; see, for example, Refs. [6–8] and
references therein.

Let a sender prepare a quantum system described in terms
of a complex Hilbert space H in one of r � 2 quantum
states ρ1, . . . , ρr, pure or mixed, with probabilities q1, . . . , qr,∑

i qi = 1, qi > 0, and send this quantum system in an initial
state

ρ =
∑

i=1,...,r

qiρi,
∑

i=1,..,r

qi = 1, qi > 0, (1)

to a receiver. For discriminating between states ρ1, . . . , ρr,

a receiver performs a measurement described by a positive
operator-valued (POV) measure

Mr =
{

Mr (i), i = 1, . . . , r
∑

i=1,...,r

Mr (i) = IH

}
(2)

and the success probability to take under this measurement the
proper decision equals to

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr ) =
∑

i=1,...,r

qitr[ρiMr (i)]; (3)

correspondingly, the error probability

Perror
ρ1,...,ρr |q1,...,qr

(Mr ) =
∑

i=1,...,r

qitr[ρi(I − Mr (i))]

= 1 − Psuccess
ρ1,...,ρr |q1,...,qr

(Mr ). (4)

Denote by Mr = {Mr}, r � 2, the set of all possible
POV measures (2). Under the maximum likelihood (the min-
imum error) state discrimination strategy, the optimal success

probability and the optimal error probability are given by

Popt.success
ρ1,...,ρr |q1,...,qr

:= max
Mr ∈ Mr

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr ), (5)

Popt.error
ρ1,...,ρr |q1,...,qr

:= min
Mr ∈ Mr

Perror
ρ1,...,ρr |q1,...,qr

(Mr )

= 1 − Popt.success
ρ1,...,ρr |q1,...,qr

(6)

and are attained at some extreme point of the convex set Mr .

The alternative expressions for the optimal error probabil-
ity (6) are presented in Theorem 1 and Corollary 1 of Ref. [9].

The following general statement was first formulated and
proved by Holevo in [3,4].

Theorem 1. Under the maximum likelihood (the minimum
error) state discrimination strategy, a POV measure M(opt)

r ∈
Mr is optimal if and only if there exists a self-adjoint trace
class operator �0 such that (i) (�0 − qiρi )M

(opt)
r (i) = 0; and

(ii) �0 � qiρi, for all i = 1, . . . , r. Herewith,

Popt.success
ρ1,...,ρr |q1,...,qr

= tr[�0], �0 =
∑

i=1,...,r

qiρiM
(opt)
r (i). (7)

For r = 2, the success probability (3) admits the Helstrom
upper bound [1,2,5]

Psuccess
ρ1,ρ2|q1,q2

(M2) � 1
2 (1 + ‖q1ρ1 − q2ρ2‖1), (8)

which is attained, so that, for r = 2, the optimal success
probability is equal to [1,2,5]

Popt.success
ρ1,ρ2|q1,q2

= 1
2 (1 + ‖q1ρ1 − q2ρ2‖1), (9)

where ‖ · ‖1 is the trace norm.
For an arbitrary r > 2, a precise general expression for

the optimal success probability (5) in terms of only states
ρ1, . . . , ρr and a priori probabilities q1, . . . , qr is not known.

However, there were introduced and studied several gen-
eral upper and lower bounds [10–21] on the optimal success
probability Popt.success

ρ1,...,ρr |q1,...,qr
, expressed via different charac-

teristics of states ρ1, . . . , ρr with a priori probabilities
q1, . . . , qr . As proved by Qiu and Li [17], in some cases,
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the general lower bound on the optimal error probabil-
ity Popt.error

ρ1,...,ρr |q1,...,qr
(correspondingly, the upper bound on the

optimal success probability Popt.success
ρ1,...,ρr |q1,...,qr

), introduced by
them in Ref. [17], is tighter than the other general lower
bounds known in the literature. Computation of bounds on
Popt.success

ρ1,...,ρr |q1,...,qr
within semidefinite programming was consid-

ered recently in Ref. [21].
In the present article, we find (Theorems 2 and 3) the

new general lower and upper bounds on the optimal success
probability (5) valid for all r � 2 and specify (Propositions 1
and 2) the relation of these new general bounds to the general
lower and upper bounds known in literature. For r = 2, each
of the new general bounds, lower and upper, reduces to the
Helstrom bound in (8), and this proves in the other way the
Helstrom result (9).

II. GENERAL LOWER BOUNDS

Taking into account that Mr ( j) = IH − ∑
i �= j Mr (i), we

rewrite the right-hand side of expression (3) in either of jth
representations:

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr ) =
∑

i=1,...,r

qi tr[ρiMr (i)]

= q j +
∑

i=1,...,r

tr[(qiρi − q jρ j )Mr (i)],

j = 1, . . . , r, (10)

for every POV measure Mr . Summing up the left-hand and
the right-hand sides of (10) over all j = 1, . . . , r, for any
POV measure Mr ∈ Mr, we also come to the following

representation for the success probability

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr ) = 1

r

(
1+

∑
i, j=1,...,r

tr[(qiρi− q jρ j )Mr (i)]

)
.

(11)

Recall that a self-adjoint (Hermitian) bounded operator X
on H admits the decomposition:

X = X (+) − X (−), X (±) � 0,

X (+) =
∑
λk>0,

λkEX (λk ), X (−) =
∑
λk�0,

|λk|EX (λk ), (12)

where EX (λk ) the spectral projections of a Hermitian operator
X . If a bounded operator X is trace class, then operators
X (±) � 0 are also trace class and

‖X‖1 := tr|X |, |X | = X (+) + X (−), ‖X (±)‖1 = tr[X (±)].
(13)

From relations [7] |tr[W ]| � ‖W ‖1 and ‖AB‖1 � ‖A‖1‖B‖0,
valid for all trace-class operators W, A and all bounded oper-
ators B, it follows that if X,Y � 0 (hence, tr[XY ] � 0), then

0 � tr[XY ] � ‖X‖1‖Y ‖0, (14)

where notation ‖ · ‖0 means the operator norm.
Definition (5) and relations (10)–(14) imply Theorem 2.
Theorem 2 (New lower bounds). For any number r � 2 of

arbitrary quantum states ρ1, . . . , ρr prepared with probabili-
ties q1, . . . , qr , the optimal success probability (5) admits the
lower bounds

Popt.success
ρ1,...,ρr |q1,...,qr

� L
(r)
1,new := max

j=1,...,r

{
q j + 1

r − 1

∑
i=1,...,r

‖(qiρi − q jρ j )
(+)‖1

}
(15)

= 1

2(r − 1)
+ 1

2(r − 1)
max

j=1,...,r

{ ∑
i=1,...,r

‖qiρi − q jρ j‖1 + q j (r − 2)

}
(16)

� L
(r)
2,new := 1

r

(
1 + 1

r − 1

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
. (17)

For r = 2, each of these new lower bounds reduces to the Helstrom bound in (8).
Proof. Let E(qiρi−q jρ j )(λk ) be the spectral projections of the Hermitian operator (qiρi − q jρ j ) on H and

P(+)
i j :=

∑
λk>0

E(qiρi−q jρ j )(λk ), i �= j, (18)

denote the orthogonal projection on the proper subspace of operator (qiρi − q jρ j ), corresponding to its positive eigenvalues.
Note that by (13)

qi − q j = ‖(qiρi − q jρ j )
(+)‖1 − ‖(qiρi − q jρ j )

(−)‖1,

‖qiρi − q jρ j‖1 = ‖(qiρi − q jρ j )
(+)‖1 + ∥∥(qiρi − q jρ j )

(−)
∥∥

1. (19)

Introduce the POV measures M( j)
r , j = 1, . . . ., r, each with the elements

M( j)
r (i) = 1

r − 1
P(+)

i j , i �= j, M( j)
r ( j) = IH − 1

r − 1

∑
i=1,...,r, i �= j

P(+)
i j = 1

r − 1

∑
i=1,...,r, i �= j

(IH − P(+)
i j ) � 0. (20)
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From the jth representation in (10) and relations (19) it fol-
lows that, for the jth POV measure (20), we have

Psuccess
ρ1,...,ρr |q1,...,qr

(
M( j)

r

) = q j +
∑

i=1,...,N

tr[(qiρi − q jρ j )M
( j)
r (i)]

= qj + 1

r − 1

∑
i=1,...,r

‖(qiρi− q jρ j )
(+)‖1,

j = 1, . . . , r. (21)

For the optimal success probability (5), equalities (21) imply

Popt.success
ρ1,...,ρr |q1,...,qr

� q j + 1

r − 1

∑
i=1,...,r

‖(qiρi − q jρ j )
(+)‖1,

∀ j = 1, . . . , r, (22)

and hence,

Popt.success
ρ1,...,ρr |q1,...,qr

� max
j=1,...,r

{
q j + 1

r − 1

∑
i=1,...,r

‖(qiρi − q jρ j )
(+)‖1

}
. (23)

Since by (19)

‖(qiρi − q jρ j )
(+)‖1 = 1

2 (qi − q j ) + 1
2‖qiρi − q jρ j‖1, (24)

the expression in the right-hand side of (22) is otherwise equal
to

q j + 1

r − 1

∑
i=1,...,r

‖(qiρi − q jρ j )
(+)‖1

= 1

2(r− 1)
+ 1

2(r− 1)

{ ∑
i=1,...,r

‖qiρi− q jρ j‖1+ q j (r− 2)

}
.

(25)

This and relation (23) imply the lower bounds (15) and (16).
Summing up the left-hand and the right-hand sides of (22)
over all j = 1, . . . , r and taking into account

∑
j=1,...,r q j =

1, relations (19) and

(qiρi − q jρ j )
+ = (q jρ j − qiρi )

(−), (26)

we derive

Popt.success
ρ1,...,ρr |q1,...,qr

� 1

r

(
1 + 1

r − 1

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
,

(27)
that is, the lower bound (17). Furthermore, since, for any
positive numbers α j, j = 1, . . . , r, their sum∑

j=1,...,r

α j � r max
j=1,...,r

α j, (28)

we have

max
j=1,...,r

{
q j + 1

r − 1

∑
i=1,...,N

‖(qiρi − q jρ j )
(+)‖1

}

� 1

r

(
1 + 1

r − 1

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
. (29)

Relations (23), (25), and (29) prove the statement of
Theorem 2. �

Consider now the relation of the new lower bounds (15)–
(17) to the known [10,19,20] general lower bounds on
Popt.success

ρ1,...,ρr |q1,...,qr
:

L
(r)
1 := max

j=1,...,r
q j � 1

r
, (30)

L
(r)
2 := 1 −

∑
1�i< j�r

√
qiq jFi j, (31)

L
(r)
3 :=

(
tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

])2

, (32)

where Fi j := ‖√ρi
√

ρ j‖1
is the pairwise fidelity. Here (i)

bound (30) follows from item (ii) and relation (7) in Theo-
rem 1; (ii) bound (31) was introduced by Barnum and Knill
in Ref. [10] and further studied by Audenaert and Mosonyi
in Ref. [20]; and (iii) bound (32) was introduced by Tyson in
Ref. [19].

Note that if trace class operators B � A, then tr[B] � tr[A].

Therefore, in bound (32), parameter tr[
√∑

i=1,...,rq2
i ρ

2
i ]�qi, for

all i = 1, . . . , r. This implies

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]
� max

i=1,...,r
qi � 1

r
, (33)

so that

L
(r)
3 �

(
L

(r)
1

)2
. (34)

Proposition 1. (a) The new lower bound (15) is tighter than
the known lower bound (30)

L
(r)
1,new � L

(r)
1 (35)

for any number r � 2 of arbitrary quantum states ρ1, . . . , ρr

and probabilities q1, . . . , qr . (b) For r = 2, the new lower
bounds (15) and (17) are equal to the Helstrom bound and
L

(2)
1,new = L

(2)
2,new � L

(2)
2 for all states ρ1, ρ2 and probabilities

q1, q2. (c) For any r > 2, the new lower bound (17) is tighter
than the lower bound (31)

L
(r)
2,new � L

(r)
2 (36)

if ∑
1�i< j�r

‖qiρi − q jρ j‖1 � (r − 1)2

r + 1
. (37)

(d) The new lower bound (15) is tighter than the lower
bound (32)

L
(r)
1,new � L

(r)
3 (38)

if

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]
� √

max
i=1,...,r

qi. (39)

(e) The new lower bound (17) is tighter than the lower
bound (32)

L
(r)
2,new � L

(r)
3 (40)

if

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]
� 1√

r
� √

max
i=1,...,r

qi. (41)
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Proof. Due to the structure of the new lower bound (15),
relation (35) is obvious. By the Helstrom result (9) and Theo-
rem 2 item (b) is also obvious. In order to prove item (c), we
consider the difference

L
(r)
2,new − L

(r)
2 = 1

r
+ 1

r(r − 1)

∑
1�i< j�r

‖qiρi − q jρ j‖1 − 1

+
∑

1�i< j�r

√
qiq jF (ρi, ρ j ). (42)

By Lemma 5 in Ref. [17]

√
qiq jF (ρi, ρ j ) � 1

2 (qi + q j ) − 1
2‖qiρi − q jρ j‖1. (43)

Substituting this relation into (42) and taking into account∑
1�i< j�r

(qi + q j ) = r − 1, (44)

we derive

L
(r)
2,new − L

(r)
2 � (r − 2)(r − 1)

2r
−

(
1

2
− 1

r(r − 1)

)

×
∑

1�i< j�r

‖qiρi − q jρ j‖1

= (r − 2)(r − 1)

2r

×
(

1 − r + 1

(r − 1)2

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
.

(45)

Under condition (37), this proves relation (36). Note that∑
1�i< j�r

‖qiρi − q jρ j‖1 �
∑

1�i< j�r

(qi + q j ) = r − 1, (46)

where we took into account (44). In order to prove (d),
we consider the value of difference (L(r)

1,new − L
(r)
3 ) under

condition (39):

L
(r)
1,new − L

(r)
3

= max
j=1,...,r

{
q j + 1

r − 1

∑
i=1,...,r

‖(qiρi − q jρ j )
(+)‖1

}

−
(

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

])2

� max
j=1,...,r

q j − max
j=1,...,r

q j = 0. (47)

This proves relation (38). In item (e), under condition (41),

L
(r)
2,new − L

(r)
3 = 1

r
+ 1

r(r − 1)

∑
1�i< j�r

‖qiρi − q jρ j‖1

−
(

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

])2

� 0. (48)

This proves (40). �

III. GENERAL UPPER BOUNDS

From relations (12)–(14) and inequality ‖Mr (i)‖0�1
it follows that, for every POV measure Mr, in
representation (10)

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr )

= qk +
∑

i=1,...,r

tr[(qiρi − qkρk )Mr (i)]

� qm +
∑

i=1,...,r

‖(qiρi − qmρm)(+)‖1, k, m = 1, . . . , r,

(49)

and in representation (11)

Psuccess
ρ1,...,ρr |q1,...,qr

(Mr )

= 1

r

(
1 +

∑
i, j=1,.,,,r

tr{(qiρi − q jρ j )Mr (i)}
)

� 1

r

(
1 +

∑
i, j=1,...,r

‖(qiρi − q jρ j )
(+)‖1

)
. (50)

Relation (49) immediately implies the upper bound

Popt.success
ρ1,...,ρr |q1,...,qr

� Q(r)
4 := min

j=1,...,r

{
q j +

∑
i=1,...,r

∥∥(qiρi − q jρ j )
(+)

∥∥
1

}

= 1

2
+ 1

2
min

j=1,...,r

{ ∑
i=1,...,r

‖qiρi − q jρ j‖1 − q j (r − 2)

}
,

(51)

which agrees due to the relation Popt.success
ρ1,...,ρr |q1,...,qr

= 1−
Popt.error

ρ1,...,ρr |q1,...,qr
with the lower bound L4 by Qiu&Li on

Popt.error
ρ1,...,ρr |q1,...,qr

introduced in Ref. [17]. Here, in order to derive
the expression in the last expression of (51) we took into
account relation (24).

For convenience in comparison, we take for the upper
bound (51) and the below upper bounds (52), (63), and (64)
on the optimal success probability (5) the numeration similar
to that for the lower bounds L(r)

n in Ref. [17] on the optimal
error probability (6) with the obvious correspondence Q(r)

n =
1 − L(r)

n .

The following theorem introduces a new upper bound on
the optimal success probability Popt.success

ρ1,...,ρr |q1,...,qr
and establishes

its relation to the upper bound (51) by Qiu and Li in Ref. [17]
and the upper bound

Q(r)
2 := 1

2

(
1 + 1

r − 1

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
, (52)

introduced by Qiu [15] earlier than bound (51) in Ref. [17].
Theorem 3 (New upper bound). For any number r � 2 of

arbitrary quantum states ρ1, . . . , ρrr prepared with probabili-
ties q1, . . . , qr , the optimal success probability (5) admits the
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upper bound

Popt.success
ρ1,...,ρr |q1,...,qr

� Q(r)
new := 1

r

(
1 +

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
,

(53)
explicitly generalizing to r > 2 the form of the Helstrom
upper bound in (8) and relating to the upper bounds (51)
and (52) as

Q(r)
4 � Q(r)

new � Q(r)
2 . (54)

Proof. In view of (5), relations (50) and (26) immediately
imply the upper bound (53). Also, by (49)

Popt.success
ρ1,...,ρr |q1,...,qr

� q j +
∑

i=1,...,r

‖(qiρi− q jρ j )
(+)‖1,

j = 1, . . . , r. (55)

Summing up the left-hand and the right-hand sides of this
relation over j = 1, . . . , r, and taking into account (26), we
derive

rPopt.success
ρ1,...,ρr |q1,...,qr

�
∑

j=1,...,r

q j +
∑

i=1,...,r

‖(qiρi − q jρ j )
(+)‖1

= 1 +
∑

1�i< j�r

‖qiρi − q jρ j‖1. (56)

Since, for any positive numbers α j, j = 1, . . . , r, their sum∑
j=1,...,r

α j � r min
j=1,...,r

α j, (57)

we have

min
j=1,...,r

{
q j +

∑
i

‖(qiρi − q jρ j )
(+)‖1

}

� 1

r

(
1 +

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
, (58)

that is, the first inequality in relation (54). In order to prove
the second inequality in (54), we recall (46) which implies

Q(r)
2 − Q(r)

new

= r − 2

2r

(
1 − 1

r − 1

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
� 0. (59)

This proves the statement of Theorem 3. �
We stress that, though the upper bound (51) in Ref. [17] is

tighter than the new upper bound (53), for a large number r �
2 of quantum states to be discriminated, the straightforward
calculation of the expression in bound (53) is much easier than
finding minimum in bound (51).

Remark 1. From relations (24) and ‖qiρi − q jρ j‖1 � qi +
q j, it follows ‖(qiρi − q jρ j )(+)‖1 � qi, and therefore∑

i=1,...,r

‖(qiρi − q jρ j )
(+)‖1 �

∑
i=1,...,r, i �= j

qi = 1 − q j . (60)

Relations (26), (44), and (60) imply∑
1�i< j�r

‖qiρi − q jρ j‖1

=
∑

i, j=1,...,r,

‖(qiρi − q jρ j )
(+)‖1 � r − 1, (61)

which agrees with (46). Therefore, the new upper bound in
Theorem 3 is nontrivial (i.e., not more than one). Also, by
relation (49) specified for the POV measure (20), the bounds
in Theorem 2 and the upper bound (51) are consistent in the
sense that

max
k=1,...,r

{
qk + 1

r − 1

∑
i=1,...,r

‖(qiρi − qkρk )(+)‖1

}

� min
m=1,...,r

{
qm +

∑
i=1,...,r

‖(qiρi − qmρm)(+)‖1

}
(62)

for all r � 2.

Besides relation (54) of the new upper bound (53) to
the known upper bounds (51) and (52) of Qiu and Li in
Ref. [17] and Qui in Ref. [15], let us also consider its relation
to the following known [16,18,19] general upper bounds on
Popt.success

ρ1,...,ρr |q1,...,qr
:

Q(r)
3 := 1 −

∑
1�i< j�r

qiq jF
2

i j , (63)

Q(r)
5 := tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]
, (64)

which follow from the lower bounds L(r)
n on the optimal error

probability introduced, correspondingly, (i) by Montanaro in
Ref. [16] and (ii) by Ogawa and Nagaoka in Ref. [18] for the
equiprobable case and by Tyson [19] for a general case.

The detailed study of these general bounds and some other
bounds for specific families of quantum states is presented in
Ref. [20].

Proposition 2. (i) For any number r � 2, of arbi-
trary quantum states ρ1, . . . , ρr and a priori probabili-
ties q1, . . . , qr , the new upper bound (53) and the upper
bound (63) satisfy the relation

Q(r)
new � r − 2

r − 1
+ 1

r − 1
Q(r)

3 . (65)

(ii) In the equiprobable case, the new upper bound (53) is
tighter than the known upper bound (63):

Q(r)
new � Q(r)

3 . (66)

(iii) The new upper bound (53) is tighter than the upper
bound (64)

Q(r)
new � Q(r)

5 (67)

if

tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]
� 1√

r
,

∑
1�i< j�r

‖qiρi − q jρ j‖1 �
√

r − 1. (68)

Proof. (i) Inequality in (65) follows from the second in-
equality Q(r)

new � Q(r)
2 in (54) and estimate (55) in Ref. [16]:

1 − Q(r)
2 � 1 − Q(r)

3

r − 1
. (69)
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(ii) For the equiprobable case q1 = · · · = qr = 1
r , we consider

the difference

Q(r)
new − Q(r)

3 = 1

r
+ 1

r2

∑
1�i< j�r

‖ρi − ρ j‖1 − 1 + 1

r2

×
∑

1�i< j�r

F 2(ρi, ρ j )

= 1

r2

∑
1�i< j�r

(F 2(ρi, ρ j ) + ‖ρi − ρ j‖1)

− r − 1

r
. (70)

Taking into account relation (20) in Ref. [17], which implies∑
1�i< j�r

(F 2(ρi, ρ j ) + ‖ρi − ρ j‖1) �
∑

1�i< j�r

2 = r(r − 1),

(71)
and substituting this into (70), we have

Q(r)
new − Q(r)

3 � r − 1

r
− r − 1

r
= 0. (72)

This implies (66). (iii) Taking into the account (33),
for the difference (Q(r)

new − Q(r)
5 ) under conditions (68) we

derive

Q(r)
new − Q(r)

5 = 1

r
+ 1

r

∑
1�i< j�r

‖qiρi − q jρ j‖1

− tr

[√ ∑
i=1,...,r

q2
i ρ

2
i

]

� 1

r
+

√
r − 1

r
− 1√

r
= 0. (73)

This proves (67). �
Proposition 2 implies Corollary 1.
Corollary 1. If conditions (68) are fulfilled, then the up-

per bound (51) by Qiu and Li [17] is tighter than the upper
bound (64) by Tyson [19]:

Q(r)
4 � Q(r)

5 (74)

To our knowledge, except for the specific examples con-
sidered by Qiu and Li [17], in general, the comparison of the
upper bound (51) in Ref. [17] with the upper bound (64) in
Ref. [19] has not been reported in the literature.

IV. GENERAL RELATIONS

Theorems 2 and 3 imply the following general relations.
Corollary 2. For any number r � 2 of arbitrary quantum

states ρ1, . . . , ρ prepared with any probabilities q1, . . . , qr ,

the optimal success probability (5) admits the following gen-
eral bounds:

1

r

(
1 + 1

(r − 1)

∑
1�i< j�r

‖qiρi − q jρ j‖1

)

� 1

2(r − 1)
+ 1

2(r − 1)
max

j=1,...,r

{ ∑
i=1,...,r

‖qiρi − q jρ j‖1 + q j (r − 2)

}

� Popt.success
ρ1,...,ρr |q1,...,qr

� 1

2
+ 1

2
min

j=1,...,r

{ ∑
i=1,...,r

‖qiρi − q jρ j‖1 − q j (r − 2)

}

� 1

r

(
1 +

∑
1�i< j�r

‖qiρi − q jρ j‖1

)
. (75)

In the first and the last lines of (75), the bounds are quite similar by its form to the Helstrom upper bound (8). For r = 2, each of
the lower and all bounds in (75) reduces to the Helstrom bound in (8) and this proves in the other way the Helstrom result (9).

For the equiprobable case, bounds (75) take the following forms.
Corollary 3. For any number r � 2, of arbitrary quantum states ρ1, . . . , ρr, prepared with equal probabilities q1 = · · · =

q1 = 1
r , the optimal success probability (5) admits the bounds

1

r

(
1 + 1

r(r − 1)

∑
1�i< j�r

‖ρi − ρ j‖1

)
� 1

r
+ 1

2r(r − 1)
max

j=1,...,r

{ ∑
i=1,...,r

‖ρi − ρ j‖1

}

� Popt.success
ρ1,...,ρr | 1

r ,..., 1
r

� 1

r
+ 1

2r
min

j=1,...,r

{ ∑
i=1,...,r

‖ρi − ρ j‖1

}

� 1

r

(
1 + 1

r

∑
1�i< j�r

‖ρi − ρ j‖1

)
. (76)
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Example

For the numerical comparison of the new lower
bounds (15)–(17) and the new upper bound (53) with
the known lower bounds (30)–(32) and the known upper
bounds (51), (52), (63), and (64), we analyze the discrimi-
nation between the following three equiprobable qubit states:

ρ1 = 7
8 |0〉〈0| + 1

8 |1〉〈1|, ρ2 = 5
8 |0〉〈0| + 3

8 |1〉〈1|,
ρ3 = 3

4 |0〉〈0| + 1
4 |1〉〈1|. (77)

In this case, ‖ρ1 − ρ2‖1 = 1
2 , ‖ρ1 − ρ3‖1 = 1

4 , ‖ρ2 − ρ3‖1 =
1
4 , and

∑
1�i< j�3

‖ρi − ρ j‖1 = 1, min
j=1,2,3

{ ∑
i=1,2,3

‖ρi − ρ j‖1

}

= 1

2
, max

j=1,2,3

{ ∑
i=1,2,3

‖ρi − ρ j‖1

}
= 3

4
.

(78)

Therefore, in the case considered, the values of the new
bounds (53), (15), and (17) are equal to

L1,new = 19
48 = 0.3958, L2,new = 7

18 	 0.3889,

Qnew = 4
9 	 0.4444, (79)

while the values of the known bounds (51), (52), and (30) are

Q4 = 5
12 	 0.4166, Q2 = 7

12 	 0.5833, L1 = 1
3 . (80)

Note that since states (77) mutually commute and are of the
form ρi = ∑

n=0,1 λ(i)
n |n〉〈n|, i = 1, 2, 3, the optimal success

probability [4]

Popt.success
ρ1,ρ2,ρ3 | 1

3 , 1
3 , 1

3

= 1

3

∑
n=0,1

(
max

i=1,2,3
λ(i)

n

)
= 5

12
= Q4 	 0.4166.

(81)
For the calculation of the lower bounds (31) and (32) and

the upper bounds (63) and (64) for equiprobable states (77),
we find fidelities Fi j := ‖√ρi

√
ρ j‖1

for states (77):

F12 =
√

35 + √
3

8
	 0.9560, F13 =

√
42 + √

2

8
	 0, 9868,

F23 =
√

30 + √
6

8
	 0, 9909, (82)

and also the trace

tr

[√ ∑
i=1,2,3

ρ2
i

]
=

√
110 + √

14

8
	 1, 7787. (83)

Therefore,

Q3 = 1 − 1

9

∑
1�i< j�3

F 2
i j 	 0.6812, Q5 = 1

3
tr

[√ ∑
i=1,2,3

ρ2
i

]

	 0, 5929,

L2 = 1 − 1

3

∑
1�i< j�3

Fi j 	 0, 0221, L3 = (Q5)2 	 0.3515.

(84)

From (79)–(84) it follows that, in the case considered,

Popt.success
ρ1,ρ2,ρ3 | 1

3 , 1
3 , 1

3

= Q4 < Qnew < Q2 < Q5 < Q3 (85)

and

Popt.success
ρ1,ρ2,ρ3 | 1

3 , 1
3 , 1

3

> L1,new > L2,new > L3 > L1 > L2, (86)

that is, the values of the new lower bounds Lnew,1,Lnew,2

and the new upper bound Qnew are tighter than the values
of the known lower bounds (30)–(32) and the known upper
bounds (52), (63), and (64), respectively.

V. CONCLUSIONS

In the present article, for the optimal success probabil-
ity (5), we find for all r � 2 : (i) the new general lower
bounds (Theorem 2) and specify their relation (Proposition 1)
to the general lower bounds (30)–(32) in Refs. [10,19,20];
and (ii) the new general upper bound (Theorem 3) and
specify its relation (Proposition 2) to the general upper
bounds (51), (52), (63), and (64) in Refs. [15–19].

We stress that, though the general upper bound (51) in
Ref. [17] is tighter than our new general upper bound (53), for
a large number r � 2 of quantum states to be discriminated,
the straightforward calculation of the expression in bound (53)
is much easier than finding the minimum in bound (51).

We also present the example where the values of the new
general lower bounds (15)-(17) and the new general upper
bound (53) on the optimal success probability are tighter than
the values of the known general lower bounds (30)–(32) and
the known general upper bounds (52), (63), and (64), respec-
tively.

The new upper bound (53) on the optimal success probabil-
ity has the form explicitly generalizing to r > 2 the Helstrom
bound in (8) and is easily calculated. For r = 2, each of our
new bounds, lower and upper, reduces to the Helstrom bound
in (8), and this proves in the other way the Helstrom result (9).
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